WO2010010898A1 - Display controller, display device, and portable electronic device - Google Patents

Display controller, display device, and portable electronic device Download PDF

Info

Publication number
WO2010010898A1
WO2010010898A1 PCT/JP2009/063114 JP2009063114W WO2010010898A1 WO 2010010898 A1 WO2010010898 A1 WO 2010010898A1 JP 2009063114 W JP2009063114 W JP 2009063114W WO 2010010898 A1 WO2010010898 A1 WO 2010010898A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
signal
liquid crystal
mode
controller
Prior art date
Application number
PCT/JP2009/063114
Other languages
French (fr)
Japanese (ja)
Inventor
良男 岡嶋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010010898A1 publication Critical patent/WO2010010898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3218Monitoring of peripheral devices of display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention includes a matrix-type display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode in which a new display operation is performed, and the display operation is suspended.
  • the present invention relates to a display controller that controls a display module having a sleep mode, a display device including the display module and the display controller, and a portable electronic device.
  • FPD Full Panel Display
  • LCD Liquid Crystal Display
  • PDP Plasma Display Panel
  • EL Electrode
  • FED Field Emission Display
  • a display device includes a display module and a display controller.
  • the display module includes the matrix display element and a drive circuit that drives the display element.
  • the display controller transmits display data and various control signals for driving the display element to the display module.
  • the conventional display device is a continuous drive system that performs a display operation for each frame. For this reason, it is necessary for the display controller to read display data from the memory and transfer it to the display module for each frame, and to transmit various control signals to the display module, which is a cause of high power consumption of the display device. It was.
  • a frame buffer is built in the signal electrode drive circuit of the LCD module. If the display data is not changed, the display data is not transferred from the module controller to the LCD module. Thereby, power consumption can be reduced. When the display data is changed, the display data is transferred with a low-frequency clock regardless of the liquid crystal display timing. As a result, the operation with the high-frequency clock becomes unnecessary, and the power consumption can be further reduced.
  • the liquid crystal driving circuit stops outputting pulses necessary for liquid crystal display when no video signal is input, and holds the current image displayed on the LCD panel. . By stopping the output of the pulse, power consumption can be reduced.
  • a scanning period and a non-scanning period are set.
  • the control IC does not input a signal other than the gate start pulse signal to the gate driver and the source driver. I am doing so. Accordingly, it is not necessary to operate the gate driver and the logic circuit inside the source driver in the non-scanning period, so that power consumption can be reduced.
  • the image display device described in Patent Document 4 has a scanning mode in which a video signal is written in any of the display cells, and a holding mode in which no video signal is written in any of the display cells.
  • the data signal line driving circuit is configured not to output a signal to each data signal line. Thereby, the power consumption of the data signal line driving circuit can be reduced.
  • the scanning signal line driving circuit outputs a non-scanning voltage (TFT off voltage) to all the scanning signal lines. As a result, the display is held by the charges accumulated in the pixel electrodes and the auxiliary capacitors in each display cell.
  • TFT off voltage non-scanning voltage
  • Patent Documents 1 to 4 the display module does not know when the input of various signals is stopped. Therefore, when the input of various signals is resumed while the input of various signals is stopped. It is necessary to prepare for. As a result, the analog power supply in the display module cannot be stopped, and reduction of power consumption is suppressed.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a display controller or the like that can further reduce power consumption.
  • a display controller includes a matrix display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode for performing a new display operation, and the display A display controller for controlling a display module having a pause mode for pausing the operation, and in order to solve the above problem, a pause / operation signal indicating which of the operation mode and the sleep mode is set; Transmission of display data and a plurality of control signals necessary for controlling the display module to the display module based on a pause / operation signal received from the display module or transmitted to the display module. It is characterized by control.
  • the display controller in the sleep mode, can stop sending part or all of the display data and the plurality of control signals to the display module. At this time, the display controller can stop the circuit unit related to the signal whose transmission is stopped, while the display module does not need to operate the circuit unit related to the signal which has not been received. Therefore, power consumption in the display controller and the display module can be reduced.
  • the display controller controls transmission of the display data and control signal to the display module based on the pause / operation signal transmitted or received. Accordingly, the display module can prepare for display operation or pause from reception or transmission of the pause / operation signal to control of the transmission from the display controller. Accordingly, in the sleep mode, the display module does not need to wait for the display operation until the pause / operation signal is received or transmitted. Therefore, the analog power supply in the display module may be stopped. And power consumption can be further reduced.
  • control signal examples include a transfer clock signal described later, a synchronization signal for vertical scanning and horizontal scanning, and the like.
  • the display controller stops transmitting at least the display data and the transfer clock signal to the display module, while at least synchronizing signals for vertical scanning and horizontal scanning. It is preferable to transmit to the display module.
  • a display controller includes a matrix display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode for performing a new display operation, and the display A display controller that controls a display module having a pause mode that pauses operation, and in order to solve the above-described problem, in the pause mode, at least display data and the display data are assigned to each display pixel.
  • the transmission clock signal for transfer is stopped from being transmitted to the display module, while at least a synchronizing signal for vertical scanning and horizontal scanning is transmitted to the display module.
  • examples of the synchronization signal for vertical scanning include a vertical synchronization signal and a gate start pulse signal.
  • examples of the synchronization signal for horizontal scanning include a horizontal synchronization signal and a gate clock signal.
  • the display module in the sleep mode, does not receive the display data and the transfer clock signal, so that the logic circuit related to the display data and the transfer clock signal does not need to operate.
  • the display controller In the sleep mode, does not need to transmit the display data and the transfer clock signal to the display module, so that the logic circuit related to the display data and the transfer clock signal can be stopped.
  • the display data and the transfer clock signal have the highest frequency among signals transmitted from the display controller to the display module.
  • the power consumption of the logic circuit is proportional to the frequency. Therefore, the display controller of the present invention can significantly reduce power consumption.
  • a synchronization signal for vertical scanning and horizontal scanning is transmitted from the display controller to the display module.
  • the transition from the pause mode to the operation mode can be performed based on the synchronization signals for the vertical scanning and horizontal scanning.
  • the synchronization signal for horizontal scanning is generally higher in frequency than the synchronization signal for vertical scanning, the preparation for the transition is performed based on the synchronization signal for horizontal scanning, so that The transition can be reliably performed in synchronization with the synchronization signal for the vertical scanning.
  • the display module may notify the display controller of the state, or the display controller may indicate the state to the display module. You just have to point.
  • the above pause / operation signal may be transmitted and received between the display controller and the display module.
  • the display controller in the pause mode, it is preferable to stop reading the display data from the storage means for storing the display data.
  • the access efficiency to the storage means from other devices particularly a CPU (Central Processing Unit) is improved.
  • the bus occupancy can be reduced, so that the frequency of use of the bus by other devices, particularly the CPU, is improved. Performance will be improved.
  • the signals having the highest frequency among the signals transmitted from the display controller to the display module are the display data and the transfer clock signal. Therefore, when the display controller stops transmitting at least the display data and the transfer clock signal to the display module in the sleep mode, the operating frequency of the display controller can be lowered.
  • the display controller transmits at least display data and a transfer clock signal for transferring the display data to each display pixel to the display module in the sleep mode. It is preferable that the frequency of the clock signal supplied to the display controller in the sleep mode is lower than that in the operation mode.
  • the operating frequency of the display controller is lowered, and the power consumption of the logic circuit is proportional to the frequency as described above. Therefore, the power consumption of the display controller can be further reduced.
  • the display element is preferably a liquid crystal display element, but may be another FPD such as a PDP, EL display, or FED.
  • the portable electronic device includes the display device having the above-described configuration, the same effects as described above can be obtained.
  • the display controller can stop the circuit unit related to the signal for stopping transmission to the display module, while the display module does not need to operate the circuit unit related to the signal not received.
  • the power consumption in the display controller and the display module can be reduced. Further, since the display module in the sleep mode may be prepared for display operation after receiving or transmitting the pause / operation signal, the display module until the display / operation signal is received or transmitted. The analog power supply can be stopped, and the power consumption can be further reduced.
  • the display controller according to the present invention does not need to operate the logic circuit related to the display data and the transfer clock signal in the sleep mode, so that the power consumption can be reduced. Furthermore, by sending a synchronization signal for vertical scanning and horizontal scanning to the display module, preparation for transition from the pause mode to the operation mode can be made based on the synchronization signal for horizontal scanning, There is an effect that the transition can be surely performed in synchronization with the synchronization signal for the vertical scanning.
  • FIG. 6 is a diagram showing a correspondence relationship between an operation mode and a pause mode of a liquid crystal module and an operation of a liquid crystal controller in the liquid crystal display device in a table format. It is a block diagram which shows schematic structure of the said liquid crystal module. It is a figure which shows the correspondence of the content of the mode instruction
  • FIG. 1 shows a schematic configuration of the liquid crystal display device of the present embodiment.
  • the liquid crystal display device (display device) 10 is mounted as an image display device in a portable electronic device such as a mobile phone or an electronic dictionary.
  • Portable electronic devices are required to reduce the power consumption of various configurations in order to extend the life of the battery on which they are mounted.
  • the liquid crystal display device 10 includes a CPU 11, a bus 12, a memory (storage means) 13, a liquid crystal module (display module) 14, a liquid crystal controller (display controller) 15, and a clock device 16. .
  • the CPU 11 performs overall control of various components in the liquid crystal display device 10 via the bus 12 by executing a program stored in a storage element such as a RAM (Random Access Memory) or a flash memory. It is. Specifically, the CPU 11 performs operation setting of the liquid crystal controller 15 and writing of display data to the memory 13 via the bus 12.
  • a storage element such as a RAM (Random Access Memory) or a flash memory. It is. Specifically, the CPU 11 performs operation setting of the liquid crystal controller 15 and writing of display data to the memory 13 via the bus 12.
  • the bus 12 is a common signal line for transmitting and receiving data between various components in the liquid crystal display device 10.
  • the memory 13 is a VRAM (Video RAM) that functions as a buffer between the CPU 11 and the liquid crystal module 14 and stores display data DAT.
  • the memory 13 temporarily stores data used for arithmetic processing of the CPU 11 and arithmetic results. It also functions as a so-called working memory.
  • the liquid crystal module 14 is a functional unit that displays images such as characters, symbols, and figures on a display element.
  • the liquid crystal module 14 drives a matrix type LCD element (liquid crystal display element) in which display pixels are arranged in a matrix and the LCD element. Drive circuit.
  • the liquid crystal controller 15 controls the liquid crystal module 14. Specifically, the liquid crystal controller 15 transfers the display data DAT read from the memory 13 to the liquid crystal module 14 and transmits a plurality of control signals CNT necessary for display control of the liquid crystal module 14. Examples of the control signal CNT include a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, a transfer clock signal CLKf for transferring display data DAT to each display pixel of the LCD element, and the like.
  • the clock device 16 generates a clock signal CLK, which is a periodic signal used for measuring time intervals and synchronizing, and transmits the clock signal CLK to various configurations.
  • the liquid crystal module 14 has an operation mode Ma for performing a new display operation and a pause mode Mp for pausing the display operation.
  • the operations of the liquid crystal controller 15 and the clock device 16 change depending on whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp.
  • FIG. 2 shows a correspondence relationship between the operation mode and pause mode of the liquid crystal module 14 and the operation of the liquid crystal controller 15 in the present embodiment.
  • the liquid crystal module 14 generates a pause / operation signal P / A indicating whether the operation mode Ma or the pause mode Mp is being transmitted to the liquid crystal controller 15. Thereby, the liquid crystal controller 15 can recognize whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp based on the received pause / operation signal P / A.
  • the liquid crystal controller 15 stops transmitting part or all of the display data DAT and the plurality of control signals CNT to the liquid crystal module 14.
  • the circuit unit relating to the signal that has not been received does not need to operate.
  • the liquid crystal controller 15 since the liquid crystal controller 15 does not need to generate or process the signal for stopping the transmission, the liquid crystal controller 15 can stop the circuit unit related to the signal for stopping the transmission. As a result, the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be reduced.
  • the display data DAT and the transfer clock signal CLKf have higher frequencies than other signals.
  • the power consumption of the circuit is proportional to “voltage ⁇ load capacity ⁇ frequency”. Therefore, if the frequency is lowered, the power consumption can be reduced. Therefore, in the sleep mode Mp, the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be greatly reduced rather than the liquid crystal controller 15 stopping transmitting the display data DAT and the transfer clock signal CLKf to the liquid crystal module 14. it can.
  • the maximum frequency of the display data DAT and the frequency of the transfer clock signal CLKf are about 9 MHz to 12 MHz.
  • the frequency of the vertical synchronization signal Vsync is 60 Hz, which is the same as the frame frequency
  • the duty ratio of the horizontal synchronizing signal Hsync is 1: 9
  • the frequency of the clock signal necessary for generating and processing the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync is the frequency necessary for processing the display data DAT and the transfer clock signal CLKf. It is about 1/40 or less of the frequency of the clock signal necessary for processing. From this, it can be understood that the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be significantly reduced by stopping the transmission of the display data DAT and the transfer clock signal CLKf particularly in the case of the sleep mode Mp.
  • the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync are transmitted from the liquid crystal controller 15 to the liquid crystal module 14 even in the sleep mode Mp.
  • the transition from the sleep mode Mp to the operation mode Ma can be performed based on the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync.
  • the liquid crystal controller 15 receives a horizontal synchronization signal Hsync of 480 pulses or more for one pulse of the vertical synchronization signal Vsync. Therefore, the liquid crystal controller 15 can reliably perform the transition in synchronism with the vertical synchronization signal Vsync by performing the preparation for the transition based on the horizontal synchronization signal Hsync.
  • the liquid crystal module 14 in the sleep mode Mp may perform preparation for display operation after receiving or transmitting the pause / operation signal P / A. Therefore, the analog power supply in the liquid crystal module 14 can be stopped until the pause / operation signal P / A is received or transmitted, and the power consumption can be further reduced.
  • the liquid crystal controller 15 stops reading display data DAT from the memory 13 via the bus 12.
  • the access efficiency from other devices, particularly the CPU 11 to the memory 13 is improved.
  • the occupation rate of the bus 12 can be reduced, the frequency of use of the bus 12 by other devices, particularly the CPU, is improved, and the performance is improved.
  • the liquid crystal controller 15 transmits a pause / operation signal P / A from the liquid crystal module 14 to the clock device 16.
  • the clock device 16 can recognize whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp based on the received pause / operation signal P / A.
  • the clock device 16 supplies a low-frequency clock signal CLK to the liquid crystal controller 15 in the sleep mode Mp.
  • the operating frequency of the liquid crystal controller 15 is lowered, and the power consumption of the logic circuit is proportional to the frequency as described above, so that the power consumption of the liquid crystal controller 15 can be further reduced.
  • FIG. 3 shows a schematic configuration of the liquid crystal module 14.
  • the liquid crystal module 14 includes a TFT panel (display element) 22, a scanning signal line driving circuit 25, a data signal line driving circuit 26, a counter electrode driving circuit 28, and a mode control circuit 29.
  • the TFT panel 22 includes i rows of scanning signal lines G1, G2,..., Gi (referred to collectively by reference numeral G) and j columns of data signal lines S1, S2,.
  • the pixel electrode 23 is provided in a region partitioned by the reference symbol S).
  • the transmissivity of the liquid crystal between the electrodes 23 and 24 is changed by the voltage held between the pixel electrode 23 and the counter electrode 24, whereby image display is performed.
  • the scanning signal line G is connected to the scanning signal line driving circuit 25, and the data signal line S is connected to the data signal line driving circuit 26.
  • the counter electrode 24 is electrically connected to the counter electrode drive circuit 28.
  • the scanning signal line driving circuit 25 receives the vertical synchronizing signal Vsync and the horizontal synchronizing signal Hsync, starts a driving operation to the scanning signal line G based on the vertical synchronizing signal Vsync, and performs horizontal scanning based on the horizontal synchronizing signal Hsync.
  • the scanning signal lines G are sequentially driven every cycle.
  • the data signal line driving circuit 26 receives the horizontal synchronization signal Hsync, the display data DAT, and the transfer clock signal CLKf, starts a driving operation to the data signal line S based on the horizontal synchronization signal Hsync, and transfers the transfer clock signal.
  • a data signal obtained by dividing the display data DAT for each pixel is sequentially output to each data signal line S based on CLKf.
  • the counter electrode drive circuit 28 receives the horizontal synchronization signal Hsync and drives the counter electrode 24 based on the horizontal synchronization signal Hsync.
  • the mode control circuit 29 controls either the operation mode Ma in which the liquid crystal module 14 performs a new display operation or the pause mode Mp in which the display operation is paused. Specifically, the mode control circuit 29 selects either the operation mode Ma or the pause mode Mp based on the mode instruction signal MD from the CPU 11 via the liquid crystal controller 15, and the pause / operation signal indicating the selected mode. P / A is generated. The mode control circuit 29 transmits the generated pause / operation signal P / A to the data signal line driving circuit 26 and also to the external liquid crystal controller 15.
  • FIG. 4 shows the correspondence between the contents of the mode instruction signal MD and the driving method of the liquid crystal module 14. As shown in the figure, since the mode instruction signal MD is composed of 2 bits, four driving methods can be instructed.
  • the first driving method is a continuous driving method in which the operation mode Ma is continuous.
  • the remaining three driving methods are intermittent driving methods in which the operation mode Ma is followed by the sleep mode Mp.
  • the second driving method is a 1: 1 intermittent driving method in which an operation mode Ma of 1 frame period (1/60 seconds) and a pause mode Mp of 1 frame period are alternately followed.
  • the third driving method is a 1: 4 intermittent driving method in which an operation mode Ma of one frame cycle and a pause mode Mp of four frame cycles are alternately followed.
  • the fourth driving method is a 1: 9 intermittent driving method in which an operation mode Ma having a 1-frame cycle and a pause mode Mp having a 9-frame cycle are alternately followed.
  • the 2-bit mode instruction signal MD may be transmitted separately from the liquid crystal controller 15 to the liquid crystal module 14 via two signal lines, or may be transmitted continuously via one signal line. In the example of FIG. 4, four drive methods are mentioned, but the present invention is not limited to these.
  • the timing at which the mode control circuit 29 transmits the pause / operation signal P / A is the gate delay or the data transfer clock from the rising or falling edge of the vertical synchronization signal Vsync received by the liquid crystal module 14. It's a minute late.
  • the pause / operation signal P / A indicates whether the next frame period is the operation mode Ma or the pause mode Mp.
  • the liquid crystal module 14 and the liquid crystal controller 15 can operate as the sleep mode Mp or the operation mode Ma from the beginning of one frame period.
  • the data signal line driving circuit 26 stops the operation of the circuit unit related to the display data DAT and the transfer clock signal CLKf in the pause mode Mp. Thereby, power consumption can be reduced significantly.
  • the mode control circuit 29 transmits the pause / operation signal P / A to the scanning signal line driving circuit 25 and the counter electrode driving circuit 28, thereby scanning signal lines. All operations of the drive circuit 25, the data signal line drive circuit 26, and the counter electrode drive circuit 28 may be stopped.
  • FIG. 5 shows the operation of the liquid crystal module 14 of this embodiment and the operation of various signals.
  • FIG. 5 shows operations of the vertical synchronization signal Vsync, the display units 22 to 24 of the liquid crystal module 14, and the pause / operation signal P / A in order from the top.
  • the vertical synchronization signal Vsync is a negative logic signal.
  • the L level indicates the pause mode Mp
  • the H level indicates the operation mode Ma.
  • the delay due to the transmission of the signal line and the processing in the circuit is omitted.
  • the mode instruction signal MD indicating the 1: 1 intermittent driving method is sent from the CPU 11 to the mode control circuit 29 via the liquid crystal controller 15.
  • the mode instruction signal MD is processed in synchronization with the subsequent fall (C11) of the vertical synchronization signal Vsync, and the pause / operation signal P / A is the 1: 1 intermittent drive described above. It will be changed to one that follows the method.
  • the pause / operation signal P / A after the fall time point C11 is alternately switched between the H level (operation mode Ma) and the L level (pause mode Mp) in synchronization with the fall of the vertical synchronization signal Vsync. Will be repeated.
  • the pause / operation signal P / A is processed in synchronism with the fall of the next vertical synchronizing signal Vsync (C12), and the display units 22 to 24 have the above 1: 1 ratio. Driven according to the intermittent drive system. Thus, the display units 22 to 24 after the falling point C12 are alternately repeated with a new display operation and a pause of the display operation in synchronization with the falling of the vertical synchronization signal Vsync.
  • the mode instruction signal MD indicating the continuous driving method is transmitted from the CPU 11 to the mode control circuit 29 via the liquid crystal controller 15 at a certain time C13 when the driving is performed by the 1: 1 intermittent driving method.
  • the mode instruction signal MD is processed in synchronization with the subsequent fall (C14) of the vertical synchronization signal Vsync, and the pause / operation signal P / A is changed to that in accordance with the continuous drive system. Is done.
  • the pause / operation signal P / A after the time point C14 is kept at the H level (operation mode Ma).
  • the pause / operation signal P / A is processed in synchronization with the fall of the next vertical synchronizing signal Vsync (C15), and the display units 22 to 24 are driven according to the continuous driving method. Is done. As a result, the display units 22 to 24 after the falling point C15 repeat the new display operation in synchronization with the falling of the vertical synchronization signal Vsync.
  • FIG. 6 shows a schematic configuration of the liquid crystal controller 15.
  • the liquid crystal controller 15 includes a control unit 30, a polarity selection unit 31, a synchronization unit 32, an operation selection unit 33, an access restriction unit 34, and a transmission restriction unit 35.
  • the signal act_en is a signal from the register act_en in which one of the continuous driving method and the intermittent driving method is set.
  • the signal iact is a signal from the register iact in which the polarity of the pause / operation signal P / A is set.
  • the signal ivs is a signal ivs from a register in which the polarity of the vertical synchronization signal Vsync is set.
  • the mode instruction signal MD shown in FIG. 3 is omitted.
  • the control unit 30 generates and transmits a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, and a transfer clock signal CLKf based on the clock signal CLK from the clock device 16. Further, the control unit 30 reads the display data DAT from the memory 13 and transmits it to the liquid crystal module 14 in synchronization with the transfer clock signal CLKf.
  • control unit 30 of this embodiment corresponds to a conventional continuous drive type liquid crystal controller
  • liquid crystal controller 15 of this embodiment applies the present invention to the conventional continuous drive type liquid crystal controller. Therefore, some circuit components are added.
  • the polarity selector 31 changes the polarities of the vertical synchronization signal Vsync and the pause / operation signal P / A based on the settings of the registers ivs and iact. As shown in FIG. A selector is provided.
  • the synchronization unit 32 includes a latch circuit, and uses the trailing edge of the vertical synchronization signal Vsync output from the control unit 30 and before being output to the outside as a clock, as a pause / operation signal P / from the liquid crystal module 14. A is synchronized.
  • the synchronization unit 32 transmits the synchronized signal active_i1 to the operation selection unit 33.
  • the polarity of the pause / operation signal P / A is determined by the setting of the register iact
  • the polarity of the clock (vertical synchronization signal Vsync) is determined by the setting of the register ivs.
  • the operation selection unit 33 selects whether the liquid crystal module 14 and the liquid crystal controller 15 operate in the continuous drive method or the intermittent drive method based on the signal act_en from the CPU 11.
  • the signal act_en is at the L (low) level
  • the continuous driving method is selected, and the output signal active_i2 is always at the H (high) level.
  • the signal act_en is at the H (high) level
  • the intermittent drive method is selected, and the output signal active_i2 is at the same level as the signal active_i1.
  • the access restriction unit 34 suppresses access from the control unit 30 to the memory 13 based on the signal active_i2. Specifically, the access restriction unit 34 restricts access to the memory 13 when the signal active_i2 is at the L level, and does not restrict access to the memory 13 in other cases.
  • the transmission restriction unit 35 restricts the transmission of the display data DAT and the transfer clock signal CLKf from the control unit 30 to the outside based on the signal active_i2. Specifically, when the signal active_i2 is at the L level, the transmission limiting unit 35 fixes the display data DAT and the transfer clock signal CLKf to the L level and transmits them to the liquid crystal module 14, while in other cases, the transmission limiting unit 35 transmits the signals as they are.
  • FIG. 7 shows the operation of various signals when the liquid crystal module 14 operates in the intermittent drive system in the liquid crystal controller 15 of the present embodiment.
  • FIG. 7 shows operations of the signal active_i1, the signal active_i2, the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, the transfer clock signal CLKf, the display data DAT, and the pause / operation signal P / A in order from the top.
  • the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync are negative logic signals.
  • the polarity selection unit 31 does not change the polarity, and the operation selection unit 33 operates in the intermittent drive method.
  • delay due to transmission of signal lines and processing in the circuit is omitted.
  • the level of the pause / operation signal P / A transitions from the H level (operation mode Ma) to the L level (pause mode Mp) in synchronization with the fall (D10) of the vertical synchronization signal Vsync.
  • the level of the pause / operation signal P / A is input to the synchronization unit 32, and the signal active_i1 transitions to the L level in synchronization with the rising edge (D11) of the vertical synchronization signal Vsync.
  • the level of the signal active_i1 is input to the operation selection unit 33, and the signal active_i2 transitions to the L level in synchronization with the falling edge (D12) of the vertical synchronization signal Vsync.
  • access to the memory 13 by the access restriction unit 34 is restricted, and transmission of the display data DAT and the transfer clock signal CLKf by the transmission restriction unit 35 to the liquid crystal module 14 is restricted to L level transmission. Therefore, during one frame period Fp from the falling point D12, the display data DAT and the transfer clock signal CLKf are not transmitted to the liquid crystal module 14, and a new display operation is stopped in the liquid crystal module 14.
  • the level of the pause / operation signal P / A transitions from the L level to the H level in synchronization with the fall (D12) of the vertical synchronization signal Vsync.
  • the level of the pause / operation signal P / A is input to the synchronization unit 32, and the signal active_i1 transitions to the H level in synchronization with the rising edge (D13) of the vertical synchronization signal Vsync.
  • the level of the signal active_i1 is input to the operation selection unit 33, and the signal active_i2 transitions to the H level in synchronization with the falling edge (D14) of the vertical synchronization signal Vsync.
  • access to the memory 13 by the access restriction unit 34 is not restricted, and transmission of the display data DAT and the transfer clock signal CLKf by the transmission restriction unit 35 to the liquid crystal module 14 is also not restricted. Accordingly, during one frame period Fa from the falling point D14, the display data DAT and the transfer clock signal CLKf are transmitted to the liquid crystal module 14, and a new display operation is performed in the liquid crystal module 14 (D15). .
  • FIG. 8 shows a schematic configuration of the clock device 16.
  • the clock device 16 includes a crystal oscillation circuit 40, a 1/62 frequency divider circuit 41, a selector 42, and a timing adjustment circuit 43.
  • the crystal oscillation circuit 40 is an oscillation circuit that uses a crystal resonator as a resonator, and generates a 12 MHz clock signal in this embodiment. This is about 620 times the horizontal synchronizing signal Hsync (19.2 kHz) described above.
  • the crystal oscillation circuit 40 transmits the generated 12 MHz clock signal to the 1/62 frequency divider circuit 41 and the selector 42.
  • the 1/62 frequency dividing circuit 41 divides the frequency of the received clock signal by 1/62.
  • the 12 MHz clock signal is converted into a 0.1935 MHz clock signal. This is about 10 times the horizontal synchronizing signal Hsync (19.2 kHz) described above.
  • the 1/62 divider circuit 41 transmits the divided clock signal to the selector 42.
  • the timing adjustment circuit 43 adjusts the timing of the pause / operation signal P / A received from the liquid crystal controller 15 so as to be synchronized with the output timing of the selector 42.
  • the timing adjustment circuit 43 transmits the pause / operation signal P / A whose timing is adjusted to the selector 42.
  • the selector 42 selects either the clock signal from the crystal oscillation circuit 40 or the clock signal from the 1/62 frequency divider circuit 41 based on the pause / operation signal P / A whose timing is adjusted by the timing adjustment circuit 43. Thus, it is output to the liquid crystal controller 15 as a clock signal CLK. Specifically, in the sleep mode Mp, the 0.1935 MHz clock signal from the 1/62 frequency divider 41 is output to the liquid crystal controller 15, while in the operation mode Ma, the 12 MHz clock signal from the crystal oscillation circuit 40 is output. A clock signal is output to the liquid crystal controller 15. As a result, in the sleep mode Mp, the operating frequency of the liquid crystal controller 15 is greatly reduced, so that power consumption can be greatly reduced.
  • the CPU 11 and other devices may be supplied with a 12 MHz clock signal from the crystal oscillation circuit 40 or may be supplied with a clock signal from the selector 42 as in the liquid crystal controller 15.
  • the clock signal is supplied from the selector 42, when the sleep mode Mp is entered, the operating frequency is lowered and the performance is lowered, but the power consumption can be further reduced.
  • the present invention is applied to an image display device of a portable electronic device, but the present invention may be applied to an electronic device other than a portable device such as a desktop PC (Personal Computer).
  • the present invention is applied to an image display device including an LCD.
  • the present invention can also be applied to an image display device including another FPD such as a PDP, an EL display, and an FED.
  • FIG. 3 is mentioned as an Example of the liquid crystal module 14 of an intermittent drive system, this invention is not limited to this, It applies to the liquid crystal module of a well-known intermittent drive system.
  • the vertical synchronization signal Vsync is used.
  • an arbitrary synchronization signal for vertical scanning such as a gate start pulse signal can be used.
  • the horizontal synchronization signal Hsync is used.
  • any synchronization signal for horizontal scanning such as a gate clock signal, can be used.
  • the liquid crystal controller 15 transmits the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the transfer clock signal CLKf to the liquid crystal module 14, but the source start pulse signal, the data valid signal, etc. Others transmit other control signals.
  • the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be further reduced by stopping the generation and transmission of the other control signals in the pause mode Mp.
  • the periods of the sleep mode Mp and the operation mode Ma are one frame period or multiples thereof, but may be a period unrelated to one frame period.
  • the present invention stops the transmission of the display data and the transfer clock signal to reduce the power consumption, while continuing the transmission of the vertical synchronization signal and the horizontal synchronization signal from the pause mode. Since the preparation for shifting to the operation mode is performed based on the horizontal synchronization signal, the above-described transition can be surely performed in synchronization with the vertical synchronization signal, and thus can be applied to any matrix type display device.
  • Liquid crystal display device (display device) 11 CPU 12 bus 13 memory (storage means) 14 Liquid crystal module (display module) 15 LCD controller (display controller) 16 Clock device 22 TFT panel (display unit / display element) 23 Pixel electrode (display unit) 24 Counter electrode (display part) 25 scanning signal line drive circuit 26 data signal line drive circuit 28 counter electrode drive circuit 29 mode control circuit 30 control unit 31 polarity selection unit 32 synchronization unit 33 operation selection unit 34 access restriction unit 35 transmission restriction unit 40 crystal oscillation circuit 41 1 / 62 divider circuit 42 selector 43 timing adjustment circuit CLK clock signal CLKf transfer clock signal CNT control signal DAT display data Hsync horizontal synchronization signal MD mode instruction signal Ma operation mode Mp pause mode P / A pause / operation signal Vsync vertical synchronization signal

Abstract

A liquid crystal controller (15) controls a liquid crystal module (14).  The liquid crystal module (14) comprises a matrix LCD element in which display pixels are arranged in matrix and a drive circuit for driving the LCD element, and is provided with an operation mode for performing a new display operation and a suspend mode for suspending the display operation.  When receiving a suspend/operation signal indicating that either of the operation mode or the suspend mode is given from the liquid crystal module (14), the liquid crystal controller (15) controls to transmit display data and a plurality of control signals required to control the liquid crystal module (14) to the liquid crystal module (14) according to the received suspend/operation signal.

Description

表示コントローラ、表示装置、および携帯型電子機器Display controller, display device, and portable electronic device
 本発明は、表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールを制御する表示コントローラと、該表示モジュールおよび表示コントローラを備える表示装置および携帯型電子機器とに関するものである。 The present invention includes a matrix-type display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode in which a new display operation is performed, and the display operation is suspended. The present invention relates to a display controller that controls a display module having a sleep mode, a display device including the display module and the display controller, and a portable electronic device.
 上記マトリクス型の表示素子に対し行方向および列方向に多数の信号線を配備し、該信号線を駆動することにより、表示素子に文字、記号、図形などの画像を表示させる表示装置が存在する。上記マトリクス型の表示素子としては、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、EL(Electroluminescence)ディスプレイ、FED(Field Emission Display)などのFPD(Flat Panel Display)が利用されている。FPDは、従来のCRT(Cathode Ray Tube)よりも薄型化かつ軽量化が可能であることから、近時、様々な表示装置に利用されている。 There are display devices that display a character, a symbol, a graphic, or the like on the display element by arranging a large number of signal lines in the row direction and the column direction with respect to the matrix display element and driving the signal lines. . As the matrix type display element, FPD (Flat Panel Display) such as LCD (Liquid Crystal Display), PDP (Plasma Display Panel), EL (Electroluminescence) display, FED (Field Emission Display) and the like are used. Since FPD can be made thinner and lighter than conventional CRT (Cathode Ray Ray Tube), it has recently been used in various display devices.
 一般に、表示装置は、表示モジュールと表示コントローラとを備えている。上記表示モジュールは、上記マトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えるものである。一方、表示コントローラは、表示モジュールに対し、表示データと、上記表示素子を駆動するための各種制御信号とを送信するものである。 Generally, a display device includes a display module and a display controller. The display module includes the matrix display element and a drive circuit that drives the display element. On the other hand, the display controller transmits display data and various control signals for driving the display element to the display module.
 従来の表示装置は、1フレームごとに表示動作を行う連続駆動方式であった。このため、表示コントローラは、1フレームごとに、メモリから表示データを読み出して表示モジュールに転送すると共に、各種制御信号を表示モジュールに送信する必要があり、表示装置の消費電力が大きい要因となっていた。 The conventional display device is a continuous drive system that performs a display operation for each frame. For this reason, it is necessary for the display controller to read display data from the memory and transfer it to the display module for each frame, and to transmit various control signals to the display module, which is a cause of high power consumption of the display device. It was.
 そこで、表示動作の休止が可能な、いわゆる間欠駆動方式の表示装置が開発されており、例えば特許文献1~4に記載されている。 Therefore, so-called intermittent drive type display devices capable of pausing the display operation have been developed, and are described in Patent Documents 1 to 4, for example.
日本国公開特許公報「特開2001-060079号(公開日:2001年3月6日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-060079 (Publication Date: March 6, 2001)” 日本国公開特許公報「特開平11-338425号(公開日:1999年12月10日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-338425 (Publication Date: Dec. 10, 1999)” 日本国公開特許公報「特開2001-312253号(公開日:2001年11月9日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-31253 (Publication Date: November 9, 2001)” 日本国公開特許公報「特開2002-123234号(公開日:2002年4月26日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2002-123234 (Publication Date: April 26, 2002)”
 特許文献1に記載のマトリクス型表示装置では、LCDモジュールの信号電極駆動回路にフレームバッファを内蔵している。そして、表示データに変更が無い場合には、モジュールコントローラからLCDモジュールへの表示データの転送を行わない。これにより、消費電力を低減することができる。また、表示データに変更があった場合には、上記表示データの転送を液晶表示タイミングとは無関係に低周波クロックで行う。これにより、高周波クロックでの動作が不要となり、消費電力をさらに低減することができる。 In the matrix type display device described in Patent Document 1, a frame buffer is built in the signal electrode drive circuit of the LCD module. If the display data is not changed, the display data is not transferred from the module controller to the LCD module. Thereby, power consumption can be reduced. When the display data is changed, the display data is transferred with a low-frequency clock regardless of the liquid crystal display timing. As a result, the operation with the high-frequency clock becomes unnecessary, and the power consumption can be further reduced.
 また、特許文献2に記載の液晶表示装置では、液晶駆動回路は、ビデオ信号の未入力時には液晶表示に必要なパルスの出力を停止し、LCDパネルに表示されている現画像を保持させている。上記パルスの出力を停止することにより、消費電力を低減することができる。 In the liquid crystal display device described in Patent Document 2, the liquid crystal driving circuit stops outputting pulses necessary for liquid crystal display when no video signal is input, and holds the current image displayed on the LCD panel. . By stopping the output of the pulse, power consumption can be reduced.
 また、特許文献3に記載の表示装置では、走査期間と非走査期間とが設定され、非走査期間では、コントロールICが、ゲートドライバおよびソースドライバに対し、ゲートスタートパルス信号以外の信号を入力しないようにしている。これにより、上記非走査期間において上記ゲートドライバおよび上記ソースドライバの内部のロジック回路を動作させる必要がなくなるので、消費電力を削減することができる。 In the display device described in Patent Document 3, a scanning period and a non-scanning period are set. In the non-scanning period, the control IC does not input a signal other than the gate start pulse signal to the gate driver and the source driver. I am doing so. Accordingly, it is not necessary to operate the gate driver and the logic circuit inside the source driver in the non-scanning period, so that power consumption can be reduced.
 また、特許文献4に記載の画像表示装置では、表示セルの何れかに映像信号を書き込む走査モードと、表示セルの何れにも映像信号を書き込まない保持モードとを有している。該保持モードでは、データ信号線駆動回路は、各データ信号線に信号を出力しないようにしている。これにより、上記データ信号線駆動回路の消費電力を低減できる。一方、走査信号線駆動回路は、全ての走査信号線に非走査電圧(TFTのoff電圧)を出力している。これにより、各表示セルにおける画素電極や補助容量等に蓄積された電荷によって表示が保持される。 Further, the image display device described in Patent Document 4 has a scanning mode in which a video signal is written in any of the display cells, and a holding mode in which no video signal is written in any of the display cells. In the holding mode, the data signal line driving circuit is configured not to output a signal to each data signal line. Thereby, the power consumption of the data signal line driving circuit can be reduced. On the other hand, the scanning signal line driving circuit outputs a non-scanning voltage (TFT off voltage) to all the scanning signal lines. As a result, the display is held by the charges accumulated in the pixel electrodes and the auxiliary capacitors in each display cell.
 しかしながら、上記特許文献1~4では、表示モジュールは、各種信号の入力がいつ停止するかが不明であるため、各種信号の入力が停止している間も、各種信号の入力が再開された場合に備える必要がある。その結果、上記表示モジュール内のアナログ電源を停止させることができず、消費電力の低減が抑制されることになる。 However, in Patent Documents 1 to 4, the display module does not know when the input of various signals is stopped. Therefore, when the input of various signals is resumed while the input of various signals is stopped. It is necessary to prepare for. As a result, the analog power supply in the display module cannot be stopped, and reduction of power consumption is suppressed.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、消費電力をさらに低減できる表示コントローラなどを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a display controller or the like that can further reduce power consumption.
 本発明に係る表示コントローラは、表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールを制御する表示コントローラであって、上記課題を解決するために、前記動作モードおよび前記休止モードの何れとなるかを示す休止/動作信号であって、前記表示モジュールから受信するか、或いは前記表示モジュールに送信した休止/動作信号に基づいて、表示データと、前記表示モジュールを制御するために必要な複数の制御信号との前記表示モジュールへの送信を制御することを特徴としている。 A display controller according to the present invention includes a matrix display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode for performing a new display operation, and the display A display controller for controlling a display module having a pause mode for pausing the operation, and in order to solve the above problem, a pause / operation signal indicating which of the operation mode and the sleep mode is set; Transmission of display data and a plurality of control signals necessary for controlling the display module to the display module based on a pause / operation signal received from the display module or transmitted to the display module. It is characterized by control.
 上記の構成によると、休止モードの場合、表示コントローラは、表示データと複数の制御信号との一部または全部を表示モジュールに送信することを停止させることができる。このとき、上記表示コントローラは、送信を停止した信号に関する回路部を停止させることができる一方、上記表示モジュールは、受信しなかった信号に関する回路部を動作させずに済む。従って、上記表示コントローラおよび表示モジュールにおける消費電力を低減することができる。 According to the above configuration, in the sleep mode, the display controller can stop sending part or all of the display data and the plurality of control signals to the display module. At this time, the display controller can stop the circuit unit related to the signal whose transmission is stopped, while the display module does not need to operate the circuit unit related to the signal which has not been received. Therefore, power consumption in the display controller and the display module can be reduced.
 また、上記表示コントローラは、送信または受信した休止/動作信号に基づいて、上記表示データおよび制御信号の上記表示モジュールへの送信を制御している。これにより、上記表示モジュールは、上記休止/動作信号の受信または送信から、上記表示コントローラからの上記送信の制御までに、表示の動作または休止のための準備が可能となる。従って、上記表示モジュールは、休止モードでは、上記休止/動作信号を受信または送信するまでは、表示の動作のための待機を行う必要がないので、上記表示モジュール内のアナログ電源を停止させることができ、消費電力をさらに低減することができる。 The display controller controls transmission of the display data and control signal to the display module based on the pause / operation signal transmitted or received. Accordingly, the display module can prepare for display operation or pause from reception or transmission of the pause / operation signal to control of the transmission from the display controller. Accordingly, in the sleep mode, the display module does not need to wait for the display operation until the pause / operation signal is received or transmitted. Therefore, the analog power supply in the display module may be stopped. And power consumption can be further reduced.
 なお、制御信号の例としては、後述の転送クロック信号、垂直走査および水平走査のための同期信号などが挙げられる。また、後述のように、休止モードの場合、上記表示コントローラは、少なくとも上記表示データおよび転送クロック信号を上記表示モジュールに送信することを停止する一方、少なくとも垂直走査および水平走査のための同期信号を上記表示モジュールに送信することが好ましい。 Note that examples of the control signal include a transfer clock signal described later, a synchronization signal for vertical scanning and horizontal scanning, and the like. As will be described later, in the sleep mode, the display controller stops transmitting at least the display data and the transfer clock signal to the display module, while at least synchronizing signals for vertical scanning and horizontal scanning. It is preferable to transmit to the display module.
 本発明に係る表示コントローラは、表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールを制御する表示コントローラであって、上記課題を解決するために、前記休止モードの場合には、少なくとも、表示データと、該表示データを各表示画素に転送するための転送クロック信号とを前記表示モジュールに送信することを停止する一方、少なくとも垂直走査および水平走査のための同期信号を前記表示モジュールに送信することを特徴としている。 A display controller according to the present invention includes a matrix display element in which display pixels are arranged in a matrix, and a drive circuit that drives the display element, and an operation mode for performing a new display operation, and the display A display controller that controls a display module having a pause mode that pauses operation, and in order to solve the above-described problem, in the pause mode, at least display data and the display data are assigned to each display pixel. The transmission clock signal for transfer is stopped from being transmitted to the display module, while at least a synchronizing signal for vertical scanning and horizontal scanning is transmitted to the display module.
 ここで、垂直走査のための同期信号の例としては、垂直同期信号およびゲートスタートパルス信号が挙げられる。また、水平走査のための同期信号の例としては、水平同期信号およびゲートクロック信号が挙げられる。 Here, examples of the synchronization signal for vertical scanning include a vertical synchronization signal and a gate start pulse signal. Examples of the synchronization signal for horizontal scanning include a horizontal synchronization signal and a gate clock signal.
 上記の構成によると、休止モードの場合、表示モジュールは、表示データおよび転送クロック信号を受信しないので、上記表示データおよび転送クロック信号に関する論理回路が動作せずに済む。また、休止モードの場合、表示コントローラは、上記表示データおよび転送クロック信号を表示モジュールに送信する必要がないので、上記表示データおよび転送クロック信号に関する論理回路を停止させることができる。 According to the above configuration, in the sleep mode, the display module does not receive the display data and the transfer clock signal, so that the logic circuit related to the display data and the transfer clock signal does not need to operate. In the sleep mode, the display controller does not need to transmit the display data and the transfer clock signal to the display module, so that the logic circuit related to the display data and the transfer clock signal can be stopped.
 一般に、表示データおよび転送クロック信号は、表示コントローラが表示モジュールに送信する信号のうち最も周波数の高いものである。また、論理回路の消費電力は周波数に比例している。従って、本発明の表示コントローラは、消費電力を大幅に低減することができる。 Generally, the display data and the transfer clock signal have the highest frequency among signals transmitted from the display controller to the display module. The power consumption of the logic circuit is proportional to the frequency. Therefore, the display controller of the present invention can significantly reduce power consumption.
 また、休止モードの場合でも、垂直走査および水平走査のための同期信号を上記表示コントローラから上記表示モジュールに送信している。これにより、上記休止モードから上記動作モードへの移行を、上記垂直走査および水平走査のための同期信号に基づいて行うことができる。さらに、水平走査のための同期信号は、一般に、垂直走査のための同期信号よりも周波数が高いので、上記移行のための準備を上記水平走査のための同期信号に基づいて行うことにより、上記移行を上記垂直走査のための同期信号に同期して確実に行うことができる。 In addition, even in the sleep mode, a synchronization signal for vertical scanning and horizontal scanning is transmitted from the display controller to the display module. Thus, the transition from the pause mode to the operation mode can be performed based on the synchronization signals for the vertical scanning and horizontal scanning. Further, since the synchronization signal for horizontal scanning is generally higher in frequency than the synchronization signal for vertical scanning, the preparation for the transition is performed based on the synchronization signal for horizontal scanning, so that The transition can be reliably performed in synchronization with the synchronization signal for the vertical scanning.
 なお、表示モジュールが動作モードおよび休止モードの何れの状態であるかを表示コントローラが判断するには、表示モジュールが表示コントローラに上記状態を通知すればよいし、表示コントローラが表示モジュールに上記状態を指示すればよい。或いは、上述の休止/動作信号を上記表示コントローラと上記表示モジュールとの間で送受信すればよい。 In order for the display controller to determine whether the display module is in the operation mode or the sleep mode, the display module may notify the display controller of the state, or the display controller may indicate the state to the display module. You just have to point. Alternatively, the above pause / operation signal may be transmitted and received between the display controller and the display module.
 本発明に係る表示コントローラでは、前記休止モードの場合には、前記表示データを記憶する記憶手段から前記表示データを読み出すことを停止することが好ましい。この場合、表示コントローラから記憶手段へのアクセス頻度を低減できるので、他のデバイス、特にCPU(Central Processing Unit)から上記記憶手段へのアクセス効率が向上する。また、上記表示コントローラと上記記憶手段とがバスを介して電気的に接続されている場合、上記バスの占有率を低減できるので、他のデバイス、特にCPUによる上記バスの使用頻度が向上し、パフォーマンスが向上することになる。 In the display controller according to the present invention, in the pause mode, it is preferable to stop reading the display data from the storage means for storing the display data. In this case, since the frequency of access from the display controller to the storage means can be reduced, the access efficiency to the storage means from other devices, particularly a CPU (Central Processing Unit) is improved. Further, when the display controller and the storage means are electrically connected via a bus, the bus occupancy can be reduced, so that the frequency of use of the bus by other devices, particularly the CPU, is improved. Performance will be improved.
 なお、上記構成の表示モジュールと、該表示モジュールを制御する上記構成の表示コントローラと、該表示コントローラにクロック信号を供給するクロック装置とを備える表示装置であれば、上述と同様の効果を奏する。 In addition, if it is a display apparatus provided with the display module of the said structure, the display controller of the said structure which controls this display module, and the clock apparatus which supplies a clock signal to this display controller, there exists an effect similar to the above-mentioned.
 ところで、上述のように、表示コントローラが表示モジュールに送信する信号のうち最も周波数の高いものは、上記表示データおよび転送クロック信号である。従って、上記休止モードの場合に、上記表示コントローラが、少なくとも、上記表示データおよび転送クロック信号を上記表示モジュールに送信することを停止すると、上記表示コントローラの動作周波数を低下させることができる。 By the way, as described above, the signals having the highest frequency among the signals transmitted from the display controller to the display module are the display data and the transfer clock signal. Therefore, when the display controller stops transmitting at least the display data and the transfer clock signal to the display module in the sleep mode, the operating frequency of the display controller can be lowered.
 そこで、本発明に係る表示装置では、前記表示コントローラは、前記休止モードの場合、少なくとも、表示データと、該表示データを各表示画素に転送するための転送クロック信号とを前記表示モジュールに送信することを停止しており、前記クロック装置は、前記動作モードの場合に比べて、前記休止モードの場合に前記表示コントローラに供給するクロック信号の周波数が低いことが好ましい。 Therefore, in the display device according to the present invention, the display controller transmits at least display data and a transfer clock signal for transferring the display data to each display pixel to the display module in the sleep mode. It is preferable that the frequency of the clock signal supplied to the display controller in the sleep mode is lower than that in the operation mode.
 この場合、上記表示コントローラの動作周波数が低下し、上述のように、論理回路の消費電力は周波数に比例するから、上記表示コントローラの消費電力をさらに低減することができる。 In this case, the operating frequency of the display controller is lowered, and the power consumption of the logic circuit is proportional to the frequency as described above. Therefore, the power consumption of the display controller can be further reduced.
 なお、前記表示素子は液晶表示素子であることが好ましいが、PDP、ELディスプレイ、FEDなどのその他のFPDであってもよい。 The display element is preferably a liquid crystal display element, but may be another FPD such as a PDP, EL display, or FED.
 また、上記構成の表示装置を備えた携帯型電子機器であれば、上述と同様の効果を奏する。 In addition, if the portable electronic device includes the display device having the above-described configuration, the same effects as described above can be obtained.
 以上のように、本発明に係る表示コントローラは、表示モジュールへの送信を停止する信号に関する回路部を停止できる一方、上記表示モジュールにおいて、受信しなかった信号に関する回路部を動作させずに済むので、上記表示コントローラおよび表示モジュールにおける消費電力を低減できる効果を奏する。さらに、休止モードの上記表示モジュールは、上記休止/動作信号を受信または送信してから、表示の動作のための準備を行えばよいので、上記休止/動作信号を受信または送信するまで上記表示モジュール内のアナログ電源を停止でき、消費電力をさらに低減できる効果を奏する。 As described above, the display controller according to the present invention can stop the circuit unit related to the signal for stopping transmission to the display module, while the display module does not need to operate the circuit unit related to the signal not received. The power consumption in the display controller and the display module can be reduced. Further, since the display module in the sleep mode may be prepared for display operation after receiving or transmitting the pause / operation signal, the display module until the display / operation signal is received or transmitted. The analog power supply can be stopped, and the power consumption can be further reduced.
 また、以上のように、本発明に係る表示コントローラは、休止モードの場合、表示データおよび転送クロック信号に関する論理回路を動作させずに済むので、消費電力を低減できる効果を奏する。さらに、垂直走査および水平走査のための同期信号を表示モジュールに送信することにより、上記休止モードから上記動作モードへの移行の準備を上記水平走査のための同期信号に基づいて行うことができ、上記移行を上記垂直走査のための同期信号に同期して確実に行うことができる効果を奏する。 In addition, as described above, the display controller according to the present invention does not need to operate the logic circuit related to the display data and the transfer clock signal in the sleep mode, so that the power consumption can be reduced. Furthermore, by sending a synchronization signal for vertical scanning and horizontal scanning to the display module, preparation for transition from the pause mode to the operation mode can be made based on the synchronization signal for horizontal scanning, There is an effect that the transition can be surely performed in synchronization with the synchronization signal for the vertical scanning.
本発明の一実施形態である液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the liquid crystal display device which is one Embodiment of this invention. 上記液晶表示装置において、液晶モジュールの動作モードおよび休止モードと、液晶コントローラの動作との対応関係を表形式で示す図である。FIG. 6 is a diagram showing a correspondence relationship between an operation mode and a pause mode of a liquid crystal module and an operation of a liquid crystal controller in the liquid crystal display device in a table format. 上記液晶モジュールの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the said liquid crystal module. 上記液晶モジュールが受信するモード指示信号の内容と、上記液晶モジュールの駆動方式との対応関係を表形式で示す図である。It is a figure which shows the correspondence of the content of the mode instruction | indication signal which the said liquid crystal module receives, and the drive method of the said liquid crystal module in a table format. 上記液晶モジュールの動作と、各種信号の動作とを示すタイミングチャートである。It is a timing chart which shows operation | movement of the said liquid crystal module, and operation | movement of various signals. 上記液晶コントローラの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the said liquid crystal controller. 上記液晶コントローラにおいて、上記液晶モジュールが間欠駆動方式で動作する場合の各種信号の動作を示すタイミングチャートである。6 is a timing chart showing the operation of various signals when the liquid crystal module operates in an intermittent drive system in the liquid crystal controller. 上記液晶表示装置におけるクロック装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the clock apparatus in the said liquid crystal display device.
 本発明の一実施形態について図1および図2参照して説明する。図1は、本実施形態の液晶表示装置の概略構成を示している。この液晶表示装置(表示装置)10は、例えば携帯電話機、電子辞書などの携帯型電子機器における画像表示装置として搭載される。携帯型電子機器は、搭載される電池の寿命を延ばすため、各種構成の消費電力の低減が要求されている。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of the liquid crystal display device of the present embodiment. The liquid crystal display device (display device) 10 is mounted as an image display device in a portable electronic device such as a mobile phone or an electronic dictionary. Portable electronic devices are required to reduce the power consumption of various configurations in order to extend the life of the battery on which they are mounted.
 図1に示すように、液晶表示装置10は、CPU11、バス12、メモリ(記憶手段)13、液晶モジュール(表示モジュール)14、液晶コントローラ(表示コントローラ)15、およびクロック装置16を備える構成である。 As shown in FIG. 1, the liquid crystal display device 10 includes a CPU 11, a bus 12, a memory (storage means) 13, a liquid crystal module (display module) 14, a liquid crystal controller (display controller) 15, and a clock device 16. .
 CPU11は、例えばRAM(Random Access Memory)やフラッシュメモリなどの記憶素子に記憶されたプログラムを実行することにより、液晶表示装置10内の各種構成の統括的な制御を、バス12を介して行うものである。具体的には、CPU11は、液晶コントローラ15の動作設定、表示データのメモリ13への書込みなどを、バス12を介して行っている。 The CPU 11 performs overall control of various components in the liquid crystal display device 10 via the bus 12 by executing a program stored in a storage element such as a RAM (Random Access Memory) or a flash memory. It is. Specifically, the CPU 11 performs operation setting of the liquid crystal controller 15 and writing of display data to the memory 13 via the bus 12.
 バス12は、液晶表示装置10内の各種構成間でデータの送受信を行うための共通の信号線である。メモリ13は、CPU11および液晶モジュール14間のバッファとして機能するVRAM(Video RAM)であり、表示データDATを記憶するものであるが、CPU11の演算処理に使用するデータ、および演算結果などを一時的に記憶する、いわゆるワーキングメモリとしても機能する。 The bus 12 is a common signal line for transmitting and receiving data between various components in the liquid crystal display device 10. The memory 13 is a VRAM (Video RAM) that functions as a buffer between the CPU 11 and the liquid crystal module 14 and stores display data DAT. The memory 13 temporarily stores data used for arithmetic processing of the CPU 11 and arithmetic results. It also functions as a so-called working memory.
 液晶モジュール14は、表示素子に文字、記号、図形などの画像を表示させる機能単位であり、表示画素がマトリクス状に配列されたマトリクス型のLCD素子(液晶表示素子)と、該LCD素子を駆動する駆動回路とを備えるものである。 The liquid crystal module 14 is a functional unit that displays images such as characters, symbols, and figures on a display element. The liquid crystal module 14 drives a matrix type LCD element (liquid crystal display element) in which display pixels are arranged in a matrix and the LCD element. Drive circuit.
 液晶コントローラ15は、液晶モジュール14を制御するものである。具体的には、液晶コントローラ15は、メモリ13から読み出した表示データDATを液晶モジュール14に転送すると共に、液晶モジュール14を表示制御するために必要な複数の制御信号CNTを送信している。この制御信号CNTの例としては、垂直同期信号Vsync、水平同期信号Hsync、表示データDATをLCD素子の各表示画素に転送するための転送クロック信号CLKf、などが挙げられる。 The liquid crystal controller 15 controls the liquid crystal module 14. Specifically, the liquid crystal controller 15 transfers the display data DAT read from the memory 13 to the liquid crystal module 14 and transmits a plurality of control signals CNT necessary for display control of the liquid crystal module 14. Examples of the control signal CNT include a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, a transfer clock signal CLKf for transferring display data DAT to each display pixel of the LCD element, and the like.
 クロック装置16は、時間間隔の計測や同期を取るために使用される周期信号であるクロック信号CLKを生成して、各種構成に送信するものである。 The clock device 16 generates a clock signal CLK, which is a periodic signal used for measuring time intervals and synchronizing, and transmits the clock signal CLK to various configurations.
 本実施形態では、液晶モジュール14は、新たな表示動作を行う動作モードMaと、該表示動作を休止する休止モードMpとを有している。そして、液晶モジュール14が動作モードMaおよび休止モードMpの何れであるかによって、液晶コントローラ15およびクロック装置16の動作が変化する。図2は、本実施形態において、液晶モジュール14の動作モードおよび休止モードと、液晶コントローラ15の動作との対応関係を示している。 In the present embodiment, the liquid crystal module 14 has an operation mode Ma for performing a new display operation and a pause mode Mp for pausing the display operation. The operations of the liquid crystal controller 15 and the clock device 16 change depending on whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp. FIG. 2 shows a correspondence relationship between the operation mode and pause mode of the liquid crystal module 14 and the operation of the liquid crystal controller 15 in the present embodiment.
 具体的には、液晶モジュール14は、動作モードMaおよび休止モードMpの何れであるかを示す休止/動作信号P/Aを生成して液晶コントローラ15に送信している。これにより、液晶コントローラ15は、受信した休止/動作信号P/Aに基づいて、液晶モジュール14が動作モードMaおよび休止モードMpの何れであるかを把握することができる。 Specifically, the liquid crystal module 14 generates a pause / operation signal P / A indicating whether the operation mode Ma or the pause mode Mp is being transmitted to the liquid crystal controller 15. Thereby, the liquid crystal controller 15 can recognize whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp based on the received pause / operation signal P / A.
 図2に示すように、休止モードMpの場合、液晶コントローラ15は、表示データDATと複数の制御信号CNTとの一部または全部を液晶モジュール14に送信することを停止している。この場合、液晶モジュール14は、液晶コントローラ15が上記送信を停止した信号を受信しないので、受信しなかった信号に関する回路部が動作せずに済む。また、液晶コントローラ15は、上記送信を停止する信号を、生成したり処理したりする必要がないので、上記送信を停止する信号に関する回路部を停止させることができる。その結果、液晶モジュール14および液晶コントローラ15の消費電力を低減することができる。 As shown in FIG. 2, in the sleep mode Mp, the liquid crystal controller 15 stops transmitting part or all of the display data DAT and the plurality of control signals CNT to the liquid crystal module 14. In this case, since the liquid crystal module 14 does not receive the signal for which the liquid crystal controller 15 has stopped the transmission, the circuit unit relating to the signal that has not been received does not need to operate. Further, since the liquid crystal controller 15 does not need to generate or process the signal for stopping the transmission, the liquid crystal controller 15 can stop the circuit unit related to the signal for stopping the transmission. As a result, the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be reduced.
 ところで、液晶コントローラ15が液晶モジュール14に送信する信号のうち、表示データDATおよび転送クロック信号CLKfは、他の信号に比べて周波数が高い。また、一般に、回路の消費電力は、「電圧×負荷容量×周波数」に比例するので、周波数を低くすれば、消費電力を低減することができる。従って、休止モードMpの場合、液晶コントローラ15が表示データDATおよび転送クロック信号CLKfを液晶モジュール14に送信することを停止するより、液晶モジュール14および液晶コントローラ15の消費電力を大幅に低減することができる。 By the way, among the signals transmitted from the liquid crystal controller 15 to the liquid crystal module 14, the display data DAT and the transfer clock signal CLKf have higher frequencies than other signals. In general, the power consumption of the circuit is proportional to “voltage × load capacity × frequency”. Therefore, if the frequency is lowered, the power consumption can be reduced. Therefore, in the sleep mode Mp, the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be greatly reduced rather than the liquid crystal controller 15 stopping transmitting the display data DAT and the transfer clock signal CLKf to the liquid crystal module 14. it can.
 例えば、液晶モジュール14の総画素数が480×320ドットであり、フレーム周波数が60Hzである場合、表示データDATの最大周波数および転送クロック信号CLKfの周波数は9MHz~12MHz程度である。これに対し、垂直同期信号Vsyncの周波数は、フレーム周波数と同じ60Hzであり、水平同期信号Hsyncの周波数は、320×60=19.2kHzである。水平同期信号Hsyncのデューティ比を1:9とした場合でも、水平同期信号Hsyncを生成したり処理したりするために必要なクロック信号の周波数は、19.2kHz×10=192kHzである。 For example, when the total number of pixels of the liquid crystal module 14 is 480 × 320 dots and the frame frequency is 60 Hz, the maximum frequency of the display data DAT and the frequency of the transfer clock signal CLKf are about 9 MHz to 12 MHz. On the other hand, the frequency of the vertical synchronization signal Vsync is 60 Hz, which is the same as the frame frequency, and the frequency of the horizontal synchronization signal Hsync is 320 × 60 = 19.2 kHz. Even when the duty ratio of the horizontal synchronizing signal Hsync is 1: 9, the frequency of the clock signal necessary for generating and processing the horizontal synchronizing signal Hsync is 19.2 kHz × 10 = 192 kHz.
 従って、垂直同期信号Vsyncおよび水平同期信号Hsyncを生成したり処理したりするために必要なクロック信号の周波数は、表示データDATを処理するために必要な周波数や、転送クロック信号CLKfを生成したり処理したりするために必要なクロック信号の周波数の約1/40以下である。このことから、休止モードMpの場合に、特に表示データDATおよび転送クロック信号CLKfの送信を停止することにより、液晶モジュール14および液晶コントローラ15の消費電力を大幅に低減できることが理解できる。 Accordingly, the frequency of the clock signal necessary for generating and processing the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync is the frequency necessary for processing the display data DAT and the transfer clock signal CLKf. It is about 1/40 or less of the frequency of the clock signal necessary for processing. From this, it can be understood that the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be significantly reduced by stopping the transmission of the display data DAT and the transfer clock signal CLKf particularly in the case of the sleep mode Mp.
 また、本実施形態では、休止モードMpの場合でも、垂直同期信号Vsyncおよび水平同期信号Hsyncを液晶コントローラ15から液晶モジュール14に送信している。これにより、休止モードMpから動作モードMaへの移行を、垂直同期信号Vsyncおよび水平同期信号Hsyncに基づいて行うことができる。また、上述の例の場合、1パルスの垂直同期信号Vsyncに対し、480パルス以上の水平同期信号Hsyncを液晶コントローラ15が受信することになる。従って、液晶コントローラ15は、上記移行のための準備を水平同期信号Hsyncに基づいて行うことにより、上記移行を垂直同期信号Vsyncに同期して確実に行うことができる。 In this embodiment, the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync are transmitted from the liquid crystal controller 15 to the liquid crystal module 14 even in the sleep mode Mp. Thereby, the transition from the sleep mode Mp to the operation mode Ma can be performed based on the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync. In the case of the above example, the liquid crystal controller 15 receives a horizontal synchronization signal Hsync of 480 pulses or more for one pulse of the vertical synchronization signal Vsync. Therefore, the liquid crystal controller 15 can reliably perform the transition in synchronism with the vertical synchronization signal Vsync by performing the preparation for the transition based on the horizontal synchronization signal Hsync.
 また、本実施形態では、休止モードMpの液晶モジュール14は、休止/動作信号P/Aを受信または送信してから、表示の動作のための準備を行えばよい。従って、休止/動作信号P/Aを受信または送信するまでは、液晶モジュール14内のアナログ電源を停止させることができ、消費電力をさらに低減することができる。 Further, in the present embodiment, the liquid crystal module 14 in the sleep mode Mp may perform preparation for display operation after receiving or transmitting the pause / operation signal P / A. Therefore, the analog power supply in the liquid crystal module 14 can be stopped until the pause / operation signal P / A is received or transmitted, and the power consumption can be further reduced.
 また、図2に示すように、休止モードMpの場合、液晶コントローラ15は、メモリ13からバス12を介して表示データDATを読み出すことを停止している。この場合、液晶コントローラ15からメモリ13へのアクセス頻度を低減できるので、他のデバイス、特にCPU11からメモリ13へのアクセス効率が向上する。また、バス12の占有率を低減できるので、他のデバイス、特にCPUによるバス12の使用頻度が向上し、パフォーマンスが向上することになる。 As shown in FIG. 2, in the sleep mode Mp, the liquid crystal controller 15 stops reading display data DAT from the memory 13 via the bus 12. In this case, since the frequency of access from the liquid crystal controller 15 to the memory 13 can be reduced, the access efficiency from other devices, particularly the CPU 11 to the memory 13 is improved. Further, since the occupation rate of the bus 12 can be reduced, the frequency of use of the bus 12 by other devices, particularly the CPU, is improved, and the performance is improved.
 ところで、或る装置において、最も高い周波数の信号を生成したり送信したりする回路部を停止する場合、該回路部に供給するクロック信号が不要となる。この場合、当該装置は、低い周波数のクロック信号が供給されても、動作可能である。 By the way, when a circuit unit that generates or transmits a signal having the highest frequency is stopped in a certain device, a clock signal supplied to the circuit unit becomes unnecessary. In this case, the device can operate even when a low-frequency clock signal is supplied.
 そこで、本実施形態では、液晶コントローラ15は、液晶モジュール14からの休止/動作信号P/Aをクロック装置16に送信している。これにより、クロック装置16は、受信した休止/動作信号P/Aに基づいて、液晶モジュール14が動作モードMaおよび休止モードMpの何れであるかを把握することができる。 Therefore, in the present embodiment, the liquid crystal controller 15 transmits a pause / operation signal P / A from the liquid crystal module 14 to the clock device 16. As a result, the clock device 16 can recognize whether the liquid crystal module 14 is in the operation mode Ma or the sleep mode Mp based on the received pause / operation signal P / A.
 そして、クロック装置16は、図2に示すように、休止モードMpの場合、低い周波数のクロック信号CLKを液晶コントローラ15に供給している。この場合、液晶コントローラ15の動作周波数が低下し、上述のように、論理回路の消費電力は周波数に比例するから、液晶コントローラ15の消費電力をさらに低減することができる。 As shown in FIG. 2, the clock device 16 supplies a low-frequency clock signal CLK to the liquid crystal controller 15 in the sleep mode Mp. In this case, the operating frequency of the liquid crystal controller 15 is lowered, and the power consumption of the logic circuit is proportional to the frequency as described above, so that the power consumption of the liquid crystal controller 15 can be further reduced.
 〔実施例〕
 次に、液晶モジュール14、液晶コントローラ15、およびクロック装置16の具体例について図3~図8を参照して説明する。図3は、液晶モジュール14の概略構成を示している。図示のように、液晶モジュール14は、TFTパネル(表示素子)22、走査信号線駆動回路25、データ信号線駆動回路26、対向電極駆動回路28、およびモード制御回路29を備える構成である。
〔Example〕
Next, specific examples of the liquid crystal module 14, the liquid crystal controller 15, and the clock device 16 will be described with reference to FIGS. FIG. 3 shows a schematic configuration of the liquid crystal module 14. As illustrated, the liquid crystal module 14 includes a TFT panel (display element) 22, a scanning signal line driving circuit 25, a data signal line driving circuit 26, a counter electrode driving circuit 28, and a mode control circuit 29.
 TFTパネル22は、i行の走査信号線G1,G2,…,Gi(総称する場合、参照符号Gで示す。)と、j列のデータ信号線S1,S2,…,Sj(総称する場合、参照符号Sで示す。)とによって区画された領域に画素電極23を有している。該画素電極23と対向電極24との間に保持されている電圧によって該電極23・24間の液晶の透過率が変化し、これにより画像表示が行われる。なお、図3では、図面の簡略化のために、i=j=4としているが、これに限定されない。 The TFT panel 22 includes i rows of scanning signal lines G1, G2,..., Gi (referred to collectively by reference numeral G) and j columns of data signal lines S1, S2,. The pixel electrode 23 is provided in a region partitioned by the reference symbol S). The transmissivity of the liquid crystal between the electrodes 23 and 24 is changed by the voltage held between the pixel electrode 23 and the counter electrode 24, whereby image display is performed. In FIG. 3, i = j = 4 is set for simplification of the drawing, but the present invention is not limited to this.
 走査信号線Gは走査信号線駆動回路25に接続し、データ信号線Sはデータ信号線駆動回路26に接続している。また、対向電極24は、対向電極駆動回路28に電気的に接続している。 The scanning signal line G is connected to the scanning signal line driving circuit 25, and the data signal line S is connected to the data signal line driving circuit 26. The counter electrode 24 is electrically connected to the counter electrode drive circuit 28.
 走査信号線駆動回路25は、垂直同期信号Vsyncおよび水平同期信号Hsyncを受信し、垂直同期信号Vsyncに基づいて走査信号線Gへの駆動動作を開始し、水平同期信号Hsyncに基づいて、水平走査周期ごとに走査信号線Gを順次駆動する。一方、データ信号線駆動回路26は、水平同期信号Hsync、表示データDAT、および転送クロック信号CLKfを受信し、水平同期信号Hsyncに基づいてデータ信号線Sへの駆動動作を開始し、転送クロック信号CLKfに基づいて、表示データDATを1画素毎に分割したデータ信号を、各データ信号線Sにそれぞれ順次出力駆動する。 The scanning signal line driving circuit 25 receives the vertical synchronizing signal Vsync and the horizontal synchronizing signal Hsync, starts a driving operation to the scanning signal line G based on the vertical synchronizing signal Vsync, and performs horizontal scanning based on the horizontal synchronizing signal Hsync. The scanning signal lines G are sequentially driven every cycle. On the other hand, the data signal line driving circuit 26 receives the horizontal synchronization signal Hsync, the display data DAT, and the transfer clock signal CLKf, starts a driving operation to the data signal line S based on the horizontal synchronization signal Hsync, and transfers the transfer clock signal. A data signal obtained by dividing the display data DAT for each pixel is sequentially output to each data signal line S based on CLKf.
 これにより、走査信号線Gおよびデータ信号線Sの各交点に形成されたTFT素子(図示せず)を介して、各画素電極23に個別に対応する電圧が印加される。なお、対向電極駆動回路28は、水平同期信号Hsyncを受信し、水平同期信号Hsyncに基づいて対向電極24を駆動する。 Thereby, a corresponding voltage is individually applied to each pixel electrode 23 through a TFT element (not shown) formed at each intersection of the scanning signal line G and the data signal line S. The counter electrode drive circuit 28 receives the horizontal synchronization signal Hsync and drives the counter electrode 24 based on the horizontal synchronization signal Hsync.
 モード制御回路29は、液晶モジュール14が新たな表示動作を行う動作モードMaと、該表示動作を休止する休止モードMpとの何れかに制御するものである。具体的には、モード制御回路29は、CPU11から液晶コントローラ15介してのモード指示信号MDに基づいて、動作モードMaおよび休止モードMpの何れかを選択し、選択したモードを示す休止/動作信号P/Aを生成している。モード制御回路29は、生成した休止/動作信号P/Aをデータ信号線駆動回路26に送信すると共に、外部の液晶コントローラ15に送信している。 The mode control circuit 29 controls either the operation mode Ma in which the liquid crystal module 14 performs a new display operation or the pause mode Mp in which the display operation is paused. Specifically, the mode control circuit 29 selects either the operation mode Ma or the pause mode Mp based on the mode instruction signal MD from the CPU 11 via the liquid crystal controller 15, and the pause / operation signal indicating the selected mode. P / A is generated. The mode control circuit 29 transmits the generated pause / operation signal P / A to the data signal line driving circuit 26 and also to the external liquid crystal controller 15.
 図4は、モード指示信号MDの内容と、液晶モジュール14の駆動方式との対応関係を示している。図示のように、モード指示信号MDは、2ビットからなるので、4つの駆動方式を指示することができる。第1の駆動方式は、動作モードMaが連続する連続駆動方式である。 FIG. 4 shows the correspondence between the contents of the mode instruction signal MD and the driving method of the liquid crystal module 14. As shown in the figure, since the mode instruction signal MD is composed of 2 bits, four driving methods can be instructed. The first driving method is a continuous driving method in which the operation mode Ma is continuous.
 また、残り3つの駆動方式は、動作モードMaの後に休止モードMpが続く間欠駆動方式である。すなわち、第2の駆動方式は、1フレーム周期(1/60秒)の動作モードMaと1フレーム周期の休止モードMpとが交互に続く1:1の間欠駆動方式である。また、第3の駆動方式は、1フレーム周期の動作モードMaと4フレーム周期の休止モードMpとが交互に続く1:4の間欠駆動方式である。そして、第4の駆動方式は、1フレーム周期の動作モードMaと9フレーム周期の休止モードMpとが交互に続く1:9の間欠駆動方式である。 Further, the remaining three driving methods are intermittent driving methods in which the operation mode Ma is followed by the sleep mode Mp. In other words, the second driving method is a 1: 1 intermittent driving method in which an operation mode Ma of 1 frame period (1/60 seconds) and a pause mode Mp of 1 frame period are alternately followed. The third driving method is a 1: 4 intermittent driving method in which an operation mode Ma of one frame cycle and a pause mode Mp of four frame cycles are alternately followed. The fourth driving method is a 1: 9 intermittent driving method in which an operation mode Ma having a 1-frame cycle and a pause mode Mp having a 9-frame cycle are alternately followed.
 なお、2ビットのモード指示信号MDは、液晶コントローラ15から液晶モジュール14へ、2本の信号線で別々に送信してもよいし、1本の信号線で連続して送信してもよい。また、図4の例では、4つの駆動方式を挙げているが、これらに限定されるものではない。 It should be noted that the 2-bit mode instruction signal MD may be transmitted separately from the liquid crystal controller 15 to the liquid crystal module 14 via two signal lines, or may be transmitted continuously via one signal line. In the example of FIG. 4, four drive methods are mentioned, but the present invention is not limited to these.
 また、本実施例では、モード制御回路29が休止/動作信号P/Aを送信するタイミングは、液晶モジュール14にて受信された垂直同期信号Vsyncの立上りまたは立下りからゲート遅延分またはデータ転送クロック分遅れている。この遅延による不具合を回避するため、休止/動作信号P/Aは、次のフレーム周期が動作モードMaおよび休止モードMpの何れであるかを示すとしている。これにより、液晶モジュール14および液晶コントローラ15は、1フレーム周期の最初から、休止モードMpまたは動作モードMaとして動作することができる。 In this embodiment, the timing at which the mode control circuit 29 transmits the pause / operation signal P / A is the gate delay or the data transfer clock from the rising or falling edge of the vertical synchronization signal Vsync received by the liquid crystal module 14. It's a minute late. In order to avoid a problem due to this delay, the pause / operation signal P / A indicates whether the next frame period is the operation mode Ma or the pause mode Mp. Thereby, the liquid crystal module 14 and the liquid crystal controller 15 can operate as the sleep mode Mp or the operation mode Ma from the beginning of one frame period.
 図3に戻って、データ信号線駆動回路26は、休止モードMpの場合、表示データDATおよび転送クロック信号CLKfに関する回路部の動作を停止している。これにより、消費電力を大幅に低減することができる。 Referring back to FIG. 3, the data signal line driving circuit 26 stops the operation of the circuit unit related to the display data DAT and the transfer clock signal CLKf in the pause mode Mp. Thereby, power consumption can be reduced significantly.
 本実施例では、フリッカが気にならないレベルであれば、モード制御回路29は、休止/動作信号P/Aを走査信号線駆動回路25および対向電極駆動回路28にも送信して、走査信号線駆動回路25、データ信号線駆動回路26、および対向電極駆動回路28の全ての動作を停止してもよい。 In this embodiment, if the flicker is not a concern, the mode control circuit 29 transmits the pause / operation signal P / A to the scanning signal line driving circuit 25 and the counter electrode driving circuit 28, thereby scanning signal lines. All operations of the drive circuit 25, the data signal line drive circuit 26, and the counter electrode drive circuit 28 may be stopped.
 図5は、本実施例の液晶モジュール14における動作および各種信号の動作を示している。図5には、上から順番に、垂直同期信号Vsync、液晶モジュール14の表示部22~24、および休止/動作信号P/Aの動作を示している。なお、本実施例では、垂直同期信号Vsyncは負論理の信号である。また、休止/動作信号P/Aは、Lレベルが休止モードMpを示し、Hレベルが動作モードMaを示すとしている。また、図5の例では、信号線の伝送や回路内の処理による遅延分は省略されている。 FIG. 5 shows the operation of the liquid crystal module 14 of this embodiment and the operation of various signals. FIG. 5 shows operations of the vertical synchronization signal Vsync, the display units 22 to 24 of the liquid crystal module 14, and the pause / operation signal P / A in order from the top. In the present embodiment, the vertical synchronization signal Vsync is a negative logic signal. In the pause / operation signal P / A, the L level indicates the pause mode Mp, and the H level indicates the operation mode Ma. Further, in the example of FIG. 5, the delay due to the transmission of the signal line and the processing in the circuit is omitted.
 図5に示すように、連続駆動方式で駆動されている或る時点C10で、上記1:1の間欠駆動方式を示すモード指示信号MDが、CPU11から液晶コントローラ15を介してモード制御回路29に送信されたとする。このとき、モード制御回路29では、その後の垂直同期信号Vsyncの立下り(C11)に同期して、モード指示信号MDが処理されて、休止/動作信号P/Aが上記1:1の間欠駆動方式に従うものに変更される。これにより、上記立下り時点C11以降の休止/動作信号P/Aは、垂直同期信号Vsyncの立下りに同期して、Hレベル(動作モードMa)とLレベル(休止モードMp)とが交互に繰り返されることになる。 As shown in FIG. 5, at a certain time point C <b> 10 when driving in the continuous driving method, the mode instruction signal MD indicating the 1: 1 intermittent driving method is sent from the CPU 11 to the mode control circuit 29 via the liquid crystal controller 15. Suppose that it was sent. At this time, in the mode control circuit 29, the mode instruction signal MD is processed in synchronization with the subsequent fall (C11) of the vertical synchronization signal Vsync, and the pause / operation signal P / A is the 1: 1 intermittent drive described above. It will be changed to one that follows the method. Thereby, the pause / operation signal P / A after the fall time point C11 is alternately switched between the H level (operation mode Ma) and the L level (pause mode Mp) in synchronization with the fall of the vertical synchronization signal Vsync. Will be repeated.
 一方、データ信号線駆動回路26では、次の垂直同期信号Vsyncの立下り(C12)に同期して、休止/動作信号P/Aが処理されて、表示部22~24が上記1:1の間欠駆動方式に従って駆動される。これにより、上記立下り時点C12以降の表示部22~24は、垂直同期信号Vsyncの立下りに同期して、新たな表示動作と、該表示動作の休止とが交互に繰り返されることになる。 On the other hand, in the data signal line driving circuit 26, the pause / operation signal P / A is processed in synchronism with the fall of the next vertical synchronizing signal Vsync (C12), and the display units 22 to 24 have the above 1: 1 ratio. Driven according to the intermittent drive system. Thus, the display units 22 to 24 after the falling point C12 are alternately repeated with a new display operation and a pause of the display operation in synchronization with the falling of the vertical synchronization signal Vsync.
 その後、上記1:1の間欠駆動方式で駆動されている或る時点C13で、連続駆動方式を示すモード指示信号MDが、CPU11から液晶コントローラ15を介してモード制御回路29に送信されたとする。このとき、モード制御回路29では、その後の垂直同期信号Vsyncの立下り(C14)に同期して、モード指示信号MDが処理されて、休止/動作信号P/Aが連続駆動方式に従うものに変更される。これにより、上記時点C14以降の休止/動作信号P/Aは、Hレベル(動作モードMa)が継続されることになる。 Then, it is assumed that the mode instruction signal MD indicating the continuous driving method is transmitted from the CPU 11 to the mode control circuit 29 via the liquid crystal controller 15 at a certain time C13 when the driving is performed by the 1: 1 intermittent driving method. At this time, in the mode control circuit 29, the mode instruction signal MD is processed in synchronization with the subsequent fall (C14) of the vertical synchronization signal Vsync, and the pause / operation signal P / A is changed to that in accordance with the continuous drive system. Is done. As a result, the pause / operation signal P / A after the time point C14 is kept at the H level (operation mode Ma).
 一方、データ信号線駆動回路26では、次の垂直同期信号Vsyncの立下り(C15)に同期して、休止/動作信号P/Aが処理されて、表示部22~24が連続駆動方式に従って駆動される。これにより、上記立下り時点C15以降の表示部22~24は、垂直同期信号Vsyncの立下りに同期して、新たな表示動作が繰り返されることになる。 On the other hand, in the data signal line driving circuit 26, the pause / operation signal P / A is processed in synchronization with the fall of the next vertical synchronizing signal Vsync (C15), and the display units 22 to 24 are driven according to the continuous driving method. Is done. As a result, the display units 22 to 24 after the falling point C15 repeat the new display operation in synchronization with the falling of the vertical synchronization signal Vsync.
 図6は、液晶コントローラ15の概略構成を示している。図示のように、液晶コントローラ15は、制御部30と、極性選択部31、同期部32、動作選択部33、アクセス制限部34、および送信制限部35を備える構成である。 FIG. 6 shows a schematic configuration of the liquid crystal controller 15. As illustrated, the liquid crystal controller 15 includes a control unit 30, a polarity selection unit 31, a synchronization unit 32, an operation selection unit 33, an access restriction unit 34, and a transmission restriction unit 35.
 なお、図6において、信号act_enは、上記連続駆動方式と上記間欠駆動方式との何れかが設定されるレジスタact_enからの信号である。また、信号iactは、休止/動作信号P/Aの極性が設定されるレジスタiactからの信号である。また、信号ivsは、垂直同期信号Vsyncの極性が設定さえるレジスタからivsの信号である。また、図6では、図3に示すモード指示信号MDを省略している。 In FIG. 6, the signal act_en is a signal from the register act_en in which one of the continuous driving method and the intermittent driving method is set. The signal iact is a signal from the register iact in which the polarity of the pause / operation signal P / A is set. The signal ivs is a signal ivs from a register in which the polarity of the vertical synchronization signal Vsync is set. In FIG. 6, the mode instruction signal MD shown in FIG. 3 is omitted.
 制御部30は、クロック装置16からのクロック信号CLKに基づいて、垂直同期信号Vsync、水平同期信号Hsync、および転送クロック信号CLKfを生成して送信している。また、制御部30は、メモリ13から表示データDATを読み出して、転送クロック信号CLKfに同期させて液晶モジュール14に送信している。 The control unit 30 generates and transmits a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, and a transfer clock signal CLKf based on the clock signal CLK from the clock device 16. Further, the control unit 30 reads the display data DAT from the memory 13 and transmits it to the liquid crystal module 14 in synchronization with the transfer clock signal CLKf.
 すなわち、本実施例の制御部30は、従来の連続駆動方式の液晶コントローラに対応しており、本実施例の液晶コントローラ15は、従来の連続駆動方式の液晶コントローラに対し、本発明を適用するため、幾つかの回路部品を追加したものである。 That is, the control unit 30 of this embodiment corresponds to a conventional continuous drive type liquid crystal controller, and the liquid crystal controller 15 of this embodiment applies the present invention to the conventional continuous drive type liquid crystal controller. Therefore, some circuit components are added.
 極性選択部31は、垂直同期信号Vsyncおよび休止/動作信号P/Aの極性を、レジスタivs・iactの設定に基づいて変更するものであり、図6に示すように、各信号に対しインバータおよびセレクタを備えるものである。 The polarity selector 31 changes the polarities of the vertical synchronization signal Vsync and the pause / operation signal P / A based on the settings of the registers ivs and iact. As shown in FIG. A selector is provided.
 同期部32は、ラッチ回路を備えており、制御部30から出力された後で外部に出力される前の垂直同期信号Vsyncの後段エッジをクロックとして、液晶モジュール14からの休止/動作信号P/Aを同期化するものである。同期部32は、同期化した信号active_i1を動作選択部33に送信する。なお、上述のように、休止/動作信号P/Aの極性はレジスタiactの設定で決まり、クロック(垂直同期信号Vsync)の極性はレジスタivsの設定で決まる。 The synchronization unit 32 includes a latch circuit, and uses the trailing edge of the vertical synchronization signal Vsync output from the control unit 30 and before being output to the outside as a clock, as a pause / operation signal P / from the liquid crystal module 14. A is synchronized. The synchronization unit 32 transmits the synchronized signal active_i1 to the operation selection unit 33. As described above, the polarity of the pause / operation signal P / A is determined by the setting of the register iact, and the polarity of the clock (vertical synchronization signal Vsync) is determined by the setting of the register ivs.
 動作選択部33は、液晶モジュール14および液晶コントローラ15が、連続駆動方式および間欠駆動方式の何れで動作するかをCPU11からの信号act_enに基づいて選択するものである。信号act_enがL(低)レベルである場合、連続駆動方式が選択されることになり、出力される信号active_i2は常にH(高)レベルとなる。一方、信号act_enがH(高)レベルである場合、間欠駆動方式が選択されることになり、出力される信号active_i2は信号active_i1と同じレベルである。 The operation selection unit 33 selects whether the liquid crystal module 14 and the liquid crystal controller 15 operate in the continuous drive method or the intermittent drive method based on the signal act_en from the CPU 11. When the signal act_en is at the L (low) level, the continuous driving method is selected, and the output signal active_i2 is always at the H (high) level. On the other hand, when the signal act_en is at the H (high) level, the intermittent drive method is selected, and the output signal active_i2 is at the same level as the signal active_i1.
 アクセス制限部34は、信号active_i2に基づいて、制御部30からメモリ13へのアクセスを抑制するものである。具体的には、アクセス制限部34は、信号active_i2がLレベルの場合、メモリ13へのアクセスを制限する一方、その他の場合、メモリ13へのアクセスを制限しない。 The access restriction unit 34 suppresses access from the control unit 30 to the memory 13 based on the signal active_i2. Specifically, the access restriction unit 34 restricts access to the memory 13 when the signal active_i2 is at the L level, and does not restrict access to the memory 13 in other cases.
 送信制限部35は、表示データDATおよび転送クロック信号CLKfに関して、制御部30から外部への送信を、信号active_i2に基づいて制限するものである。具体的には、送信制限部35は、信号active_i2がLレベルの場合、表示データDATおよび転送クロック信号CLKfをLレベルに固定して液晶モジュール14に送信する一方、その他の場合、そのまま送信する。 The transmission restriction unit 35 restricts the transmission of the display data DAT and the transfer clock signal CLKf from the control unit 30 to the outside based on the signal active_i2. Specifically, when the signal active_i2 is at the L level, the transmission limiting unit 35 fixes the display data DAT and the transfer clock signal CLKf to the L level and transmits them to the liquid crystal module 14, while in other cases, the transmission limiting unit 35 transmits the signals as they are.
 図7は、本実施例の液晶コントローラ15において、液晶モジュール14が間欠駆動方式で動作する場合の各種信号の動作を示している。図7には、上から順番に、信号active_i1、信号active_i2、垂直同期信号Vsync、水平同期信号Hsync、転送クロック信号CLKf、表示データDAT、および休止/動作信号P/Aの動作を示している。なお、図7の例では、垂直同期信号Vsyncおよび水平同期信号Hsyncは、負論理の信号である。また、図7の例では、極性選択部31による極性の変更はないものとし、動作選択部33では、間欠駆動方式で動作しているとする。また、図7の例では、信号線の伝送や回路内の処理による遅延分は省略されている。 FIG. 7 shows the operation of various signals when the liquid crystal module 14 operates in the intermittent drive system in the liquid crystal controller 15 of the present embodiment. FIG. 7 shows operations of the signal active_i1, the signal active_i2, the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, the transfer clock signal CLKf, the display data DAT, and the pause / operation signal P / A in order from the top. In the example of FIG. 7, the vertical synchronization signal Vsync and the horizontal synchronization signal Hsync are negative logic signals. Further, in the example of FIG. 7, it is assumed that the polarity selection unit 31 does not change the polarity, and the operation selection unit 33 operates in the intermittent drive method. Further, in the example of FIG. 7, delay due to transmission of signal lines and processing in the circuit is omitted.
 図7に示すように、垂直同期信号Vsyncの立下り(D10)に同期して、休止/動作信号P/AのレベルがHレベル(動作モードMa)からLレベル(休止モードMp)に遷移する。この休止/動作信号P/Aのレベルは、同期部32に入力され、垂直同期信号Vsyncの立上り(D11)に同期して、信号active_i1がLレベルに遷移する。 As shown in FIG. 7, the level of the pause / operation signal P / A transitions from the H level (operation mode Ma) to the L level (pause mode Mp) in synchronization with the fall (D10) of the vertical synchronization signal Vsync. . The level of the pause / operation signal P / A is input to the synchronization unit 32, and the signal active_i1 transitions to the L level in synchronization with the rising edge (D11) of the vertical synchronization signal Vsync.
 信号active_i1のレベルは、動作選択部33に入力され、垂直同期信号Vsyncの立下り(D12)に同期して、信号active_i2がLレベルに遷移する。これにより、アクセス制限部34によるメモリ13へのアクセスが制限され、送信制限部35による表示データDATおよび転送クロック信号CLKfの液晶モジュール14への送信がLレベルの送信に制限される。従って、上記立下り時点D12からの1フレーム期間Fpは、表示データDATおよび転送クロック信号CLKfが液晶モジュール14に送信されず、液晶モジュール14にて新たな表示動作が停止されることになる。 The level of the signal active_i1 is input to the operation selection unit 33, and the signal active_i2 transitions to the L level in synchronization with the falling edge (D12) of the vertical synchronization signal Vsync. Thereby, access to the memory 13 by the access restriction unit 34 is restricted, and transmission of the display data DAT and the transfer clock signal CLKf by the transmission restriction unit 35 to the liquid crystal module 14 is restricted to L level transmission. Therefore, during one frame period Fp from the falling point D12, the display data DAT and the transfer clock signal CLKf are not transmitted to the liquid crystal module 14, and a new display operation is stopped in the liquid crystal module 14.
 また、図7に示すように、垂直同期信号Vsyncの立下り(D12)に同期して、休止/動作信号P/AのレベルがLレベルからHレベルに遷移する。この休止/動作信号P/Aのレベルは、同期部32に入力され、垂直同期信号Vsyncの立上り(D13)に同期して、信号active_i1がHレベルに遷移する。 Further, as shown in FIG. 7, the level of the pause / operation signal P / A transitions from the L level to the H level in synchronization with the fall (D12) of the vertical synchronization signal Vsync. The level of the pause / operation signal P / A is input to the synchronization unit 32, and the signal active_i1 transitions to the H level in synchronization with the rising edge (D13) of the vertical synchronization signal Vsync.
 信号active_i1のレベルは、動作選択部33に入力され、垂直同期信号Vsyncの立下り(D14)に同期して、信号active_i2がHレベルに遷移する。これにより、アクセス制限部34によるメモリ13へのアクセスは制限されなくなり、送信制限部35による表示データDATおよび転送クロック信号CLKfの液晶モジュール14への送信も制限されなくなる。従って、上記立下り時点D14からの1フレーム期間Faは、表示データDATおよび転送クロック信号CLKfが液晶モジュール14に送信されて、液晶モジュール14にて新たな表示動作が行われることになる(D15)。 The level of the signal active_i1 is input to the operation selection unit 33, and the signal active_i2 transitions to the H level in synchronization with the falling edge (D14) of the vertical synchronization signal Vsync. Thereby, access to the memory 13 by the access restriction unit 34 is not restricted, and transmission of the display data DAT and the transfer clock signal CLKf by the transmission restriction unit 35 to the liquid crystal module 14 is also not restricted. Accordingly, during one frame period Fa from the falling point D14, the display data DAT and the transfer clock signal CLKf are transmitted to the liquid crystal module 14, and a new display operation is performed in the liquid crystal module 14 (D15). .
 図8は、クロック装置16の概略構成を示している。図示のように、クロック装置16は、水晶発振回路40、1/62分周回路41、セレクタ42、およびタイミング調整回路43を備える構成である。 FIG. 8 shows a schematic configuration of the clock device 16. As illustrated, the clock device 16 includes a crystal oscillation circuit 40, a 1/62 frequency divider circuit 41, a selector 42, and a timing adjustment circuit 43.
 水晶発振回路40は、水晶振動子を共振器として利用した発振回路であり、本実施例では、12MHzのクロック信号を生成している。これは、上述の水平同期信号Hsync(19.2kHz)の約620倍である。水晶発振回路40は、生成した12MHzのクロック信号を1/62分周回路41およびセレクタ42に送信する。 The crystal oscillation circuit 40 is an oscillation circuit that uses a crystal resonator as a resonator, and generates a 12 MHz clock signal in this embodiment. This is about 620 times the horizontal synchronizing signal Hsync (19.2 kHz) described above. The crystal oscillation circuit 40 transmits the generated 12 MHz clock signal to the 1/62 frequency divider circuit 41 and the selector 42.
 1/62分周回路41は、受信したクロック信号の周波数を1/62に分周するものであり、本実施例では、12MHzのクロック信号を0.1935MHzのクロック信号に変換している。これは、上述の水平同期信号Hsync(19.2kHz)の約10倍である。1/62分周回路41は、分周したクロック信号をセレクタ42に送信する。 The 1/62 frequency dividing circuit 41 divides the frequency of the received clock signal by 1/62. In this embodiment, the 12 MHz clock signal is converted into a 0.1935 MHz clock signal. This is about 10 times the horizontal synchronizing signal Hsync (19.2 kHz) described above. The 1/62 divider circuit 41 transmits the divided clock signal to the selector 42.
 タイミング調整回路43は、液晶コントローラ15から受信した休止/動作信号P/Aのタイミングを、セレクタ42の出力タイミングに同期するように調整するものである。タイミング調整回路43は、タイミングが調整された休止/動作信号P/Aをセレクタ42に送信する。 The timing adjustment circuit 43 adjusts the timing of the pause / operation signal P / A received from the liquid crystal controller 15 so as to be synchronized with the output timing of the selector 42. The timing adjustment circuit 43 transmits the pause / operation signal P / A whose timing is adjusted to the selector 42.
 セレクタ42は、水晶発振回路40からのクロック信号と1/62分周回路41からのクロック信号との何れかを、タイミング調整回路43がタイミングを調整した休止/動作信号P/Aに基づき選択して液晶コントローラ15にクロック信号CLKとして出力するものである。具体的には、休止モードMpの場合、1/62分周回路41からの0.1935MHzのクロック信号が液晶コントローラ15に出力される一方、動作モードMaの場合、水晶発振回路40からの12MHzのクロック信号が液晶コントローラ15に出力される。これにより、休止モードMpの場合、液晶コントローラ15の動作周波数が大幅に低減されるので、消費電力を大幅に低減することができる。 The selector 42 selects either the clock signal from the crystal oscillation circuit 40 or the clock signal from the 1/62 frequency divider circuit 41 based on the pause / operation signal P / A whose timing is adjusted by the timing adjustment circuit 43. Thus, it is output to the liquid crystal controller 15 as a clock signal CLK. Specifically, in the sleep mode Mp, the 0.1935 MHz clock signal from the 1/62 frequency divider 41 is output to the liquid crystal controller 15, while in the operation mode Ma, the 12 MHz clock signal from the crystal oscillation circuit 40 is output. A clock signal is output to the liquid crystal controller 15. As a result, in the sleep mode Mp, the operating frequency of the liquid crystal controller 15 is greatly reduced, so that power consumption can be greatly reduced.
 なお、CPU11その他のデバイスには、水晶発振回路40からの12MHzのクロック信号が供給されてもよいし、液晶コントローラ15と同様に、セレクタ42からのクロック信号が供給されてもよい。セレクタ42からのクロック信号が供給される場合、休止モードMpになると、動作周波数が低下するのでパフォーマンスが低下するが、消費電力をさらに低減することができる。 The CPU 11 and other devices may be supplied with a 12 MHz clock signal from the crystal oscillation circuit 40 or may be supplied with a clock signal from the selector 42 as in the liquid crystal controller 15. When the clock signal is supplied from the selector 42, when the sleep mode Mp is entered, the operating frequency is lowered and the performance is lowered, but the power consumption can be further reduced.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 例えば、上記実施形態では、本発明を携帯型電子機器の画像表示装置に適用しているが、デスクトップ型PC(Personal Computer)など、携帯型以外の電子機器に本発明を適用してもよい。また、上記実施形態では、LCDを備えた画像表示装置に適用しているが、PDP、ELディスプレイ、FEDなど、その他のFPDを備えた画像表示装置に適用することもできる。 For example, in the above embodiment, the present invention is applied to an image display device of a portable electronic device, but the present invention may be applied to an electronic device other than a portable device such as a desktop PC (Personal Computer). In the above-described embodiment, the present invention is applied to an image display device including an LCD. However, the present invention can also be applied to an image display device including another FPD such as a PDP, an EL display, and an FED.
 また、上記実施形態では、間欠駆動方式の液晶モジュール14の実施例として図3を挙げているが、本発明はこれに限定されるものではなく、公知の間欠駆動方式の液晶モジュールに適用することができる。また、上記実施形態では、垂直同期信号Vsyncを利用しているが、ゲートスタートパルス信号など、垂直走査のための任意の同期信号を利用することができる。また、上記実施形態では、水平同期信号Hsyncを利用しているが、ゲートクロック信号など、水平走査のための任意の同期信号を利用することができる。 Moreover, in the said embodiment, although FIG. 3 is mentioned as an Example of the liquid crystal module 14 of an intermittent drive system, this invention is not limited to this, It applies to the liquid crystal module of a well-known intermittent drive system. Can do. In the above embodiment, the vertical synchronization signal Vsync is used. However, an arbitrary synchronization signal for vertical scanning such as a gate start pulse signal can be used. In the above embodiment, the horizontal synchronization signal Hsync is used. However, any synchronization signal for horizontal scanning, such as a gate clock signal, can be used.
 また、上記実施形態では、液晶コントローラ15は、上述の垂直同期信号Vsync、水平同期信号Hsync、および転送クロック信号CLKfを液晶モジュール14に送信しているが、ソーススタートパルス信号、データ有効信号など、その他の制御信号を送信するものも存在する。この場合、上記その他の制御信号の生成および送信を休止モードMpに停止することにより、液晶モジュール14および液晶コントローラ15の消費電力をさらに低減することができる。 In the above embodiment, the liquid crystal controller 15 transmits the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the transfer clock signal CLKf to the liquid crystal module 14, but the source start pulse signal, the data valid signal, etc. Others transmit other control signals. In this case, the power consumption of the liquid crystal module 14 and the liquid crystal controller 15 can be further reduced by stopping the generation and transmission of the other control signals in the pause mode Mp.
 また、上記実施形態では、休止モードMpおよび動作モードMaの期間を、1フレーム期間またはその倍数としているが、1フレーム期間とは無関係な期間であってもよい。 In the above embodiment, the periods of the sleep mode Mp and the operation mode Ma are one frame period or multiples thereof, but may be a period unrelated to one frame period.
 以上のように、本発明は、休止モードの場合に、表示データおよび転送クロック信号の送信を停止して消費電力を低減する一方、垂直同期信号および水平同期信号の送信を継続して休止モードから動作モードへの移行の準備を水平同期信号に基づいて行うことにより、上記移行を垂直同期信号に同期して確実に行うことができるので、任意のマトリックス型表示装置に適用可能である。 As described above, in the case of the pause mode, the present invention stops the transmission of the display data and the transfer clock signal to reduce the power consumption, while continuing the transmission of the vertical synchronization signal and the horizontal synchronization signal from the pause mode. Since the preparation for shifting to the operation mode is performed based on the horizontal synchronization signal, the above-described transition can be surely performed in synchronization with the vertical synchronization signal, and thus can be applied to any matrix type display device.
10 液晶表示装置(表示装置)
11 CPU
12 バス
13 メモリ(記憶手段)
14 液晶モジュール(表示モジュール)
15 液晶コントローラ(表示コントローラ)
16 クロック装置
22 TFTパネル(表示部・表示素子)
23 画素電極(表示部)
24 対向電極(表示部)
25 走査信号線駆動回路
26 データ信号線駆動回路
28 対向電極駆動回路
29 モード制御回路
30 制御部
31 極性選択部
32 同期部
33 動作選択部
34 アクセス制限部
35 送信制限部
40 水晶発振回路
41 1/62分周回路
42 セレクタ
43 タイミング調整回路
CLK クロック信号
CLKf 転送クロック信号
CNT 制御信号
DAT 表示データ
Hsync 水平同期信号
MD モード指示信号
Ma 動作モード
Mp 休止モード
P/A 休止/動作信号
Vsync 垂直同期信号
10 Liquid crystal display device (display device)
11 CPU
12 bus 13 memory (storage means)
14 Liquid crystal module (display module)
15 LCD controller (display controller)
16 Clock device 22 TFT panel (display unit / display element)
23 Pixel electrode (display unit)
24 Counter electrode (display part)
25 scanning signal line drive circuit 26 data signal line drive circuit 28 counter electrode drive circuit 29 mode control circuit 30 control unit 31 polarity selection unit 32 synchronization unit 33 operation selection unit 34 access restriction unit 35 transmission restriction unit 40 crystal oscillation circuit 41 1 / 62 divider circuit 42 selector 43 timing adjustment circuit CLK clock signal CLKf transfer clock signal CNT control signal DAT display data Hsync horizontal synchronization signal MD mode instruction signal Ma operation mode Mp pause mode P / A pause / operation signal Vsync vertical synchronization signal

Claims (7)

  1.  表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールを制御する表示コントローラであって、
     前記動作モードおよび前記休止モードの何れとなるかを示す休止/動作信号であって、前記表示モジュールから受信するか、或いは前記表示モジュールに送信した休止/動作信号に基づいて、表示データと、前記表示モジュールを制御するために必要な複数の制御信号との前記表示モジュールへの送信を制御することを特徴とする表示コントローラ。
    A matrix type display element in which display pixels are arranged in a matrix and a drive circuit for driving the display element are provided, and an operation mode in which a new display operation is performed and a pause mode in which the display operation is suspended A display controller for controlling a display module having
    A pause / operation signal indicating whether the operation mode or the sleep mode is to be received from the display module or based on the pause / operation signal transmitted to the display module; A display controller that controls transmission to the display module with a plurality of control signals necessary for controlling the display module.
  2.  表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールを制御する表示コントローラであって、
     前記休止モードの場合には、少なくとも、表示データと、該表示データを各表示画素に転送するための転送クロック信号とを前記表示モジュールに送信することを停止する一方、少なくとも垂直走査および水平走査のための同期信号を前記表示モジュールに送信することを特徴とする表示コントローラ。
    A matrix type display element in which display pixels are arranged in a matrix and a drive circuit for driving the display element are provided, and an operation mode in which a new display operation is performed and a pause mode in which the display operation is suspended A display controller for controlling a display module having
    In the case of the pause mode, at least the display data and the transfer clock signal for transferring the display data to each display pixel are stopped from being transmitted to the display module, while at least the vertical scanning and the horizontal scanning are performed. A display controller for transmitting a synchronization signal to the display module.
  3.  前記休止モードの場合には、前記表示データを記憶する記憶手段から前記表示データを読み出すことを停止することを特徴とする請求項1または2に記載の表示コントローラ。 3. The display controller according to claim 1, wherein in the pause mode, reading of the display data from the storage means for storing the display data is stopped.
  4.  表示画素がマトリクス状に配列されたマトリクス型の表示素子と、該表示素子を駆動する駆動回路とを備えており、新たな表示動作を行う動作モードと、該表示動作を休止する休止モードとを有する表示モジュールと、該表示モジュールを制御する表示コントローラと、該表示コントローラにクロック信号を供給するクロック装置とを備える表示装置であって、
     前記表示コントローラは、請求項1から3までの何れか1項に記載の表示コントローラであることを特徴とする表示装置。
    A matrix type display element in which display pixels are arranged in a matrix and a drive circuit for driving the display element are provided, and an operation mode in which a new display operation is performed and a pause mode in which the display operation is suspended A display device comprising: a display module comprising: a display controller that controls the display module; and a clock device that supplies a clock signal to the display controller,
    The display device according to claim 1, wherein the display controller is the display controller according to claim 1.
  5.  前記表示コントローラは、前記休止モードの場合、少なくとも、表示データと、該表示データを各表示画素に転送するための転送クロック信号とを前記表示モジュールに送信することを停止しており、
     前記クロック装置は、前記動作モードの場合に比べて前記休止モードの場合に、前記表示コントローラに供給するクロック信号の周波数が低いことを特徴とする請求項4に記載の表示装置。
    In the case of the pause mode, the display controller stops transmitting at least display data and a transfer clock signal for transferring the display data to each display pixel to the display module,
    The display device according to claim 4, wherein the clock device has a lower frequency of a clock signal supplied to the display controller in the pause mode than in the operation mode.
  6.  前記表示素子は液晶表示素子であることを特徴とする請求項4または5に記載の表示装置。 The display device according to claim 4 or 5, wherein the display element is a liquid crystal display element.
  7.  請求項4から6までの何れか1項に記載の表示装置を備えた携帯型電子機器。 A portable electronic device comprising the display device according to any one of claims 4 to 6.
PCT/JP2009/063114 2008-07-25 2009-07-22 Display controller, display device, and portable electronic device WO2010010898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-192234 2008-07-25
JP2008192234A JP2010032623A (en) 2008-07-25 2008-07-25 Display controller, display device and portable electronic device

Publications (1)

Publication Number Publication Date
WO2010010898A1 true WO2010010898A1 (en) 2010-01-28

Family

ID=41570358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063114 WO2010010898A1 (en) 2008-07-25 2009-07-22 Display controller, display device, and portable electronic device

Country Status (2)

Country Link
JP (1) JP2010032623A (en)
WO (1) WO2010010898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125405A1 (en) * 2012-02-20 2015-07-30 シャープ株式会社 Driving device and display device
US9607541B2 (en) 2012-12-28 2017-03-28 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177606B2 (en) * 2013-07-05 2017-08-09 シナプティクス・ジャパン合同会社 Display system and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278990A (en) * 1991-03-07 1992-10-05 Nec Corp Lcd controller
JPH06324650A (en) * 1993-05-12 1994-11-25 Canon Inc Display driving device
JPH07271323A (en) * 1994-03-31 1995-10-20 Hitachi Ltd Liquid crystal display device
JPH09265275A (en) * 1996-03-28 1997-10-07 Hitachi Ltd Liquid crystal display device
JP2004078124A (en) * 2002-08-22 2004-03-11 Sharp Corp Display device and driving method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278990A (en) * 1991-03-07 1992-10-05 Nec Corp Lcd controller
JPH06324650A (en) * 1993-05-12 1994-11-25 Canon Inc Display driving device
JPH07271323A (en) * 1994-03-31 1995-10-20 Hitachi Ltd Liquid crystal display device
JPH09265275A (en) * 1996-03-28 1997-10-07 Hitachi Ltd Liquid crystal display device
JP2004078124A (en) * 2002-08-22 2004-03-11 Sharp Corp Display device and driving method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125405A1 (en) * 2012-02-20 2015-07-30 シャープ株式会社 Driving device and display device
JP2016027432A (en) * 2012-02-20 2016-02-18 シャープ株式会社 Driving device and display device
US9378697B2 (en) 2012-02-20 2016-06-28 Sharp Kabushiki Kaisha Drive device and display device
US9607541B2 (en) 2012-12-28 2017-03-28 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same

Also Published As

Publication number Publication date
JP2010032623A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP6085739B1 (en) Low power consumption display device
JP4713427B2 (en) Driving device and method for liquid crystal display device
CN100377204C (en) Display control driver and display system
JP4668202B2 (en) Timing signal generation circuit, electronic device, display device, image receiving device, and electronic device driving method
WO2011145360A1 (en) Display device and method of driving the same, and display system
JP5734951B2 (en) Display device, driving method thereof, and liquid crystal display device
KR20130039077A (en) Display device
TW200421245A (en) Device for driving a display apparatus
JP5974218B1 (en) Image communication device
JP5450784B2 (en) Liquid crystal display
KR101533520B1 (en) Display device, and driving method
JP2012018271A (en) Control device and control method for display module, display device, portable electronic apparatus, display control program, and recording medium recording the program
JP2007041591A (en) Display device
WO2012165302A1 (en) Display control device and control method therefor, and display system
WO2010010898A1 (en) Display controller, display device, and portable electronic device
JP2010049206A (en) Display system and electronic apparatus
JP2006017802A (en) Display control device of liquid crystal display apparatus and liquid crystal display apparatus equipped with the same
CN101101738B (en) Display controller in display device, and method of transferring display data
CN112017612A (en) Time schedule controller, control method thereof and display device with time schedule controller
JPH08278769A (en) Microcomputer
JP2001311933A (en) Liquid crystal display device
KR20130011481A (en) Data driver circuit and liquid crystal display comprising the same
JP2006003923A (en) Display control circuit, electro-optical device, displaying device and display control method
JP2012003122A (en) Timing controller, display device using the same, and method for generating driver control signal
JP2003058117A (en) Display device, electronic equipment and display controlling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800412

Country of ref document: EP

Kind code of ref document: A1