WO2010009971A1 - Convertisseur continu-continu cadencé polyphasé - Google Patents

Convertisseur continu-continu cadencé polyphasé Download PDF

Info

Publication number
WO2010009971A1
WO2010009971A1 PCT/EP2009/058500 EP2009058500W WO2010009971A1 WO 2010009971 A1 WO2010009971 A1 WO 2010009971A1 EP 2009058500 W EP2009058500 W EP 2009058500W WO 2010009971 A1 WO2010009971 A1 WO 2010009971A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
output
phase
inductance
voltage converter
Prior art date
Application number
PCT/EP2009/058500
Other languages
German (de)
English (en)
Inventor
Roman Gronbach
Christof Maluck
Albert Geiger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2010009971A1 publication Critical patent/WO2010009971A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Definitions

  • the invention relates to a use of a multi-phase, clocked voltage converter according to the preamble of patent claim 1, as well as such a voltage converter according to the preamble of patent claim 4.
  • Clocked voltage converters serve to convert a DC voltage having a first level into an output voltage having a second level.
  • the output voltage may be higher or lower than the input voltage.
  • Such voltage transformers are used, for example, in vehicles to supply consumers such as e.g. to protect certain control units against undervoltage.
  • Known clocked voltage transformers basically comprise an inductance, a transistor for magnetically charging the inductance, and a freewheel, which usually comprises a diode.
  • Figure 1 shows a known from the prior art single-phase up-converter, as used for example in switching power supplies.
  • the illustrated up-converter converts an input voltage Ui present at its input (on the left in the picture) into an output voltage U2 present at its output (in the picture on the right).
  • Output voltage U 2 is always greater or at least equal to the input voltage Ui.
  • the up-converter 1 comprises an inductor 2 connected between input and output and a switch 4 by means of which the inductance 2 can be switched alternately against the reference potential (ground) or the output.
  • the switch 4 When the switch 4 is closed, energy is stored in the inductance 2, which is additionally output to the output when the switch 4 opens again. At the output can therefore higher Output voltages U 2 are generated as the input voltage Ui.
  • the height of the output voltage U 2 is dependent on the duty cycle, with which the switch 4 is turned on and off.
  • the up-converter 1 further comprises a switch 3 connected between the
  • Inductance 2 and the output is connected and serves as a freewheel.
  • the switch 3 is usually realized in practice as a diode.
  • a smoothing capacitor 5 is also provided, which serves for smoothing the output voltage U 2 .
  • Such up-converters 1 are u. a. used to protect safety-relevant consumers in vehicles against undervoltage.
  • the use of such up-converters in motor vehicles is problematic because of the high currents and powers.
  • the high currents require in particular the use of large and heavy components that can not be automatically populated on a printed circuit board.
  • overheating of individual components or solder joints can occur because the entire current flow concentrates on a path or a component.
  • An essential aspect of the invention is to use a polyphase, clocked voltage converter for certain applications in a motor vehicle instead of a single-phase converter.
  • a multiphase voltage converter basically consists of a plurality of single-phase voltage converters connected in parallel, each comprising an inductance, a transistor for charging the inductance, and a switch connected between inductance and converter output.
  • the use of a multi-phase, clocked voltage converter thus has the advantage that the total current is distributed uniformly over n phases and thus a correspondingly lower current flows in each phase.
  • the components contained in the individual phases can thus be made smaller and less expensive.
  • the power loss in the individual components decreases, which reduces the thermal load. Additional cooling measures may therefore no longer be necessary.
  • Another advantage is the reduced EMC emission of the EMC filters connected to the input and output. With a correspondingly high number of phases, electrolytic capacitors may possibly be replaced by MLCC.
  • an EMC filter for reducing the EMC emissions is provided at the input and / or output of the polyphase voltage converter.
  • the EMC filters are preferably provided jointly for all phases.
  • Fig. 1 is a schematic diagram of a known from the prior art up-converter
  • Fig. 2 shows an example of a 4-phase up converter in a vehicle electrical system.
  • FIG. 2 shows a schematic circuit diagram of a 4-phase up-converter, which converts the input voltage provided at the converter input by a battery 10 into a higher output voltage, with which a load 6 is operated.
  • Each of the four phases comprises a storage inductance L2-L5, a MOS transistor T1 -T4, by means of which the inductance L2-L5 is alternately switched to a reference potential (ground) or the output of the voltage converter 1, and a diode D1 arranged at the output - D4.
  • the diodes D1 -D4 are each connected between the associated inductance L2-L5 and the output.
  • the switches T1 -T4 are driven by a voltage regulator 9 by means of a PWM signal.
  • the duty cycle of the PWM signal determines the height of the output voltage U2.
  • EMC filter 7 or 8 Both at the input and at the output of the up-converter 1, an EMC filter 7 or 8 is connected in each case, which is provided jointly for all phases.
  • the EMC filters 7, 8 are realized here as a pi-filter and each comprise two parallel, switched against a reference potential capacitors C1, C2 and C3, C4 and arranged in the main path inductance L1 and L6.
  • the capacitors C1 to C4 each form an energy store for stabilizing the mains voltage.
  • the inductance L1 or L6 in conjunction with the capacitors C1 to C4 each forms a low-pass filter for reducing the EMC emission.
  • the dimensioning of the EMC filters 7 and 8 is dependent on the phase number of the up-converter. 1
  • the multiphase up-converter also has the advantage that the EMC emission is considerably reduced compared to a single-phase converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un convertisseur de tension (1) cadencé destiné à alimenter des consommateurs électriques (6). Selon l'invention, pour réduire considérablement la charge électrique des composants individuels (L, C, T) du convertisseur de tension (1) et les émissions EMV, on utilise un convertisseur de tension (1) cadencé polyphasé, en particulier pour des applications dans des véhicules automobiles.
PCT/EP2009/058500 2008-07-25 2009-07-06 Convertisseur continu-continu cadencé polyphasé WO2010009971A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810040719 DE102008040719A1 (de) 2008-07-25 2008-07-25 Mehrphasiger getakteter DC/DC-Wandler
DE102008040719.4 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010009971A1 true WO2010009971A1 (fr) 2010-01-28

Family

ID=41311458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/058500 WO2010009971A1 (fr) 2008-07-25 2009-07-06 Convertisseur continu-continu cadencé polyphasé

Country Status (2)

Country Link
DE (1) DE102008040719A1 (fr)
WO (1) WO2010009971A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448594B (zh) * 2010-03-05 2014-08-11 Memminger Iro Gmbh 紡織機之供油裝置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200723A1 (de) * 2015-01-19 2016-07-21 Efficient Energy Gmbh Spulenarray
JP6796240B2 (ja) * 2016-10-26 2020-12-09 ゼネラルソリューションズ株式会社 昇降圧回路を含む電磁波発振装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083374A (ja) * 1999-10-13 2000-03-21 Nippon Protector:Kk スイッチングレギュレ―タ
EP1248355A1 (fr) * 2001-04-05 2002-10-09 Institut für angewandte Biotechnik und Systemanalyse an der Universität Witten/Herdecke GmbH Dispositif de transmission d'une tension primaire dans une tension secondaire avec au moin un circuit d'alimentation à decoupage
US20030107352A1 (en) * 2001-12-06 2003-06-12 Downer Scott D. Electrical motor power management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083374A (ja) * 1999-10-13 2000-03-21 Nippon Protector:Kk スイッチングレギュレ―タ
EP1248355A1 (fr) * 2001-04-05 2002-10-09 Institut für angewandte Biotechnik und Systemanalyse an der Universität Witten/Herdecke GmbH Dispositif de transmission d'une tension primaire dans une tension secondaire avec au moin un circuit d'alimentation à decoupage
US20030107352A1 (en) * 2001-12-06 2003-06-12 Downer Scott D. Electrical motor power management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448594B (zh) * 2010-03-05 2014-08-11 Memminger Iro Gmbh 紡織機之供油裝置

Also Published As

Publication number Publication date
DE102008040719A1 (de) 2010-01-28

Similar Documents

Publication Publication Date Title
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102018221519B4 (de) Fahrzeugseitige Ladevorrichtung
WO2013139492A1 (fr) Convertisseur de tension continue
DE102018008603A1 (de) Schaltungsanordnung und Verfahren zum Laden einer Batterieanordnung mit mehreren Batteriemodulen
DE102010010722A1 (de) Ladegerät für ein Elektrofahrzeug
WO2003085818A1 (fr) Systeme convertisseur, procede et convertisseur
DE102018001032A1 (de) Motorantriebsvorrichtung
DE102012202867A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102015203003A1 (de) Batteriespeichersystem mit unterschiedlichen Zelltypen
DE102013214693A1 (de) Anordnung zur Kompensation von Blindleistung und Wirkleistung in einem Hochspannungsnetz
EP2842222B1 (fr) Étage de sortie d'un chargeur
DE102013221830A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
EP1508962B1 (fr) Convertisseur avec liaison intermédiaire en tension
DE102019005476A1 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs
WO2010009971A1 (fr) Convertisseur continu-continu cadencé polyphasé
DE102012202856A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102011086545A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102019001196A1 (de) Verfahren zum Bereitstellen einer Spannung für ein Bordnetz und Bordlader hierzu
EP1522005B1 (fr) Circuiterie pour stabiliser une tension d'alimentation et procede pour faire fonctionner cette circuiterie
DE102020120870A1 (de) Inverter mit einer Ausgleichsvorrichtung
DE102019202374A1 (de) Antriebssystem, insbesondere für ein Fahrzeug
DE102014212930B3 (de) Vorrichtung zum Bereitstellen einer elektrischen Spannung sowie Antriebsanordnung und Verfahren
EP3053257A2 (fr) Convertisseur continu-continu et procédé de commande d'un convertisseur continu-continu
AT513221B1 (de) Gleichspannungswandler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09780182

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09780182

Country of ref document: EP

Kind code of ref document: A1