WO2010008237A2 - Apparatus for gas extraction and thermal energy generation through high temperature degradation of h<sb>2</sb>o - Google Patents

Apparatus for gas extraction and thermal energy generation through high temperature degradation of h<sb>2</sb>o Download PDF

Info

Publication number
WO2010008237A2
WO2010008237A2 PCT/KR2009/003949 KR2009003949W WO2010008237A2 WO 2010008237 A2 WO2010008237 A2 WO 2010008237A2 KR 2009003949 W KR2009003949 W KR 2009003949W WO 2010008237 A2 WO2010008237 A2 WO 2010008237A2
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tank
hydrogen
thermal energy
extraction
decomposition
Prior art date
Application number
PCT/KR2009/003949
Other languages
French (fr)
Korean (ko)
Other versions
WO2010008237A3 (en
Inventor
나규성
Original Assignee
Ra Kyu Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090065068A external-priority patent/KR20100009502A/en
Application filed by Ra Kyu Sung filed Critical Ra Kyu Sung
Publication of WO2010008237A2 publication Critical patent/WO2010008237A2/en
Publication of WO2010008237A3 publication Critical patent/WO2010008237A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a gas extraction and thermal energy generating device according to the high temperature decomposition of H 2 O, and more particularly to a technique for obtaining not only the energy by thermal decomposition of water, but also useful resources hydrogen and oxygen.
  • Nuclear resources are used as other energy sources. Nuclear resources use energy generated by the transformation of nuclear nuclei (nuclear fission and fusion), in particular nuclear power generation using fission. Although such nuclear resources have high energy generation efficiency and high utilization rates, there are problems in handling and waste disposal. In addition, since the miniaturization is difficult, there is a problem that the use is greatly limited.
  • the present invention was derived to solve the problems according to the prior art described above, and an object of the present invention is to provide a technique for obtaining hydrogen and oxygen, which are useful resources using water, which is easy to handle and obtain.
  • Another object of the present invention is to provide a technique capable of generating energy using extracted hydrogen and / or oxygen.
  • the apparatus heats water (H 2 O) to decompose hydrogen and oxygen gas by high temperature, extract the decomposed gas, and extract a part of the extracted gas.
  • the heat of decomposition can be reused for the decomposition of the water and used for the decomposition of the water.
  • the high temperature at which the water is decomposed into hydrogen and oxygen may be 550 degrees Celsius or more as the first temperature range.
  • the hydrogen and oxygen may be further heated to a second temperature range so as to separate and extract the hydrogen and oxygen, so that the hydrogen and oxygen are separated into layers, and the second temperature range is 750 degrees Celsius.
  • the second temperature range may be 850 degrees Celsius or more and 950 degrees or less so that the separation purity of the separated hydrogen and oxygen is high.
  • the apparatus includes a reaction tank including a water supply unit to which water is supplied from the outside, a heating unit for heating the reaction tank, and connected to an upper side of the reaction tank to extract hydrogen generated in the reaction tank. It may include a hydrogen extraction tube.
  • the hydrogen extraction tube may be a hydrogen extraction tube for combustion for use of the generated hydrogen in the combustion of the heat energy generator or a storage hydrogen extraction tube for storing the generated hydrogen in an external reservoir
  • the heating unit is
  • a combustion furnace configured to penetrate the reaction tank body may include a fuel transfer pipe for supplying fuel into the combustion furnace, and an igniter for igniting the fuel.
  • a first valve and a second valve may be installed in the combustion hydrogen extraction pipe and the storage hydrogen extraction pipe, respectively, to control whether the extraction pipes are opened or closed.
  • a controller for controlling the operation of the heating unit, the first valve and the second valve according to the temperature may be further included.
  • the lower side of the reaction tank may further include an oxygen extraction tube for extracting the oxygen generated in the reaction tank, the oxygen extraction tube is for combustion for using the generated oxygen as a combustion of the thermal energy generating device
  • An oxygen extraction tube or a storage oxygen extraction tube for storing the generated oxygen in an external reservoir wherein the combustion oxygen extraction tube and the storage oxygen extraction tube are respectively controlled by a third valve and a third valve to control the opening and closing of the extraction tubes.
  • Four valves can be installed.
  • it may further include a temperature sensor for measuring the temperature inside the reaction tank and delivers to the controller, the thermal energy generating device is connected to the side of the reaction tank for supplying water and the control of the controller And a fifth valve for controlling whether the water supply pipe is opened or closed, and further comprising a pressure sensor for measuring the pressure inside the reaction tank and transmitting the pressure to the controller. The opening and closing amount of the fifth valve can be adjusted.
  • the fifth valve of the present invention may be a check valve for preventing the back flow so that the gas inside the reaction tank does not flow back by the pressure of the reaction tank.
  • the controller may block the supply of fuel supplied through the fuel delivery pipe when the first valve is opened.
  • the controller may open the first valve when the temperature inside the reaction tank measured by the temperature sensor is 750 degrees Celsius or more, the second range temperature.
  • the controller of the present invention may open the second valve when the temperature inside the reaction tank is 850 degrees Celsius or more by the temperature sensor.
  • a cooler for cooling the hot hydrogen to be transported may be connected to one side of the storage hydrogen extraction pipe.
  • one end of the water supply pipe may be connected to the water reservoir for storing the water to be forcibly supplied by the pump at a certain level.
  • the heat energy generating device casing may be installed standing in the vertical direction.
  • the upper portion of the heat energy generating device may further include a cover for discharging the heat of combustion to the outside, the cover is a heat insulating cap covering the upper portion of the reaction tank, the upper portion of the heat in the combustion heat is insulated for thermal insulation of the reaction tank
  • the lid is mounted, and the top of the heat insulating lid may be equipped with a control lid which is adjusted in height to adjust the discharge of the heat of combustion.
  • the thermal energy generating device may further include a control valve that operates to discharge the gas in the reaction tank to the outside by a pressure sensor when the pressure in the reaction tank is more than a predetermined pressure.
  • the safety valve to operate so that the gas inside the reaction tank is discharged to the outside by a pressure sensor when the pressure inside the reaction tank is more than a predetermined pressure even when the control valve is operated. valve may be further included.
  • the hydrogen extraction tube, the oxygen extraction tube, the water light pipe, the igniter may be installed to each temperature sensor to operate only at a predetermined temperature or more.
  • hydrogen and oxygen which are useful resources can be obtained by pyrolyzing water which is easy to handle and obtain.
  • FIG. 1 is a side cross-sectional view of a thermal energy generating device according to a first embodiment of the present invention.
  • FIG. 2 illustrates a state in which fuel and water are supplied to FIG. 1.
  • FIG. 3 illustrates a state in which water vapor is formed inside the reaction tank in FIG. 1.
  • FIG. 4 illustrates a state in which hydrogen for combustion is supplied in FIG. 1.
  • FIG. 5 illustrates a state in which hydrogen and oxygen for storage are extracted in FIG. 1.
  • FIG. 6 is a side sectional view of a heat energy generating device according to a second embodiment of the present invention.
  • FIG. 7 is an external view of a horizontal casing of an embodiment of the present invention.
  • FIG. 8 is an exploded view of the vertical casing according to the application of the present invention.
  • FIG. 9 is a vertical casing coupling of FIG.
  • FIG. 10 is a vertical casing installation state of FIG.
  • thermal energy generator 110,210,310 casing
  • reaction tanks 130,230,330 combustion furnace
  • 140,240,340 hydrogen extraction pipe for combustion 142,242,342: hydrogen extraction pipe for storage
  • igniter 160,260,360 water supply pipe
  • FIG. 1 is a side cross-sectional view of a thermal energy generating device according to a first embodiment of the present invention.
  • the gas extraction and thermal energy generating apparatus 100 according to the high temperature decomposition of water according to the first embodiment (100: for convenience of description, hereinafter, unless otherwise stated, 'gas extraction according to high temperature decomposition of water)
  • the 'heat energy generator' is briefly referred to as a 'heat energy generator', and the casing 110 constitutes an appearance of the heat energy generator 100.
  • the reaction tank 120 is installed in the inner space of the casing 110, and a combustion furnace 130 penetrating the body is formed.
  • the heating unit is coupled to one side of the reaction tank 120 to heat the reaction tank 120.
  • the heating unit includes a fuel transfer pipe 150 for supplying fuel into the combustion furnace 130 and an igniter 152 for igniting the fuel.
  • the fuel used is preferably diesel or LPG, but it is not limited thereto. Of course, general fossil fuel may be used.
  • the igniter 152 ignites the fuel supplied as fuel during the initial operation, and then ignites the hydrogen when hydrogen is supplied through the combustion hydrogen extraction pipe 140.
  • the hydrogen extraction pipe 140 for combustion is connected to the other upper side of the reaction tank 120 to transfer the hydrogen generated in the reaction tank 120 to the combustion furnace 130.
  • the first valve 141 controls whether the combustion hydrogen extraction pipe 140 is opened or closed under the control of the controller.
  • the storage hydrogen extraction pipe 142 is connected to an upper side of the reaction tank 120 to transfer the hydrogen generated in the reaction tank 120 to a hydrogen storage tank (not shown).
  • the second valve 143 controls whether the storage hydrogen extraction pipe 142 is opened or closed under the control of the controller.
  • the storage oxygen extraction pipe 144 is connected to one lower side of the reaction tank 120 to transfer oxygen generated in the reaction tank 120 to an oxygen storage tank (not shown).
  • the fourth valve 145 controls whether the storage oxygen extraction pipe 144 is opened or closed under the control of the controller.
  • the water supply pipe 160 is connected to the side of the reaction tank 120 to supply water.
  • the fifth valve 161 controls whether the water supply pipe 160 is opened or closed under the control of the controller.
  • the fifth valve 151 uses a check valve for preventing a back flow so that the gas inside the reaction tank does not flow back due to the pressure of the reaction tank.
  • the temperature sensor 122 measures the temperature inside the reaction tank 120 and transmits the temperature to the controller.
  • the pressure sensor 124 measures the pressure inside the reaction tank 120 and transmits the pressure to the controller.
  • a controller (not shown) controls the operation of the heater and valves in accordance with the temperature or pressure inside the reaction tank 120.
  • FIG. 2 illustrates a state in which fuel and water are supplied from FIG. 1
  • FIG. 3 illustrates a state in which water vapor is formed inside the reaction tank in FIG. 1
  • FIG. 4 is a state in which hydrogen for combustion is supplied in FIG. 1.
  • 5 shows a state in which hydrogen and oxygen for storage are extracted in FIG. 1.
  • the fuel 155 transferred through the fuel transfer pipe 150 is supplied to the combustion furnace 130 and ignited by the igniter 152.
  • the fifth valve 161 is opened so that the water 165 transferred through the water supply pipe 160 is supplied into the reaction tank 120. The state at this time is shown in FIG.
  • the reaction tank 120 is heated by the combustion heat of the fuel complexed in the combustion furnace 130, whereby the water 165 supplied into the reaction tank 120 becomes the steam 166.
  • the fifth valve 161 When the set temperature and pressure conditions are reached, the fifth valve 161 is closed. At this time, the temperature inside the reaction tank 120 is more than 100 degrees Celsius, and as the water 165 becomes water vapor 166, the internal pressure increases. The state at this time is shown in FIG.
  • the steam 166 is pyrolyzed, and the upper portion of the reaction tank 120 is relatively Hydrogen 167 having a low specific gravity is produced and oxygen 168 having a large specific gravity is produced at the lower portion.
  • the reaction tank 120 When the reaction tank 120 is further heated at the time when hydrogen and oxygen are decomposed, and the temperature inside the tank is 750 degrees Celsius or more, since most of the decomposed hydrogen and oxygen are separated from the upper and lower layers, the decomposed hydrogen can be discharged. Done.
  • the generated hydrogen 167 is transferred to the combustion furnace 130 through the hydrogen extraction pipe 140 for combustion as the first valve 141 is opened, and is ignited by the igniter 152 to react with the reaction tank 120. ) Is used to heat.
  • the fuel delivery pipe 150 cuts off the fuel supply under the control of the controller.
  • water is supplied through the water supply pipe 160 such that the pressure inside the reaction tank 120 is constant by the pressure sensor 124, and the supplied water is immediately pyrolyzed. The state at this time is shown in FIG.
  • the second valve 143 is opened to store the hydrogen extraction pipe 142. Through the pure water of high purity is transferred to the hydrogen storage tank. The state at this time is shown in FIG. On the other hand, since such combustion is performed using hydrogen and oxygen, no separate exhaust gas or pollutants are emitted, and only water is generated, so that it does not cause environmental pollution.
  • FIG. 6 is a side sectional view of a heat energy generating device according to a second embodiment of the present invention.
  • the heat energy generator 200 according to the second embodiment of the present invention is compared with the heat energy generator 100 according to the first embodiment of the combustion oxygen extraction pipe 246 and the fourth valve 247. ) Are substantially the same except that they are further combined.
  • the combustion oxygen extraction tube 246 is connected to the other lower side of the reaction tank 220 to transfer the oxygen generated in the reaction tank 220 to the combustion furnace 230.
  • the fourth valve 247 controls whether the combustion oxygen extraction tube is opened or closed under the control of the controller.
  • the heat energy generator 200 can supply oxygen required for combustion of hydrogen without external air.
  • the daily output is 432,000 rubes (18,000 ⁇ 24 hours)
  • the 30-day output is 12,960,000 rubes (432,000 ⁇ 30 days)
  • the annual output is 155,520,000 rubes (12,960,000 ⁇ 12 months).
  • FIG. 8 is an exploded view of the vertical casing according to the third embodiment of the present invention
  • FIG. 9 is a vertical casing coupling diagram of FIG. 8
  • FIG. 10 is a vertical casing installation state of FIG. 8.
  • the vertical thermal energy generator 300 is installed by standing the casing 310 in a vertical direction as shown in FIGS. 8 to 10, and a combustion tank penetrating the body in the reaction tank 320 installed in the inner space. 330 is formed, the heat insulating cap 370 is mounted on the upper portion and the heat insulating lid 380 is flowed by the heat of combustion discharged through the combustion furnace 330 on the upper portion of the heat of the combustion can be controlled
  • the adjusting lid 380 is configured to be seated.
  • a heating unit including a fuel transfer pipe 350 and an igniter 352 is configured at a lower portion thereof, and a combustion hydrogen extraction pipe 340 for supplying hydrogen generated in the reaction tank 320 is provided at one side. .
  • one side of the casing 310 is provided with a water tank 362 for storing the water to be transmitted through the water supply pipe 360 to the reaction tank 320, the water tank 363 is composed of a glass tube with a scale of water It is desirable to allow consumption to be checked.
  • the storage hydrogen extraction pipe 342 for transferring the hydrogen generated in the reaction tank 320 to the hydrogen storage tank (not shown) is configured to be connected, one end of the storage hydrogen extraction pipe 342 As in 10, the three coolers 390 are configured to be sequentially connected to cool the high temperature hydrogen.
  • the lower one side of the reaction tank 320 can be confirmed that the storage oxygen extraction pipe 344 for connecting the oxygen generated therein to the oxygen storage tank (not shown) is configured.
  • one or more coolers capable of cooling high temperature oxygen may be included.
  • reference numeral 301 is a control valve (control valve), when the pressure inside the reaction tank 320 is more than a predetermined pressure by a pressure sensor (not shown) the control valve 301 is opened while the reaction tank Oxygen in 320 is discharged to the outside.
  • 302 is a safety valve (safty valve), when the pressure control in the reaction tank 320 is not possible to control even when the control valve is open, the safety valve to prevent accidents such as tank explosion due to high pressure Is opened to allow the gas inside the reaction tank 320 to be discharged to the outside.
  • the temperature sensor (303, 304, 305, 306) is mounted to the combustion hydrogen extraction pipe 340, the storage oxygen extraction pipe 344, the water supply pipe 360, the igniter 352, respectively, the hydrogen extraction pipe,
  • the valve mounted on the water supply pipe and the oxygen extraction pipe is configured to open.
  • the storage hydrogen extraction tube 342, the combustion oxygen extract tube 346 may be equipped with a temperature sensor.
  • the igniter when the predetermined temperature is above, the igniter is turned off so that the temperature sensor is mounted on the igniter so that the reactor itself stops operating.
  • the water stored in the water tank 362 is pumped by the water supply pipe. It is supplied into the reaction tank 320 through 360.
  • the reaction tank 320 is heated by the combustion heat of the fuel ignited in the combustion furnace 330, and the internal pressure increases as the supplied water changes to a vapor state, thereby increasing hydrogen and oxygen due to a difference in pyrolysis specific gravity of water vapor. Will be created.
  • the hydrogen completely separated by continuous heating is moved downward through the hydrogen extraction pipe 340 for combustion and then ignited by the igniter 352 to continuously heat the reaction tank 320. .
  • pure hydrogen having high purity is continuously transferred through the storage hydrogen extraction pipe 342 to be cooled in the cooler 390 and then stored in the hydrogen storage tank by the continuous heating action.
  • the oxygen generated in the reaction tank 320 is transferred to the lower through the combustion oxygen extraction pipe 346 is used for the ignition action by the igniter 352, the high purity oxygen is a separate storage oxygen extraction pipe Transferred through 344 may be stored in an oxygen storage tank (not shown).
  • the daily output is 720,000 rubes (30,000 ⁇ 24 hours)
  • the 30-day output is 21,600,000 rubes (720,000 ⁇ 30 days)
  • the annual output is 259,200,000 rubes (22,600,000 ⁇ 12 months).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The present invention relates to an apparatus for gas extraction and thermal energy generation through high temperature degradation of H2O; the apparatus according to the present invention is intended to obtain the useful resources hydrogen and oxygen by thermal degradation of water, and comprises a casing, a reactor tank that is installed inside said casing and that has a combustion furnace formed passing through its body, a heater part that is combined with said combustion furnace at one side to heat the reactor tank, a hydrogen extraction tube that is connected to one side of the top of said reactor tank to feed the hydrogen generated in the reactor tank into a hydrogen storage tank, a water supply tube that is connected to the side of said reactor tank to supply water, a temperature sensor that measures the temperature inside said reactor tank and transmits to a controller, and a controller that controls the operation of said heater part and valves depending upon the temperature inside said reactor tank.

Description

H₂O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치Gas extraction and heat energy generator according to high temperature decomposition of H₂O
본 발명은 H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치에 관한 것으로, 보다 상세하게는 물을 열분해하여 에너지를 발생할 뿐만 아니라 유용한 자원인 수소와 산소를 얻어내기 위한 기술에 관한 것이다.The present invention relates to a gas extraction and thermal energy generating device according to the high temperature decomposition of H 2 O, and more particularly to a technique for obtaining not only the energy by thermal decomposition of water, but also useful resources hydrogen and oxygen.
동력원의 구동이나 냉난방 등을 위하여 다양한 형태의 에너지원이 사용되고 있다.Various types of energy sources are used for driving power sources or cooling and heating.
이 중 가장 널리 사용되는 것이 지하에 매장된 석탄 및 석유 자원이다. 이러한 자원은 장시간에 걸쳐 사용되어 냉난방, 발전, 운송 수단의 에너지원 등으로 널리 사용되고 있다. 그러나 이러한 지하자원은 채취가 곤란하고, 매장량에 한계가 있다. 또한 지하자원은 연소시에 유해한 배기가스가 생성되어 환경을 오염시키는 문제가 있다.The most widely used of these are underground buried coal and oil resources. These resources have been used for a long time and are widely used as energy sources for air conditioning, power generation, and transportation. However, these underground resources are difficult to collect and have a limited reserve. In addition, there is a problem that underground resources are polluted by the generation of harmful exhaust gases during combustion.
다른 에너지원으로 원자력 자원이 사용된다. 원자력 자원은 원자핵의 변환(핵분열과 핵융합)에 따라 발생되는 에너지를 이용하는 것으로, 특히 핵분열을 이용한 원자력 발전이 사용된다. 이러한 원자력 자원은 에너지 발생 효율이 높아 사용율이 높아지고 있지만, 취급 및 폐기물 처리가 곤란한 문제가 있다. 또한 소형화가 어렵기 때문에 용도가 크게 제한되는 문제가 있다.Nuclear resources are used as other energy sources. Nuclear resources use energy generated by the transformation of nuclear nuclei (nuclear fission and fusion), in particular nuclear power generation using fission. Although such nuclear resources have high energy generation efficiency and high utilization rates, there are problems in handling and waste disposal. In addition, since the miniaturization is difficult, there is a problem that the use is greatly limited.
이러한 문제들을 해결하기 위하여, 태양열, 풍력, 조력 등의 자연 에너지를 이용한 기술들이 제안되었다. 이러한 자연 에너지는 자원 고갈의 문제가 없고, 발전에 따른 오염물질이 배출되지 않는 이점이 있다. 그러나, 자연 에너지를 이용한 발전은 최적의 발전 효율을 위한 입지 선정이 까다롭고, 설비 설치 비용이 크며, 효율이 낮은 문제가 상존한다.To solve these problems, technologies using natural energy such as solar, wind and tidal power have been proposed. This natural energy has no problem of resource depletion, and there is an advantage that pollutants are not emitted due to power generation. However, power generation using natural energy is difficult to select a location for optimal power generation efficiency, high installation cost of equipment, and low efficiency.
본 발명은 전술된 종래기술에 따른 문제점을 해결하기 위하여 도출된 것으로서, 취급 및 입수가 용이한 물을 이용하여 유용한 자원인 수소와 산소를 얻을 수 있는 기술의 제공을 목적으로 한다.The present invention was derived to solve the problems according to the prior art described above, and an object of the present invention is to provide a technique for obtaining hydrogen and oxygen, which are useful resources using water, which is easy to handle and obtain.
본 발명의 다른 목적은, 추출된 수소 및/또는 산소를 이용하여 에너지를 발생할 수 있는 기술을 제공하는 것이다.Another object of the present invention is to provide a technique capable of generating energy using extracted hydrogen and / or oxygen.
전술된 목적을 달성하기 위하여, 본 발명의 실시형태에 따른 장치는 물(H2O)을 가열하여 고온에 의하여 수소와 산소 기체로 분해하고 상기 분해된 기체를 추출하며, 추출된 기체의 일부를 다시 상기 물의 분해에 재사용하고, 상기 물의 분해에 사용하는 분해열을 열에너지로 사용할 수 있다. In order to achieve the above object, the apparatus according to the embodiment of the present invention heats water (H 2 O) to decompose hydrogen and oxygen gas by high temperature, extract the decomposed gas, and extract a part of the extracted gas. The heat of decomposition can be reused for the decomposition of the water and used for the decomposition of the water.
본 발명에서 상기 물이 수소와 산소로 분해되는 고온은 제1차 온도범위로써 섭씨 550도 이상일 수 있다.In the present invention, the high temperature at which the water is decomposed into hydrogen and oxygen may be 550 degrees Celsius or more as the first temperature range.
본 발명에서, 상기 수소 및 산소를 분리하여 추출할 수 있도록 상기 수소와 산소를 제2차 온도범위까지 더욱 가열하여 상기 수소와 산소가 층분리되도록 할 수 있으며, 상기 제2차 온도범위는 섭씨 750도 이상일 수 있고, 상기 분리된 수소와 산소의 분리 순도가 높도록 제2차 온도범위는 섭씨 850도 이상 950도 이하일 수 있다. In the present invention, the hydrogen and oxygen may be further heated to a second temperature range so as to separate and extract the hydrogen and oxygen, so that the hydrogen and oxygen are separated into layers, and the second temperature range is 750 degrees Celsius. The second temperature range may be 850 degrees Celsius or more and 950 degrees or less so that the separation purity of the separated hydrogen and oxygen is high.
본 발명의 다른 실시예에 따른 장치는, 외부에서 물이 공급되는 물공급부가 포함되는 반응 탱크, 상기 반응 탱크를 가열하는 가열부, 상기 반응 탱크의 상측에 연결되어 반응 탱크에서 생성된 수소를 추출하는 수소 추출관을 포함할 수 있다. According to another embodiment of the present invention, the apparatus includes a reaction tank including a water supply unit to which water is supplied from the outside, a heating unit for heating the reaction tank, and connected to an upper side of the reaction tank to extract hydrogen generated in the reaction tank. It may include a hydrogen extraction tube.
본 발명에서, 상기 수소 추출관은 발생된 수소를 열에너지 발생장치의 연소로 사용하기 위한 연소용 수소 추출관 또는 발생된 수소를 외부 저장기에 저장하기 위한 저장용 수소 추출관일 수 있으며, 상기 가열부는 상기 반응 탱크 몸체를 관통하도록 형성된 연소로, 상기 연소로 내부로 연료를 공급하는 연료 이송관 및, 상기 연료를 점화시키기 위한 점화기를 포함할 수 있다. In the present invention, the hydrogen extraction tube may be a hydrogen extraction tube for combustion for use of the generated hydrogen in the combustion of the heat energy generator or a storage hydrogen extraction tube for storing the generated hydrogen in an external reservoir, the heating unit is A combustion furnace configured to penetrate the reaction tank body may include a fuel transfer pipe for supplying fuel into the combustion furnace, and an igniter for igniting the fuel.
본 발명에서, 상기 연소용 수소 추출관과 상기 저장용 수소 추출관에는 상기 추출관들의 개폐 여부를 제어하도록 각각 제1밸브 및 제2밸브가 설치될 수 있으며, 상기 열에너지 발생장치에는 반응 탱크 내부의 온도에 따라 상기 가열부, 상기 제1밸브 및 제2밸브의 동작을 제어하는 제어기가 더 포함될 수 있다. In the present invention, a first valve and a second valve may be installed in the combustion hydrogen extraction pipe and the storage hydrogen extraction pipe, respectively, to control whether the extraction pipes are opened or closed. A controller for controlling the operation of the heating unit, the first valve and the second valve according to the temperature may be further included.
본 발명에서, 상기 반응 탱크의 하측에는 상기 반응 탱크에서 생성된 산소를 추출하는 산소 추출관을 더 포함할 수 있으며, 상기 산소 추출관은 발생된 산소를 열에너지 발생장치의 연소로 사용하기 위한 연소용 산소 추출관 또는 발생된 산소를 외부 저장기에 저장하기 위한 저장용 산소 추출관이며, 상기 연소용 산소 추출관과 상기 저장용 산소 추출관에는 상기 추출관들의 개폐 여부를 제어하도록 각각 제3밸브 및 제4밸브가 설치될 수 있다.In the present invention, the lower side of the reaction tank may further include an oxygen extraction tube for extracting the oxygen generated in the reaction tank, the oxygen extraction tube is for combustion for using the generated oxygen as a combustion of the thermal energy generating device An oxygen extraction tube or a storage oxygen extraction tube for storing the generated oxygen in an external reservoir, wherein the combustion oxygen extraction tube and the storage oxygen extraction tube are respectively controlled by a third valve and a third valve to control the opening and closing of the extraction tubes. Four valves can be installed.
본 발명에서, 상기 반응 탱크 내부의 온도를 측정하여 제어기로 전달하는 온도센서를 더 포함할 수 있으며, 상기 열에너지 발생장치에는 상기 반응 탱크의 측부에 연결되어 물을 공급하는 물 공급관과, 제어기의 제어에 따라 상기 물 공급관의 개폐 여부를 제어하는 제5밸브를 포함하고, 상기 반응 탱크 내부의 압력을 측정하여 제어기로 전달하는 압력 센서를 추가로 포함하여, 상기 제어기는 반응 탱크 내부의 압력이 일정하도록 제5밸브의 개폐량을 조절할 수 있다.In the present invention, it may further include a temperature sensor for measuring the temperature inside the reaction tank and delivers to the controller, the thermal energy generating device is connected to the side of the reaction tank for supplying water and the control of the controller And a fifth valve for controlling whether the water supply pipe is opened or closed, and further comprising a pressure sensor for measuring the pressure inside the reaction tank and transmitting the pressure to the controller. The opening and closing amount of the fifth valve can be adjusted.
본 발명의 상기 제5밸브는 상기 반응 탱크의 압력에 의해 반응 탱크 내부의 기체가 역류되지 않도록 역류 방지용 체크밸브일 수 있다.The fifth valve of the present invention may be a check valve for preventing the back flow so that the gas inside the reaction tank does not flow back by the pressure of the reaction tank.
또한, 본 발명에서, 상기 제어기는 상기 제1밸브가 개방된 경우 상기 연료 이송관을 통해 공급되는 연료의 공급을 차단할 수 있다. In addition, in the present invention, the controller may block the supply of fuel supplied through the fuel delivery pipe when the first valve is opened.
본 발명에서 제어기는 상기 온도 센서에 의해 측정된 반응 탱크 내부의 온도가 상기 제2차 범위 온도인 섭씨 750도 이상이 되면, 상기 제1 밸브를 개방시킬 수 있다.In the present invention, the controller may open the first valve when the temperature inside the reaction tank measured by the temperature sensor is 750 degrees Celsius or more, the second range temperature.
본 발명의 제어기는 상기 온도 센서에 의해 반응 탱크 내부의 온도가 섭씨 850도 이상이 되면, 상기 제2밸브를 개방시킬 수 있다.The controller of the present invention may open the second valve when the temperature inside the reaction tank is 850 degrees Celsius or more by the temperature sensor.
본 발명에서, 상기 저장용 수소추출관의 일측에는 이송되는 고온의 수소를 냉각시키기 위한 냉각기가 연결 구성될 수 있다. In the present invention, a cooler for cooling the hot hydrogen to be transported may be connected to one side of the storage hydrogen extraction pipe.
또한, 상기 물 공급관의 일단에는 펌프에 의해 강제 공급되어질 물이 일정 수위로 저장되어진 물통이 연결 구성될 수 있다. In addition, one end of the water supply pipe may be connected to the water reservoir for storing the water to be forcibly supplied by the pump at a certain level.
본 발명에서, 상기 열에너지 발생장치 케이싱은 수직방향으로 세워져 설치될 수 있다. 상기 열에너지 발생장치 상부에는 연소열이 외부로 배출될 수 있는 커버가 더 포함될 수 있으며, 상기 커버는 상기 반응탱크 상부를 덮는 단열 뚜껑과, 상부에는 연소열이 열에너지 발생장치 상부에는 반응탱크의 단열을 위한 단열 뚜껑이 장착되며, 상기 단열뚜껑 상부에는 연소열의 배출량을 조절할 수 있도록 높이가 조절되는 조절뚜껑이 장착될 수 있다. In the present invention, the heat energy generating device casing may be installed standing in the vertical direction. The upper portion of the heat energy generating device may further include a cover for discharging the heat of combustion to the outside, the cover is a heat insulating cap covering the upper portion of the reaction tank, the upper portion of the heat in the combustion heat is insulated for thermal insulation of the reaction tank The lid is mounted, and the top of the heat insulating lid may be equipped with a control lid which is adjusted in height to adjust the discharge of the heat of combustion.
본 발명에서, 상기 열에너지 발생장치에는 상기 반응탱크 내부의 압력이 소정의 압력 이상이 되는 경우 압력센서에 의해 상기 반응탱크 내부의 기체가 외부로 배출되도록 작동하는 컨트롤벨브를 더 포함할 수 있다. In the present invention, the thermal energy generating device may further include a control valve that operates to discharge the gas in the reaction tank to the outside by a pressure sensor when the pressure in the reaction tank is more than a predetermined pressure.
본 발명에서, 상기 열에너지 발생장치에는 상기 컨트롤벨브가 작동으로도 상기 반응탱크 내부의 압력이 소정 압력 이상이 되는 경우 압력센서에 의해 상기 반응탱크 내부의 기체가 외부로 배출되도록 작동하는 안전벨브(safty valve)를 더 포함 할 수 있다. In the present invention, the safety valve (safty) to operate so that the gas inside the reaction tank is discharged to the outside by a pressure sensor when the pressure inside the reaction tank is more than a predetermined pressure even when the control valve is operated. valve may be further included.
본 발명에서, 상기 수소추출관, 산소추출관, 물광급관, 점화기에가 일정 온도 이상에서만 작동하도록 각각 온도센서가 설치될 수 있다. In the present invention, the hydrogen extraction tube, the oxygen extraction tube, the water light pipe, the igniter may be installed to each temperature sensor to operate only at a predetermined temperature or more.
본 발명에 따르면 취급 및 입수가 용이한 물을 열분해하여 유용한 자원인 수소와 산소를 얻을 수 있다.According to the present invention, hydrogen and oxygen which are useful resources can be obtained by pyrolyzing water which is easy to handle and obtain.
또한 본 발명에 따르면 추출된 수소 및/또는 산소를 연소시켜 에너지 공급이 가능하다.In addition, according to the present invention it is possible to supply energy by burning the extracted hydrogen and / or oxygen.
도1은 본 발명의 제1실시예에 따른 열에너지 발생장치의 측단면도이다.1 is a side cross-sectional view of a thermal energy generating device according to a first embodiment of the present invention.
도2는 도1에서 연료와 물이 공급되는 상태를 도시한 것이다.FIG. 2 illustrates a state in which fuel and water are supplied to FIG. 1.
도3은 도1에서 반응 탱크 내부에 수증기가 형성된 상태를 도시한 것이다.3 illustrates a state in which water vapor is formed inside the reaction tank in FIG. 1.
도4는 도1에서 연소용 수소가 공급되는 상태를 도시한 것이다.4 illustrates a state in which hydrogen for combustion is supplied in FIG. 1.
도5는 도1에서 저장용 수소와 산소가 추출되는 상태를 도시한 것이다.FIG. 5 illustrates a state in which hydrogen and oxygen for storage are extracted in FIG. 1.
도6은 본 발명의 제2실시예에 따른 열에너지 발생장치의 측단면도이다.6 is a side sectional view of a heat energy generating device according to a second embodiment of the present invention.
도 7은 본 발명 실시예의 수평형 케이싱 외관도이다.7 is an external view of a horizontal casing of an embodiment of the present invention.
도 8은 본 발명의 응용예에 따른 수직형 케이싱 분리도이다.8 is an exploded view of the vertical casing according to the application of the present invention.
도 9는 도 8의 수직형 케이싱 결합도이다.9 is a vertical casing coupling of FIG.
도 10은 도 8의 수직형 케이싱 설치상태도이다.10 is a vertical casing installation state of FIG.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100,200,300: 열에너지 발생장치 110,210,310: 케이싱100,200,300: thermal energy generator 110,210,310: casing
120,220,320: 반응 탱크 130,230,330: 연소로120,220,320: reaction tanks 130,230,330: combustion furnace
140,240,340: 연소용 수소추출관 142,242,342: 저장용 수소추출관140,240,340: hydrogen extraction pipe for combustion 142,242,342: hydrogen extraction pipe for storage
144,244,344: 저장용 산소추출관 150,250,350: 연료이송관144,244,344: oxygen extraction pipe for storage 150,250,350: fuel transport pipe
152,252,352: 점화기 160,260,360: 물공급관152,252,352: igniter 160,260,360: water supply pipe
이하에서, 첨부된 도면들을 참조하여 본 발명의 실시예가 기술된다.In the following, embodiments of the present invention are described with reference to the accompanying drawings.
하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 것이다. 또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이 용어들은 제품을 생산하는 생산자의 의도 또는 관례에 따라 달라질 수 있으며, 용어들의 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, if it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, the terms to be described later are terms set in consideration of functions in the present invention, and these terms may vary according to the intention or custom of the producer producing the product, and the definition of the terms should be made based on the contents throughout the present specification.
(제1실시예)(First embodiment)
먼저 첨부된 도면 도1을 참조로 본 발명의 제1실시예에 따른 물의 고온 분해에 따른 기체 추출 및 열에너지 발생장치를 설명한다.First, a gas extraction and thermal energy generating apparatus according to high temperature decomposition of water according to a first embodiment of the present invention will be described with reference to FIG. 1.
도1은 본 발명의 제1실시예에 따른 열에너지 발생장치의 측단면도이다.1 is a side cross-sectional view of a thermal energy generating device according to a first embodiment of the present invention.
도1에 도시된 바와 같이, 본 제1실시예에 따른 물의 고온 분해에 따른 기체 추출 및 열에너지 발생장치(100: 이하에서 설명의 편의를 위하여, 별다른 설명이 없는 한 '물의 고온 분해에 따른 기체 추출 및 열에너지 발생장치'는 간략히 '열에너지 발생장치'라 한다)에서 케이싱(110)은 열에너지 발생장치(100)의 외관을 구성한다.As shown in Figure 1, the gas extraction and thermal energy generating apparatus 100 according to the high temperature decomposition of water according to the first embodiment (100: for convenience of description, hereinafter, unless otherwise stated, 'gas extraction according to high temperature decomposition of water) And the 'heat energy generator' is briefly referred to as a 'heat energy generator', and the casing 110 constitutes an appearance of the heat energy generator 100.
반응 탱크(120)는 케이싱(110)의 내부 공간에 설치되며, 몸체를 관통하는 연소로(130)가 형성된다. The reaction tank 120 is installed in the inner space of the casing 110, and a combustion furnace 130 penetrating the body is formed.
가열부는 반응 탱크(120)의 일측에 결합되어 반응 탱크(120)를 가열한다. 가열부는 연소로(130) 내부로 연료를 공급하는 연료 이송관(150) 및 연료를 점화시키는 점화기(152)를 포함한다. 이때 사용되는 연료는 경유 또는 LPG인 것이 바람직하지만, 이에 한정되지 않고 일반 화석연료가 사용될 수 있음은 물론이다. The heating unit is coupled to one side of the reaction tank 120 to heat the reaction tank 120. The heating unit includes a fuel transfer pipe 150 for supplying fuel into the combustion furnace 130 and an igniter 152 for igniting the fuel. At this time, the fuel used is preferably diesel or LPG, but it is not limited thereto. Of course, general fossil fuel may be used.
한편, 점화기(152)는 초기 동작시에는 연료로 공급된 연료를 점화시키고, 이후 연소용 수소 추출관(140)을 통해 수소가 공급되면 수소를 점화시킴에 유의한다.Note that the igniter 152 ignites the fuel supplied as fuel during the initial operation, and then ignites the hydrogen when hydrogen is supplied through the combustion hydrogen extraction pipe 140.
연소용 수소 추출관(140)은 반응 탱크(120)의 상부 타측에 연결되어 반응 탱크(120)에서 생성된 수소를 연소로(130)로 이송시킨다.The hydrogen extraction pipe 140 for combustion is connected to the other upper side of the reaction tank 120 to transfer the hydrogen generated in the reaction tank 120 to the combustion furnace 130.
제1밸브(141)는 제어기의 제어에 따라 연소용 수소 추출관(140)의 개폐 여부를 제어한다.The first valve 141 controls whether the combustion hydrogen extraction pipe 140 is opened or closed under the control of the controller.
저장용 수소 추출관(142)은 반응 탱크(120)의 상부 일측에 연결되어 반응 탱크(120)에서 생성된 수소를 수소 저장 탱크(도시되지 않음)로 이송시킨다.The storage hydrogen extraction pipe 142 is connected to an upper side of the reaction tank 120 to transfer the hydrogen generated in the reaction tank 120 to a hydrogen storage tank (not shown).
제2밸브(143)는 제어기의 제어에 따라 저장용 수소 추출관(142)의 개폐 여부를 제어한다.The second valve 143 controls whether the storage hydrogen extraction pipe 142 is opened or closed under the control of the controller.
저장용 산소 추출관(144)은 반응 탱크(120)의 하부 일측에 연결되어 반응 탱크(120)에서 생성된 산소를 산소 저장 탱크(도시되지 않음)로 이송시킨다.The storage oxygen extraction pipe 144 is connected to one lower side of the reaction tank 120 to transfer oxygen generated in the reaction tank 120 to an oxygen storage tank (not shown).
제4밸브(145)는 제어기의 제어에 따라 저장용 산소 추출관(144)의 개폐 여부를 제어한다.The fourth valve 145 controls whether the storage oxygen extraction pipe 144 is opened or closed under the control of the controller.
물 공급관(160)은 반응 탱크(120)의 측부에 연결되어 물을 공급한다.The water supply pipe 160 is connected to the side of the reaction tank 120 to supply water.
제5밸브(161)는 제어기의 제어에 따라 물 공급관(160)의 개폐 여부를 제어한다. 한편, 제5밸브(151)는 상기 반응 탱크의 압력에 의해 반응 탱크 내부의 기체가 역류되지 않도록 역류 방지용 체크밸브를 사용하는 것이 바람직하다. The fifth valve 161 controls whether the water supply pipe 160 is opened or closed under the control of the controller. On the other hand, it is preferable that the fifth valve 151 uses a check valve for preventing a back flow so that the gas inside the reaction tank does not flow back due to the pressure of the reaction tank.
온도 센서(122)는 반응 탱크(120) 내부의 온도를 측정하여 제어기로 전달한다.The temperature sensor 122 measures the temperature inside the reaction tank 120 and transmits the temperature to the controller.
압력 센서(124)는 반응 탱크(120) 내부의 압력을 측정하여 제어기로 전달한다.The pressure sensor 124 measures the pressure inside the reaction tank 120 and transmits the pressure to the controller.
제어기(도시되지 않음)는 반응 탱크(120) 내부의 온도 또는 압력에 따라 가열부 및 밸브들의 동작을 제어한다.A controller (not shown) controls the operation of the heater and valves in accordance with the temperature or pressure inside the reaction tank 120.
이하에서 첨부된 도면 도2 내지 도5를 참조로 본 제1실시예에 따른 열에너지 발생장치의 동작을 설명한다.Hereinafter, the operation of the heat energy generator according to the first embodiment will be described with reference to FIGS. 2 to 5.
도2는 도1에서 연료와 물이 공급되는 상태를 도시한 것이고, 도3은 도1에서 반응 탱크 내부에 수증기가 형성된 상태를 도시한 것이고, 도4는 도1에서 연소용 수소가 공급되는 상태를 도시한 것이고, 도5는 도1에서 저장용 수소와 산소가 추출되는 상태를 도시한 것이다.FIG. 2 illustrates a state in which fuel and water are supplied from FIG. 1, FIG. 3 illustrates a state in which water vapor is formed inside the reaction tank in FIG. 1, and FIG. 4 is a state in which hydrogen for combustion is supplied in FIG. 1. 5 shows a state in which hydrogen and oxygen for storage are extracted in FIG. 1.
제1단계, 연료 이송관(150)을 통해 이송된 연료(155)가 연소로(130)로 공급되고, 점화기(152)에 의해 점화된다. 동시에 제5밸브(161)가 개방되어 물 공급관(160)을 통해 이송된 물(165)이 반응 탱크(120) 내부로 공급된다. 이때의 상태가 도2에 도시된다.In the first step, the fuel 155 transferred through the fuel transfer pipe 150 is supplied to the combustion furnace 130 and ignited by the igniter 152. At the same time, the fifth valve 161 is opened so that the water 165 transferred through the water supply pipe 160 is supplied into the reaction tank 120. The state at this time is shown in FIG.
제2단계, 연소로(130)에서 착화된 연료의 연소열에 의해 반응 탱크(120)가 가열되고, 이에 의해 반응 탱크(120) 내부로 공급된 물(165)이 수증기(166)가 된다. In the second step, the reaction tank 120 is heated by the combustion heat of the fuel complexed in the combustion furnace 130, whereby the water 165 supplied into the reaction tank 120 becomes the steam 166.
설정된 온도 압력 조건에 도달하면 제5밸브(161)는 닫히게 된다. 이때 반응 탱크(120) 내부의 온도는 섭씨 100도 이상이며, 물(165)이 수증기(166)가 됨에 따라 내부 압력이 증가하게 된다. 이때의 상태가 도3에 도시된다.When the set temperature and pressure conditions are reached, the fifth valve 161 is closed. At this time, the temperature inside the reaction tank 120 is more than 100 degrees Celsius, and as the water 165 becomes water vapor 166, the internal pressure increases. The state at this time is shown in FIG.
제3단계, 연소로(130)에서 착화된 연료의 연소열에 의해 반응 탱크(120) 내부의 온도가 섭씨 600도 이상이 되면, 수증기(166)가 열분해 되어 반응 탱크(120)의 상부는 상대적으로 비중이 낮은 수소(167)가, 하부는 비중이 큰 산소(168)가 생성된다. In the third step, when the temperature inside the reaction tank 120 becomes higher than 600 degrees Celsius due to the heat of combustion of the fuel ignited in the combustion furnace 130, the steam 166 is pyrolyzed, and the upper portion of the reaction tank 120 is relatively Hydrogen 167 having a low specific gravity is produced and oxygen 168 having a large specific gravity is produced at the lower portion.
수소와 산소가 분해되는 시점에서 반응 탱크(120)를 더 가열하여 탱크 내부의 온도가 섭씨 750도 이상이 되면, 분해된 수소와 산소의 대부분이 상층 및 하층 분리되므로, 분해된 수소의 배출이 가능하게 된다.When the reaction tank 120 is further heated at the time when hydrogen and oxygen are decomposed, and the temperature inside the tank is 750 degrees Celsius or more, since most of the decomposed hydrogen and oxygen are separated from the upper and lower layers, the decomposed hydrogen can be discharged. Done.
즉, 발생된 수소(167)는 제1밸브(141)가 개방됨에 따라 연소용 수소 추출관(140)을 통해 연소로(130)로 이송되고, 점화기(152)에 의해 점화되어 반응 탱크(120)를 가열시키는데 이용된다. That is, the generated hydrogen 167 is transferred to the combustion furnace 130 through the hydrogen extraction pipe 140 for combustion as the first valve 141 is opened, and is ignited by the igniter 152 to react with the reaction tank 120. ) Is used to heat.
이때 연료 이송관(150)은 제어기의 제어에 의해 연료 공급을 차단하게 된다. 또한 압력 센서(124)에 의해 반응 탱크(120) 내부의 압력이 일정하도록 물 공급관(160)을 통해 물이 공급되며, 공급된 물은 즉시 열분해된다. 이때의 상태가 도4에 도시된다.At this time, the fuel delivery pipe 150 cuts off the fuel supply under the control of the controller. In addition, water is supplied through the water supply pipe 160 such that the pressure inside the reaction tank 120 is constant by the pressure sensor 124, and the supplied water is immediately pyrolyzed. The state at this time is shown in FIG.
제4단계, 연소로(130)에서 착화된 수소의 연소열에 의해 반응 탱크(120) 내부의 온도가 섭씨 850도 이상이 되면, 제2밸브(143)가 개방되어 저장용 수소 추출관(142)을 통해 순도가 높은 순수 수소가 수소 저장 탱크로 이송된다. 이때의 상태가 도5에 도시된다. 한편, 이와 같은 연소는 수소와 산소를 이용하여 이루어지기 때문에, 별도의 배기가스나 오염 물질이 배출되지 않고, 물만 발생하게 되어 환경오염 문제를 일으키지 않는다.In the fourth step, when the temperature inside the reaction tank 120 becomes higher than 850 degrees Celsius due to the combustion heat of hydrogen complexed in the combustion furnace 130, the second valve 143 is opened to store the hydrogen extraction pipe 142. Through the pure water of high purity is transferred to the hydrogen storage tank. The state at this time is shown in FIG. On the other hand, since such combustion is performed using hydrogen and oxygen, no separate exhaust gas or pollutants are emitted, and only water is generated, so that it does not cause environmental pollution.
(제2실시예)Second Embodiment
이하에서 첨부된 도면 도6을 참조로 본 발명의 제2실시예에 따른 열에너지 발생장치를 설명한다.Hereinafter, a heat energy generating device according to a second embodiment of the present invention will be described with reference to FIG. 6.
도6은 본 발명의 제2실시예에 따른 열에너지 발생장치의 측단면도이다.6 is a side sectional view of a heat energy generating device according to a second embodiment of the present invention.
도6에 도시된 바와 같이, 본 제2실시예에 따른 열에너지 발생장치(200)는 제1실시예에 따른 열에너지 발생장치(100)에 비해 연소용 산소 추출관(246)과 제4밸브(247)가 추가로 결합되는 것을 제외하고는 실질적으로 동일하다.As shown in FIG. 6, the heat energy generator 200 according to the second embodiment of the present invention is compared with the heat energy generator 100 according to the first embodiment of the combustion oxygen extraction pipe 246 and the fourth valve 247. ) Are substantially the same except that they are further combined.
연소용 산소 추출관(246)은 반응 탱크(220)의 하부 타측에 연결되어 반응 탱크(220)에서 생성된 산소를 연소로(230)로 이송시킨다. 제4밸브(247)는 제어기의 제어에 따라 연소용 산소 추출관의 개폐 여부를 제어한다.The combustion oxygen extraction tube 246 is connected to the other lower side of the reaction tank 220 to transfer the oxygen generated in the reaction tank 220 to the combustion furnace 230. The fourth valve 247 controls whether the combustion oxygen extraction tube is opened or closed under the control of the controller.
이와 같은 구성에 의해, 본 제2실시예에 따른 열에너지 발생장치(200)는 외부 공기 없이도 수소의 연소에 필요한 산소의 공급이 가능해진다.With such a configuration, the heat energy generator 200 according to the second embodiment can supply oxygen required for combustion of hydrogen without external air.
상기와 같은 본 발명의 실시예에 의한 열에너지 발생장치는, 물 1리터에서 1,000루베(㎥)의 수소 가스가 생산되어질 수 있으므로, 18리터에서는 18,000루베가 생산되며, 그중 200루베가 소비되어지게 되고, 결국 17,800루베가 상품으로 생산되어지게 된다.In the thermal energy generating device according to the embodiment of the present invention as described above, since hydrogen gas of 1,000 rubes (m 3) can be produced in 1 liter of water, 18,000 rubes are produced in 18 liters, of which 200 rubes are consumed. In the end, 17,800 rubes would be produced as a commodity.
이에 따라, 1일 생산량은 432,000루베(18,000×24시간)이 되고, 30일 생산량은 12,960,000루베(432,000×30일)이 되며, 1년 생산량은 155,520,000루베(12,960,000×12개월)이 됨을 알 수 있다.Accordingly, the daily output is 432,000 rubes (18,000 × 24 hours), the 30-day output is 12,960,000 rubes (432,000 × 30 days), and the annual output is 155,520,000 rubes (12,960,000 × 12 months). .
그리고, 1일 소비량이 200루베이므로, 1년 소비량은 1,728,000루베가 되게 된다.Since the daily consumption is 200 rubes, the annual consumption is 1,728,000 rubes.
따라서, 총 년간 1대의 생산량은 155,520,000 - 1,728,000 = 153,792,000루베가 됨으로, 1대에서 1년간 153,792,000루베의 수소가 생산되어질 수 있게 되된다. Thus, the total output of one unit will be 155,520,000-1,728,000 = 153,792,000 rubes, so that one can produce 153,792,000 rubes of hydrogen per year.
한편, 상기 실시예의 열에너지 발생장치는 케이싱(110)을 도 7에서와 같이 수평상태로 눕혀서 설치했을 때를 설명한 것이고, 케이싱(110)을 수직방향으로 세워서 30리터 대용량으로 설계했을 때에는 수소 생산효과가 더욱 향상되어질 수 있게 된다.On the other hand, the heat energy generating device of the embodiment described when the casing 110 is laid down in a horizontal state as shown in Figure 7, when the casing 110 in a vertical direction to design a large capacity 30 liters of hydrogen production effect It can be further improved.
(제3 실시예)(Third embodiment)
이하에서 첨부된 도면 도8 내지 도 10을 참조로 본 발명의 제3실시예에 따른 열에너지 발생장치를 설명한다.Hereinafter, a heat energy generator according to a third embodiment of the present invention will be described with reference to FIGS. 8 to 10.
도 8은 본 발명의 제3실시예에 따른 수직형 케이싱 분리도이고, 도 9는 도 8의 수직형 케이싱 결합도이며, 도 10은 도 8의 수직형 케이싱 설치상태도이다.8 is an exploded view of the vertical casing according to the third embodiment of the present invention, FIG. 9 is a vertical casing coupling diagram of FIG. 8, and FIG. 10 is a vertical casing installation state of FIG. 8.
이러한, 수직형 열에너지 발생장치(300)는 도 8 내지 도 10에 도시된 바와 같이 케이싱(310)를 수직방향으로 세워서 설치한 것으로서, 내부공간에 설치된 반응탱크(320)에는 몸체를 관통하는 연소로(330)가 형성되어져 있고, 상부에는 단열뚜껑(370)이 장착되어짐과 함께 단열뚜껑(380) 상부에는 연소로(330)를 통해 배출되는 연소열에 의해 유동되어지면서 연소열의 배출량이 조절되어질 수 있는 조절뚜껑(380)이 안착 구성되어지게 된다.The vertical thermal energy generator 300 is installed by standing the casing 310 in a vertical direction as shown in FIGS. 8 to 10, and a combustion tank penetrating the body in the reaction tank 320 installed in the inner space. 330 is formed, the heat insulating cap 370 is mounted on the upper portion and the heat insulating lid 380 is flowed by the heat of combustion discharged through the combustion furnace 330 on the upper portion of the heat of the combustion can be controlled The adjusting lid 380 is configured to be seated.
그리고, 하부에는 연료 이송관(350) 및 점화기(352)로 이루어지는 가열부가 구성되어져 있는데, 일측에는 반응탱크(320)에서 생성된 수소를 공급하기 위한 연소용 수소추출관(340)이 구비되어져 있다.In addition, a heating unit including a fuel transfer pipe 350 and an igniter 352 is configured at a lower portion thereof, and a combustion hydrogen extraction pipe 340 for supplying hydrogen generated in the reaction tank 320 is provided at one side. .
한편, 케이싱(310) 일측에는 반응탱크(320)로 물공급관(360)을 통해 전달될 물이 저장되는 물통(362)이 설치되어지는데, 물통(363)에는 유리관이 눈금과 함께 구성되어져 있어 물의 소비량이 체크되어질 수 있도록 함이 바람직하다.On the other hand, one side of the casing 310 is provided with a water tank 362 for storing the water to be transmitted through the water supply pipe 360 to the reaction tank 320, the water tank 363 is composed of a glass tube with a scale of water It is desirable to allow consumption to be checked.
그리고 반응탱크(320)에서 생성된 수소를 수소 저장탱크(미도시)로 이송시키기 위한 저장용 수소추출관(342)이 연결 구성되어지게 되는데, 저장용 수소추출관(342)의 일단부에는 도 10에서와 같이 3개의 냉각기(390)가 순차적으로 연결 구성되어져 있어 고온의 수소를 냉각시킬 수 있도록 하였다.And the storage hydrogen extraction pipe 342 for transferring the hydrogen generated in the reaction tank 320 to the hydrogen storage tank (not shown) is configured to be connected, one end of the storage hydrogen extraction pipe 342 As in 10, the three coolers 390 are configured to be sequentially connected to cool the high temperature hydrogen.
또한, 반응탱크(320)의 하부 일측에는 내부에서 생성된 산소를 산소 저장탱크(미도시)로 이송시키기 위한 저장용 산소추출관(344)이 연결 구성되어져 있음을 확인할 수 있다. 마찬가지로 고온의 산소를 냉각시킬 수 있는 냉각기(미도시)가 1개 이상 포함될 수 있다.In addition, the lower one side of the reaction tank 320 can be confirmed that the storage oxygen extraction pipe 344 for connecting the oxygen generated therein to the oxygen storage tank (not shown) is configured. Likewise, one or more coolers (not shown) capable of cooling high temperature oxygen may be included.
한편, 미설명 부호 301은 컨트롤벨브(control valve)로서, 반응탱크(320) 내부의 압력이 압력센서(미도시)에 의해 소정의 압력 이상이 되는 경우 상기 컨트롤벨브(301)가 오픈되면서 반응탱크(320) 내의 산소가 외부로 배출되도록 한다.On the other hand, reference numeral 301 is a control valve (control valve), when the pressure inside the reaction tank 320 is more than a predetermined pressure by a pressure sensor (not shown) the control valve 301 is opened while the reaction tank Oxygen in 320 is discharged to the outside.
또한, 302는 안전벨브(safty valve)로서, 반응탱크(320) 내부의 압력 조절이 상기 컨트롤벨브가 오픈되서도 조절이 불가한 경우에는 고압에 의한 탱크 폭발 등의 사고를 방지하기 위해 상기 안전벨브가 오픈되어 반응탱크(320) 내부의 기체가 외부로 배출되도록 한다.In addition, 302 is a safety valve (safty valve), when the pressure control in the reaction tank 320 is not possible to control even when the control valve is open, the safety valve to prevent accidents such as tank explosion due to high pressure Is opened to allow the gas inside the reaction tank 320 to be discharged to the outside.
또한, 온도센서(303,304,305,306)이 각각 연소용 수소추출관(340),저장용 산소추출관(344), 물공급관(360), 점화기(352)에 장착되어, 일정 온도 이상이 되어야 수소추출관, 물공급관, 산소추출관에 장착된 벨브가 오픈되도록 구성된다.In addition, the temperature sensor (303, 304, 305, 306) is mounted to the combustion hydrogen extraction pipe 340, the storage oxygen extraction pipe 344, the water supply pipe 360, the igniter 352, respectively, the hydrogen extraction pipe, The valve mounted on the water supply pipe and the oxygen extraction pipe is configured to open.
물론, 저장용수소추출관(342), 연소용산소추출관(346)에도 온도센서가 장착될 수 있다. Of course, the storage hydrogen extraction tube 342, the combustion oxygen extract tube 346 may be equipped with a temperature sensor.
또한, 설정된 일정 온도 이상이 되면, 상기 점화기가 소등되어 상기 반응기 자체가 작동을 멈추도록 상기 점화기에 온도센서가 장착된다.In addition, when the predetermined temperature is above, the igniter is turned off so that the temperature sensor is mounted on the igniter so that the reactor itself stops operating.
이와 같은 구성을 이루는 수직형 열에너지 발생장치는, 연료 이송관(350)을 통해 이송 공급된 연료가 점화기(352)에 의해 점화됨과 동시에 물통(362)에 저장되어져 있는 물은 펌프 작동에 의해 물 공급관(360)을 통해 반응탱크(320) 내로 공급된다.In the vertical heat energy generating device having such a configuration, while the fuel transported and supplied through the fuel transport pipe 350 is ignited by the igniter 352, the water stored in the water tank 362 is pumped by the water supply pipe. It is supplied into the reaction tank 320 through 360.
이때, 연소로(330)에서 착화된 연료의 연소열에 의해 반응탱크(320)가 가열되어, 상기 공급된 물이 수증기 상태로 변하면서 내부 압력이 증가하여 수증기의 열분해 비중 차이로 인한 수소와 산소가 생성되어지게 된다.At this time, the reaction tank 320 is heated by the combustion heat of the fuel ignited in the combustion furnace 330, and the internal pressure increases as the supplied water changes to a vapor state, thereby increasing hydrogen and oxygen due to a difference in pyrolysis specific gravity of water vapor. Will be created.
이후, 계속적인 가열에 의해 완전 분리된 수소는 연소용 수소 추출관(340)을 통해 하부로 이동된 후 점화기(352)에 의해 점화되어 반응탱크(320)를 계속적으로 가열시키는 역할을 수행하게 된다.Subsequently, the hydrogen completely separated by continuous heating is moved downward through the hydrogen extraction pipe 340 for combustion and then ignited by the igniter 352 to continuously heat the reaction tank 320. .
그리고, 계속적인 가열작용에 의해 순도가 높은 순수 수소는 저장용 수소추출관(342)을 통해 이송되어 냉각기(390)에서 냉각되어진 후 수소저장탱크로 저장되어지게 된다.Further, pure hydrogen having high purity is continuously transferred through the storage hydrogen extraction pipe 342 to be cooled in the cooler 390 and then stored in the hydrogen storage tank by the continuous heating action.
한편, 반응탱크(320)에서 생성된 산소는 연소용 산소추출관(346)을 통해 하부로 이송되어 점화기(352)에 의한 점화작용에 사용되어지고, 고순도의 산소는 별도의 저장용 산소추출관(344)을 통해 이송되어 산소저장탱크(미도시)로 저장되어질 수 있다. On the other hand, the oxygen generated in the reaction tank 320 is transferred to the lower through the combustion oxygen extraction pipe 346 is used for the ignition action by the igniter 352, the high purity oxygen is a separate storage oxygen extraction pipe Transferred through 344 may be stored in an oxygen storage tank (not shown).
상기에서와 같은 본 응용예의 수직형 열에너지 발생장치는, 물 1리터에서 1000루베(㎥)의 수소 가스가 생산되어질 수 있으므로, 30리터에서는 30,000루베가 생산되며, 그중 300루베가 소비되어지게 되고, 결국 29,700루베가 상품으로 생산되어지게 된다.In the vertical thermal energy generating device of the present application as described above, since 1000 liters of hydrogen gas (m 3) can be produced in 1 liter of water, 30,000 rubes are produced in 30 liters, of which 300 rubes are consumed, Eventually 29,700 rubes will be produced as a commodity.
이에 따라, 1일 생산량은 720,000루베(30,000×24시간)이 되고, 30일 생산량은 21,600,000루베(720,000×30일)이 되며, 1년 생산량은 259,200,000루베(22,600,000×12개월)이 됨을 알 수 있다.Accordingly, it can be seen that the daily output is 720,000 rubes (30,000 × 24 hours), the 30-day output is 21,600,000 rubes (720,000 × 30 days), and the annual output is 259,200,000 rubes (22,600,000 × 12 months). .
그리고, 1일 소비량이 300루베이므로, 1년 소비량은 2,592,000루베가 되게 된다.And since the daily consumption is 300 rubes, the annual consumption is 2,592,000 rubes.
따라서, 총 년간 1대의 생산량은 259,200,000 - 2,592,000 = 256,608,000루베가 됨으로, 1대에서 1년간 256,608,000루베의 수소가 생산되어질 수 있게 됨을 알 수 있다.Therefore, the total output of one unit is 259,200,000-2,592,000 = 256,608,000 rubes, so it can be seen that one generation can produce 256,608,000 rubes of hydrogen per year.
이상으로 본 발명의 실시예를 첨부된 도면을 참조로 기술하였다.The embodiments of the present invention have been described above with reference to the accompanying drawings.
그러나 본 발명은 전술된 실시예에만 특별히 한정되는 것은 아니며, 필요에 따라, 당업자에 의해, 첨부된 청구범위의 정신과 사상 내에서 다양한 수정 및 변경이 가능함에 유의해야 한다.However, it is to be noted that the present invention is not particularly limited only to the above-described embodiments, and that various modifications and changes can be made by those skilled in the art within the spirit and spirit of the appended claims as necessary.

Claims (27)

  1. 물(H2O)을 가열하여 고온에 의하여 수소와 산소 기체로 분해하고 상기 분해된 기체를 추출하며, 추출된 기체의 일부를 다시 상기 물의 분해에 재사용하고, 상기 물의 분해에 사용하는 분해열을 열에너지로 사용하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.Heat water (H 2 O) to decompose hydrogen and oxygen gas by high temperature, extract the decomposed gas, reuse some of the extracted gas for the decomposition of water, and use the heat of decomposition used for decomposition of water Gas extraction and thermal energy generator according to the high temperature decomposition of H 2 O, characterized in that used as.
  2. 제 1 항에 있어서, 상기 물이 수소와 산소로 분해되는 고온은 제1차 온도범위로써 섭씨 550도 이상인 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 1, wherein the water is decomposed into hydrogen and oxygen has a high temperature that the first temperature range occurs gas extraction and thermal energy according to a high temperature of decomposition, H 2 O, characterized in that not less than 550 ° C as the device.
  3. 제 2 항에 있어서, 상기 수소 및 산소를 분리하여 추출할 수 있도록 상기 수소와 산소를 제2차 온도범위까지 더욱 가열하여 상기 수소와 산소가 층분리되도록 하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.3. The high temperature of H 2 O according to claim 2, wherein the hydrogen and oxygen are further heated to a second temperature range so that the hydrogen and oxygen can be separated and extracted to separate the hydrogen and oxygen. Gas extraction and thermal energy generator according to decomposition.
  4. 제 3 항에 있어서, 상기 제2차 온도범위는 섭씨 750도 이상인 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.According to claim 3, wherein the second temperature range is 750 degrees Celsius or more, gas extraction and heat energy generating apparatus according to the high-temperature decomposition of H 2 O.
  5. 제 4 항에 있어서, 상기 분리된 수소와 산소의 분리 순도가 높도록 제2차 온도범위는 섭씨 850도 이상 950도 이하인 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The gas extraction and thermal energy generator according to the high-temperature decomposition of H 2 O, characterized in that the secondary temperature range is 850 degrees Celsius or more and 950 degrees or less so that the separation purity of the separated hydrogen and oxygen is high. .
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 따라 H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생하기 위하여, According to any one of claims 1 to 5 in order to generate gas extraction and thermal energy due to the high temperature decomposition of H 2 O,
    외부에서 물이 공급되는 물공급부가 포함되는 반응 탱크;A reaction tank including a water supply unit to which water is supplied from the outside;
    상기 반응 탱크를 가열하는 가열부;A heating unit for heating the reaction tank;
    상기 반응 탱크의 상측에 연결되어 반응 탱크에서 생성된 수소를 추출하는 수소 추출관을 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.Gas extraction and thermal energy generating device according to the high temperature decomposition of H 2 O, characterized in that it comprises a hydrogen extraction tube that is connected to the upper side of the reaction tank to extract the hydrogen produced in the reaction tank.
  7. 제 6 항에 있어서, 상기 수소 추출관은 발생된 수소를 열에너지 발생장치의 연소로 사용하기 위한 연소용 수소 추출관 또는 발생된 수소를 외부 저장기에 저장하기 위한 저장용 수소 추출관인 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 6, wherein the hydrogen extraction tube is characterized in that the hydrogen extraction tube for combustion for use of the generated hydrogen in the combustion of the heat energy generator or a storage hydrogen extraction tube for storing the generated hydrogen in an external reservoir, Gas extraction and thermal energy generator according to high temperature decomposition of H 2 O.
  8. 제 7 항에 있어서, 상기 가열부는 상기 반응 탱크 몸체를 관통하도록 형성된 연소로;8. The apparatus of claim 7, wherein the heating unit comprises: a combustion furnace formed to penetrate the reaction tank body;
    상기 연소로 내부로 연료를 공급하는 연료 이송관; 및 A fuel delivery pipe for supplying fuel into the combustion furnace; And
    상기 연료를 점화시키기 위한 점화기를 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.And an igniter for igniting the fuel. 2 .
  9. 제 6 항에 있어서, 상기 연소용 수소 추출관과 상기 저장용 수소 추출관에는 상기 추출관들의 개폐 여부를 제어하도록 각각 제1밸브 및 제2밸브가 설치되어 있는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 6, wherein the combustion hydrogen extraction pipe and the storage hydrogen extraction pipe, characterized in that the first valve and the second valve is installed so as to control whether the extraction pipe opening and closing, H 2 O of Gas extraction and thermal energy generator according to high temperature decomposition.
  10. 제 9 항에 있어서, 상기 열에너지 발생장치에는 반응 탱크 내부의 온도에 따라 상기 가열부, 상기 제1밸브 및 제2밸브의 동작을 제어하는 제어기가 더 포함되는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.10. The high temperature of H 2 O according to claim 9, wherein the thermal energy generator further comprises a controller for controlling the operation of the heating unit, the first valve, and the second valve according to a temperature inside the reaction tank. Gas extraction and thermal energy generator according to decomposition.
  11. 제 10 항에 있어서, 상기 반응 탱크의 하측에는 상기 반응 탱크에서 생성된 산소를 추출하는 산소 추출관을 더 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 10, wherein the lower side is generated in the gas extraction and thermal energy according to a high temperature of decomposition, H 2 O, characterized in that it further comprises an oxygen-extracting pipe unit for extracting the oxygen produced in the reaction tank, the reaction tank.
  12. 제 11 항에 있어서, 상기 산소 추출관은 발생된 산소를 열에너지 발생장치의 연소로 사용하기 위한 연소용 산소 추출관 또는 발생된 산소를 외부 저장기에 저장하기 위한 저장용 산소 추출관이며, 상기 연소용 산소 추출관과 상기 저장용 산소 추출관에는 상기 추출관들의 개폐 여부를 제어하도록 각각 제3밸브 및 제4밸브가 설치되어 있는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치. 12. The method of claim 11, wherein the oxygen extraction tube is a combustion oxygen extraction tube for using the generated oxygen as a combustion of the heat energy generator or a storage oxygen extraction tube for storing the generated oxygen in an external reservoir, Oxygen extraction tube and the storage oxygen extraction tube is characterized in that the third valve and the fourth valve is installed to control the opening and closing of the extraction tube, respectively, gas extraction and heat energy generation according to the high temperature decomposition of H 2 O Device.
  13. 제 9 항에 있어서, 상기 반응 탱크 내부의 온도를 측정하여 제어기로 전달하는 온도센서를 더 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 9, wherein said reaction tank to measure the internal temperature of the gas extraction and thermal energy generating device according to the temperature sensor, the high-temperature decomposition of H 2 O, characterized in that it further comprises passing to the controller.
  14. 제 13 항에 있어서, 상기 열에너지 발생장치에는 상기 반응 탱크의 측부에 연결되어 물을 공급하는 물 공급관과, 제어기의 제어에 따라 상기 물 공급관의 개폐 여부를 제어하는 제5밸브를 포함하고, The apparatus of claim 13, wherein the thermal energy generator includes a water supply pipe connected to the side of the reaction tank to supply water, and a fifth valve controlling whether the water supply pipe is opened or closed under the control of a controller.
    상기 반응 탱크 내부의 압력을 측정하여 제어기로 전달하는 압력 센서;를 추가로 포함하여, Further comprising; a pressure sensor for measuring the pressure inside the reaction tank to deliver to the controller,
    상기 제어기는 반응 탱크 내부의 압력이 일정하도록 제5밸브의 개폐량을 조절하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.Wherein the controller is characterized in that for adjusting the opening and closing amount of the fifth valve so that the pressure inside the reaction tank, H 2 O gas extraction and thermal energy generator according to the high temperature decomposition.
  15. 제 14 항에 있어서, 상기 제5밸브는 상기 반응 탱크의 압력에 의해 반응 탱크 내부의 기체가 역류되지 않도록 역류 방지용 체크밸브인 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.15. The method of claim 14, wherein the fifth valve is a check valve for preventing the back flow of the gas inside the reaction tank by the pressure of the reaction tank, characterized in that the gas extraction and heat energy generation according to the high-temperature decomposition of H 2 O Device.
  16. 제 10 항에 있어서, 상기 제어기는 상기 제1밸브가 개방된 경우 상기 연료 이송관을 통해 공급되는 연료의 공급을 차단하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.11. The method of claim 10, wherein the controller of the first valve when the opening, characterized in that to stop the supply of fuel supplied through the fuel feed tube, the extraction gas of the high temperature decomposition of H 2 O, and heat energy generating device .
  17. 제 13 항에 있어서, 상기 제어기는 상기 온도 센서에 의해 측정된 반응 탱크 내부의 온도가 상기 제2차 범위 온도인 섭씨 750도 이상이 되면, 상기 제1 밸브를 개방시키는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.14. The method of claim 13, wherein said controller when the temperature inside the reaction tank measured by the temperature sensor and the second order temperature range in ° C 750 or more, comprising a step of opening the first valve, H 2 Gas extraction and thermal energy generator according to high temperature decomposition of O.
  18. 제 13 항에 있어서, 상기 제어기는 상기 온도 센서에 의해 반응 탱크 내부의 온도가 섭씨 850도 이상이 되면, 상기 제2밸브를 개방시키는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.14. The method of claim 13, wherein the controller is extracted gas according to a high-temperature decomposition of, H 2 O, characterized in that for the temperature in the reaction tank by the temperature sensor opening, the second valve is above 850 ° C and Thermal energy generator.
  19. 제 7 항에 있어서, 상기 열에너지 발생장치 케이싱은 수직방향으로 세워져 설치됨을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 7, wherein the heat generator casing is gas extraction, and thermal energy generating device according to the high temperature decomposition of the upright in the vertical direction, characterized in the installed, H 2 O.
  20. 제 7 항에 있어서, 상기 저장용 수소추출관의 일측에는 이송되는 고온의 수소를 냉각시키기 위한 냉각기가 연결 구성된 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The gas extraction and thermal energy generating device according to the high temperature decomposition of H 2 O, characterized in that a cooler for cooling the high temperature hydrogen to be transported is connected to one side of the storage hydrogen extraction pipe.
  21. 제 14 항에 있어서, 상기 물 공급관의 일단에는 펌프에 의해 강제 공급되어질 물이 일정 수위로 저장되어진 물통이 연결 구성된 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The gas extraction and thermal energy generating device according to the high-temperature decomposition of H 2 O according to claim 14, characterized in that the water supply pipe is connected to one end of the water reservoir for storing the water to be forcibly supplied by a pump.
  22. 제 21 항에 있어서, 상기 물통 일측에는 물의 소비량을 외부에서 측정할 수 있도록 눈금이 형성된 유리관이 형성되어 있는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.22. The apparatus for extracting gas and generating heat energy according to high-temperature decomposition of H 2 O according to claim 21, wherein a glass tube is formed on one side of the bucket so as to measure the consumption of water from the outside.
  23. 제 7 항에 있어서, 상기 열에너지 발생장치 상부에는 연소열이 외부로 배출될 수 있는 커버가 더 포함되는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The method of claim 7, wherein the thermal energy generating device, the upper combustion gas extraction and thermal energy generator according to the high temperature decomposition of, H 2 O, characterized in that further comprises cover that can be discharged to the outside.
  24. 제 23 항에 있어서, 상기 커버는 상기 반응탱크 상부를 덮는 단열 뚜껑과, 상부에는 연소열이 열에너지 발생장치 상부에는 반응탱크의 단열을 위한 단열 뚜껑이 장착되며, 상기 단열뚜껑 상부에는 연소열의 배출량을 조절할 수 있도록 높이가 조절되는 조절뚜껑이 장착된 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.24. The method of claim 23, wherein the cover is a heat insulating cap covering the upper portion of the reaction tank, the heat of combustion is mounted on top of the heat energy generating device is a heat insulating cap for the insulation of the reaction tank, the heat insulating cap is to control the emission of combustion heat Gas extraction and heat energy generating device according to the high-temperature decomposition of H 2 O, characterized in that the height is adjusted so that the control lid is mounted.
  25. 제 7 항에 있어서, 상기 열에너지 발생장치에는 상기 반응탱크 내부의 압력이 소정의 압력 이상이 되는 경우 압력센서에 의해 상기 반응탱크 내부의 기체가 외부로 배출되도록 작동하는 컨트롤벨브를 더 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.According to claim 7, wherein the thermal energy generating device further comprises a control valve that operates to discharge the gas in the reaction tank to the outside by a pressure sensor when the pressure in the reaction tank is a predetermined pressure or more. Gas extraction and thermal energy generator according to the high-temperature decomposition of H 2 O.
  26. 제 25 항에 있어서, 상기 열에너지 발생장치에는 상기 컨트롤벨브가 작동으로도 상기 반응탱크 내부의 압력이 소정 압력 이상이 되는 경우 압력센서에 의해 상기 반응탱크 내부의 기체가 외부로 배출되도록 작동하는 안전벨브(safty valve)를 더 포함하는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.The safety valve of claim 25, wherein the control valve is operated so that the gas inside the reaction tank is discharged to the outside by a pressure sensor when the pressure inside the reaction tank becomes equal to or greater than a predetermined pressure. (Safty valve) further comprising, gas extraction and thermal energy generator according to the high temperature decomposition of H 2 O.
  27. 제 14 항에 있어서, 상기 수소추출관, 산소추출관, 물광급관, 점화기에가 일정 온도 이상에서만 작동하도록 각각 온도센서가 설치되는 것을 특징으로 하는, H2O의 고온 분해에 따른 기체 추출 및 열에너지 발생장치.15. The method of claim 14, wherein the hydrogen extraction tube, oxygen extraction tube, water light pipe, the igniter is a temperature sensor is installed to operate only at a predetermined temperature, respectively, gas extraction and thermal energy due to high temperature decomposition of H 2 O Generator.
PCT/KR2009/003949 2008-07-17 2009-07-17 Apparatus for gas extraction and thermal energy generation through high temperature degradation of h<sb>2</sb>o WO2010008237A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0069482 2008-07-17
KR20080069482 2008-07-17
KR10-2009-0065068 2009-07-16
KR1020090065068A KR20100009502A (en) 2008-07-17 2009-07-16 An apparatus for gas extraction by water decomposition by high temperature and heat energy generation

Publications (2)

Publication Number Publication Date
WO2010008237A2 true WO2010008237A2 (en) 2010-01-21
WO2010008237A3 WO2010008237A3 (en) 2010-04-22

Family

ID=41550869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003949 WO2010008237A2 (en) 2008-07-17 2009-07-17 Apparatus for gas extraction and thermal energy generation through high temperature degradation of h<sb>2</sb>o

Country Status (1)

Country Link
WO (1) WO2010008237A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008753A1 (en) * 2012-07-09 2014-01-16 Guo Zhinan Water-plasma-fueled industrial furnace
GB2541033A (en) * 2015-08-07 2017-02-08 Ultimate Engines Ltd Reactor
CN110127606A (en) * 2019-06-26 2019-08-16 张朝林 A kind of water pyrolytic is the method and separator of hydrogen and oxygen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
US4278650A (en) * 1980-03-24 1981-07-14 Organization Control Services, Inc. Method for producing oxygen and hydrogen from water
US6521205B1 (en) * 1998-05-05 2003-02-18 SHEC Labs—Solar Hydrogen Energy Corporation Process for the production of hydrogen by thermal decomposition of water, and apparatus therefor
KR20040004799A (en) * 2002-07-05 2004-01-16 한국과학기술연구원 coproduction of hydrogen and carbon black by thermal decomposition of methane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
US4278650A (en) * 1980-03-24 1981-07-14 Organization Control Services, Inc. Method for producing oxygen and hydrogen from water
US6521205B1 (en) * 1998-05-05 2003-02-18 SHEC Labs—Solar Hydrogen Energy Corporation Process for the production of hydrogen by thermal decomposition of water, and apparatus therefor
KR20040004799A (en) * 2002-07-05 2004-01-16 한국과학기술연구원 coproduction of hydrogen and carbon black by thermal decomposition of methane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008753A1 (en) * 2012-07-09 2014-01-16 Guo Zhinan Water-plasma-fueled industrial furnace
GB2541033A (en) * 2015-08-07 2017-02-08 Ultimate Engines Ltd Reactor
CN110127606A (en) * 2019-06-26 2019-08-16 张朝林 A kind of water pyrolytic is the method and separator of hydrogen and oxygen

Also Published As

Publication number Publication date
WO2010008237A3 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US6538193B1 (en) Thermophotovoltaic generator in high temperature industrial process
WO2015137683A1 (en) Burner device capable of reducing fuel
WO2024063347A1 (en) Air and fuel supply module, and fuel cell system comprising same
WO2010008237A2 (en) Apparatus for gas extraction and thermal energy generation through high temperature degradation of h&lt;sb&gt;2&lt;/sb&gt;o
WO2012023678A1 (en) Auxiliary boiler exhaust structure for a micro combined heat and power unit, and a cover assembly for forming an auxiliary boiler exhaust flow path for a micro combined heat and power unit
WO2012134125A2 (en) Apparatus and method for decomposing carbon dioxide using microwaves
WO2020189969A1 (en) Combined power generation apparatus
WO2017222253A1 (en) Fuel cell system comprising heat exchanger using anode gas or anode exhaust gas
JP2017106705A (en) Energy saving system for integrated combustion device
WO2013183853A1 (en) Fuel cell system
WO2017222267A1 (en) Fuel cell system comprising heat exchanger using combustion exhaust gas
US10316419B2 (en) System for utilizing excess heat for carrying out electrochemical reactions
CN202719605U (en) Gas burner
CN102635940B (en) Gasification combined-combustion hot-blast stove
WO2013183854A1 (en) Combined fuel cell and boiler system
CN201914625U (en) Oilfield oil storage tank crude oil heating device capable of utilizing engine exhaust pipe waste gas
WO2011040714A2 (en) Operation method for micro-cogeneration system
CN211625262U (en) Solid waste treatment equipment
CN111412775B (en) Special high-temperature area heat pipe type heat exchanger for urban and rural waste gasification furnace
WO2020171355A1 (en) Electric energy generating system capable of performing hybrid power generation through superheated steam pyrolyzed using induced current
KR20100009502A (en) An apparatus for gas extraction by water decomposition by high temperature and heat energy generation
CN102419119B (en) Explosion-proof organic gas heat exchanger
CN205447771U (en) Airtight burning torch of logging well
CN109868141A (en) A kind of biomass pyrolytic experimental furnace
WO2012169711A1 (en) Low-grade-coal coal gas production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09798140

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09798140

Country of ref document: EP

Kind code of ref document: A2