WO2010007210A1 - Procédé et appareil pour contrôler l'écoulement d'un fluide dans un système microfluidique - Google Patents
Procédé et appareil pour contrôler l'écoulement d'un fluide dans un système microfluidique Download PDFInfo
- Publication number
- WO2010007210A1 WO2010007210A1 PCT/FI2009/050557 FI2009050557W WO2010007210A1 WO 2010007210 A1 WO2010007210 A1 WO 2010007210A1 FI 2009050557 W FI2009050557 W FI 2009050557W WO 2010007210 A1 WO2010007210 A1 WO 2010007210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- microfluidic system
- liquid
- fluid flow
- machine vision
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000012530 fluid Substances 0.000 title claims abstract description 12
- 238000003384 imaging method Methods 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/661—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7086—Measuring the time taken to traverse a fixed distance using optical detecting arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
- G01N2013/0208—Investigating surface tension of liquids by measuring contact angle
Definitions
- the present invention relates to a method and apparatus for inspecting fluid flow in a microfluidic system.
- Microfluidic systems are used for decreasing the size required for performing analysis or transport or distribution of liquids. Examples are so-called lab-on-a-chip devices for performing analyses in a confined "miniaturized" area where reactants may be ready for use and only a sample to be analyzed need to be injected. These devices may be easily made portable for field analysis and may be disposable. Medical tests are one important application of these devices. Devices of this type may also operate according to a predetermined sequence for injecting reactants, analytes and possible rinsing solutions to the microchannels of the device, and may be reused several times. Microfluidic systems that operate automatically are gaining importance in analytic work that requires processing a large number of samples, such as in DNA research. Examples of microfluidic systems are shown by EP 1813348, US 6192939, US 6448090, US 2003/0092172, US 2005/0220629, US 2006/0228259 and US 2007/0166199.
- Various liquids may be injected and extracted by a pneumatic device, which may be programmed to follow the sequence.
- a pneumatic system that is well-suited for this purpose is shown in WO 2006/117436.
- DE10125126 shows an image processing system for detection of a reaction product on a detector surface or in a detector volume of a miniature laboratory where several parallel reaction processes take place.
- the system is arranged to detect a change in an optically detectable property which is a response to the reaction product.
- the system is used for analysis and for collecting reaction process data which could be processed further.
- the flow behaviour of liquids in microchannels of a microfluidic device is a key factor for proper operation of the system.
- the microchannels where the flow of various liquids takes place have small dimensions and contain bends and sometimes complicated circuitry for directing different flows to desired spots and for mixing different flows. It is therefore of importance that the dynamic properties of the liquid and characteristics related to the flow of the liquid can be monitored to ensure that the device is working without disturbances.
- There is also need for testing microfluidic systems for example as response to various parameters, for example to changes in a pneumatic system that controls the propagation of different streams through the system.
- the method is mainly characterized in that the flow is inspected by means of machine vision.
- Machine vision involves taking several consecutive images of a flow in a microchannel or any other parts of the system (passive valves, constrictions, enlargements, connecting points etc.) and performing automatic analysis on the basis of differences between consecutive images. For example the movement of a flow front of a liquid in a microchannel (filling of the microchannel) or the movement of the tail of the liquid (evacuation of the microchannel) can be monitored by machine vision.
- the novel system is particularly suitable for characterization of liquid plug flows, and it may be used for improving the research and development work of academic and industrial research teams working with liquid flows in microchannels.
- the method may have one or several following functions:
- the system is modular such that the aforementioned functions can be included in the system in any combination.
- the developed system can be used for enhancing phases of la-on-chip products.
- the inspection of liquid flow is important in design and characterization of microfluidic chips, in production of chips and in the use of the chips.
- the developed method and apparatus enhances the R&D work especially in microfluidics but also in chemical microsensors, biosensors and various other detection methods by the data acquisition of fluid flows in microchannels. It can be used when designing new transparent microfluidic cartridges and chips for lab-on-chip, ⁇ TAS and point-of-care applications for example.
- the system can be used for quality control and in chip use for chip behavior control.
- the developed system provides versatile quantitative data about the behavior of various sample liquids (whole blood, serum, plasma, saliva, food and beverage samples, process samples, environment and waste water samples, etc), buffers, reagents, washing liquids and gas bubbles in microchannels fabricated on different materials, having different cross-sectional shapes, dimensions and surface roughness, consisting of passive valves with various geometries, and having various functional coatings e.g. dried chemistries or hydrophobic / hydrophilic valves.
- the system can be used for the development and verification of various analytical, numerical and data- based liquid flow and fluid behavior models in microchannels.
- Fig. 1 shows a general principle of the system.
- the system comprises imaging means (digital camera) arranged to take consecutive images of the microfluidic device (miniaturized channel structure), a data line form the imaging means to an image and data processing unit (measurement PC) that contains an image processing algorithm and a calculation algorithm for determining a characteristic of the flow so that it can be represented in numerical form, and means of displaying the results (illustrated by a square in the figure).
- the image and data processing unit can contain several image processing algorithms and several calculation algorithms for determining various characteristics of the flow on the basis of the image data from the same flow.
- the system may also comprise a pressure sensor for measuring a driving pressure (positive or negative) of a pneumatic control device that is arranged to give the necessary movement energy for the liquid in the microfluidic device and to control the supply and extraction of liquids to and from the microfluidic device, respectively.
- the pneumatic control device may have the structure according to the above-mentioned WO 2006/1 17436.
- the pressure sensor is connected to data line to the means of displaying the results, for displaying the pressure value along with the results obtained from image processing.
- the imaging in the system can be done using e.g. FireWire camera and macro video zoom lens.
- a light source and in order to create uniform illumination for the target a LED based ring light is used (16 LEDs, 8 white light, 8 red light).
- a syringe pump or an accurate pressure generation unit can be used.
- Image data from the camera is transferred to a measurement PC.
- the measurement PC the image data is processed using image processing algorithms. Using the algorithms, the measurement quantities such as flow rate, velocity, displacement and dynamic contact angle are calculated.
- a pressure measurement with a proper sensor can also be included in the system.
- the characteristics of various parts are only exemplary and do not restrict the scope of the invention.
- any camera with a large enough image size and fast enough frame rate can be used. If channel structures are in micro-/nanoscale, the camera should be attached to a microscope. Optics with a constant focal length is recommended for the camera because of the better calibration possibilities and more accurate measurements. Image processing can be also done using various programming languages. As illumination, any light source with ability to create uniform and accurate illumination is good. Standard ring lights available in the market are acceptable, also back lights can be considered.
- microchannels in a microfluidic system have typically cross- sectional areas less than 2 square millimeters.
- the walls limiting the interior of the channel have great influence on the flow. Therefore, it is important to follow the behaviour of the liquid and its interaction with channel walls with great accuracy.
- the image processing methods in the algorithms consist of arithmetic subtraction of consecutive image frames and thresholding the subtraction result to a binary image.
- the result of the subtraction represents the moved liquid column between two image frames. From the binary image, the area and length of a blob can be calculated easily and by these, the flow rate (assuming that channel height is known), velocity and displacement can be determined. Coordinates of the front meniscus of the liquid column can also be located and by applying a circle fitting to the coordinates, dynamic contact angle can be determined.
- Fig. 2 where the image processing steps are illustrated on the left hand side, showing original image frame (top), result of subtraction (middle) and binary image (bottom) with front meniscus coordinated located.
- the dynamic contact angle measurement method using the circle fitting method is shown on the right hand side.
- the measurement system gives possibility to automatically measure quantities which have been so far difficult to measure such as dynamic contact angle and instantaneous displacement or total displacement (wetted region in a channel).
- the invention is not restricted to only measurement of these flow characterics but it can be use for the inspection of all flow phenomena mentioned in the present description or covered by the enclosed claims.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
L'invention porte sur un procédé pour contrôler un système microfluidique, un moyen d'imagerie servant à détecter des changements d'écoulement de fluide dans un système microfluidique. L'écoulement de fluide dans le système microfluidique est contrôlé au moyen de la vision.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20085628 | 2008-06-23 | ||
FI20085628A FI20085628L (fi) | 2008-06-23 | 2008-06-23 | Menetelmä ja laitteisto nestevirtauksen tutkimiseksi mikrofluidistisessa järjestelmässä |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010007210A1 true WO2010007210A1 (fr) | 2010-01-21 |
Family
ID=39589389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI2009/050557 WO2010007210A1 (fr) | 2008-06-23 | 2009-06-23 | Procédé et appareil pour contrôler l'écoulement d'un fluide dans un système microfluidique |
Country Status (2)
Country | Link |
---|---|
FI (1) | FI20085628L (fr) |
WO (1) | WO2010007210A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR20110100390A (el) * | 2011-07-05 | 2013-02-25 | Micro2Gen Ε.Π.Ε. Μικροσυστηματα Μικροροης Για Γενετικες Αναλυσεις Και Μοριακη Διαγνωστικη, | Ολοκληρωμενο συστημα οπτικου ελεγχου, ποσοτικης και ποιοτικης μετρησης ροης σε μικροροϊκα κυκλωματα |
GR20130100091A (el) * | 2013-01-31 | 2014-09-01 | Micro2Gen Μικρο-Συστηματα Μικρο-Ροης Για Γενετικους Ελεγχους Και Μοριακη Διαγνωστικη Ε.Π.Ε., | Ολοκληρωμενο συστημα ανιχνευσης βιολογικων συστατικων, με οπτικο ελεγχο και χρηση μικροροϊκων κυκλωματων |
WO2018200061A1 (fr) * | 2017-04-26 | 2018-11-01 | Lawrence Livermore National Security, Llc | Commande automatisée de dispositifs microfluidiques basée sur un apprentissage automatique |
EP3381556B1 (fr) * | 2017-01-23 | 2020-06-17 | Testo SE & Co. KGaA | Procédé de caractérisation d'un transport d'un liquide transparent, dispositif de caractérisation de transport de liquide correspondant et matériel de support correspondant |
RU2794420C1 (ru) * | 2022-01-27 | 2023-04-17 | федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" | Устройство для измерения динамического угла смачивания в канале |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113155409B (zh) * | 2021-02-10 | 2024-03-22 | 西安交通大学 | 一种微间隙高速流体空化观测装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07175934A (ja) * | 1993-12-17 | 1995-07-14 | Tokyo Gas Co Ltd | 流体の画像処理解析装置 |
US6581438B1 (en) * | 2002-01-31 | 2003-06-24 | Sandia Corporation | Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation |
US6653651B1 (en) * | 1998-12-09 | 2003-11-25 | Carl D. Meinhart | Micron resolution particle image velocimeter |
DE102005036106A1 (de) * | 2004-10-30 | 2006-05-04 | Korea Institute Of Science And Technology (Kist) | Verfahren und Vorrichtung zum Bestimmen des Geschwindigkeitsprofils einer verdünnten Suspension in einem Mikrofluidik-Kanal |
US7210937B1 (en) * | 2002-05-23 | 2007-05-01 | Surya Raghu | Method and apparatus for microfluidics education |
US20080041722A1 (en) * | 2005-04-22 | 2008-02-21 | Pal Ormos | Method and device for controlling electoosmotic flow by using light |
-
2008
- 2008-06-23 FI FI20085628A patent/FI20085628L/fi not_active Application Discontinuation
-
2009
- 2009-06-23 WO PCT/FI2009/050557 patent/WO2010007210A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07175934A (ja) * | 1993-12-17 | 1995-07-14 | Tokyo Gas Co Ltd | 流体の画像処理解析装置 |
US6653651B1 (en) * | 1998-12-09 | 2003-11-25 | Carl D. Meinhart | Micron resolution particle image velocimeter |
US6581438B1 (en) * | 2002-01-31 | 2003-06-24 | Sandia Corporation | Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation |
US7210937B1 (en) * | 2002-05-23 | 2007-05-01 | Surya Raghu | Method and apparatus for microfluidics education |
DE102005036106A1 (de) * | 2004-10-30 | 2006-05-04 | Korea Institute Of Science And Technology (Kist) | Verfahren und Vorrichtung zum Bestimmen des Geschwindigkeitsprofils einer verdünnten Suspension in einem Mikrofluidik-Kanal |
US20080041722A1 (en) * | 2005-04-22 | 2008-02-21 | Pal Ormos | Method and device for controlling electoosmotic flow by using light |
Non-Patent Citations (5)
Title |
---|
CHAN, WK. ET AL.: "Surface-tension-driven liquid-liquid displacement in a capillary", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 15, 2005, pages 1722 - 1728 * |
CHEN, JM. ET AL.: "Analysis and experiment of capillary valves for microfluidics on a rotating disk", MICROFLUID NANOFLUID, vol. 4, 2008, pages 427 - 437 * |
CHEN, JM. ET AL.: "Analysis and measurement of mixing in pressure-driven microchannel flow", MICROFLUID NANOFLUID, vol. 2, 2006, pages 455 - 469 * |
CHO, H. ET AL.: "Capillary passive valve in microfluidic systems", TECHNICAL PROCEEDINGS OF THE 2004 NSTI NANOTECHNOLOGY CONFERENCE AND TRADE SHOW, vol. 1, - 2004, pages 263 - 266 * |
WANG, C. ET AL.: "Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 15, 2005, pages 2289 - 2297 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR20110100390A (el) * | 2011-07-05 | 2013-02-25 | Micro2Gen Ε.Π.Ε. Μικροσυστηματα Μικροροης Για Γενετικες Αναλυσεις Και Μοριακη Διαγνωστικη, | Ολοκληρωμενο συστημα οπτικου ελεγχου, ποσοτικης και ποιοτικης μετρησης ροης σε μικροροϊκα κυκλωματα |
GR20130100091A (el) * | 2013-01-31 | 2014-09-01 | Micro2Gen Μικρο-Συστηματα Μικρο-Ροης Για Γενετικους Ελεγχους Και Μοριακη Διαγνωστικη Ε.Π.Ε., | Ολοκληρωμενο συστημα ανιχνευσης βιολογικων συστατικων, με οπτικο ελεγχο και χρηση μικροροϊκων κυκλωματων |
EP3381556B1 (fr) * | 2017-01-23 | 2020-06-17 | Testo SE & Co. KGaA | Procédé de caractérisation d'un transport d'un liquide transparent, dispositif de caractérisation de transport de liquide correspondant et matériel de support correspondant |
WO2018200061A1 (fr) * | 2017-04-26 | 2018-11-01 | Lawrence Livermore National Security, Llc | Commande automatisée de dispositifs microfluidiques basée sur un apprentissage automatique |
US10408852B2 (en) | 2017-04-26 | 2019-09-10 | Lawrence Livermore National Security, Llc | Automated control of microfluidic devices based on machine learning |
US11061042B2 (en) | 2017-04-26 | 2021-07-13 | Lawrence Livermore National Security, Llc | Automated control of microfluidic devices based on machine learning |
RU2794420C1 (ru) * | 2022-01-27 | 2023-04-17 | федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" | Устройство для измерения динамического угла смачивания в канале |
Also Published As
Publication number | Publication date |
---|---|
FI20085628L (fi) | 2009-12-24 |
FI20085628A0 (fi) | 2008-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carrasco-Correa et al. | The emerging role of 3D printing in the fabrication of detection systems | |
US7276720B2 (en) | Apparatus and methods for analyzing samples | |
AU2016208331B2 (en) | Plurality of reaction chambers in a test cartridge | |
JP4407271B2 (ja) | チップ、反応分析装置、反応分析方法 | |
JP4943445B2 (ja) | 流体試料をセンサーアレイにデリバリーするための方法及びシステム | |
US20060012793A1 (en) | Apparatus and methods for analyzing samples | |
KR102195769B1 (ko) | 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치 | |
US20130068622A1 (en) | Method and apparatus for real-time monitoring of droplet composition in microfluidic devices | |
JP6445202B2 (ja) | 統合多重化測光モジュールのためのシステムおよび方法 | |
JP2006170654A (ja) | 生化学処理装置 | |
WO2010007210A1 (fr) | Procédé et appareil pour contrôler l'écoulement d'un fluide dans un système microfluidique | |
EP2413128A1 (fr) | Unités de capteur microfluidiques améliorés pour la détection de la présence d'un analyte dans un échantillon liquide | |
Hsieh et al. | High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers | |
Meffan et al. | A versatile capillaric circuits microfluidic viscometer | |
Binda et al. | Analysis of a microfluidic device for diffusion coefficient determination of high molecular weight solutes detectable in the visible spectrum | |
JP2011059045A (ja) | 分注装置および分注方法 | |
JP2009092455A (ja) | 検査装置 | |
Weber et al. | In-line characterization and identification of micro-droplets on-chip | |
Xu et al. | Digital monitoring of the microchannel filling flow dynamics using a non-contactless smartphone-based nano-liter precision flow velocity meter | |
Weigl et al. | Simultaneous Self-Referencing Analyte Determination in Complex Sample Solutions Using Microfabricated Flow Structures (T-Sensors™) | |
JP2009133668A (ja) | 検査装置 | |
JP2009121913A (ja) | 光学測定用マイクロチップ | |
O'Leary | The influence of surfactants on capillary driven flow in open hydrophobic microchannels towards chip-based fluorescent detection of HSV | |
Majid | Fluorescent Imaging on a Microfluidics Chip for Quantification of Leukocyte Count | |
JP2009122021A (ja) | 検査システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09797544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09797544 Country of ref document: EP Kind code of ref document: A1 |