WO2010006976A1 - Axial turbine for a gas turbine with limited play between blades and housing - Google Patents

Axial turbine for a gas turbine with limited play between blades and housing Download PDF

Info

Publication number
WO2010006976A1
WO2010006976A1 PCT/EP2009/058682 EP2009058682W WO2010006976A1 WO 2010006976 A1 WO2010006976 A1 WO 2010006976A1 EP 2009058682 W EP2009058682 W EP 2009058682W WO 2010006976 A1 WO2010006976 A1 WO 2010006976A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial turbine
blade
radial
annular space
region
Prior art date
Application number
PCT/EP2009/058682
Other languages
German (de)
French (fr)
Inventor
Stefan Braun
Christian Cornelius
Andreas Heilos
Olaf Hein
Thomas Hofbauer
Annika Juchems
Christian Lerner
Silvio-Ulrich Martin
Thorsten Mattheis
Ralf Müsgen
Eckart Schumann
Rostislav Teteruk
Adam Zimmermann
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN200980128055.8A priority Critical patent/CN102099548B/en
Priority to EP09797468.7A priority patent/EP2297430B1/en
Priority to US13/054,162 priority patent/US20110188999A1/en
Priority to JP2011517874A priority patent/JP5260740B2/en
Publication of WO2010006976A1 publication Critical patent/WO2010006976A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour

Definitions

  • the invention relates to an axial turbine for a gas turbine, wherein the axial turbine has low gap losses.
  • a gas turbine has a turbine, for example in axial design.
  • the turbine has a housing and a rotor which is surrounded by the housing.
  • the rotor has a shaft on which shaft power is removable.
  • a hub Surrounding the shaft, a hub is provided whose hub contour together with the inner contour of the housing forms a flow channel through the turbine.
  • the flow channel has a flow direction in Stro ⁇ widening cross section due to a generally conical inner contour of the housing.
  • the rotor has a plurality of rotor stages, each of which is formed by a blade lattice.
  • the running cascadeless have a plurality of rotor blades, which are fastened with their one end in each case on the hub side to the rotor and radially outwardly zei ⁇ gene with its other end.
  • At the other end of the rotor blade is a bucket formed tip of the Inside facing the housing and disposed immediately adjacent.
  • the distance between the blade tips and the inside of the housing is formed as a radial gap, which is dimensioned such that on the one hand the blade tips do not touch the housing during operation of the gas turbine and, on the other hand, the leakage flow through the radial gap that occurs during operation of the gas turbine is low.
  • the turbine housing is solidly engineered to withstand the pressure and temperature stresses associated with gas turbine operation. Furthermore, the housing is rigid, so that the load application to the housing during operation of the gas turbine has only a small deformation of the housing result. In contrast, the blades are thinner and less massive compared to the housing.
  • the inside of the house and the blades are in contact with hot gas, with the blades completely bypassing the hot gas. Because the blades are more delicate than the housing and are in greater contact with the hot gas than the housing, the blades heats up faster than the housing. This has the consequence that for starting and stopping the gas turbine, the blades and the housing have different thermal expansion speeds, so that when starting and stopping the gas turbine, the height of the radial gap changes, the radial gap smaller when starting and when driving large becomes. So that the blade tips of the rotor blades do not abut against the housing during start-up and damage it, the radial gap is provided with a minimum height dimensioned such that when the gas turbine starts up, the blade tips almost never touch the housing. This has the consequence that at the blade tips a correspondingly sized radial gap is kept, which leads to a reduction of the power density and the efficiency of the gas turbine.
  • EP 1 057 969 A2 discloses, for example, a turbine blade with an airfoil, which has a "front-loaded design” or “intermediate-loaded design” on the hub side and a “rear-loaded design” on the tip side, as a result of which the distribution the rate of change in peripheral speed are taught.
  • the object of the invention is to provide an axial turbine for a gas turbine, which has a high aerodynamic efficiency.
  • the axial turbine according to the invention for a gas turbine has a rotor blade grid, which is formed by blades each having a leading edge, a trailing edge and a radially outer freestanding blade tip, an annular space wall enclosing the blade grid with an annular space inside, with which the annular space wall immediately adjacent to the blade tips forming the radial gap between the envelope of the blade tips and the annular space inside, wherein the blades at their blade tips between the leading edge and the trailing edge has a region with the highest pressure load of the blade tips, and wherein the blades each have a radial elevation in the region of highest pressure load as well as the annular space wall at the Annulus inside has a circumferential radial recess, which is the radial elevations opposite formed such that a gap width minimum in Hauptstromungs ⁇ chtung the axial turbine seen is located in the region of highest pressure loading.
  • the pressure load in the sense of this document corresponds to the pressure difference between the suction ⁇ side and pressure side of
  • the unfavorable, lossy gap current is reduced by using the blade tip, which is optimized directly with regard to minimum losses, and the annular space contour.
  • the annular space in the region of the blade tip is designed as a contour deviating from the conventional annular space.
  • the minimum gap width is arranged in the operation of the axial turbine in the region of the maximum pressure difference between the pressure side and the suction side of the run ⁇ scoop.
  • the amount of leakage flow is directly targeted reduced and reduced their unfavorable impact on the overall efficiency of the blade lattice.
  • he ⁇ gives, without having to provide additional design measures, an improved aerodynamic good of the blade shovel.
  • Vorteihaft make the profile section on the blade tip contrary to the conventional interpretation as "front Be executed loaded design ". This means that the greatest pressure ⁇ load is from the rear part (hinterkantennah) of the blade in the area of the profile leading edge (vorderkantennah) moved. About the height of the rotor blade saw this area can be about 20%. The The remaining area of the blade can then be designed conventionally in the "rear-loaded design". The transition from "front-loaded design” to "rear-loaded design” at about 20% of the height of the rotor blade is preferably stepless.
  • the radial recess is arranged in the front third.
  • the radial recess is in the range of the highest
  • the radial depression and the radial elevations are shaped in such a way that the course of the radial gap seen in the main flow direction of the axial turbine proceeds substantially equally far, wavy, edge-free and step-free.
  • the course of the radial recess on the annular space inside seen in the main flow direction of the axial turbines has a first curved section, an adjoining second curved section and an adjoining third curved section, the first curved section of FIG the second Krummungsabterrorism is delimited with a first turning ⁇ point and the second Krummungsabterrorism is bounded by the third Krummungsabêt with a second turning point, so that the curvatures of the first Krummungs- section and the third Krummungsabites have the same Vor ⁇ sign, that of the sign the curvature of the second Krummungsabites is different.
  • the size of the radial gap between the blade tip and Annular space wall - seen along the axial direction also be constant.
  • the course of the radial elevations seen in the main flow direction of the axial radii is modeled on the course of the radial displacement at its sides facing the radial gap.
  • the curvature of the first curving portion is larger than that of the third curving portion.
  • the first inflection point is preferably located in the region of the front edge.
  • the sections of the annular channel which are seen in the main flow direction of the axial turbine and which are adjacent to the radial depression upstream and downstream, are conical.
  • FIG. 1 shows a profile section of a blade according to the invention in the area of the blade tip
  • Figure 2 is a side view of an inventive axial turbine
  • Figure 3 shows the side view of Figure 2 compared with a conventional axial turbine.
  • an axial turbine 1 has a rotor blade 2 which has a front edge 3 and has a trailing edge 4.
  • the rotor blade 2 has a pressure side 5 and a suction side 6, which each extend from the front edge 3 to the trailing edge 4.
  • the pressure side 5 is lined with the suction side 6 strongly concave curved.
  • the blade 2 has at its radially outer end a blade tip 13, which is exposed. In the region of the blade tip 13, the blade 2 is designed in the "front-loaded design" 7.
  • the "rear-loaded design” 8 is shown in which the pressure side 5 is less curved in the region of the leading edge 3, as in the "front-loaded design" 7.
  • the region 9 with the highest pressure loading of the blade 2 is located in the region of the blade tip 13 in the vicinity of the leading edge 3.
  • the axial turbine 1 on the hub side, a hub contour 10, on which the rotor blade 2 is attached.
  • the axial turbine 1 Radially outward, the axial turbine 1 has an annular space wall 11 which has an annular space inner side 12 facing the blade tip 13. With the annular space wall 11, the blade 2 is sheathed and forms with the annular space inside page 13 together with the hub contour 10 a divergent
  • the annular space wall 11 is mainly -. apart from a radial recess 15 conical with a greater pitch than the hub contour 10th
  • the blade 2 is also shown with a conventional blade tip 23 and the annular space wall 11 with a conventional annular space inside 24, wherein the conventional blade tip 23 and the conventional Ringrau- mmnenseite 24 have a straight course.
  • a radial elevation 16 is provided on the blade tip 13. The radial elevation 16 runs essentially parallel to the radial recess 15, so that the radial gap 14 has a uniform course seen in the main flow direction of the axial turbine 1.
  • the radial recess has a first curved section 17, an adjoining second curved section 19 and an adjoining third curved section 21.
  • the first curvature portion 17 is delimited from the second curvature portion 19 with a first inflection point 18 and the second curvature portion 19 is delimited from the third curvature portion 21 by a second inflection point 20.
  • the center of curvature of the first curved section 17 and of the third curved section 21 lies radially outside the axial turbine 1 and the center of curvature of the second curved section 19 within the axial turbine 1.
  • the curvature of the first curvature portion 17 is greater than the curvature of the third curvature portion 21, so that the radial gap 14 in the region of the front edge 3 has a radially outward, steeper course than in the region of the third curvature portion 21.
  • the radial depression 15 and the radial elevation 16 are arranged relative to one another such that a gap minimum 22 is formed in the region 9 of the highest pressure load.
  • a leakage current which forms during operation of the axial turbine 1 through the radial gap 14 is exactly low in the region 9 with the highest pressure load.
  • the moving blade 2 has a high aerodynamic efficiency, in particular in the area of the blade tip 13.

Abstract

The invention relates to an axial turbine (1) for a gas turbine comprising a rotor blade cascade that is formed from rotor blades (2) having, respectively, a front edge (3) and a radially outer, free-standing (13) blade tip, and an annular space wall (11) that surrounds the rotor blade cascade and that has an annular space inner side (12), enabling the annular space wall to be arranged directly adjacent to the blade tip forming a radial gap between the covering of the blade tip and the annular space inner side. The invention is characterised in that the blade tips are designed aerodynamically such that when the axial turbine is in operation, the area of the blade tip with the highest pressure load is disposed in the region of the front edges, and the rotor blades in the region of their front edges have a radial elevation (16) and the annular space wall comprises, on the annular space inner side, a peripheral radial recess (15) that interacts with the radial elevations such that a gap width minimum is established in the direction of the main through flow of the axial turbine when seen in the region of the front edge.

Description

Beschreibungdescription
AXIALTURBINE FÜR EINE GASTURBINE MIT GERINGEM SPIEL AXIAL TURBINE FOR A GAS TURBINE WITH A SMALL S PIEL
ZWISCHEN SCHAUFELN UND GEHÄUSEBETWEEN SHOVELS AND HOUSINGS
Die Erfindung betrifft eine Axialturbine für eine Gasturbine, wobei die Axialturbine geringe Spaltverluste hat.The invention relates to an axial turbine for a gas turbine, wherein the axial turbine has low gap losses.
Eine Gasturbine weist eine Turbine beispielsweise in Axial- bauweise auf. Die Turbine weist ein Gehäuse und einen Rotor auf, der von dem Gehäuse umgeben ist. Der Rotor weist eine Welle auf, an der Wellenleistung abnehmbar ist. Die Welle umgebend ist eine Nabe vorgesehen, deren Nabenkontur zusammen mit der Innenkontur des Gehäuses einen Stromungskanal durch die Turbine bildet. Der Stromungskanal hat einen in Stro¬ mungsrichtung sich aufweitenden Querschnitt aufgrund einer zumeist konischen Innenkontur des Gehäuses.A gas turbine has a turbine, for example in axial design. The turbine has a housing and a rotor which is surrounded by the housing. The rotor has a shaft on which shaft power is removable. Surrounding the shaft, a hub is provided whose hub contour together with the inner contour of the housing forms a flow channel through the turbine. The flow channel has a flow direction in Stro ¬ widening cross section due to a generally conical inner contour of the housing.
Der Rotor weist eine Mehrzahl von Rotorstufen auf, die je- weils von einem Laufschaufelgitter gebildet sind. Die Lauf- schaufelgitter weisen eine Mehrzahl an Laufschaufein auf, die mit ihrem einen Ende jeweils nabenseitig an dem Rotor befestigt sind und mit ihrem anderen Ende radial nach außen zei¬ gen. An dem anderen Ende der Laufschaufei ist eine Schaufel- spitze ausgebildet, die der Innenseite des Gehäuses zugewandt und unmittelbar benachbart angeordnet ist. Der Abstand zwischen den Schaufelspitzen und der Innenseite des Gehäuses ist als ein Radialspalt ausgebildet, der derart dimensioniert ist, dass einerseits die Schaufelspitzen beim Betrieb der Gasturbine an das Gehäuse nicht anstreifen und andererseits die beim Betrieb der Gasturbine sich einstellende Leckage- stromung durch den Radialspalt möglichst gering ist. Damit die Gasturbine einen hohen Wirkungsgrad hat, ist es wünschenswert, dass die Leckagestromung durch den Radialspalt möglichst gering ist, so dass der Leistungsgewinn m der Turbine möglichst hoch ist. Das Gehäuse der Turbine ist massiv konstruiert, um den Druck- und Temperaturbeanspruchungen beim Betrieb der Gasturbine standhalten zu können. Ferner ist das Gehäuse steif ausgeführt, damit der Lasteintrag auf das Gehäuse beim Betrieb der Gasturbine eine nur kleine Verformung des Gehäuses zur Folge hat. Im Gegensatz dazu sind die Laufschaufeln im Vergleich zu dem Gehäuse dunner und weniger massiv ausgeführt.The rotor has a plurality of rotor stages, each of which is formed by a blade lattice. The running cascadeless have a plurality of rotor blades, which are fastened with their one end in each case on the hub side to the rotor and radially outwardly zei ¬ gene with its other end. At the other end of the rotor blade is a bucket formed tip of the Inside facing the housing and disposed immediately adjacent. The distance between the blade tips and the inside of the housing is formed as a radial gap, which is dimensioned such that on the one hand the blade tips do not touch the housing during operation of the gas turbine and, on the other hand, the leakage flow through the radial gap that occurs during operation of the gas turbine is low. For the gas turbine to have a high degree of efficiency, it is desirable for the leakage current through the radial gap to be as low as possible, so that the power gain m of the turbine is as high as possible. The turbine housing is solidly engineered to withstand the pressure and temperature stresses associated with gas turbine operation. Furthermore, the housing is rigid, so that the load application to the housing during operation of the gas turbine has only a small deformation of the housing result. In contrast, the blades are thinner and less massive compared to the housing.
Beim Betrieb der Axialturbine stehen die Innenseite des Ge- hauses und die Laufschaufeln mit heißem Gas in Kontakt, wobei die Laufschaufeln von dem heißen Gas vollständig umströmt werden. Dadurch, dass die Laufschaufeln filigraner als das Gehäuse ausgebildet sind und in großflächigerem Kontakt mit dem heißen Gas als das Gehäuse stehen, erwarmen sich die Laufschaufeln schneller als das Gehäuse. Dies hat zu Folge, dass zum An- und Abfahren der Gasturbine die Laufschaufeln und das Gehäuse unterschiedliche Warmeausdehnungsgeschwmdig- keiten haben, so dass sich beim An- und Abfahren der Gasturbine die Hohe des Radialspalts ändert, wobei der Radialspalt beim Anfahren kleiner und beim Abfahren großer wird. Damit beim Anfahren die Schaufelspitzen der Laufschaufeln nicht an das Gehäuse anstoßen und dieses beschädigen, ist der Radialspalt mit einer derart dimensionierten Minimalhohe versehen, dass beim Anfahren der Gasturbine die Schaufelspitzen das Ge- hause so gut wie nie berühren. Dies hat zur Folge, dass an den Schaufelspitzen ein entsprechend dimensionierter Radialspalt vorgehalten ist, der zu einer Reduktion der Leistungsdichte und des Wirkungsgrads der Gasturbine fuhrt.During operation of the axial turbine, the inside of the house and the blades are in contact with hot gas, with the blades completely bypassing the hot gas. Because the blades are more delicate than the housing and are in greater contact with the hot gas than the housing, the blades heats up faster than the housing. This has the consequence that for starting and stopping the gas turbine, the blades and the housing have different thermal expansion speeds, so that when starting and stopping the gas turbine, the height of the radial gap changes, the radial gap smaller when starting and when driving large becomes. So that the blade tips of the rotor blades do not abut against the housing during start-up and damage it, the radial gap is provided with a minimum height dimensioned such that when the gas turbine starts up, the blade tips almost never touch the housing. This has the consequence that at the blade tips a correspondingly sized radial gap is kept, which leads to a reduction of the power density and the efficiency of the gas turbine.
Moderne Laufschaufeln haben eine sehr hohe aerodynamischeModern blades have a very high aerodynamic
Effizienz, die durch eine hohe Druckbelastung der Laufschaufeln erreicht ist. Hervorgerufen durch die hohe Druckbelastung ist die Leckagestromung durch den Radialspalt hoch, so dass durch den Charakter und die Intensität der Leckagestro- mung durch den Radialspalt der Gesamtwirkungsgrad der Lauf¬ schaufel stark beeinträchtigt ist. Eine Reduktion der von der Leckagestromung hervorgerufenen Verluste bewirkt eine große Verbesserung des Gesamtwirkungsgrades der Laufschaufei . Her- kommlich wird versucht, die aerodynamischen Verluste im Spaltbereich der Laufschaufel durch Maßnahmen zur Reduktion der Leckagestromung zu verringern. Hierbei sind Maßnahmen zur Verkleinerung des Radialspalts oder eine besondere Formgebung der Schaufelspitzen vorgesehen, wie Kronen oder gezielte Kuhlluftausblasungen .Efficiency, which is achieved by a high pressure load of the blades. Owing to the high pressure load, the leakage flow through the radial gap is high, so that the overall efficiency of the rotor blade is greatly impaired by the character and the intensity of the leakage flow through the radial gap. A reduction in the losses caused by the leakage current causes a great improvement in the overall efficiency of the rotor blade. manufacturing It is currently being attempted to reduce the aerodynamic losses in the gap area of the blade by measures to reduce the leakage flow. In this case, measures to reduce the radial gap or a special shape of the blade tips are provided, such as crowns or targeted Kuhlluftausblasungen.
Herkömmliche Turbinen-Laufschaufeln sind nach dem „Rear- Loaded-Design" gestaltet, wobei die maximale Druckbean- spruchung der Laufschaufel im Bereich ihrer Hinterkante angesiedelt ist. Als veraltet bekannt sind auch nach dem „Front-Loaded-Design" ausgelegte Laufschaufeln, bei denen die höchste Druckbelastung im Bereich der Vorderkante angesiedelt ist. Hierzu ist beispielweise aus der EP 1 057 969 A2 eine Turbinenlaufschaufel mit einem Schaufelblatt bekannt, welches nabenseitig ein „Front-Loaded-Design" oder „Intermediate- Loaded-Design" und spitzenseitig ein „Rear-Loaded-Design" aufweist, wodurch die Verteilung der Rate der Änderung der Umfangsgeschwindigkeit vermittelt werden.Conventional turbine blades are designed in a "rear-loaded design," with the maximum compressive stress on the blade being in the region of its trailing edge. "Front-loaded design" blades are also known to be outdated the highest pressure load is located in the area of the front edge. For this purpose, EP 1 057 969 A2 discloses, for example, a turbine blade with an airfoil, which has a "front-loaded design" or "intermediate-loaded design" on the hub side and a "rear-loaded design" on the tip side, as a result of which the distribution the rate of change in peripheral speed are taught.
Aufgabe der Erfindung ist es, eine Axialturbine für eine Gasturbine zu schaffen, die einen hohen aerodynamischen Wirkungsgrad hat.The object of the invention is to provide an axial turbine for a gas turbine, which has a high aerodynamic efficiency.
Die erfmdungsgemaße Axialturbine für eine Gasturbine weist ein Laufschaufelgitter, das von Laufschaufeln mit jeweils einer Vorderkante, einer Hinterkante und einer radial außen liegenden, freistehenden Schaufelspitze gebildet ist, eine das Laufschaufelgitter ummantelnde Ringraumwandung mit einer Ringrauminnenseite auf, mit der die Ringraumwandung unmittelbar benachbart zu den Schaufelspitzen unter Ausbildung des Radialspalts zwischen der Einhüllenden der Schaufelspitzen und der Ringrauminnenseite angeordnet ist, wobei die Laufschaufeln an ihren Schaufelspitzen zwischen der Vorderkante und der Hinterkante einen Bereich mit der höchsten Druckbelastung der Schaufelspitzen aufweist, und wobei die Laufschaufeln im Bereich der höchsten Druckbelastung jeweils eine Radialerhebung aufweisen sowie die Ringraumwandung an der Ringrauminnenseite eine umlaufende Radialvertiefung aufweist, die den Radialerhebungen gegenüberliegend derart ausgebildet ist, dass ein Spaltweitenminimum in Hauptstromungsπchtung der Axialturbine gesehen im Bereich der höchsten Druckbe- lastung angesiedelt ist. Die Druckbelastung im Sinne dieser Schrift entspricht dabei der Druckdifferenz zwischen Saug¬ seite und Druckseite der Laufschaufei, welche entlang des Profilsschnitts unterschiedlich groß ist.The axial turbine according to the invention for a gas turbine has a rotor blade grid, which is formed by blades each having a leading edge, a trailing edge and a radially outer freestanding blade tip, an annular space wall enclosing the blade grid with an annular space inside, with which the annular space wall immediately adjacent to the blade tips forming the radial gap between the envelope of the blade tips and the annular space inside, wherein the blades at their blade tips between the leading edge and the trailing edge has a region with the highest pressure load of the blade tips, and wherein the blades each have a radial elevation in the region of highest pressure load as well as the annular space wall at the Annulus inside has a circumferential radial recess, which is the radial elevations opposite formed such that a gap width minimum in Hauptstromungsπchtung the axial turbine seen is located in the region of highest pressure loading. The pressure load in the sense of this document corresponds to the pressure difference between the suction ¬ side and pressure side of the rotor blade, which is different in size along the profile section.
Dadurch wird durch das Heranziehen der direkt hinsichtlich minimaler Verluste optimierten Schaufelspitze und der Ringraumkontur die ungunstige, verlustbehaftete Spaltstromung reduziert. Dabei wird der Ringraum im Bereich der Schaufelspitze als von dem herkömmlichen Ringraum abweichende Kontur ausgeführt. Bei der Festlegung der Form der Ringraumkontur wird zudem berücksichtigt, dass die minimale Spaltweite im Betrieb der Axialturbine im Bereich der maximalen Druckdifferenz zwischen der Druckseite und der Saugseite der Lauf¬ schaufel angeordnet ist. Diese Maßnahmen haben so gut wie keinen Emfluss auf die aerodynamische Wirkungsweise derAs a result, the unfavorable, lossy gap current is reduced by using the blade tip, which is optimized directly with regard to minimum losses, and the annular space contour. In this case, the annular space in the region of the blade tip is designed as a contour deviating from the conventional annular space. In determining the shape of the annular space contour is also taken into account that the minimum gap width is arranged in the operation of the axial turbine in the region of the maximum pressure difference between the pressure side and the suction side of the run ¬ scoop. These measures have almost no influence on the aerodynamic effect of the
Laufschaufel und bewirken eine wesentliche Verringerung der Spaltstromung von der Druckseite zur Saugseite über die Schaufelspitze hinweg, verglichen mit einer herkömmlich ausgelegten Axialturbine. Ferner ist es möglich, alle bisher bekannten Maßnahmen zu Verringerung der negativen Auswirkungen der Leckagestromung zusatzlich bei der erfindungs- gemaßen Axialturbine anzuwenden.Blade and cause a substantial reduction of the gap flow from the pressure side to the suction side over the blade tip, compared with a conventionally designed axial turbine. Furthermore, it is possible to apply all previously known measures for reducing the negative effects of the leakage flow additionally in the axial-flow turbine according to the invention.
Vorteilhaft ist die Menge der Leckagestromung direkt gezielt reduziert und deren ungunstige Auswirkungen auf den Gesamtwirkungsgrad des Laufschaufelgitters reduziert. Dadurch er¬ gibt sich, ohne zusätzliche konstruktive Maßnahmen vorsehen zu müssen, eine verbesserte aerodynamische Gute des Lauf- schaufelgitters .Advantageously, the amount of leakage flow is directly targeted reduced and reduced their unfavorable impact on the overall efficiency of the blade lattice. As a result, he ¬ gives, without having to provide additional design measures, an improved aerodynamic good of the blade shovel.
Vorteihafterweise kann der Profilschnitt an der Schaufelspitze entgegen der konventionellen Auslegung als „Front- Loaded-Design" ausgeführt sein. Das heißt, die größte Druck¬ belastung wird von dem hinteren Teil (hinterkantennah) der Schaufel in den Bereich der Profileintrittskante (vorderkantennah) verschoben. Über die Hohe der Laufschaufei gesehen kann dieser Bereich etwa 20% betragen. Der restliche Bereich der Laufschaufel kann dann herkömmlich im „Rear- Loaded-Design" ausgeführt sein. Der Übergang von „Front- Loaded-Design" zu „Rear-Loaded-Design" bei etwas 20% der Hohe der Laufschaufei erfolgt vorzugsweise stufenlos.Vorteihafterweise the profile section on the blade tip contrary to the conventional interpretation as "front Be executed loaded design ". This means that the greatest pressure ¬ load is from the rear part (hinterkantennah) of the blade in the area of the profile leading edge (vorderkantennah) moved. About the height of the rotor blade saw this area can be about 20%. The The remaining area of the blade can then be designed conventionally in the "rear-loaded design". The transition from "front-loaded design" to "rear-loaded design" at about 20% of the height of the rotor blade is preferably stepless.
Bevorzugt ist es, dass bezüglich der in Hauptstromungsπch- tung der Axialturbine gesehenen Erstreckung des Radialspalts die Radialvertiefung im vorderen Drittel angeordnet ist.It is preferred that, with respect to the extent of the radial gap seen in the main flow direction of the axial turbine, the radial recess is arranged in the front third.
Dadurch ist die Radialvertiefung im Bereich der höchstenAs a result, the radial recess is in the range of the highest
Druckbelastung der Schaufelspitze angesiedelt, so dass die Spaltstromung reduziert ist.Pressure load of the blade tip settled, so that the gap current is reduced.
Ferner ist es bevorzugt, dass die Radialvertiefung und die Radialerhebungen derart geformt sind, dass der in Hauptstro- mungsπchtung der Axialturbine gesehene Verlauf des Radialspalts im Wesentlichen gleich weit, wellig, kantenfrei und stufenfrei verlauft.Furthermore, it is preferred that the radial depression and the radial elevations are shaped in such a way that the course of the radial gap seen in the main flow direction of the axial turbine proceeds substantially equally far, wavy, edge-free and step-free.
Insbesondere ist es bevorzugt, dass der in Hauptstromungs- πchtung der Axialturbme gesehene Verlauf der Radialvertiefung an der Ringrauminnenseite einen ersten Krummungsab- schnitt, einen sich daran anschließenden zweiten Krummungsab- schnitt und einen sich daran anschließenden dritten Krum- mungsabschnitt aufweist, wobei der erste Krummungsabschnitt von dem zweiten Krummungsabschnitt mit einem ersten Wende¬ punkt abgegrenzt ist und der zweite Krummungsabschnitt von dem dritten Krummungsabschnitt mit einem zweiten Wendepunkt angegrenzt ist, so dass die Krümmungen des ersten Krummungs- abschnitts und des dritten Krummungsabschnitts das selbe Vor¬ zeichen haben, das von dem Vorzeichen der Krümmung des zweiten Krummungsabschnitts unterschiedlich ist. In diesem Fall kann die Große des Radialspalts zwischen Schaufelspitze und Ringraumwandung - entlang der Axialrichtung gesehen - auch konstant sein.In particular, it is preferred that the course of the radial recess on the annular space inside seen in the main flow direction of the axial turbines has a first curved section, an adjoining second curved section and an adjoining third curved section, the first curved section of FIG the second Krummungsabschnitt is delimited with a first turning ¬ point and the second Krummungsabschnitt is bounded by the third Krummungsabschnitt with a second turning point, so that the curvatures of the first Krummungs- section and the third Krummungsabschnitts have the same Vor ¬ sign, that of the sign the curvature of the second Krummungsabschnitts is different. In this case, the size of the radial gap between the blade tip and Annular space wall - seen along the axial direction - also be constant.
Dadurch hat der Ringspalt in Hauptstromungsπchtung gesehen einen gleichmäßigen, sich nicht abrupt ändernden Verlauf, so dass die Strömung im Bereich der Schaufelspitze verlustarm ist.As a result, the annular gap in Hauptstromungsπchtung seen a uniform, not abruptly changing course, so that the flow in the region of the blade tip is loss.
Bevorzugt ist es, dass der in Hauptstromungsπchtung der Axi- alturbme gesehene Verlauf der Radialerhebungen an ihren dem Radialspalt zugewandten Seiten dem Verlauf der Radialvertie- fung nachempfunden ist.It is preferred that the course of the radial elevations seen in the main flow direction of the axial radii is modeled on the course of the radial displacement at its sides facing the radial gap.
Außerdem ist bevorzugt die Krümmung des ersten Krummungsab- Schnitts großer als die des dritten Krummungsabschnitts . Ferner ist bevorzugt der erste Wendepunkt im Bereich der Vorderkante angesiedelt.In addition, preferably, the curvature of the first curving portion is larger than that of the third curving portion. Furthermore, the first inflection point is preferably located in the region of the front edge.
Bevorzugt ist, dass die in Hauptstromungsπchtung der Axial- turbine gesehenen Abschnitte des Ringkanals, welche der Radialvertiefung stromauf und stromab benachbart sind, konisch sind.It is preferred that the sections of the annular channel which are seen in the main flow direction of the axial turbine and which are adjacent to the radial depression upstream and downstream, are conical.
Im Folgenden wird die Erfindung anhand einer bevorzugten Aus- fuhrungsform einer erfindungsgemaßen Axialturbine anhand der beigefugten schematischen Zeichnungen erläutert. Es zeigen:The invention is explained below with reference to a preferred embodiment of an axial-flow turbine according to the invention with reference to the appended schematic drawings. Show it:
Figur 1 einen Profilschnitt einer erfindungsgemaßen Laufschaufel im Bereich der Schaufelspitze,FIG. 1 shows a profile section of a blade according to the invention in the area of the blade tip,
Figur 2 eine Seitenansicht einer erfindungsgemaßen Axialturbine undFigure 2 is a side view of an inventive axial turbine and
Figur 3 die Seitenansicht aus Figur 2 verglichen mit einer herkömmlichen Axialturbine.Figure 3 shows the side view of Figure 2 compared with a conventional axial turbine.
Wie es aus Figuren 1 bis 3 ersichtlich ist, weist eine Axialturbine 1 eine Laufschaufel 2 auf, die eine Vorderkante 3 und eine Hinterkante 4 aufweist. Die Laufschaufei 2 weist eine Druckseite 5 und eine Saugseite 6 auf, die jeweils von der Vorderkante 3 zu der Hinterkante 4 verlaufen. Die Druckseite 5 ist verlichten mit der Saugseite 6 starker konkav gekrümmt. Die Laufschaufel 2 weist an ihrem radial außenseitig liegenden Ende eine Schaufelspitze 13 auf, die freiliegend ist. Im Bereich der Schaufelspitze 13 ist die Laufschaufel 2 im „Front-Loaded-Design" 7 ausgeführt. Im Vergleich dazu ist das „Rear-Loaded-Design" 8 gezeigt, bei dem die Druckseite 5 im Bereich der Vorderkante 3 weniger stark gekrümmt ist, als beim „Front-Loaded-Design" 7.As can be seen from FIGS. 1 to 3, an axial turbine 1 has a rotor blade 2 which has a front edge 3 and has a trailing edge 4. The rotor blade 2 has a pressure side 5 and a suction side 6, which each extend from the front edge 3 to the trailing edge 4. The pressure side 5 is lined with the suction side 6 strongly concave curved. The blade 2 has at its radially outer end a blade tip 13, which is exposed. In the region of the blade tip 13, the blade 2 is designed in the "front-loaded design" 7. In comparison, the "rear-loaded design" 8 is shown in which the pressure side 5 is less curved in the region of the leading edge 3, as in the "front-loaded design" 7.
Dadurch, dass die Laufschaufel 2 im Bereich der Schaufelspitze 13 im „Front-Loaded-Design" 7 ausgeführt ist, ist der Bereich 9 mit der höchsten Druckbelastung der Laufschaufel 2 im Bereich der Schaufelspitze 13 in der Nahe der Vorderkante 3 angesiedelt.Because the blade 2 is designed in the area of the blade tip 13 in the "front-loaded design" 7, the region 9 with the highest pressure loading of the blade 2 is located in the region of the blade tip 13 in the vicinity of the leading edge 3.
Ferner weist die Axialturbine 1 nabenseitig eine Nabenkontur 10 auf, an der die Laufschaufei 2 befestigt ist. Radial nach außen abschließend weist die Axialturbine 1 eine Ringraumwandung 11 auf, die eine der Schaufelspitze 13 zugewandte Ringrauminnenseite 12 hat. Mit der Ringraumwandung 11 ist die Laufschaufel 2 ummantelt und bildet mit der Ringrauminnen- seite 13 zusammen mit der Nabenkontur 10 einen divergentenFurthermore, the axial turbine 1 on the hub side, a hub contour 10, on which the rotor blade 2 is attached. Radially outward, the axial turbine 1 has an annular space wall 11 which has an annular space inner side 12 facing the blade tip 13. With the annular space wall 11, the blade 2 is sheathed and forms with the annular space inside page 13 together with the hub contour 10 a divergent
Ringraum der Axialturbine 1. Die Ringraumwandung 11 ist dabei hauptsachlich - d.h. abgesehen von einer Radialvertiefung 15 konisch ausgebildet mit einer größeren Steigung als die Nabenkontur 10.Annular space of the axial turbine 1. The annular space wall 11 is mainly -. apart from a radial recess 15 conical with a greater pitch than the hub contour 10th
Zwischen der Schaufelspitze 13 und der Ringrauminnenseite 12 ist ein Abstand vorgesehen, so dass zwischen der Schaufelspitze 13 und der Ringrauminnenseite 12 ein Radialspalt 14 gebildet ist.Between the blade tip 13 and the annular space inside 12 a distance is provided, so that between the blade tip 13 and the annular space inside 12, a radial gap 14 is formed.
In Figur 3 ist die Laufschaufel 2 auch mit einer herkömmlichen Schaufelspitze 23 und die Ringraumwandung 11 mit einer herkömmlichen Ringrauminnenseite 24 dargestellt, wobei die herkömmliche Schaufelspitze 23 und die herkömmliche Ringrau- mmnenseite 24 einen geraden Verlauf haben.In Figure 3, the blade 2 is also shown with a conventional blade tip 23 and the annular space wall 11 with a conventional annular space inside 24, wherein the conventional blade tip 23 and the conventional Ringrau- mmnenseite 24 have a straight course.
Im Gegensatz dazu weist die erfindungsgemaße Ringraumwandung 11 an der Ringrauminnenseite 12 die Radialvertiefung 15 auf, die im Bereich der Vorderkante 3 der Laufschaufel 2 angeord¬ net ist. In Korrelation zu der Radialvertiefung 15 und in diese eingreifend ist an der Schaufelspitze 13 eine Radialerhebung 16 vorgesehen. Die Radialerhebung 16 verlauft im Wesentlichen parallel zu der Radialvertiefung 15, so dass der Radialspalt 14 einen in Hauptstromungsπchtung der Axialtur- bine 1 gesehenen, gleichmäßigen Verlauf hat.In contrast, the inventive annular space wall 11 on the annular space inside 12, the radial recess 15 which is angeord ¬ net in the region of the leading edge 3 of the blade 2. In correlation to the radial recess 15 and engaging in this, a radial elevation 16 is provided on the blade tip 13. The radial elevation 16 runs essentially parallel to the radial recess 15, so that the radial gap 14 has a uniform course seen in the main flow direction of the axial turbine 1.
In Hauptstromungsπchtung der Axialturbine 1 gesehen weist die Radialvertiefung einen ersten Krummungsabschnitt 17, einen sich daran anschließenden zweiten Krummungsabschnitt 19 und einen sich daran anschließenden dritten Krummungsabschnitt 21 auf. Der erste Krummungsabschnitt 17 ist von dem zweiten Krummungsabschnitt 19 mit einem ersten Wendepunkt 18 abgegrenzt und der zweite Krummungsabschnitt 19 ist von dem dritten Krummungsabschnitt 21 von einem zweiten Wendepunkt 20 abgegrenzt. Dadurch liegt der Krummungsmittelpunkt des ersten Krummungsabschnitts 17 und des dritten Krummungsabschnitts 21 radial gesehen außerhalb der Axialturbine 1 und der Krum- mungsmittelpunkt des zweiten Krummungsabschnitts 19 innerhalb der Axialturbine 1.Seen in the main flow direction of the axial turbine 1, the radial recess has a first curved section 17, an adjoining second curved section 19 and an adjoining third curved section 21. The first curvature portion 17 is delimited from the second curvature portion 19 with a first inflection point 18 and the second curvature portion 19 is delimited from the third curvature portion 21 by a second inflection point 20. As a result, the center of curvature of the first curved section 17 and of the third curved section 21 lies radially outside the axial turbine 1 and the center of curvature of the second curved section 19 within the axial turbine 1.
Die Krümmung des ersten Krummungsabschnitts 17 ist großer als die Krümmung des dritten Krummungsabschnitts 21, so dass der Radialspalt 14 im Bereich der Vorderkante 3 einen radial nach außen gesehenen, steileren Verlauf hat, als im Bereich des dritten Krummungsabschnitts 21.The curvature of the first curvature portion 17 is greater than the curvature of the third curvature portion 21, so that the radial gap 14 in the region of the front edge 3 has a radially outward, steeper course than in the region of the third curvature portion 21.
In Hauptstromungsπchtung der Axialturbine 1 gesehen sind die Radialvertiefung 15 und die Radialerhebung 16 im vorderen Drittel der Schaufelspitze 13 angeordnet. Dadurch, dass im Bereich der Schaufelspitze 13 die Laufschaufel 2 im „Front- Loaded-Design" ausgebildet ist, ist genau in diesem Bereich der Bereich 9 mit der höchsten Druckbelastung angesiedelt.Seen in Hauptstromungsπchtung the axial turbine 1, the radial recess 15 and the radial elevation 16 in the front third of the blade tip 13 are arranged. Due to the fact that in the area of the blade tip 13, the blade 2 in the "front Loaded design "is formed, located precisely in this area of the area 9 with the highest pressure load.
Die Radialvertiefung 15 und die Radialerhebung 16 sind zuein- ander derart angeordnet, dass ein Spaltminimum 22 im Bereich 9 der höchsten Druckbelastung ausgebildet ist. Dadurch ist eine im Betrieb der Axialturbine 1 durch den Radialspalt 14 sich ausbildende Leckagestromung genau im Bereich 9 mit der höchsten Druckbelastung gering. Dadurch hat die Laufschaufel 2 einen hohen aerodynamischen Wirkungsgrad, insbesondere im Bereich der Schaufelspitze 13. The radial depression 15 and the radial elevation 16 are arranged relative to one another such that a gap minimum 22 is formed in the region 9 of the highest pressure load. As a result, a leakage current which forms during operation of the axial turbine 1 through the radial gap 14 is exactly low in the region 9 with the highest pressure load. As a result, the moving blade 2 has a high aerodynamic efficiency, in particular in the area of the blade tip 13.

Claims

Patentansprüche claims
1. Axialturbine (1) für eine Gasturbine, mit einem Laufschaufelgitter, das von Laufschaufeln (2) mit jeweils einer Vorderkante (3), einer Hinterkante (4) und einer radial außen liegenden, freistehenden Schaufelspitze (13) gebildet ist und einer das Laufschaufelgitter ummantelnden, divergenten Ringraumwandung (11) mit einer Ringrauminnenseite (12), mit der die Ringraumwandung (11) unmittelbar benachbart zu den Schaufelspitzen (13) unterAn axial turbine (1) for a gas turbine, comprising a blade lattice formed by blades (2) each having a leading edge (3), a trailing edge (4) and a radially outer freestanding blade tip (13) and one of the blade lattice sheathing, divergent annular space wall (11) with an annular space inside (12), with the annular space wall (11) immediately adjacent to the blade tips (13) below
Ausbildung eines Radialspalts zwischen der Einhüllenden der Schaufelspitzen (13) und der Ringrauminnenseite (12) angeordnet ist, wobei die Laufschaufeln (2) an ihren Schaufelspitzen (13) zwischen der Vorderkante (3) und der Hinterkante (4) einen Bereich mit der höchsten Druckbelastung der Schaufelspitzen (13) aufweist, und wobei die Laufschaufeln (2) im Bereich der höchsten Druckbelastung jeweils eine Radialerhebung (16) aufweisen sowie die Ringraumwandung (11) an der Ringrauminnenseite (12) eine umlaufende Radialvertiefung (15) aufweist, die den Radialerhebungen (16) gegenüberliegend derart ausgebildet ist, dass ein Spaltweitenminimum in Hauptdurchstromungsπchtung der Axialturbine (1) im Bereich der höchsten Druckbelastung angesiedelt ist.Forming a radial gap between the envelope of the blade tips (13) and the annular space inside (12) is arranged, wherein the blades (2) at their blade tips (13) between the front edge (3) and the trailing edge (4) an area with the highest pressure load the blade tips (13), and wherein the rotor blades (2) each have a radial elevation (16) in the region of the highest pressure load and the annular space wall (11) on the annular space inside (12) has a circumferential radial recess (15) which the radial elevations ( 16) is designed opposite such that a gap width minimum in Hauptdurchstromungsπchtung the axial turbine (1) is located in the region of the highest pressure load.
2. Axialturbine (1) nach Anspruch 1, bei der zumindest im Bereich der Laufschaufelspitze (13) die höchste Druckbelastung der Laufschaufel (2) im Bereich der Vorderkante (3) angeordnet ist.2. Axial turbine (1) according to claim 1, wherein at least in the region of the blade tip (13), the highest pressure load of the blade (2) in the region of the front edge (3) is arranged.
3. Axialturbine (1) nach Anspruch 2, bei der der Bereich der Laufschaufelspitze (13), in welchem die höchste Druckbelastung im Bereich der Vorderkante (3) angesiedelt ist, maximal 20% der Hohe der Laufschaufel (2) betragt und der restliche Bereich der Hohe der Laufschaufel (2) eine höchste Druckbelastung aufweist, welche im Bereich der Hinterkante (4) angeordnet ist. 3. Axial turbine (1) according to claim 2, wherein the area of the blade tip (13), in which the highest pressure load in the region of the leading edge (3) is located, a maximum of 20% of the height of the blade (2) amounts and the remaining area the height of the blade (2) has a highest pressure load, which is arranged in the region of the trailing edge (4).
4. Axialturbine (1) nach Anspruch 2 oder 3, wobei bezüglich der in Hauptdurchstromungsπchtung der Axialturbine (1) gesehenen Erstreckung des Radialspalts (14) die Radialvertiefung (15) im vorderen Drittel angeordnet ist.4. Axial turbine (1) according to claim 2 or 3, wherein with respect to the Hauptdurchstromungsπchtung the axial turbine (1) seen extension of the radial gap (14), the radial recess (15) is arranged in the front third.
5. Axialturbine (1) nach einem der Ansprüche 1 bis 4, wobei die Radialvertiefung (15) und die Radialerhebungen (16) derart geformt sind, dass der in Hauptdurchstromungs- πchtung der Axialturbine (1) gesehene Verlauf des Radialspalts (14) im Wesentlichen gleichweit, wellig, kantenfrei und stufenfrei verlauft.5. Axial turbine (1) according to one of claims 1 to 4, wherein the radial recess (15) and the radial elevations (16) are formed such that in Hauptdurchstromungs- πchtung the axial turbine (1) seen course of the radial gap (14) substantially equidistant, wavy, edge-free and gradual.
6. Axialturbine (1) nach Anspruch 5, wobei der in Hauptdurchstromungsπchtung der Axialturbine (1) gesehene Verlauf der Radialvertiefung (15) an der Ringrauminnenseite (12) einen ersten Krummungsabschnitt (17), einen sich daran anschließenden zweiten Krummungsab- schnitt (19) und einen sich daran anschließenden dritten Krummungsabschnitt (21) aufweist, wobei der erste Krummungsabschnitt (17) von dem zweiten Krummungsabschnitt (19) mit einem ersten Wendepunkt (18) abgegrenzt ist und der zweite Krummungsabschnitt (19) von dem dritten Krummungsabschnitt (21) mit einem zweiten Wendepunkt (20) abgegrenzt ist, so dass die Krümmungen des ersten Krummungsabschnitts (17) und des dritten Krummungs- abschnitts (21) das selbe Vorzeichen haben, das von dem Vorzeichen der Krümmung des zweiten Krummungsabschnitts (19) unterschiedlich ist.6. axial turbine (1) according to claim 5, wherein the main Durchstromungsπchtung of the axial turbine (1) seen course of the radial recess (15) on the annular space inside (12) a first Krummungsabschnitt (17), an adjoining second Krummungsab- section (19) and an adjoining third curvature portion (21), wherein the first curvature portion (17) of the second curvature portion (19) with a first inflection point (18) is delimited and the second curvature portion (19) of the third curvature portion (21) a second inflection point (20) is delimited, so that the curvatures of the first curvature portion (17) and the third curvature portion (21) have the same sign, which is different from the sign of the curvature of the second curvature portion (19).
7. Axialturbine (1) nach Anspruch 6, wobei der in Hauptdurchstromungsπchtung der Axialturbine (1) gesehene Verlauf der Radialerhebungen (16) an ihren dem Radialspalt (14) zugewandten Seiten dem Verlauf der Radial¬ vertiefung (15) nachempfunden ist. 7. Axial turbine (1) according to claim 6, wherein in Hauptdurchstromungsπchtung the axial turbine (1) seen course of the radial elevations (16) at their the radial gap (14) facing sides of the course of the radial ¬ well (15) is modeled.
8. Axialturbine (1) nach einem der Ansprüche 6 oder 7, wobei die Krümmung des ersten Krummungsabschnitts (17) gro¬ ßer ist als die des dritten Krummungsabschnitts (21) .8. Axial turbine (1) according to any one of claims 6 or 7, wherein the curvature of the first Krummungsabschnitts (17) gro ¬ ßer than that of the third Krummungsabschnitts (21).
9. Axialturbine (1) nach einem der Ansprüche 6 bis 8, wobei der erste Wendepunkt (18) im Bereich der Vorderkante (3) angesiedelt ist.9. Axial turbine (1) according to one of claims 6 to 8, wherein the first inflection point (18) is located in the region of the front edge (3).
10. Axialturbine (1) nach einem der Ansprüche 1 bis 9, wobei die in Hauptdurchstromungsπchtung der Axialturbine (1) gesehenen Abschnitte des Ringkanals, welche der Radialvertiefung (15) stromauf und stromab benachbart sind, konisch sind. 10. Axial turbine (1) according to any one of claims 1 to 9, wherein in Hauptdurchstromungsπchtung the axial turbine (1) seen portions of the annular channel, which are adjacent to the radial recess (15) upstream and downstream, are conical.
PCT/EP2009/058682 2008-07-17 2009-07-08 Axial turbine for a gas turbine with limited play between blades and housing WO2010006976A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980128055.8A CN102099548B (en) 2008-07-17 2009-07-08 Axial turbine for a gas turbine with limited play between blades and housing
EP09797468.7A EP2297430B1 (en) 2008-07-17 2009-07-08 Axial turbine for a gas turbine
US13/054,162 US20110188999A1 (en) 2008-07-17 2009-07-08 Axial turbine for a gas turbine with limited play between blades and housing
JP2011517874A JP5260740B2 (en) 2008-07-17 2009-07-08 Axial turbine for gas turbine with play defined between blade and housing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08012960.4 2008-07-17
EP08012960A EP2146054A1 (en) 2008-07-17 2008-07-17 Axial turbine for a gas turbine

Publications (1)

Publication Number Publication Date
WO2010006976A1 true WO2010006976A1 (en) 2010-01-21

Family

ID=40010789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/058682 WO2010006976A1 (en) 2008-07-17 2009-07-08 Axial turbine for a gas turbine with limited play between blades and housing

Country Status (5)

Country Link
US (1) US20110188999A1 (en)
EP (2) EP2146054A1 (en)
JP (1) JP5260740B2 (en)
CN (1) CN102099548B (en)
WO (1) WO2010006976A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694560C1 (en) * 2018-09-12 2019-07-16 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Centripetal turbine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201006449D0 (en) * 2010-04-19 2010-06-02 Rolls Royce Plc Blades
JP6012519B2 (en) * 2013-03-21 2016-10-25 三菱重工業株式会社 Turbine and rotating machine equipped with the same
FR3010463B1 (en) * 2013-09-11 2015-08-21 IFP Energies Nouvelles POLYPHASE PUMP IMPLUSTER WITH MEANS FOR AMPLIFYING AND DISTRIBUTING GAME FLOWS.
GB201508763D0 (en) * 2015-05-22 2015-07-01 Rolls Royce Plc Rotary blade manufacturing method
CN108487942A (en) * 2018-03-15 2018-09-04 哈尔滨工业大学 Control the casing and blade combined shaping method of turbine blade-tip gap flowing
BE1026579B1 (en) * 2018-08-31 2020-03-30 Safran Aero Boosters Sa PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR
FR3089543B1 (en) * 2018-12-05 2023-01-13 Safran Turbine or compressor rotor for a gas turbine engine with limited clearance losses
CN114517794A (en) * 2022-03-01 2022-05-20 大连海事大学 Transonic speed axial compressor combined casing treatment structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726904A (en) * 1993-07-12 1995-01-27 Ishikawajima Harima Heavy Ind Co Ltd Blade tip structure of rotating machine
EP1253295A2 (en) * 2001-04-27 2002-10-30 Mitsubishi Heavy Industries, Ltd. Axial-flow turbine having a stepped portion in a flow passage
EP1267042A2 (en) * 2001-06-14 2002-12-18 Mitsubishi Heavy Industries, Ltd. Shrouded gas turbine blade
DE102004059904A1 (en) * 2004-12-13 2006-06-14 Alstom Technology Ltd Moving blade e.g. for turbo machine, has blade point which faces stator in turbo machine and contacts into channel of stator with blade point provided in such way that blade contacts channel at its edges and into rotor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR996967A (en) * 1949-09-06 1951-12-31 Rateau Soc Improvement in turbine engine blades
US4738586A (en) * 1985-03-11 1988-04-19 United Technologies Corporation Compressor blade tip seal
US4884820A (en) * 1987-05-19 1989-12-05 Union Carbide Corporation Wear resistant, abrasive laser-engraved ceramic or metallic carbide surfaces for rotary labyrinth seal members
US5639095A (en) * 1988-01-04 1997-06-17 Twentieth Technology Low-leakage and low-instability labyrinth seal
JP3118136B2 (en) * 1994-03-28 2000-12-18 株式会社先進材料利用ガスジェネレータ研究所 Axial compressor casing
EP0903468B1 (en) * 1997-09-19 2003-08-20 ALSTOM (Switzerland) Ltd Gap sealing device
JP4086415B2 (en) * 1999-06-03 2008-05-14 株式会社荏原製作所 Turbine equipment
US6338609B1 (en) * 2000-02-18 2002-01-15 General Electric Company Convex compressor casing
JP3927886B2 (en) * 2002-08-09 2007-06-13 本田技研工業株式会社 Axial flow compressor
DE10352788A1 (en) * 2003-11-12 2005-06-30 Mtu Aero Engines Gmbh gas turbine
US7686567B2 (en) * 2005-12-16 2010-03-30 United Technologies Corporation Airfoil embodying mixed loading conventions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726904A (en) * 1993-07-12 1995-01-27 Ishikawajima Harima Heavy Ind Co Ltd Blade tip structure of rotating machine
EP1253295A2 (en) * 2001-04-27 2002-10-30 Mitsubishi Heavy Industries, Ltd. Axial-flow turbine having a stepped portion in a flow passage
EP1267042A2 (en) * 2001-06-14 2002-12-18 Mitsubishi Heavy Industries, Ltd. Shrouded gas turbine blade
DE102004059904A1 (en) * 2004-12-13 2006-06-14 Alstom Technology Ltd Moving blade e.g. for turbo machine, has blade point which faces stator in turbo machine and contacts into channel of stator with blade point provided in such way that blade contacts channel at its edges and into rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694560C1 (en) * 2018-09-12 2019-07-16 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Centripetal turbine

Also Published As

Publication number Publication date
EP2297430B1 (en) 2013-08-28
EP2146054A1 (en) 2010-01-20
CN102099548A (en) 2011-06-15
US20110188999A1 (en) 2011-08-04
JP2011528082A (en) 2011-11-10
JP5260740B2 (en) 2013-08-14
EP2297430A1 (en) 2011-03-23
CN102099548B (en) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2010006976A1 (en) Axial turbine for a gas turbine with limited play between blades and housing
EP2304186B1 (en) Axial turbomachine with low tip leakage losses
EP2473743B1 (en) Compressor blade for an axial compressor
EP2696029B1 (en) Blade row with side wall contours and fluid flow engine
EP3176370B1 (en) Blade cluster for a flow machine
EP2462320B1 (en) Blade
DE10054244C2 (en) Turbine blade arrangement and turbine blade for an axial turbine
WO2007113149A1 (en) Guide blade for turbomachinery, in particular for a steam turbine
DE10039642C2 (en) Turbine blade airfoil and turbine blade for an axial flow turbine
EP2025946A2 (en) Rotor shroud with blocking stream production
EP2558685B1 (en) Guide vane
EP2846000B1 (en) Vane ring of a gas turbine
EP3056677B1 (en) Blade and flow engine
DE2944987C3 (en) Blade for steam turbines
DE102009040298A1 (en) Turbomachine and method for producing a structured inlet lining
EP2896788B1 (en) Extruded profile for producing a guide vane and fabrication method
EP2746537B1 (en) Shrouded rotor blade with cutting tooth
WO2010063518A1 (en) Geometric design of rotor blades of a turbocharger
EP3719258B1 (en) Rotor blade of a turbomachine
DE102017212310A1 (en) Shovel, blade ring, blade ring segment and turbomachine
EP2650475B1 (en) Blade for a flow device, blade assembly and flow device
EP3460187B1 (en) Blade for a turbomachine
DE10352789B4 (en) gas turbine
DE102020122418A1 (en) Planetary gear
DE102008031781A1 (en) Blade grid for a turbomachine and turbomachine with such a blade grid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128055.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797468

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009797468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 158/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011517874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13054162

Country of ref document: US