WO2010006559A1 - 一种邻区测量方法 - Google Patents

一种邻区测量方法 Download PDF

Info

Publication number
WO2010006559A1
WO2010006559A1 PCT/CN2009/072821 CN2009072821W WO2010006559A1 WO 2010006559 A1 WO2010006559 A1 WO 2010006559A1 CN 2009072821 W CN2009072821 W CN 2009072821W WO 2010006559 A1 WO2010006559 A1 WO 2010006559A1
Authority
WO
WIPO (PCT)
Prior art keywords
scdma
wcdma
data
idle
synchronization
Prior art date
Application number
PCT/CN2009/072821
Other languages
English (en)
French (fr)
Inventor
陈丽萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008101324784A external-priority patent/CN101631350B/zh
Priority claimed from CN2008101322952A external-priority patent/CN101635967B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA2731140A priority Critical patent/CA2731140C/en
Priority to US13/054,762 priority patent/US8724594B2/en
Priority to EP09797406.7A priority patent/EP2306771B1/en
Publication of WO2010006559A1 publication Critical patent/WO2010006559A1/zh
Priority to US14/196,899 priority patent/US9398502B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a neighboring area measurement technique, and more particularly to a neighboring area measurement method.
  • the patent "a method for starting a dual-mode mobile terminal” "A METHOD FOR STARTING TD-SCDMA AND GSM DUAL MODE MOBILE TERMINAL (WO2007147305)" discloses a booting method for a TD-SCDMA and WCDMA dual-mode mobile terminal, which is applicable to the method In various standby modes, the solution of starting up in sequence in the two standby modes of TD-SCDMA and WCDMA is adopted, which can avoid mutual interference caused by the two systems during startup.
  • the patent "a shutdown method for a dual-mode mobile terminal” "CALLING METHOD OF TD-SCDMA AND GSM DUAL-MODE MOBILE TERMINAL (WO2007143893)” discloses a shutdown method for a TD-SCDMA and WCDMA dual-mode mobile terminal, which is applicable to In various standby modes, the solution of shutting down in sequence during dual standby in TD-SCDMA and WCDMA modes is adopted, which can avoid mutual interference caused by shutdown between the two systems.
  • the present invention provides a neighboring area measurement method for performing measurement of a TD-SCDMA neighboring cell in a WCDMA mode without obtaining TD-SCDMA timing, wherein the terminal uses a dormant WCDMA subframe in an idle state.
  • Receiving the specified TD-SCDMA neighboring area on the network side The data is measured by the TD-SCDMA neighboring cell, and the data of the TD-SCDMA neighboring cell specified by the network side is received by the idle window of the WCDMA subframe in the connected state, and the method includes the following steps:
  • the idle window is formed in a compressed mode; the pattern of the compressed mode is specified by the network side, and specifically includes: the number, location, and length of the idle window, and the TD- using the idle window.
  • the number of SCDMA frames is specified by the network side, and specifically includes: the number, location, and length of the idle window, and the TD- using the idle window. The number of SCDMA frames.
  • the terminal reports the received signal code power of all the TD-SCDMA neighboring areas to the network side with the minimum value.
  • step A coarse synchronization of a frequency point of the TD-SCDMA neighboring area requires receiving data of the TD-SCDMA neighboring area.
  • the received data of the TD-SCDMA neighboring area is: receiving data of 1 frame + 128 chip length each time.
  • the present invention also provides a neighboring area measurement method for performing measurement of a TD-SCDMA neighboring cell in a WCDMA mode when TD-SCDMA timing has been obtained, wherein the terminal uses a dormant WCDMA in an idle state.
  • the subframe receives the data of the TD-SCDMA neighboring cell specified by the network side for measurement of the TD-SCDMA neighboring cell, and uses the idle window of the WCDMA subframe to receive the data of the TD-SCDMA neighboring cell specified by the network side for TD-SCDMA in the connected state.
  • the method specifically includes the following steps: a. receiving data of the TD-SCDMA neighboring area, performing automatic gain control adjustment on a frequency point of the TD-SCDMA neighboring area, and obtaining a stable automatic gain control value of the frequency point;
  • the idle window is formed in a WCDMA compression mode; the pattern of the compressed mode is specified by the network side, and specifically includes: the number, location, and length of the idle window, and the TD using the idle window. - The number of SCDMA frames.
  • the present invention also provides a neighboring area measurement method for performing WCDMA neighboring cell measurement in a TD-SCDMA mode, wherein the terminal uses a dormant TD-SCDMA subframe to receive a WCDMA designated by the network side in an idle state.
  • the data of the neighboring area is measured by the WCDMA neighboring cell; the idle window of the TD-SCDMA subframe is used to receive the data of the WCDMA neighboring zone specified by the network side in the connection state or the high-speed downlink packet access state, and the WCDMA neighboring zone is measured; Specifically, the following steps are included:
  • the idle window is two idle slots in a TD-SCDMA subframe in a connected state; and is an idle 0 slot and a downlink pilot in a TD-SCDMA subframe in a high-speed downlink packet access state. Gap.
  • the method further includes the following steps: receiving measurement neighbor information sent by the network side, where the scrambling code number and frequency point of the WCDMA neighboring area measured this time are specified.
  • the specific process of determining the time slot synchronization point by the time slot synchronization is: receiving the The WCDMA neighboring cell has a length of 1 slot + 256 chips, and correlates it with the local primary synchronization code to obtain a correlation result of 1 slot, and determines the slot synchronization point according to the peak value of the correlation result.
  • the specific process of determining the location of the WCDMA frame header is as follows: In the idle state, the data of the 15 time slots of the WCDMA neighboring cell is received according to the determined slot synchronization point, and 256 is taken from each slot header.
  • the chip constitutes a sequence A; the sequence A is sequentially correlated with the 15 auxiliary synchronization sequences of the WCDMA neighboring region, and the sliding step size is 256 chips, and the appearance position of the WCDMA frame header is determined according to the peak values of the 15 correlation results; Or, in the connection state or the high-speed downlink packet access state, receiving data of one time slot of the WCDMA neighboring cell according to the slot synchronization point, and correlating the data with each auxiliary synchronization sequence of the cell-assisted synchronization sequence group, if according to the correlation result If the determined time slot number is one, the position of the WCDMA frame header is determined; if the determined time slot number is two, the data of one time slot of the WCDMA neighboring area is received again, The two time slot numbers determined by adding the number of time slots of the two receiving intervals respectively yield two possibilities of the time slot number of the received data, and the data received this time and the two possible Slot number corresponding to the secondary synchronization sequence correlation peak correlation results determined according to the
  • the method further includes: repeatedly performing step D, and then reporting the average value of the obtained received signal code power measurement results to the upper layer.
  • step D is despread according to the channelization code and the primary scrambling code fixedly used by the common pilot channel.
  • the invention performs neighbor cell measurement by receiving the data specified by the network side in the idle state by using the idle idle frame in the idle state, and receiving the data specified by the network side to perform the measurement of the neighboring cell by using the compressed gap in the connected state, thereby realizing the WCDMA in the WCDMA.
  • the neighboring area measurement for TD-SCDMA and the neighboring area measurement for WCDMA in TD-SCDMA mode and on this basis, the WCDMA to TD-SCDMA neighboring area and the TD-SCDMA to WCDMA neighboring area are reselected. Switching, effectively meets the requirements of real-time, and has high practical value.
  • 1 is a flowchart of a method for measuring a TD-SCDMA neighboring cell in a first WCDMA mode according to the present invention
  • 2 is a flowchart of a method for measuring a TD-SCDMA neighboring cell in a second WCDMA mode according to the present invention
  • FIG. 3 is a schematic diagram of a measurement process of a frequency point in a second method of the present invention.
  • FIG. 4 is a flowchart of a method for measuring a WCDMA neighboring cell in a TD-SCDMA mode according to the present invention
  • FIG. 5 is a schematic diagram of data required for receiving steps of the present invention by using a TD-SCDMA idle time slot in a TD-SCDMA connection state/HSDPA state according to the present invention
  • FIG. 6 is a schematic diagram of an idle window in a TD-SCDMA subframe in a TD-SCDMA connection state/HSDPA state;
  • Figure 7 is a diagram showing the data length corresponding to the idle window shown in Figure 3 in a WCDMA frame.
  • the core idea of the present invention is: receiving the neighboring area data by using the idle idle frame in the idle state to receive the neighboring area data, and using the idle window to receive the data specified by the network side for the neighboring area measurement.
  • the terminal When performing measurement of the TD-SCDMA neighboring cell in the WCDMA mode, the terminal uses the dormant WCDMA subframe in the idle state to receive the data of the TD-SCDMA neighboring cell specified by the network side to perform the measurement of the TD-SCDMA neighboring cell, in the connected state.
  • the TD-SCDMA neighboring cell is measured using the idle window of the WCDMA subframe to receive the data of the TD-SCDMA neighboring cell specified by the network side, thereby ensuring the implementation of the TD-SCDMA neighboring cell measurement in the WCDMA mode.
  • the WCDMA mode there are two cases for the measurement of the TD-SCDMA neighboring cell: the first one is applied to the case where the TD-SCDMA timing has not been obtained, which is called the first WCDMA mode; the second is applied to the obtained TD- In the case of SCDMA timing, it is referred to as a second WCDMA mode, which will be separately described below.
  • the measurement between the WCDMA system and the TD supports up to 32 cells.
  • the measurement, these 32 cells have a maximum of 3 time division duplex (TDD) frequency points.
  • FIG. 1 is a flowchart of a method for measuring a TD-SCDMA neighboring cell in a first WCDMA mode according to the present invention.
  • a terminal uses a dormant idle frame to receive data in an idle state to perform a TD-SCDMA neighboring cell.
  • the measurement in the connected state, uses the compressed gap formed in the compressed mode to receive data for measurement of the TD-SCDMA neighboring cell.
  • Step 10 The compression mode pattern used by the TDD mode measurement in the connection state of the network side terminal is sent to the terminal;
  • the content of the pattern includes the number, location and length of the idle windows formed in the compressed mode in one TD-SCDMA frame, and the number of TD-SCDMA frames using the idle window formed in this compressed mode.
  • the pattern passes the parameters GNP (Transmission Gap Starting Slot Number), TGL1 (Transmission Gap Length 2), TGL2 (Transmission Gap Length 2), TGD (Transmission Gap Start Distance), TGPL1 (Transmission Gap Pattern Length), TGPRC (Transmission Gap) Pattern Repetition Count ) and TGCFN ( Transmission Gap Connection Frame Number ) are exactly represented.
  • Step 11 The terminal attempts coarse synchronization at the first frequency point.
  • Step 12 The terminal switches the radio frequency to a frequency point ready to try coarse synchronization.
  • Step 13 The terminal receives the TD-SCDMA data several times (currently 4), receives data in the idle state using the idle idle frame, and uses the idle window formed in the compressed mode to receive data in the connected state, for performing automatic gain control. (AGC) adjust until a stable AGC value at this frequency is obtained.
  • AGC automatic gain control
  • Step 14 The terminal receives the TD-SCDMA data once, receives the data in the idle state using the idle idle frame, and uses the idle window formed in the compressed mode to receive the data in the connected state, and obtains the full 1TD-CDMA through the sliding correlation algorithm.
  • the coarse synchronization is configured on the idle window of the frame +128 CHIP data. If successful, go to step 17. Otherwise, go to step 15.
  • Step 15 The terminal determines whether there is a frequency point that has not undergone a coarse synchronization attempt. If yes, prepare to try the frequency point, and return to step 12; otherwise, perform step 16.
  • Step 16 The terminal uses the received signal code power (RSCP) of all TD-SCDMA neighbors as the most The small value is reported to the network side.
  • RSCP received signal code power
  • Step 17 The terminal receives 128 chip length data related to the downlink synchronization code (sync_dl) according to the coarse synchronization position, receives data by using the idle idle frame in the idle state, and receives the idle window formed in the compressed mode in the connected state. Data, after the downlink synchronization code all falls into the idle window, find the position with the largest correlation peak, and according to this position, the frame header is obtained as the TD-SCDMA timing. Since the TD-SCDMA system is a synchronous system, if the timing of a cell, i.e., the frame header position of the cell, is found, it is considered that the timing of the entire TD-SCDMA system is obtained.
  • Step 18 The terminal determines an observed time difference (OTD) of all TD-SCDMA neighboring regions relative to the TD-SCDMA timing at the frequency point where the coarse synchronization is successful.
  • OTD observed time difference
  • Step 19 The terminal receives data related to the training sequence (midambl) code in the 0 time slot under the frequency of the coarse synchronization success according to the TD-SCDMA timing, and uses the idle idle frame to receive data in the idle state, and uses the compressed state in the connected state.
  • the idle window formed in the mode receives data, and in the case that the received data all falls into the idle window, determines the RSCP of the TD-SCDMA neighbor region of the OTD that has been obtained according to the received midambl related data.
  • Step 20 Determine whether step 19 is performed three times. If yes, perform the next step. Otherwise, return to step 19.
  • Step 21 The terminal sends the average of the three RSCP measurement results to the network side.
  • the terminal can determine the RSCP of the four neighboring cells by receiving the data related to the midambl code every time through the RSCP module, so if the TD-SCDMA neighboring cell under a certain frequency point If the number is greater than four, the RSCP module needs to receive and calculate multiple times, so as to obtain the RSCP measurement results of all TD-SCDMA neighbors at the frequency.
  • the above method describes the process of measuring the TD-SCDMA neighboring cell in the WCDMA mode in the case where the TD-SCDMA timing has not been obtained, but this method can only realize all the TDs under one frequency point of the coarse synchronization success.
  • the measurement of the TD-SCDMA neighboring area at the remaining frequency points is performed by the following method.
  • FIG. 2 is a flowchart of a method for measuring a TD-SCDMA neighboring cell in a second WCDMA mode according to the present invention, in which a terminal uses a dormant idle frame to receive data for TD-SCDMA in an idle state.
  • the measurement of the neighboring area is formed by using the compressed mode in the connected state.
  • the idle window receives data for measurement of the TD-SCDMA neighbor.
  • the specific implementation process is as follows: Step 30: The network side terminal sends a compressed mode pattern for performing TDD mode measurement in a connection state;
  • the content of the pattern includes the number, location and length of the idle windows formed in the compressed mode in one TD-SCDMA frame, and the number of TD-SCDMA frames using the idle window formed in this compressed mode.
  • the pattern passes the parameters GNP (Transmission Gap Starting Slot Number), TGL1 (Transmission Gap Length 2), TGL2 (Transmission Gap Length 2), TGD (Transmission Gap Start Distance), TGPL1 (Transmission Gap Pattern Length), TGPRC (Transmission Gap) Pattern Repetition Count ) and TGCFN ( Transmission Gap Connection Frame Number ) are exactly represented.
  • Step 31 The terminal selects the first frequency point that needs to calculate RSCP.
  • Step 32 The terminal switches the radio frequency to the frequency selected this time.
  • Step 33 The terminal receives the TD-SCDMA data several times (currently 4), receives data in the idle state using the idle idle frame, and uses the idle window formed in the compressed mode to receive data in the connected state, for performing AGC adjustment, A stable AGC value of the frequency selected this time is obtained.
  • Step 34 Acquire timing of the TD-SCDMA system
  • the terminal uses the downlink synchronization tracking (DST) module to generate timings of several (currently 4) TD-SCDMA cells. Since the TD-SCDMA system is a synchronous system, if a cell timing is obtained, it is considered that Timing of the entire TD-SCDMA system.
  • DST downlink synchronization tracking
  • Step 35 The terminal receives 128 chip length data associated with the sync_dl code, receives data in the idle state using the idle idle frame, and uses the idle window formed in the compressed mode to receive data in the connected state, and uses the received sync—
  • the dl code determines the OTD of all TD-SCDMA neighbors relative to the TD-SCDMA timing at the selected frequency.
  • Step 36 The terminal receives, according to the acquired TD-SCDMA timing, data related to the midambl code in the 0 time slot of the selected frequency point, and uses the idle idle frame to receive data in the idle state, and uses the compressed mode in the connected state.
  • the formed idle window receives data to determine the RSCP of the TD-SCDMA neighbor region that has obtained the OTD.
  • Step 37 Determine whether step 35 to step 36 are performed three times. If yes, perform the next step. Otherwise, return to step 35.
  • Step 38 The terminal determines whether there are other frequency points for which the RSCP is not calculated. If yes, select the frequency point and return to step 32. Otherwise, perform the next step.
  • Step 39 The terminal reports the RSCP measurement result of all frequency points to the network side.
  • step 35 is completed by the DST module
  • step 36 is completed by the RSCP module.
  • the terminal can only determine the OTD of the four TD-SCDMA cells at the current frequency point relative to the TD-SCDMA timing by receiving the data related to the sync-dl code by the DST module; the terminal passes the RSCP module. For each data associated with the midambl code, only the RSCP of the four TD-SCDMA neighbors that have obtained the OTD can be determined.
  • the terminal can receive the data related to the midambl code in the 0 time slot and the data related to the sync_dl at a time, so that the DST module and the RSCP module can be processed in parallel, as shown in FIG. 3, that is, the DST module is While calculating the OTD of a new set of four cells, the RSCP module calculates the RSCP of the four cells that have obtained the last set of OTDs.
  • the terminal uses the dormant TD-SCDMA subframe to receive the WCDMA neighboring cell data of the network side in the idle state for WCDMA neighboring cell measurement; in the connected state or high speed downlink In the packet access state, the idle window of the TD-SCDMA subframe is used to receive the data of the WCDMA neighboring cell specified by the network side to perform WCDMA neighboring cell measurement, thereby ensuring the implementation of the WCDMA neighboring cell measurement in the TD-SCDMA mode.
  • the user equipment (UE) in the TD-SCDMA system supports measurement of up to 32 frequency division duplex (FDD) cells, and the 32 cells have a maximum of three FDD frequencies.
  • FDD frequency division duplex
  • the measurement period of the UE in the TD-SCDMA system in the connection state/high-speed downlink packet access (HSDPA) state is 480 ms, and the measurement period of the UE in the idle state in the TD-SCDMA system is as follows:
  • FIG. 4 is a general flowchart of a method for measuring a WCDMA neighboring cell in the TD-SCDMA mode according to the present invention.
  • the main implementation process is as follows:
  • Step 40 The network side sends the information about the WCDMA neighboring cell to the UE, where the 4th code number and the frequency point of the WCDMA neighboring area of the current measurement are specified.
  • Step 41 The UE receives the data of the WCDMA neighboring cell of the current measurement and has a length of 1 slot + 256 chip, and uses the same as the local primary synchronization (P-SCH) code (256 chip, the entire TD-SCDMA network uses the same P-SCH.
  • the code is correlated, and the correlation result of one time slot (2560chip) is obtained, and the slot synchronization point is determined according to the peak value of the correlation result.
  • Step 42 The UE determines, according to the scrambling code number of the WCDMA neighboring area measured in the current time, which of the 64 scrambling code groups the cell belongs to, and obtains the scrambling code group number, and determines the use of the scrambling code group number according to the scrambling code group number. 15 auxiliary synchronization sequences.
  • Step 43 The UE determines an appearance position of a WCDMA frame header.
  • the UE can directly use the neighbor cell measurement frame synchronization algorithm in the WCDMA mode to determine the appearance of the WCDMA frame header, and needs to receive 1 frame of WCDMA data, and in the connected state/HSDPA state, since there is not enough radio idle time, Therefore, the frame synchronization algorithm using the neighbor cell measurement in the WCDMA mode cannot be directly utilized, and a new algorithm needs to be designed according to the slot idle condition in the TD-SCDMA subframe to complete the frame synchronization.
  • Step 44 The UE despreads the CPICH according to the channelization code e 2° 56 and the primary scrambling code fixedly used by the CPICH (Common Pilot Channel), and calculates the RSCP received signal code power by using ten consecutive symbols obtained by despreading.
  • Step 45 The UE determines whether step 14 is performed twice. If yes, the next step is performed, otherwise, step 14 is returned.
  • Step 46 The UE reports the average value of the obtained two received signal code power measurement results to the upper layer.
  • the present invention uses the WCDMA neighboring area measurement method to configure the WCDMA neighboring area measurement in the TD-SCDMA subframe that is dormant in the paging interval, and requires several frames of time. It can be completed, which can fully meet the requirements of the measurement period in the idle state mentioned above.
  • the present invention performs RSCP measurement of the WCDMA neighboring cell by configuring the measurement of the WCDMA neighboring cell on the idle time slot in the TD-SCDMA subframe.
  • the existence of idle time slots in the TD-SCDMA subframe in the connection state/HSDPA state is first analyzed. It is assumed that the TD-SCDMA subframe supports 2 transmission slots, and tsO is used to receive the broadcast channel (BCH) and RSCP measurement. For different TD-SCDMA services, the existence of idle time slots in TD-SCDMA subframes are as follows:
  • TD-SCDMA neighbor measurement In the connection state/HSDPA state, first consider the normal transmission and reception of the TD-SCDMA service; then consider the measurement configuration in the TD-SCDMA system. For the RSCP measurement of the TD-SCDMA neighbor, it needs to be configured to tsO. The measurement of the interference signal code power (ISCP) of the TD-SCDMA service is performed on the service time slot.
  • ISCP interference signal code power
  • the configuration location of the WCDMA measurement one considers the configuration on the above idle time slot
  • WCDMA neighboring area measurement Secondly, considering the TS0 time slot as soon as possible, and configuring WCDMA neighboring area measurement, it is very meaningful for WCDMA neighboring area measurement under HSDPA state.
  • FIG. 5 illustrates the invention utilizing TD-SCDMA in a connected state/HSDPA state.
  • the idle time slot receives a schematic diagram of the data required for each step of the present invention, and the steps are separately described below.
  • the idle window formed by using 2 time slots in the connected state can receive 1 required data, 1 frame completes 1 frame synchronization; and HSDPA state uses TSO+Dwpts (Downlink pilot time slot) can receive 1 required data, 1 frame completes 1 frame synchronization.
  • the length of the slot (0.675ms), since the RSCP calculation requires two samples, this step requires two TD-SCDMA time slots.
  • tsO is first used to receive the BCH of the serving cell and the neighboring cell, and simultaneously perform the same-frequency measurement.
  • tsO is also used to configure the inter-frequency measurement in the TD-SCDMA system.
  • WCDMA is also used to configure the inter-frequency measurement in the TD-SCDMA system.
  • FIG. 6 is a schematic diagram of an idle window in a TD-SCDMA subframe in a connection state/HSDPA state
  • FIG. 7 is a schematic diagram showing a data length corresponding to the idle window shown in FIG. 6 in a WCDMA frame, for a TD-SCDMA sub-
  • the analysis of the idle window in the frame is as follows:
  • connection state/HSDPA state one complete WCDMA slot can be received in the idle window of one TD-SCDMA subframe. Since the WCDMA frame length is 10 ms and the TD-SCDMA subframe length is 5 ms, after receiving the WCDMA data of the Mth slot in one TD-SCDMA subframe, it will be received in the next TD-SCDMA subframe. WCDMA data of the M+7 time slot. Thus, in the connection state / HSDPA state, determining the WCDMA frame header position can use the following algorithm:
  • the determined slot number is two
  • the data of one slot of the WCDMA neighboring area is received again according to the slot synchronization point, and the determined two slot numbers are respectively added twice.
  • the number of slots yields two possibilities for the slot number of the received data.
  • the data received this time is correlated with the auxiliary synchronization sequence corresponding to the two possible slot numbers, and the current received data is determined according to the peak value of the correlation result.
  • the slot number of the WCDMA frame header is determined according to the slot number.
  • M times of WCDMA data is received by using M TD-SCDMA subframes, and M is greater than 2 The integer is performed in step 1). After the M results are combined, it is judged whether or not the second step is performed according to the result; if so, the M CDMA data is again received by the M TD-SCDMA subframes, and the second step is performed. When the M results are combined, it is judged that the slot number is obtained.
  • the invention performs neighbor cell measurement by receiving the data specified by the network side in the idle state, and uses the idle window to receive the data specified by the network side to perform the measurement of the neighboring cell in the connected state, thereby realizing the TD in the WCDMA mode.
  • -SCDMA neighboring cell measurement and neighboring cell measurement for WCDMA in TD-SCDMA mode and on this basis, WCDMA to TD-SCDMA neighboring cell and TD-SCDMA to WCDMA neighboring cell are reselected and switched, effectively It meets the requirements of real-time performance, and therefore has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种邻区测量方法
技术领域
本发明涉及邻区测量技术, 尤其是指一种邻区测量方法。
背景技术
专利 《一种双模移动终端的开机方法》 《 A METHOD FOR STARTING TD-SCDMA AND GSM DUAL MODE MOBILE TERMINAL ( WO2007147305 )》公开了一种 TD-SCDMA及 WCDMA双模移动终端的 开机方法, 该方法适用于各种待机模式, 釆用了在 TD-SCDMA和 WCDMA 两种制式双待机时按照顺序开机的解决方式, 可避免两种制式间在开机时造 成的互相干扰。
专利 《一种双模移动终端的关机方法》 《 CALLING METHOD OF TD-SCDMA AND GSM DUAL-MODE MOBILE TERMINAL ( WO2007143893 )》公开了一种 TD-SCDMA及 WCDMA双模移动终端的 关机方法, 该方法适用于各种待机模式, 釆用了在 TD-SCDMA和 WCDMA 两种制式下双待机时按照顺序关机的解决方式, 可避免两种制式间在关机时 造成的互相干扰。
然而,目前尚没有明确的规范和标准对 WCDMA模式下针对 TD-SCDMA 邻区的测量方法和对 TD-SCDMA模式下针对 WCDMA邻区的测量方法#丈出 规定。
发明内容
本发明的目的在于提供邻区测量的方法,以实现在 WCDMA模式下针对 TD-SCDMA邻区的测量和在 TD-SCDMA模式下针对 WCDMA邻区的测量。
本发明提供了一种邻区测量方法, 该方法用于尚未获得 TD-SCDMA定 时的情况下在 WCDMA模式下进行 TD-SCDMA邻区的测量, 其中, 终端在 空闲状态下使用休眠的 WCDMA子帧接收网络侧指定的 TD-SCDMA邻区的 数据进行 TD-SCDMA邻区的测量, 在连接状态下使用 WCDMA子帧的空闲 窗接收网络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 该方法具体包括以下步骤:
A、 接收所述 TD-SCDMA邻区的数据, 对 TD-SCDMA邻区的频点进行 自动增益控制调整和粗同步调整, 得到一个频点的稳定的自动增益控制值且 该频点的粗同步成功;
B、根据粗同步位置接收与下行同步码相关的数据,从中找出相关峰值最 大的位置作为 TD-SCDMA定时,确定出所述频点下所有 TD-SCDMA邻区相 对 TD-SCDMA定时的观测时间差;
C、根据所述 TD-SCDMA定时接收所述频点下 0时隙中与训练序列码相 关的数据,以此确定出已获得观测时间差的 TD-SCDMA邻区的接收信号码功 率, 执行本步骤三次, 将三次接收信号码功率测量结果的均值上报给网络侧。
进一步地, 所述空闲窗是在压缩模式下形成的; 所述压缩模式的图样由 网络侧指定, 具体包括: 所述空闲窗的个数、 位置及长度, 以及使用所述空 闲窗的 TD-SCDMA帧的数目。
进一步地, 所述步骤 A中, 若 TD-SCDMA邻区的所有频点的粗同步均 无法成功,则终端将所有 TD-SCDMA邻区的接收信号码功率以最小值上报给 网络侧。
较佳地, 所述步骤 A中, 对 TD-SCDMA邻区的一个频点进行粗同步需 要接收一次 TD-SCDMA邻区的数据。
较佳地, 所述 TD-SCDMA邻区的数据的接收量为: 每次接收 1帧 +128 码片长度的数据。
本发明还提供了一种邻区测量方法, 该方法用于在已获得 TD-SCDMA 定时的情况下在 WCDMA模式下进行 TD-SCDMA邻区的测量, 其中, 终端 在空闲状态下使用休眠的 WCDMA子帧接收网络侧指定的 TD-SCDMA邻区 的数据进行 TD-SCDMA邻区的测量, 在连接状态下使用 WCDMA子帧的空 闲窗接收网络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测 量, 该方法具体包括以下步骤: a、 接收 TD-SCDMA邻区的数据, 对 TD-SCDMA邻区的一个频点进行 自动增益控制调整, 得到该频点的稳定的自动增益控制值;
b、 接收与下行同步码相关的数据, 确定出所述频点下所有 TD-SCDMA 邻区相对 TD-SCDMA定时的观测时间差;
c、 根据 TD-SCDMA定时接收所述频点下 0时隙中与训练序列码相关的 数据, 以此确定出已获得观测时间差的 TD-SCDMA邻区的接收信号码功率, 执行步骤 b至步骤 c三次, 将三次接收信号码功率测量结果均值上报给网络 侧。
进一步地, 所述空闲窗是在 WCDMA压缩模式下形成的; 所述压缩模式 的图样由网络侧指定, 具体包括: 所述空闲窗的个数、 位置及长度, 以及使 用所述空闲窗的 TD-SCDMA帧的数目。
本发明还提供了一种邻区测量方法, 该方法用于在 TD-SCDMA模式下 进行 WCDMA邻区的测量,其中,终端在空闲状态下使用休眠的 TD-SCDMA 子帧接收网络侧指定的 WCDMA邻区的数据进行 WCDMA邻区的测量; 在 连接状态或高速下行分组接入状态下使用 TD-SCDMA子帧的空闲窗接收网 络侧指定的 WCDMA邻区的数据进行 WCDMA邻区的测量; 该方法具体包 括以下步骤:
A、 接收所述 WCDMA邻区的数据, 进行时隙同步处理, 确定出时隙同 步点;
B、 根据所述 WCDMA邻区的扰码号确定出该小区的辅助同步序列组;
C、 确定 WCDMA帧头的出现位置;
D、 取公共导频信道解扩后得到的十个连续的符号计算接收信号码功率。 进一步地, 所述空闲窗在连接状态下是 TD-SCDMA子帧中的两个空闲 时隙;在高速下行分组接入状态下是 TD-SCDMA子帧中空闲的 0时隙和下行 导频时隙。
进一步地, 所述步骤 A之前该方法还包括以下步骤: 接收网络侧下发的 测量邻区信息, 其中指定了本次测量的 WCDMA邻区的扰码号和频点。
较佳地, 所述时隙同步确定出时隙同步点的具体过程为: 接收所述 WCDMA邻区的长度为 1时隙 +256码片的数据,将其与本地的主同步码进行 相关, 得到 1个时隙的相关结果, 才艮据相关结果的峰值确定出时隙同步点。
较佳地, 确定 WCDMA帧头位置的具体过程如下: 空闲状态下, 根据所 确定出的时隙同步点接收所述 WCDMA邻区的 15个时隙的数据, 从每个时 隙头中取出 256码片构成序列 A; 将序列 A与所述 WCDMA邻区的 15个辅 助同步序列依次相关, 滑动步长为 256码片, 才艮据 15个相关结果的峰值确定 出 WCDMA帧头的出现位置; 或者在连接状态或高速下行分组接入状态下, 根据时隙同步点接收所述 WCDMA邻区的一个时隙的数据,将其与小区辅助 同步序列组的各个辅助同步序列相关, 若根据相关结果的峰值确定出的时隙 号为一个, 则以此确定出 WCDMA帧头的出现位置; 若确定出的时隙号为两 个, 则再次接收所述 WCDMA邻区的一个时隙的数据, 将确定出的两个时隙 号分别加上两次接收间隔的时隙数得出本次接收数据的时隙号的两种可能, 将本次接收的数据与这两种可能的时隙号对应的辅助同步序列相关, 根据相 关结果的峰值确定出本次接收数据的时隙号, 根据该时隙号确定出 WCDMA 帧头的出现位置。
进一步地, 步骤 D之后该方法进一步包括: 重复执行步骤 D, 之后将得 到的两次接收信号码功率测量结果的均值上报给高层。
进一步地, 步骤 D中解扩时是根据公共导频信道固定使用的信道化码和 主扰码解扩的。
本发明通过在空闲状态下使用休眠的空闲帧接收网络侧指定的数据进行 邻区测量, 在连接状态下使用空闲窗(compress gap )接收网络侧指定的数据 进行邻区的测量, 实现了在 WCDMA模式下针对 TD-SCDMA的邻区测量和 在 TD-SCDMA模式下针对 WCDMA 的邻区测量; 且在此基础上实现了 WCDMA到 TD-SCDMA邻区和 TD-SCDMA到 WCDMA邻区得重选和切换 , 有效的满足了实时性的要求, 具有很高的实用价值。
附图概述
图 1为本发明中第一种 WCDMA模式下针对 TD-SCDMA邻区的测量方 法的流程图; 图 2为本发明中第二种 WCDMA模式下针对 TD-SCDMA邻区的测量方 法的流程图;
图 3为本发明第二种方法中频点的测量过程示意图;
图 4为本发明所述 TD-SCDMA模式下针对 WCDMA邻区的测量方法的 流程图;
图 5为本发明在 TD-SCDMA连接状态/ HSDPA状态下利用 TD-SCDMA 空闲时隙接收本发明各步骤所需数据的示意图;
图 6为 TD-SCDMA连接状态/ HSDPA状态下 TD-SCDMA子帧中的空闲 窗示意图;
图 7为 WCDMA帧中与图 3所示的空闲窗相对应的数据长度示意图。
本发明的较佳实施方式
本发明的核心构思是: 在空闲状态下使用休眠的空闲帧接收网络侧指定 的数据进行邻区测量, 在连接状态下使用空闲窗接收网络侧指定的数据进行 邻区的测量。
下面结合各个附图对本发明的具体实现过程作进一步详细的说明。 为了 描述的方便, 将分别针对在 WCDMA模式下进行 TD-SCDMA邻区的测量和 在 TD-SCDMA模式下进行 WCDMA邻区的测量进行说明。
在 WCDMA模式下进行 TD-SCDMA邻区的测量时, 终端在空闲状态下 使用休眠的 WCDMA子帧接收网络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 在连接状态下使用 WCDMA子帧的空闲窗接收网 络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量,从而确保 了 WCDMA模式下针对 TD-SCDMA邻区测量的实现。
而在 WCDMA模式下针对 TD-SCDMA邻区的测量有两种情况: 第一种 应用于尚未获得 TD-SCDMA定时的情况, 称为第一种 WCDMA模式; 第二 种是应用于已获得 TD-SCDMA定时的情况下, 称为第二种 WCDMA模式, 下面分别予以说明。
这里, 需要说明的是: WCDMA系统与 TD间的测量最多支持 32个小区 的测量, 这 32个小区最多具有 3个时分双工 (TDD )频点。
请参阅图 1 , 为本发明中第一种 WCDMA模式下针对 TD-SCDMA邻区 的测量方法的流程图, 该方法中, 终端在空闲状态下使用休眠的空闲帧接收 数据进行 TD-SCDMA邻区的测量,在连接状态下使用压缩模式下形成的空闲 窗 ( compress gap )接收数据进行 TD-SCDMA邻区的测量。 其具体实现过程 下:
步骤 10、 网络侧向终端下发连接状态下进行 TDD模式测量釆用的压缩 模式图样;
所述图样的内容中包括 1个 TD-SCDMA帧中压缩模式下形成的空闲窗 的个数、位置及长度, 以及使用这种压缩模式下形成的空闲窗的 TD-SCDMA 帧的数目。所述图样通过参数 TGSN( Transmission Gap Starting Slot Number )、 TGL1 ( Transmission Gap Length 1 ) 、 TGL2 ( Transmission Gap Length 2 ) 、 TGD ( Transmission Gap start Distance ) 、 TGPLl ( Transmission Gap Pattern Length ) 、 TGPRC ( Transmission Gap Pattern Repetition Count )和 TGCFN ( Transmission Gap Connection Frame Number )确切地表示。
步骤 11、 终端在第一个频点尝试粗同步。
步骤 12、 终端将射频切换到准备尝试粗同步的频点。
步骤 13、 终端接收若干次(目前取 4 ) TD-SCDMA数据, 在空闲状态下 使用休眠的空闲帧接收数据, 在连接状态下使用压缩模式下形成的空闲窗接 收数据, 用于进行自动增益控制 (AGC )调整, 直到得到该频点下的一个稳 定的 AGC值。
步骤 14、 终端接收 1次 TD-SCDMA数据, 在空闲状态下使用休眠的空 闲帧接收数据, 在连接状态下使用压缩模式下形成的空闲窗接收数据, 通过 滑动相关算法在可收全 1TD-CDMA帧 +128CHIP数据的空闲窗上配置粗同 步, 若成功, 转步骤 17, 否则, 执行步骤 15。
步骤 15、 终端判断是否还有未进行过粗同步尝试的频点, 若存在, 准备 尝试该频点, 返回步骤 12, 否则, 执行步骤 16。
步骤 16、 终端将所有 TD-SCDMA邻区的接收信号码功率(RSCP )以最 小值上报给网络侧。
步骤 17、终端根据粗同步位置接收与下行同步码( sync— dl )相关的 128chip 长度的数据, 在空闲状态下使用休眠的空闲帧接收数据, 在连接状态下使用 压缩模式下形成的空闲窗接收数据, 在下行同步码全部落入空闲窗后找出相 关峰值最大的位置, 根据这一位置得到帧头作为 TD-SCDMA定时。 由于 TD-SCDMA系统是同步系统, 因此如果找到一个小区的定时, 即该小区的帧 头位置, 就认为获得了整个 TD-SCDMA系统的定时。
步骤 18、 终端确定出上述粗同步成功的频点下所有 TD-SCDMA邻区相 对 TD-SCDMA定时的观测时间差 (OTD ) 。
步骤 19、 终端根据 TD-SCDMA定时接收粗同步成功的频点下 0时隙中 与训练序列 (midambl )码相关的数据, 在空闲状态下使用休眠的空闲帧接收 数据, 在连接状态下使用压缩模式下形成的空闲窗接收数据, 在接收数据全 部落入空闲窗的情况下, 根据接收到的 midambl相关数据确定出已获得 OTD 的 TD-SCDMA邻区的 RSCP。
步骤 20、 判断步骤 19是否执行满三次, 若是, 执行下一步骤, 否则, 返回步骤 19。
步骤 21、 终端将三次 RSCP测量结果均值上^艮给网络侧。
上述步骤 19中, 由于受 RSCP模块处理能力的限制, 终端通过 RSCP模 块每接收一次与 midambl码相关的数据,可确定出四个邻区的 RSCP, 因此若 某频点下的 TD-SCDMA邻区的数目大于四个,则需要 RSCP模块接收及计算 多次, 从而得出该频点下所有 TD-SCDMA邻区的 RSCP测量结果。
上述方法描述了尚未获得 TD-SCDMA定时的情况下, 终端在 WCDMA 模式下针对 TD-SCDMA邻区的测量的流程,然而釆用该方法仅能够实现粗同 步成功的一个频点下的所有 TD-SCDMA 邻区的测量, 其余频点下的 TD-SCDMA邻区的测量釆用下述方法完成。
请参阅图 2, 该图为本发明中第二种 WCDMA模式下针对 TD-SCDMA 邻区的测量方法的流程图, 该方法中, 终端在空闲状态下使用休眠的空闲帧 接收数据进行 TD-SCDMA邻区的测量,在连接状态下使用压缩模式下形成的 空闲窗接收数据进行 TD-SCDMA邻区的测量。 其具体实现过程如下: 步骤 30、 网络侧向终端下发连接状态下进行 TDD模式测量釆用的压缩 模式图样;
所述图样的内容中包括 1个 TD-SCDMA帧中压缩模式下形成的空闲窗 的个数、位置及长度, 以及使用这种压缩模式下形成的空闲窗的 TD-SCDMA 帧的数目。所述图样通过参数 TGSN( Transmission Gap Starting Slot Number )、 TGL1 ( Transmission Gap Length 1 ) 、 TGL2 ( Transmission Gap Length 2 ) 、 TGD ( Transmission Gap start Distance ) 、 TGPLl ( Transmission Gap Pattern Length ) 、 TGPRC ( Transmission Gap Pattern Repetition Count )和 TGCFN ( Transmission Gap Connection Frame Number )确切地表示。
步骤 31、 终端选择第一个需要计算 RSCP的频点。
步骤 32、 终端将射频切换到本次选择的频点。
步骤 33、 终端接收若干次(目前取 4 ) TD-SCDMA数据, 在空闲状态下 使用休眠的空闲帧接收数据, 在连接状态下使用压缩模式下形成的空闲窗接 收数据, 用于进行 AGC调整, 得到本次选择的频点的一个稳定的 AGC值。
步骤 34、 获取 TD-SCDMA系统的定时;
本步骤中, 终端利用下行同步跟踪(DST )模块生成若干个(当前 4个) TD-SCDMA小区的定时, 由于 TD-SCDMA系统是同步系统, 因此如果获得 了一个小区的定时, 就认为获得了整个 TD-SCDMA系统的定时。
步骤 35、 终端接收与 sync— dl码相关的 128chip长度的数据, 在空闲状态 下使用休眠的空闲帧接收数据, 在连接状态下使用压缩模式下形成的空闲窗 接收数据,利用接收到的 sync— dl码确定出本次选择的频点下所有 TD-SCDMA 邻区相对 TD-SCDMA定时的 OTD。
步骤 36、 终端根据获取的 TD-SCDMA定时接收本次选择的频点下 0时 隙中与 midambl码相关的数据, 在空闲状态下使用休眠的空闲帧接收数据, 在连接状态下使用压缩模式下形成的空闲窗接收数据, 以此确定出已获得 OTD的 TD-SCDMA邻区的 RSCP。
步骤 37、判断步骤 35至步骤 36是否执行了三次, 若是,执行下一步骤, 否则, 返回步骤 35。
步骤 38、 终端判断是否还有其它未计算 RSCP的频点, 如存在, 选择该 频点, 返回步骤 32, 否则, 执行下一步骤。
步骤 39、 终端将所有频点的 RSCP测量结果上报网络侧。
上述流程中, 步骤 35由 DST模块完成, 步骤 36由 RSCP模块完成。 由 于受处理能力的限制, 终端通过 DST模块每接收一次与 sync— dl码相关的数 据, 仅可确定出本频点下的四个 TD-SCDMA小区相对 TD-SCDMA定时的 OTD; 终端通过 RSCP模块每接收一次与 midambl码相关的数据, 仅可确定 出四个已获得 OTD的 TD-SCDMA邻区的 RSCP。为了提高效率,终端可将 0 时隙中与 midambl码相关的数据以及与 sync— dl相关的数据一次接收, 这样 DST模块和 RSCP模块即可并行进行处理, 如图 3所示, 即 DST模块在计算 新的一组四个小区的 OTD的同时, RSCP模块计算已获得上一组已获得 OTD 的 4个小区的 RSCP。
在 TD-SCDMA模式下进行 WCDMA邻区的测量时, 终端在空闲状态下 使用休眠的 TD-SCDMA子帧接收网络侧指定的 WCDMA邻区的数据进行 WCDMA 邻区的测量; 在连接状态或高速下行分组接入状态下使用 TD-SCDMA 子帧的空闲窗接收网络侧指定的 WCDMA邻区的数据进行 WCDMA邻区的测量, 从而确保了 TD-SCDMA模式下针对 WCDMA邻区测 量的实现。
TD-SCDMA系统中的用户设备 ( UE )最多支持 32个频分双工 (FDD ) 小区的测量, 这 32的小区最多具有 3个 FDD频点。
TD-SCDMA系统中的 UE在连接状态 /高速下行分组接入(HSDPA )状 态下的测量周期为 480ms, TD-SCDMA系统中的 UE在空闲(idle )状态下的 测量周期如下表所示:
Figure imgf000011_0001
0.16 1.28 ( 4 )
0.32 1.28 ( 2 )
0.64 1.28 ( 1 )
1.28 1.28 ( 1 )
2.56 2.56 ( 1 )
5.12 5.12 ( 1 )
请参阅图 4, 该图为本发明所述 TD-SCDMA模式下针对 WCDMA邻区 的测量方法的总流程图, 其主要实现过程为:
步骤 40、 网络侧向 UE下发测量 WCDMA邻区的信息, 其中指定了本次 测量的 WCDMA邻区的 4尤码号和频点。
步骤 41、 UE接收本次测量的 WCDMA邻区的长度为 1时隙 +256chip的 数据, 将其与本地的主同步(P-SCH )码(256chip, 整个 TD-SCDMA网络使 用同一个 P-SCH码)进行相关, 得到 1个时隙 (2560chip ) 的相关结果, 根 据相关结果的峰值确定出时隙同步点。
步骤 42、 UE根据本次测量的 WCDMA邻区的扰码号可知该小区属于 64 个扰码组中的哪个组, 即可得到扰码组号, 根据扰码组号确定出 1桢内使用 的 15个辅助同步序列。
步骤 43、 UE确定 WCDMA帧头的出现位置;
空闲状态下, UE可直接釆用 WCDMA模式下邻区测量帧同步算法确定 WCDMA帧头的出现位置, 需要接收 1 帧 WCDMA数据, 而在连接状态 /HSDPA状态下, 由于没有足够的射频空闲时间, 因此不能直接利用利用 WCDMA模式下邻区测量的帧同步算法, 需要根据 TD-SCDMA子帧中的时 隙空闲情况设计新的算法完成帧同步。
步骤 44、 UE根据 CPICH (公共导频信道 )固定使用的信道化码 e56和主 扰码解扩 CPICH, 利用解扩得到的十个连续的符号计算 RSCP接收信号码功 率。 步骤 45、 UE判断步骤 14是否执行了两次, 若是, 执行下一步骤, 否则, 返回步骤 14。
步骤 46、 UE将得到的两次接收信号码功率测量结果的均值上报给高层。 在上述流程中, 当 UE处于空闲状态时, 本发明釆用在寻呼间隔内休眠 的 TD-SCDMA子帧上配置 WCDMA邻区测量的方式完成 WCDMA邻区的 RSCP的测量,需要几帧的时间即可完成,可完全满足前述空闲状态下测量周 期的要求。 而在连接状态 /HSDPA状态下,本发明釆用在 TD-SCDMA子帧中的空闲 时隙上配置 WCDMA邻区的测量的方式完成 WCDMA邻区的 RSCP的测量。
下面首先对连接状态 /HSDPA状态下 TD-SCDMA子帧中的空闲时隙存在 情况予以分析, 假定 TD-SCDMA子帧支持 2个发射时隙, tsO用于接收广播 信道( BCH )和 RSCP测量, 针对不同的 TD-SCDMA业务, TD-SCDMA子 帧中的空闲时隙存在情况分别如下:
1 )对于 12.2k和 64k的语音业务, 通常是 1个收时隙和 1个发时隙, 因 此存在 4个空闲时隙;
2 )对于 144k的下行业务, 通常是 2个收时隙和 1个发时隙, 因此存在 3个空闲时隙;
3 )对于 384k的下行业务, 通常是 3个收时隙和 1个发时隙, 因此存在 2个空闲时隙;
4 )对于 HSDPA业务, 在峰值速率时, 无空闲时隙。
在连接状态/ HSDPA 状态下配置 WCDMA 邻区测量, 首先要考虑 TD-SCDMA业务的正常收发; 然后要考虑 TD-SCDMA系统内的测量配置, 有关 TD-SCDMA邻区 RSCP的测量, 需要配置到 tsO上, 有关 TD-SCDMA 业务干扰信号码功率(ISCP ) 的测量, 在业务时隙上进行。
综上所述, WCDMA测量的配置位置: 一则考虑在上述空闲时隙上配置
WCDMA邻区测量; 二则考虑尽快让出 TS0时隙, 配置 WCDMA邻区测量, 对 HSDPA状态下的 WCDMA邻区测量非常具有意义。
请参阅图 5 , 该图为本发明在连接状态/ HSDPA状态下利用 TD-SCDMA 空闲时隙接收本发明各步骤所需数据的示意图,下面分别对各步骤予以说明。 在时隙同步的步骤中, 需要接收的 1 时隙 +256chip 长度的数据, 约是 0.66+0.013=0.673ms, 再加上频点切换时间, 不超过 1个 TD-SCDMA时隙长 度( 864/1.28M=0.675ms ) , 由此可知, 用 1个 TD-SCDMA时隙可完成 1次 时隙同步。
在帧同步的步骤中,需要接收 2560chip的 WCDMA数据,连接状态下利 用 2个时隙构成的空闲窗可收到 1次所需数据, 1帧完成 1次帧同步; HSDPA 状态下利用 TSO+Dwpts (下行导频时隙)可收到 1次所需数据, 1 帧完成 1 次帧同步。
在 RSCP计算的步骤中,需要接收 10符号相关数据,长度是 1个 WCDMA 时隙长度的数据, 约是 10/15ms=0.66ms, 再加上频点切换时间, 不超过 1个 TD-SCDMA时隙的长度(0.675ms ) , 由于 RSCP计算需要两次釆样, 因此 本步骤需要两个 TD-SCDMA时隙。
综上所述, 除去 HSDPA状态, 在连接状态下每个 TD-SCDMA子帧上至 少有 2个空闲时隙, 因此需要 3帧即可完成 1个频点下所有 WCDMA邻区的 测量, 一个测量周期(480ms )大约是 96帧, 是完全可以完成 WCDMA邻区 的测量的; 而在 HSDPA状态下, 考虑在 TSO+DwPTS位置进行测量, 需要 3 帧即可完成 1个频点下所有 WCDMA邻区的测量。在一个测量周期(480ms ) 中, tsO首先用于接收服务小区和邻区的 BCH, 同时进行同频测量; 其次 tsO 还用于配置 TD-SCDMA系统内的异频测量; 最后考虑在 tsO配置 WCDMA 邻区测量。 粗略估计 HSDPA模式下用于 WCDMA测量的有几十帧, 足可以 完成 WCDMA测量。
下面分别对空闲状态下及连接状态/ HSDPA状态下釆用的帧同步算法予 以说明。
空闲状态下, 确定 WCDMA帧头位置的具体过程如下:
1 )根据时隙同步点接收本次测量的 WCDMA邻区的 15个时隙的数据, 从每个时隙头中取出 256码片构成序列 A;
2 )将序列 A与本次测量的 WCDMA邻区的 15个辅助同步序列依次相关, 每次滑动 step=256chip, 得到 15个相关结果;
3 )根据 15个相关结果的峰值确定出 WCDMA帧头的出现位置。
图 6所示为连接状态/ HSDPA状态下 TD-SCDMA子帧中的空闲窗示意 图,图 7所示为 WCDMA帧中与图 6所示的空闲窗相对应的数据长度示意图, 对 TD-SCDMA子帧中的空闲窗分析如下:
连接状态下, TD-SCDMA子帧中必然存在由 2个空闲时隙构成的空闲窗, 空闲窗的大小 Zt=1728 TDchip, 折合到 WCDMA帧中大约是 5184wchip, 即 Zw=5184 wchi , 至少包含 2~3个 WCDMA时隙头。
HSDPA状态下,釆用 TD-SCDMA子帧中空闲的 TSO+Dwpts作为空闲窗 进行 WCDMA测量, 即 Zt=992 TDchip,折合成到 WCDMA帧中大约是 2976 wchip, 即 Zw=2976 wchip, 至少包括 2个时隙头。
因此, 在连接状态/ HSDPA状态下, 在 1个 TD-SCDMA子帧的空闲窗上 必然可收到 1 个完整的 WCDMA 时隙。 由于 WCDMA帧长为 10ms, 而 TD-SCDMA子帧长为 5ms, 因此在一个 TD-SCDMA子帧收到第 M 时隙的 WCDMA数据后, 在接下来的一个 TD-SCDMA子帧中会收到第 M+7时隙的 WCDMA数据。 由此, 在连接状态/ HSDPA状态下, 确定 WCDMA帧头位置 可釆用如下算法:
1 )根据时隙同步点接收本次测量的 WCDMA邻区的一个时隙的数据, 将其与该小区辅助同步序列组中的每一个辅助同步序列相关, 若根据相关结 果的峰值确定出的时隙号为一个, 则以此确定出 WCDMA帧头的出现位置, 否则, 执行下一步骤;
2 )若确定出的时隙号为两个, 则根据时隙同步点再次接收该 WCDMA 邻区的一个时隙的数据, 将确定出的两个时隙号分别加上两次接收间隔的时 隙数得出本次接收数据的时隙号的两种可能, 将本次接收的数据与这两种可 能的时隙号对应的辅助同步序列相关, 根据相关结果的峰值确定出本次接收 数据的时隙号, 根据该时隙号确定出 WCDMA帧头的出现位置。
若考虑到重复策略, 可进行如下改进:
首先利用 M个 TD-SCDMA子帧接收 M次 WCDMA数据, M为大于 2 的整数, 进行第 1 )步, 综合 M次结果后, 根据结果判断是否进行第 2 )步; 若进行,之后再次利用 M个 TD-SCDMA子帧接收 M次 WCDMA数据, 进行第 2 ) 步, 综合 M次结果, 判断得到时隙号即可。
发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
工业实用性
本发明通过在空闲状态下使用休眠的空闲帧接收网络侧指定的数据进行 邻区测量,在连接状态下使用空闲窗接收网络侧指定的数据进行邻区的测量, 实现了在 WCDMA模式下针对 TD-SCDMA的邻区测量和在 TD-SCDMA模 式下针对 WCDMA 的邻区测量; 且在此基础上实现了 WCDMA 到 TD-SCDMA邻区和 TD-SCDMA到 WCDMA邻区得重选和切换,有效的满足 了实时性的要求, 因此具有^ 虽的工业实用性。

Claims

权 利 要 求 书
1、 一种邻区测量方法, 该方法用于尚未获得 TD-SCDMA定时的情况下 在 WCDMA模式下进行 TD-SCDMA邻区的测量, 其中, 终端在空闲状态下 使用休眠的 WCDMA子帧接收网络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 在连接状态下使用 WCDMA子帧的空闲窗接收网 络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 该方法具 体包括以下步骤:
A、 接收所述 TD-SCDMA邻区的数据, 对 TD-SCDMA邻区的频点进行 自动增益控制调整和粗同步调整, 得到一个频点的稳定的自动增益控制值且 该频点的粗同步成功;
B、根据粗同步位置接收与下行同步码相关的数据,从中找出相关峰值最 大的位置作为 TD-SCDMA定时,确定出所述频点下所有 TD-SCDMA邻区相 对 TD-SCDMA定时的观测时间差;
C、根据所述 TD-SCDMA定时接收所述频点下 0时隙中与训练序列码相 关的数据,以此确定出已获得观测时间差的 TD-SCDMA邻区的接收信号码功 率, 执行本步骤三次, 将三次接收信号码功率测量结果的均值上报给网络侧。
2、如权利要求 1所述的方法,其中,所述空闲窗是在压缩模式下形成的; 所述压缩模式的图样由网络侧指定, 具体包括: 所述空闲窗的个数、 位置及 长度, 以及使用所述空闲窗的 TD-SCDMA帧的数目。
3、 如权利要求 1所述的方法, 其中, 所述步骤 A中, 若 TD-SCDMA邻 区的所有频点的粗同步均无法成功,则终端将所有 TD-SCDMA邻区的接收信 号码功率以最小值上 ^艮给网络侧。
4、 如权利要求 1所述的方法, 其中, 所述步骤 A中, 对 TD-SCDMA邻 区的一个频点进行粗同步需要接收一次 TD-SCDMA邻区的数据。
5、 如权利要求 4所述的方法, 其中, 所述 TD-SCDMA邻区的数据的接 收量为: 每次接收 1帧 +128码片长度的数据。
6、 一种邻区测量方法, 该方法用于在已获得 TD-SCDMA定时的情况下 在 WCDMA模式下进行 TD-SCDMA邻区的测量, 其中, 终端在空闲状态下 使用休眠的 WCDMA子帧接收网络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 在连接状态下使用 WCDMA子帧的空闲窗接收网 络侧指定的 TD-SCDMA邻区的数据进行 TD-SCDMA邻区的测量, 该方法具 体包括以下步骤:
a、 接收 TD-SCDMA邻区的数据 , 对 TD-SCDMA邻区的一个频点进行 自动增益控制调整, 得到该频点的稳定的自动增益控制值;
b、 接收与下行同步码相关的数据, 确定出所述频点下所有 TD-SCDMA 邻区相对 TD-SCDMA定时的观测时间差;
c、 根据 TD-SCDMA定时接收所述频点下 0时隙中与训练序列码相关的 数据, 以此确定出已获得观测时间差的 TD-SCDMA邻区的接收信号码功率, 执行步骤 b至步骤 c三次, 将三次接收信号码功率测量结果均值上报给网络 侧。
7、 如权利要求 6所述的方法, 其中, 所述空闲窗是在 WCDMA压缩模 式下形成的; 所述压缩模式的图样由网络侧指定, 具体包括: 所述空闲窗的 个数、 位置及长度, 以及使用所述空闲窗的 TD-SCDMA帧的数目。
8、 一种邻区测量方法, 该方法用于在 TD-SCDMA模式下进行 WCDMA 邻区的测量,其中,终端在空闲状态下使用休眠的 TD-SCDMA子帧接收网络 侧指定的 WCDMA邻区的数据进行 WCDMA邻区的测量; 在连接状态或高 速下行分组接入状态下使用 TD-SCDMA子帧的空闲窗接收网络侧指定的 WCDMA邻区的数据进行 WCDMA邻区的测量; 该方法具体包括以下步骤: A、 接收所述 WCDMA邻区的数据, 进行时隙同步处理, 确定出时隙同 步点;
B、 根据所述 WCDMA邻区的扰码号确定出该小区的辅助同步序列组;
C、 确定 WCDMA帧头的出现位置;
D、 取公共导频信道解扩后得到的十个连续的符号计算接收信号码功率。
9、 如权利要求 8 所述的方法, 其中, 所述空闲窗在连接状态下是
TD-SCDMA 子帧中的两个空闲时隙; 在高速下行分组接入状态下是 TD-SCDMA子帧中空闲的 0时隙和下行导频时隙。
10、 如权利要求 8所述的方法, 其中, 所述步骤 A之前该方法还包括以 下步骤: 接收网络侧下发的测量邻区信息,其中指定了本次测量的 WCDMA邻区 的扰码号和频点。
11、 如权利要求 8所述的方法, 其中, 所述时隙同步确定出时隙同步点 的具体过程为:
接收所述 WCDMA邻区的长度为 1时隙 +256码片的数据, 将其与本地 的主同步码进行相关, 得到 1个时隙的相关结果, 才艮据相关结果的峰值确定 出时隙同步点。
12、 如权利要求 8所述的方法, 其中, 确定 WCDMA帧头位置的具体过 程如下:
空闲状态下, 根据所确定出的时隙同步点接收所述 WCDMA邻区的 15 个时隙的数据, 从每个时隙头中取出 256码片构成序列 A; 将序列 A与所述 WCDMA邻区的 15个辅助同步序列依次相关, 滑动步长为 256码片, 根据 15个相关结果的峰值确定出 WCDMA帧头的出现位置; 或者
在连接状态或高速下行分组接入状态下, 根据时隙同步点接收所述 WCDMA邻区的一个时隙的数据, 将其与小区辅助同步序列组的各个辅助同 步序列相关, 若根据相关结果的峰值确定出的时隙号为一个, 则以此确定出 WCDMA 帧头的出现位置; 若确定出的时隙号为两个, 则再次接收所述 WCDMA邻区的一个时隙的数据, 将确定出的两个时隙号分别加上两次接收 间隔的时隙数得出本次接收数据的时隙号的两种可能, 将本次接收的数据与 这两种可能的时隙号对应的辅助同步序列相关, 才艮据相关结果的峰值确定出 本次接收数据的时隙号, 根据该时隙号确定出 WCDMA帧头的出现位置。
13、 如权利要求 8所述的方法, 其中, 步骤 D之后该方法进一步包括: 重复执行步骤 D, 之后将得到的两次接收信号码功率测量结果的均值上报给 τ¾层。
14、 如权利要求 12所述的方法, 其中, 步骤 D之后该方法进一步包括: 重复执行步骤 D, 之后将得到的两次接收信号码功率测量结果的均值上报给 τ¾层。
15、 如权利要求 8所述的方法, 其中, 步骤 D中解扩时是根据公共导频 信道固定使用的信道化码和主扰码解扩的。
PCT/CN2009/072821 2008-07-17 2009-07-17 一种邻区测量方法 WO2010006559A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2731140A CA2731140C (en) 2008-07-17 2009-07-17 A method for measuring adjacent areas
US13/054,762 US8724594B2 (en) 2008-07-17 2009-07-17 Method for measuring adjacent areas
EP09797406.7A EP2306771B1 (en) 2008-07-17 2009-07-17 Method for measuring adjacent areas
US14/196,899 US9398502B2 (en) 2008-07-17 2014-03-04 Method for measuring adjacent areas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2008101324784A CN101631350B (zh) 2008-07-17 2008-07-17 Wcdma模式下针对td-scdma邻区的测量方法
CN200810132478.4 2008-07-17
CN200810132295.2 2008-07-24
CN2008101322952A CN101635967B (zh) 2008-07-24 2008-07-24 Td-scdma模式下针对wcdma邻区的测量方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/054,762 A-371-Of-International US8724594B2 (en) 2008-07-17 2009-07-17 Method for measuring adjacent areas
US14/196,899 Division US9398502B2 (en) 2008-07-17 2014-03-04 Method for measuring adjacent areas

Publications (1)

Publication Number Publication Date
WO2010006559A1 true WO2010006559A1 (zh) 2010-01-21

Family

ID=41550027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072821 WO2010006559A1 (zh) 2008-07-17 2009-07-17 一种邻区测量方法

Country Status (4)

Country Link
US (1) US8724594B2 (zh)
EP (1) EP2306771B1 (zh)
CA (2) CA2915864C (zh)
WO (1) WO2010006559A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639258B2 (en) 2011-06-09 2014-01-28 Qualcomm Incorporated Measurement scheduling in cell—FACH (forward access channel) and cell—DCH (dedicated channel) states
US9059785B2 (en) * 2011-07-07 2015-06-16 Qualcomm Incorporated Fast timing acquisition in cell search
KR101150846B1 (ko) 2011-09-05 2012-06-13 엘지전자 주식회사 셀 측정 방법 및 그를 위한 정보 전송 방법
US9125114B2 (en) * 2012-11-16 2015-09-01 Qualcomm Incorporated Inter radio access technology (IRAT) measurement
CN113965306A (zh) * 2013-01-18 2022-01-21 诺基亚技术有限公司 从多个处于休眠模式的小区传输参考信号的方法及其装置
US20140204772A1 (en) * 2013-01-18 2014-07-24 Qualcom Incorporated Background public land mobile network search
US9326204B2 (en) * 2013-03-14 2016-04-26 Qualcomm Incorporated Inter-radio access technology (IRAT) handover
WO2015077973A1 (en) * 2013-11-29 2015-06-04 Qualcomm Incorporated Methods and apparatus for interference mitigation in wireless communication system
US9648554B2 (en) 2014-08-18 2017-05-09 Samsung Electronics Co., Ltd Mobile terminal for cell reselection in cellular mobile communication system and methods therefor
CN105357162B (zh) * 2014-08-22 2020-12-11 中兴通讯股份有限公司 一种信号处理方法、基站和终端
CN105636109B (zh) * 2014-11-18 2019-09-03 中国移动通信集团公司 频点测量方法及装置、终端
CN107889136A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种自动更新测量频点的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725901A (zh) * 2004-07-22 2006-01-25 Sk电信技术有限公司 在空闲状态的多模移动终端中进行系统间模式切换的方法
CN1949917A (zh) * 2005-10-13 2007-04-18 中兴通讯股份有限公司 Wcdma系统中频间和系统间测量组合控制方法
US20070173254A1 (en) * 2006-01-26 2007-07-26 Tebbit Nicholas J Methods, devices and systems relating to reselecting cells in a cellular wireless communications system
WO2007143893A1 (fr) 2006-06-09 2007-12-21 Zte Corporation Procédé d'appel de terminal mobile double mode gsm et td-scdma
WO2007147305A1 (fr) 2006-06-16 2007-12-27 Zte Corporation Procédé de démarrage d'un terminal mobile à double mode td-scdma et gsm

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592597B1 (ko) * 2001-01-10 2006-06-26 한국전자통신연구원 압축 모드 및 인접 기지국 간 공통 주파수를 이용한핸드오버 방법
CN1259785C (zh) * 2003-08-04 2006-06-14 大唐移动通信设备有限公司 获取时分同步cdma(td-scdma)用户终端的载波频偏的方法
CN1263322C (zh) * 2003-08-06 2006-07-05 大唐移动通信设备有限公司 Td-scdma移动通信系统小区初始搜索中的增益控制方法
US7330732B2 (en) * 2003-08-07 2008-02-12 Qualcomm Incorporated Scheduling neighbor cell measurements for multiple wireless communication systems
US20060014538A1 (en) * 2004-07-14 2006-01-19 Zhu Yuan Frequency quality criteria for inter-frequency handover in a TD-CDMA communication system
US20060121935A1 (en) * 2004-11-29 2006-06-08 Nokia Corporation System, devices and methods using an indication of complementary access availability in measurement reports sent by mobile terminals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725901A (zh) * 2004-07-22 2006-01-25 Sk电信技术有限公司 在空闲状态的多模移动终端中进行系统间模式切换的方法
CN1949917A (zh) * 2005-10-13 2007-04-18 中兴通讯股份有限公司 Wcdma系统中频间和系统间测量组合控制方法
US20070173254A1 (en) * 2006-01-26 2007-07-26 Tebbit Nicholas J Methods, devices and systems relating to reselecting cells in a cellular wireless communications system
WO2007143893A1 (fr) 2006-06-09 2007-12-21 Zte Corporation Procédé d'appel de terminal mobile double mode gsm et td-scdma
WO2007147305A1 (fr) 2006-06-16 2007-12-27 Zte Corporation Procédé de démarrage d'un terminal mobile à double mode td-scdma et gsm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306771A4

Also Published As

Publication number Publication date
CA2731140C (en) 2017-03-21
EP2306771B1 (en) 2017-05-24
CA2915864A1 (en) 2010-01-21
EP2306771A4 (en) 2014-07-09
US20110122823A1 (en) 2011-05-26
US8724594B2 (en) 2014-05-13
EP2306771A1 (en) 2011-04-06
CA2915864C (en) 2017-08-15
CA2731140A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2010006559A1 (zh) 一种邻区测量方法
US7965759B2 (en) Synchronization codes for wireless communication
RU2419253C2 (ru) Система и способ беспроводной связи, базовая станция и мобильная станция
EP1739862B1 (en) Method and apparatus for soft handoff in a cdma communication system
US7813735B2 (en) Method and apparatus for performing a power efficient cell search in a multi-cell wireless communication system
JP2001320321A (ja) 移動局を動作させる方法および移動局
EP1599984B1 (en) Frame synchronization and scrambling code identification in wireless communications systems and methods therefor
CA2471991A1 (en) Method and mobile station to perform the initial cell search in time slotted systems
US8472410B2 (en) Rake receiver architecture within a WCDMA terminal
WO2003032671A1 (fr) Telephone cellulaire
JPWO2004091244A1 (ja) デュアルモードシステム及びデュアルモード無線端末
JP3795496B2 (ja) デュアル無線端末装置およびデュアル無線システム
WO2005022767A1 (en) Cell search time reduction using known scrambling codes
TW530514B (en) Page monitoring method and apparatus
US7330447B2 (en) Cell search method in CDMA capable of carrying out a cell search processing at a high speed
JP2004032770A (ja) モバイル通信網におけるセルの探索を最適化する方法及びモバイル装置
CN101635967B (zh) Td-scdma模式下针对wcdma邻区的测量方法
JP2003244742A (ja) 携帯電話機
US9398502B2 (en) Method for measuring adjacent areas
CN2757450Y (zh) 粗略频率校正装置
JP2005244763A (ja) 移動体端末
KR20050030508A (ko) 시분할-부호분할다중접속 이동통신시스템에서 기지국수신기가 미드엠블을 이용하여 간섭신호를 제거하는 장치및 방법
JP4361703B2 (ja) 電波サービスエリア評価装置
WO2003063388A1 (fr) Dispositif et procede permettant d'agir sur la puissance d'emission lors d'une recherche de cellule
JP2003273776A (ja) 無線通信装置及びセルサーチ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2731140

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13054762

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009797406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009797406

Country of ref document: EP