WO2010004125A2 - Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement - Google Patents

Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement Download PDF

Info

Publication number
WO2010004125A2
WO2010004125A2 PCT/FR2009/000812 FR2009000812W WO2010004125A2 WO 2010004125 A2 WO2010004125 A2 WO 2010004125A2 FR 2009000812 W FR2009000812 W FR 2009000812W WO 2010004125 A2 WO2010004125 A2 WO 2010004125A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydroconversion
catalyst
hydrogen
vacuum
atmospheric
Prior art date
Application number
PCT/FR2009/000812
Other languages
English (en)
Other versions
WO2010004125A3 (fr
Inventor
Eric Lenglet
Patrick Sarrazin
Jean-Claude Plumail
Frédéric Morel
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Publication of WO2010004125A2 publication Critical patent/WO2010004125A2/fr
Publication of WO2010004125A3 publication Critical patent/WO2010004125A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/18Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles according to the "moving-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/28Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles according to the "moving-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils

Definitions

  • the process described in this note concerns the field of conversion and purification of crude oils. It also relates to the conversion or purification of heavy hydrocarbon fractions and more particularly heavy petroleum fractions such as atmospheric residues, vacuum residues, atmospheric distillates or vacuum distillates.
  • a heavy crude oil that is to say having a degree A.P.I. less than 30, or even less than 20.
  • a crude Boscan or Monagas is particularly suitable as a feedstock of the process according to the invention.
  • Athabasca and Morichal crudes contain 80% vacuum residues and A.P.I. is generally close to 10.
  • These heavy crudes contain, compared to other crudes, many more impurities such as, for example, metals (nickel, vanadium, silicon, etc.), a high Conradson Carbon, asphaltenes, sulfur and nitrogen.
  • the process that is the subject of this note comprises a step a of hydroconversion of the feed, a step b of reducing the viscosity of the effluent obtained in step a, a step c of fractionation at atmospheric pressure and then under vacuum, of a part of the effluent from step a, a step d of hydrotreating of the head cut of the vacuum distillation column.
  • FIG. 1 shows an exemplary embodiment of the method that is the subject of this note and therefore makes it easier to understand it. This figure is referred to in the rest of the description.
  • Hydroconversion stage of the charge step a:
  • the charge (1) (crude oil or vacuum residue for example) is preferably cracked in the presence of hydrogen and a hydrocracking catalyst (hydroconversion), preferred way in at least one bubbling bed reactor (2).
  • This step is more preferably carried out using the T-Star technology described, for example, in the article "Heavy OiI Hydroprocessing", published by Aiche, Mar. 19-23, 1995, HOUSTON, Tex., paper number 42 d, or using the H-OiI technology described, for example, in the article published by NPRA Annual Meeting, Mar. 16-18, 1997, JJ. Colyar and L.I. Wilson, "The H-OiI Process: A Worldwide Leader in Vacuum Residue Hydroprocessing".
  • step a is carried out with addition of fresh catalyst and removal of used catalyst.
  • the presence of asphaltenes reduces the activity of the catalyst in the bubbling bed in terms of hydrodesulfurization, hydrodenitrogenation, Conradson Carbon reduction, aromatics hydrogenation, demetallization and increases the rate of fresh catalyst replacement. .
  • 50O + charge of the oil consisting of boiling components above 500 0 C and 500 + product is the mass fraction of the product consisting of boiling components above 500 0 C.
  • the conditions of step a) make it possible to achieve a conversion of at least 20% by weight.
  • the conversion of the effluent is at least 25% by weight. This conversion is preferably between 20% and 70%, more preferably between 30% and 50%, and even between 30% and 40%.
  • the operating conditions must be chosen so as to achieve this level of performance. This operates under an absolute pressure ranging from 5 to 35 MPa, preferably from 6 to 25 MPa, more preferably from 8 to 20 MPa.
  • the temperature at which this step is carried out can range from about 350 to about 55 ° C., preferably from about 380 to about 500 ° C. This temperature is usually adjusted according to the desired level of hydroconversion in light products. .
  • the hourly space velocity (WH) and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the WH may be in a range of from about 0.1 hr "1 (liter feed per liter of catalyst per hour) to about 10 h" 1, preferably from about 0.2 h " 1 to about 5 h -1.
  • the amount of hydrogen mixed with the feed via line (3) may be from about 50 to about 5000 NmV 3 , preferably from about 100 to about 2000 Nm 3 An 3 , more preferably from about 200 to approximately 1000 Nm 3 Year 3 , expressed in normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid charge.
  • the catalyst of step a is, preferably, a hydroconversion catalyst comprising an amorphous support and at least one metal or metal compound having a hydrogenating function.
  • a catalyst is used whose porous distribution is suitable for the treatment of metal-containing fillers.
  • the hydrogenating function may be provided by at least one Group VIII metal, for example nickel and / or cobalt most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • Group VIII metal for example nickel and / or cobalt most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • catalyst having a nickel content of 0.5 to 10% by weight, preferably 1 to 5% by weight (expressed as nickel oxide NiO) and a molybdenum content of 1 to 30% by weight, preferably 5 to 5% by weight, at 20% by weight (expressed as molybdenum oxide MoO 3 ).
  • the total content of Group VI and VIII metal oxides can range from about 5 to about 40% by weight, preferably from about 7 to 30% by weight.
  • the weight ratio expressed as metal oxide between metal (or metals) of group VI on metal (or metals) of group VIII can range from about 1 to about 20, preferably from about 2 to about 10.
  • the support of the catalyst of step a may be chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds such as, for example, oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride.
  • the support is based on alumina.
  • the alumina used is usually a beta or gamma alumina.
  • This support in particular in the case of alumina, may be doped with phosphorus and optionally boron and / or silicon.
  • the concentration of phosphoric anhydride P2O5 is generally less than about 20% by weight, preferably less than about 10% by weight and at least 0.001% by weight.
  • the concentration of B2O3 boron trioxide is generally between 0 and about 10% by weight.
  • This catalyst is most often in the form of extruded.
  • the catalyst of step a is based on nickel and molybdenum, doped with phosphorus and supported on alumina
  • the spent catalyst is generally replaced, in part, by fresh catalyst by racking down the reactor and supplying fresh or new catalyst to the top of the reactor.
  • the withdrawal and the supply of catalyst can be carried out at regular time intervals, or almost continuously or continuously. For example, fresh catalyst can be introduced every day.
  • the replacement rate of spent catalyst with fresh catalyst can range from about 0.05 kilograms to about 10 kilograms per cubic meter of charge.
  • the withdrawal and the supply of catalyst are carried out using devices allowing continuous operation of the hydroconversion stage a.
  • the device in which is implemented step a generally comprises a recirculation pump for maintaining the catalyst in suspension in the bubbling bed, by continuously reinjecting at the bottom of the reactor at least a portion of a liquid withdrawn at the top of the reactor. It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and the sulfur contained therein are eliminated and then to return this regenerated catalyst to the hydroconversion stage a.
  • Viscosity reduction step ( " step b):
  • This step consists in partially cracking the hydrocarbons in order to reduce their viscosity.
  • the thermal visbreaking process (visbreaking according to the English terminology, VB) is a well known mild cracking process in which heavy hydrocarbons are heated in a maturation chamber at temperatures generally between 350 ° C. and 500 ° C., preferably between 370 0 C and 480 0 C, for several minutes. The cracking rate is controlled by adjusting the residence time of the hydrocarbons in the ripening chamber. Quenching (quench according to the English terminology) of the effluent is then generally carried out and the cracked products are separated by a rapid distillation (flash distillation according to the English terminology) and optionally steam stripping.
  • a rapid distillation flash distillation according to the English terminology
  • step a is not sufficient in terms of saturation of the hydrocarbons, it is possibly possible to add a hydrotreatment step (HDS, HDN for example) between step a and step b of visbreaking so to increase the saturation rate of hydrocarbons, while partially eliminating sulfur or nitrogen compounds (see US2007 / 0090019A1).
  • a hydrotreatment step HDS, HDN for example
  • the catalysts and / or operating conditions that can be used in processes for reducing the viscosity in the presence of hydrogen are, for example, cited in the Philips company patent.
  • One or more reactors for reducing the viscosity in the presence of hydrogen may be used, in particular it is possible to use reactors in parallel (reactive reactors or "swing reactors" according to the English terminology) in the case of reactors operated with fixed bed catalysts.
  • the effluent from step b (7) is initially distilled at pressure in at least one fractionating column (9) in order to recover for example a gas oil fraction and lighter products at the top of the column (10), when the process charge (thus of step a) is an oil crude, and an atmospheric residue (11) at the bottom of the column.
  • This atmospheric residue is sent to at least one distillation column (fractionation) under vacuum (13) in order to obtain at the top a gas oil fraction (stream (15), gas oil fraction under vacuum or VGO) and at the bottom of column a vacuum residue (stream (14), RSV).
  • the vacuum residue (14) obtained at the end of this step c has an initial boiling point greater than 500 ° C., or even greater than 550 ° C., or even greater than 600 ° C.
  • the charge of the hydrotreating section (16) used in this step is preferably constituted by the gas oil fraction (stream) obtained at the top of the vacuum distillation column used in step c (Vacuum Gas OiI or VGO according to English terminology).
  • HDN denitrogenation
  • HDS desulfurization
  • HDM demetallation
  • M-HCK mild hydrocracking.
  • the purification by HDN, HDS and possibly HDM can be carried out in fixed bed in a separate reactor located upstream of the hydrocracking reactor (s). It is also possible to have one or more catalyst beds promoting the reaction of HDN, HDS and HDM inside the hydrocracking reactor and upstream of the catalyst of M-HCK.
  • Catalysts promoting reactions of HDN, HDS and HDM are known to those skilled in the art. Mention may be made, for example, of those marketed by the company AXENS: HR448, HR548 for example or those cited in US Pat. No. 4,885,080.
  • the hydrocracking catalysts generally comprise at least one acid function and at least one hydrogenating function.
  • Hydrocracking catalysts are for example marketed by AXENS under the references: HRK 558, HTK758, HDK 776 and HR 448.
  • This mild hydrocracking can be operated in fixed bed or bubbling bed and by means of one or more reactors arranged in series or in parallel.
  • reactors arranged in series or in parallel.
  • there is then upstream of the M-HCK reactor at least one HDN / HDS reactor, or even an HDN / HDS reactor upstream of each M-HCK reactor.
  • the reactors of HDS / HDN can also be arranged according to one of the modes described for example in the patent application EP 1 343 857 A.
  • the operating conditions generally used in this step are for example indicated in US Pat. No. 5,198,100, US 4,810,361 or US Pat. No. 5,225,383 for the hydrotreatment reactions (HDS 5 HDN 5 HDM).
  • the operating temperature is generally between 32O 0 C and 450 0 C, preferably between 360 0 C and 440 0 C.
  • the pressure is generally between 4 and 25 MPa, preferably between 4 and 8 MPa.
  • the liquid space velocity (VVH) is generally between 0.1 and 6 liters per liter of catalyst per hour. All these reactions (HDN, HDS, HCK) are operated in the presence of hydrogen (stream 17) and the quantity of hydrogen brought is generally between 100 and 2000 Nm3 per m3 of load.
  • the feed conversion of the hydrotreatment section is generally between 20% and 40%.
  • the effluent (18) of this step d constitutes a second fraction partially refined easily transportable and at least partially purified by hydrodesulphurization and hydrodenitrogenation.
  • the invention relates to a conversion process comprising a step a hydroconversion of the feed, a step b of reducing the viscosity of the effluent obtained in step a, a step c of fractionation at atmospheric pressure and then under vacuum, part of the effluent from step a, a step d of hydrotreating of the head cut of the vacuum distillation column.
  • the feedstock of the process according to the invention is selected from the group consisting of: crude oils, atmospheric residues, vacuum residues, atmospheric distillates or vacuum distillates, coal hydrogenates, and heavy oils from sands or oil shale.
  • step a of hydroconversion the feedstock is cracked in the presence of hydrogen and a di-hydrocracking catalyst.
  • said hydroconversion stage a is carried out in at least one bubbling bed reactor.
  • the operating conditions of the hydroconversion stage a are as follows: pressure of between 5 and 35 MPa, temperature between 35O 0 C and 550 0 C, VVH between 0.1 h -1 and 10 h 1 , amount of hydrogen mixed with the charge of between 50 and 5000 NmVm 3 .
  • the viscosity reduction step b is a visbreaking effected in the presence of hydrogen and a catalyst. According to another variant, this viscosity reduction step b is carried out by means of a thermal process.
  • steam is added to the charge of atmospheric and vacuum distillation columns or directly in each of these columns.
  • the operating conditions of step d of hydrotreatment are as follows: temperature of between 320 ° C. and 450 ° C., pressure of between 4 and 25 MPa, space velocity of the liquid generally of between 0.1 and 6 liters. per liter of catalyst per hour, amount of hydrogen supplied between 100 and 2000 Nm3 per m3 of feedstock.
  • the feedstock of the hydrotreatment stage consists of a gas oil fraction obtained at the top of the vacuum distillation column used in stage c.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé de conversion comprenant une étape a d'hydroconversion de la charge, une étape b de réduction de la viscosité de l'effluent obtenu à l'étape a, une étape c de fractionnement d'une partie de l'effluent issu de l'étape b, et une étape d d'hydrotraitement.

Description

PROCEDE DE CONVERSION COMPRENANT UNE HYDROCONVERSION DE LA CHARGE PUIS UNE VISCOREDUCTION ET UN FRACTIONNEMENT
DOMAINE TECHNIQUE DE L'INVENTION:
Le procédé décrit dans cette note concerne le domaine de la conversion et de la purification de pétroles brut. Elle concerne également la conversion ou la purification de fractions lourdes d'hydrocarbures et plus particulièrement de coupes pétrolières lourdes telles que des résidus atmosphériques, des résidus sous vide, des distillats atmosphériques ou des distillats sous vide.
Le procédé détaillé ci-après peut également être appliqué à d'autres charges telles que des hydrogénâts de charbon ou des huiles lourdes de toute origine et en particulier issues de sable ou de schistes bitumineux.
Tout type de pétrole brut peut également être utilisé comme charge. Un pétrole brut lourd, c'est-à-dire présentant un degré A.P.I. inférieure à 30, voire inférieur à 20. Par exemple, un brut de Boscan ou de Monagas convient particulièrement comme charge du procédé selon l'invention. Les bruts Athabasca et Morichal comportent 80% de résidus sous vide et leur degré A.P.I. est généralement voisin de 10. Ces bruts lourds contiennent, par rapport aux autres bruts, beaucoup plus d'impuretés telles que, par exemple, des métaux (nickel, vanadium, silicium, etc.), un Carbone Conradson élevé, des asphaltènes, du soufre et de l'azote.
Le procédé objet de cette note comprend une étape a d'hydroconversion de la charge, une étape b de réduction de la viscosité de l'effluent obtenu à l'étape a, une étape c de fractionnement à pression atmosphérique puis sous vide, d'une partie de l'effluent issu de l'étape a, une étape d d'hydrotraitement de la coupe de tète de la colonne de distillation sous vide. DESCRIPTION DETAILLEE DE L'INVENTION:
La figure 1 présente un exemple de schéma de réalisation du procédé objet de cette note et permet donc de mieux la comprendre. Il est fait référence à cette figure dans la suite de la description. Étape d'hydroconversion de la charge (étape a) :
Lors de l'étape a du procédé de l'invention, on craque de préférence la charge (1) (pétrole brut ou résidu sous vide par exemple) en présence d'hydrogène et d'un catalyseur d'hydrocraquage (hydroconversion), de manière préférée dans au moins un réacteur à lit bouillonnant (2). Cette étape est réalisée de manière plus préférée au moyen de la technologie T-Star décrite, par exemple, dans l'article "Heavy OiI Hydroprocessing", publiés par l'Aiche, Mar. 19-23, 1995, HOUSTON, Tex., paper number 42 d, ou au moyen de la technologie H-OiI décrite par exemple, dans l'article publié par NPRA Annual Meeting, Mar. 16-18, 1997, JJ. Colyar and L.I. Wilson, "The H-OiI Process: A Worldwide Leader In Vacuum Residue Hydroprocessing" .
L'intérêt de réaliser une telle hydroconversion dans au moins un réacteur à lit bouillonnant, par rapport à un réacteur à lit fixe, est de pouvoir atteindre des niveaux de conversion beaucoup plus élevés grâce à des températures réactionnelles plus importantes. Toutefois, dans le cas présent on réalise de préférence une hydroconversion modérée afin de limiter la conversion et d'obtenir un effluent raffiné aisément transportable.
Selon un mode préférentiel, l'étape a est conduite avec ajout de catalyseur frais et retrait de catalyseur usé. La présence d'asphaltènes réduit l'activité du catalyseur dans le lit bouillonnant en termes d'hydrodésulfuration, d'hydrodéazotation, de réduction du Carbone Conradson, d'hydrogénation des aromatiques, de démétallisation et entraîne une augmentation du taux de remplacement de catalyseur frais.
La conversion en produits plus légers de l'huile est définie par la formule suivante:
100* (500+cλarge - 500+/»w/κi0 , , „ __Λ , ' * ! *. *• - — , dans laquelle 500+charge représente la fraction massique
50O+ charge de l'huile constituée des composants bouillants au-dessus de 5000C et 500+produit est la fraction massique du produit constituée des composants bouillants au-dessus de 5000C. Les conditions de l'étape a) permettent d'atteindre une conversion d'au moins 20 % en poids. De préférence, la conversion de l'effluent est d'au moins 25 % en poids. De préférence cette conversion est comprise entre 20 % et 70%, de manière plus préférée entre 30% et 50%, voire entre 30 et 40%.
Les conditions opératoires doivent être choisies de manière à réaliser ce niveau de performance. On opère ainsi sous une pression absolue pouvant aller de 5 à 35 MPa, de préférence de 6 à 25 MPa, de manière plus préférée de 8 à 20 MPa. La température à laquelle on opère lors de cette étape peut aller d'environ 350 à environ 55O0C, de préférence d'environ 380 à environ 5000C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydroconversion en produits légers.
La vitesse spatiale horaire (WH) et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la WH peut se situer dans une gamme allant d'environ 0,1 h"1 (litre de charge par litre de catalyseur et par heure) à environ 10 h"1, de préférence d'environ 0,2 h"1 à environ 5 h'1.
La quantité d'hydrogène mélangé à la charge via la ligne (3) peut être d'environ 50 à environ 5000 NmV3, de préférence d'environ 100 à environ 2000 Nm3An3, de manière plus préférée d'environ 200 à environ 1000 Nm3An3, exprimé en normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide.
Le catalyseur de l'étape a est, de préférence, un catalyseur d'hydroconversion comprenant un support amorphe et au moins un métal ou composé de métal ayant une fonction hydrogénante. En général, on utilise un catalyseur dont la répartition poreuse est adaptée au traitement des charges contenant des métaux.
La fonction hydrogénante peut être assurée par au moins un métal du groupe VIII, par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB, par exemple du molybdène et/ou du tungstène. On peut par exemple utiliser un. catalyseur ayant une teneur en nickel de 0,5 à 10 % en poids, de préférence de 1 à 5 % en poids (exprimé en oxyde de nickel NiO) et une teneur en molybdène de 1 à 30 % en poids, de préférence de 5 à 20 % en poids (exprimé en oxyde de molybdène MoO3). La teneur totale en oxydes de métaux des groupes VI et VIII peut aller d'environ 5 à environ 40 % en poids, de préférence d'environ 7 à 30 % en poids. Dans le cas d'un catalyseur comprenant des métaux du groupe VI et du groupe VIII, le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII peut aller d'environ 1 à environ 20, de préférence d'environ 2 à environ 10.
Le support du catalyseur de l'étape a peut être choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés tels que, par exemple, des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. De préférence, le support est à base d'alumine. L'alumine utilisée est habituellement une alumine bêta ou gamma. Ce support, en particulier dans le cas de l'alumine, peut être dopé avec du phosphore et éventuellement du bore et/ou du silicium. Dans ce cas, la concentration en anhydride phosphorique P2O5 est généralement inférieure à environ 20 % en poids, de préférence inférieure à environ 10 % en poids et d'au moins 0,001 % en poids. La concentration en trioxyde de bore B2O3 est généralement comprise entre 0 et environ 10 % en poids. Ce catalyseur est le plus souvent sous forme d'extrudé. De préférence, le catalyseur de l'étape a est à base de nickel et de molybdène, dopé avec du phosphore et supporté sur de l'alumine
Le catalyseur usagé est généralement remplacé, en partie, par du catalyseur frais grâce à un soutirage en bas du réacteur et à une alimentation en haut du réacteur en catalyseur frais ou neuf. Le soutirage et l'alimentation en catalyseur peuvent être effectués à intervalles de temps réguliers, ou de manière quasi continue ou continue. On peut par exemple introduire du catalyseur frais tous les jours. Le taux de remplacement du catalyseur usé par du catalyseur frais peut aller d'environ 0,05 kilogramme à environ 10 kilogrammes par mètre cube de charge. Le soutirage et l'alimentation en catalyseur sont effectués à l'aide de dispositifs permettant un fonctionnement continu de l'étape a d'hydroconversion. Le dispositif dans lequel est mise en œuvre l'étape a comporte généralement une pompe de recirculation permettant le maintien en suspension du catalyseur dans le lit bouillonnant, en réinjectant en continu en bas du réacteur au moins une partie d'un liquide soutiré en tête du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape a d'hydroconversion.
Étape de réduction de la viscosité ("étape b):
Cette étape consiste à réaliser un craquage partiel des hydrocarbures afin de réduire leur viscosité. Le procédé de viscoréduction thermique (visbreaking selon la terminologie anglo- saxonne, VB) est un procédé de craquage doux bien connu dans lequel des hydrocarbures lourds sont chauffés dans une chambre de maturation à des températures généralement comprises entre 3500C et 5000C, de préférence entre 3700C et 4800C, pendant plusieurs minutes. Le taux de craquage est contrôlé en réglant le temps de résidence des hydrocarbures dans la chambre de maturation. Une trempe (quench selon la terminologie anglo-saxonne) de l'effluent est ensuite généralement réalisé et les produit craqués sont séparés par une distillation rapide (flash distillation selon la terminologie anglo-saxonne) et éventuellement un stripage à la vapeur. Un tel procédé est par exemple décrit dans les brevets US 7,220,887 B2 et US 7,193, 123B2 ou dans la revue "Le raffinage du Pétrole" volume 3, chapitre 11, Éditions Technip.
Le fait d'avoir préalablement traitée la charge de l'unité de viscoréduction dans une section opérée en présence d'hydrogène (hydroconversion selon l'étape a) est avantageux. En effet, ainsi qu'il est décrit dans la demande de brevet US 2007/0090019 Al, la viscoréduction d'une charge hydroprocessée (c'est-à-dire dans laquelle la teneur en hydrocarbures saturés est plus importante), permet d'obtenir des taux de conversion plus élevés lors de l'étape de viscoréduction.
Au cas où l'étape a ne serait pas suffisante en terme de saturation des hydrocarbures, il est éventuellement possible d'ajouter une étape d'hydrotraitement (HDS, HDN par exemple) entre l'étape a et l'étape b de viscoréduction afin d'augmenter le taux de saturation des hydrocarbures, tout en éliminant en partie les composés soufrés ou azotés (cf. brevet US2007/0090019A1).
Il est également possible d'utiliser dans cette étape un procédé de réduction de la viscosité en présence d'hydrogène (également appelé hydrovisbreaking selon la terminologie anglo- saxonne), c'est-à-dire d'effectuer simultanément une saturation et un craquage des hydrocarbures. Le fait d'opérer une viscoréduction en présence d'hydrogène et d'un catalyseur est également très favorable comme cela est indiqué dans l'article de la revue "OiI and Gas and Technology", Vol.43, n°6, pages 847 à 853. Dans cet article, une comparaison est faite entre les procédés purement thermiques et les procédés catalytiques opérés en présence d'hydrogène. Ces deux types de procédés sont actuellement commercialisés par la société AXENS (procédés TERVAHL ou HYVAHL) et utilisent soit un catalyseur en lit fixe, soit un catalyseur soluble ou en suspension. Les résultats publiés mettent en évidence l'importance de la quantité d'hydrogène sur la conversion obtenue et la qualité des produits obtenus. De telles technologies de réduction de la viscosité en présence d'hydrogène (hydrovisbreaking) sont donc préférées dans le cadre du présent procédé, dans la mesure où elles évitent l'addition d'une étape d'hydrotraitement supplémentaire, tout en permettant d'obtenir une qualité des effluents de cette étape très satisfaisante.
II est également possible d'opérer un procédé de réduction de la viscosité en présence d'hydrogène à l'aide d'un solvant donneur d'hydrogène, comme cela est par exemple décrit dans le brevet US 4,592,830.
Les catalyseurs et/ou les conditions opératoires utilisables dans des procédés de réduction de la viscosité en présence d'hydrogène sont par exemple cités dans le brevet de la société Philips
Petroleum US 4,708,784, et dans les brevets US 4,533,462, EP 0 113 284B et EP 0 649 896B.
Un ou plusieurs réacteurs de réduction de la viscosité en présence d'hydrogène peuvent être utilisés, en particulier il est possible d'utiliser des réacteurs en parallèle (réacteurs permutables ou "swing reactors" selon la terminologie anglo-saxonne) dans le cas de réacteurs opérés avec des catalyseurs en lit fixe. Étape de fractionnement à pression atmosphérique puis sous vide d'une partie de l'effluent issu de l'étape b f étape c) : Dans cette étape l'effluent issu de l'étape b (7) est dans un premier temps distillée à pression atmosphérique dans au moins une colonne de fractionnement (9) afin de récupérer par exemple une fraction gas-oil et des produits plus légers en tête de colonne (10), lorsque la charge du procédé (donc de l'étape a) est un pétrole brut, ainsi qu'un résidu atmosphérique (11) en fond de colonne. Ce résidu atmosphérique est envoyé vers au moins une colonne de distillation (fractionnement) sous vide (13) afin d'obtenir en tête une fraction gas-oil (flux (15), fraction gas-oil sous vide ou VGO) et en fond de colonne un résidu sous vide (flux (14), RSV).
Il est possible d'ajouter de la vapeur à la charge des colonnes de distillations (fractionnement) atmosphérique (flux 8) et/ou sous vide (flux 12), afin de faciliter le fractionnement. Il est également possible de réaliser cette ajout directement dans chacune de ces colonnes.
De préférence, le résidu sous vide (14) obtenu à l'issue de cette étape c présente un point initial d'ébullition supérieur à 5000C, voire supérieur à 5500C, voire même supérieur à 6000C.
Lorsque la charge du procédé selon l'invention est un résidu, il est possible et préféré de supprimer la colonne de fractionnement à pression atmosphérique et d'envoyer directement l'effluent 7 dans la colonne sous vide (13).
Étape d'hvdrotraitement (étape d)
La charge de la section d'hydrotraitement (16) utilisée dans cette étape est de préférence constituée par la fraction gas-oil (flux 15) obtenue en tête de la colonne de distillation sous vide utilisé à l'étape c (Vacuum Gas OiI ou VGO selon la terminologie anglosaxonne).
II s'agit d'une étape de déazotation (HDN), de désulfuration (HDS) et éventuellement de démétallation (HDM), associée à un hydrocraquage doux. (M-HCK). La purification par HDN, HDS et éventuellement HDM peut être réalisée en lit fixe dans un réacteur séparé situé en amont du ou des réacteurs d'hydrocraquage doux. Il est également possible de disposer un ou plusieurs lits de catalyseurs favorisant les réaction d'HDN, HDS et HDM à l'intérieur du réacteur d'hydrocraquage et en amont du catalyseur de M-HCK.
Les catalyseurs favorisant les réactions d'HDN, HDS et HDM sont connus de l'homme du métier. On peut par exemple citer ceux commercialisés par la société AXENS: HR448, HR548 par exemple ou encore ceux cités dans le brevet US 4,885,080.
Les catalyseurs d'hydrocraquage comprennent généralement au moins une fonction acide et au moins une fonction hydrogénante. Des catalyseurs d'hydrocraquage sont par exemple commercialisés par la société AXENS sous les références: HRK 558, HTK758 , HDK 776 et HR 448.
Cet hydrocraquage doux peut être opéré en lit fixe ou en lit bouillonnant et au moyen d'un seul ou de plusieurs réacteurs disposés en série ou en parallèle. De préférence, on utilise dans le cadre de l'invention des réacteurs à lit fixe disposés en parallèle et fonctionnant éventuellement en alternance (réacteurs "swing"), au moins un réacteur fonctionnant en mode hydrocraquage doux pendant que au moins un autre fonctionne en mode de régénération ou de remplacement du catalyseur. Selon une variante très préférée, on dispose alors en amont des réacteur de M-HCK au moins un réacteur d'HDN/HDS, voire un réacteur d'HDN/HDS en amont de chaque réacteur de M-HCK. Les réacteurs d'HDS/HDN peuvent également être disposés selon l'un des modes décrit par exemple dans la demande de brevet EP 1 343 857 A.
Les conditions opératoires généralement utilisées dans cette étape sont par exemple indiquées dans les brevets US 5,198,100, US 4,810,361 ou US 5,225,383 pour ce qui concerne les réactions d'hydrotraitement (HDS5HDN5HDM), Pour ce qui concerne la réaction d'hydrocraquage, la température opératoire est généralement comprise entre 32O0C et 4500C, de préférence entre 3600C et 4400C. La pression est généralement comprise entre 4 et 25 MPa, de préférence entre 4 et 8 MPa. La vitesse spatiale du liquide (VVH) est généralement comprise entre 0,1 et 6 litres par litre de catalyseur et par heure. Toutes ces réactions (HDN,HDS,HCK) sont opérées en présence d'hydrogène (flux 17) et la quantité d'hydrogène apporté est généralement comprise entre 100 et 2000 Nm3 par m3 de charge. Dans cette étape, la conversion de la charge de la section d'hydrotraitement est généralement comprise entre 20 % et 40%.
L'effluent (18) de cette étape d constitue une deuxième fraction partiellement raffinée aisément transportable et au moins partiellement purifiée par hydrodésulfuration et hydrodéazotation.
En résumé:
L'invention concerne un procédé de conversion comprenant une étape a d'hydroconversion de la charge, une étape b de réduction de la viscosité de l'effluent obtenu à l'étape a, une étape c de fractionnement à pression atmosphérique puis sous vide, d'une partie de l'effluent issu de l'étape a, une étape d d'hydrotraitement de la coupe de tète de la colonne de distillation sous vide.
De préférence, la charge du procédé selon l'invention est sélectionnée dans le groupe constitué par: les pétroles bruts, les résidus atmosphériques, les résidus sous vide, les distillats atmosphériques ou les distillats sous vide, les hydrogénâts de charbon, et les huiles lourdes issues de sables ou de schistes bitumineux.
Selon une variante du procédé selon l'invention, lors de l'étape a d'hydroconversion la charge est craquée en présence d'hydrogène et d'un catalyseur diiydrocraquage. De préférence, ladite étape a d'hydroconversion est réalisée dans au moins un réacteur à lit bouillonnant.
De manière préférée, les conditions opératoires de l'étape a d'hydroconversion sont les suivantes: pression comprise entre 5 et 35 MPa, température comprise entre 35O0C et 5500C, VVH comprise entre 0,1 h"1 et 10 h'1, quantité d'hydrogène mélangé à la charge comprise entre 50 et 5000 NmVm3. Selon une variante du procédé selon l'invention, l'étape b de réduction de la viscosité est une viscoréduction opérée en présence d'hydrogène et d'un catalyseur. Selon une autre variante, cette étape b de réduction de la viscosité est effectuée au moyen d'un procédé thermique.
De manière plus préférée, on ajoute de la vapeur à la charge des colonnes de distillations atmosphérique et sous vide ou directement dans chacune de ces colonnes.
De préférence, les conditions opératoires de l'étape d d'hydrotraitement sont les suivantes: température comprise entre 3200C et 4500C, pression comprise entre 4 et 25 MPa, vitesse spatiale du liquide généralement comprise entre 0,1 et 6 litres par litre de catalyseur et par heure, quantité d'hydrogène apporté comprise entre 100 et 2000 Nm3 par m3 de charge.
Selon une variante très préférée, la charge de l'étape d'hydrotraitement est constituée par une fraction gas-oil obtenue en tête de la colonne de distillation sous vide utilisé à l'étape c.

Claims

REVENDICATIONS:
1. Procédé de conversion comprenant une étape a d'hydroconversion de la charge, une étape b de réduction de la viscosité de l'effluent obtenu à l'étape a, une étape c de fractionnement à pression atmosphérique puis sous vide, d'une partie de l'effluent issu de l'étape a, une étape d d'hydrotraitement de la coupe de tète de la colonne de distillation sous vide.
2. Procédé selon la revendication 1, dans lequel la charge est sélectionnée dans le groupe constitué par: les pétroles bruts, les résidus atmosphériques, les résidus sous vide, les distillats atmosphériques ou les distillats sous vide, les hydrogénâts de charbon, et les huiles lourdes issues de sables ou de schistes bitumineux.
3. Procédé selon l'une des revendications 1 ou 2, dans lequel dans l'étape a d'hydroconversion la charge est craquée en présence d'hydrogène et d'un catalyseur dliydrocraquage.
4. Procédé selon l'une des revendications précédentes, dans lequel l'étape a d'hydroconversion est réalisée dans au moins un réacteur à lit bouillonnant.
5. Procédé selon l'une des revendications précédentes, dans lequel les conditions opératoires de l'étape a d'hydroconversion sont les suivantes: pression comprise entre 5 et 35 MPa, température comprise entre 35O0C et 55O0C, WH comprise entre 0,1 h ' et 10 h"1, quantité d'hydrogène mélangé à la charge comprise entre 50 et 5000 Nm3An3.
6. Procédé selon l'une des revendications précédentes, dans lequel l'étape b de réduction de la viscosité est une viscoréduction opérée en présence d'hydrogène et d'un catalyseur.
7. Procédé selon l'une des revendications 1 à 5 , dans lequel l'étape b de réduction de la viscosité est effectuée au moyen d'un procédé thermique.
8. Procédé selon l'une des revendications précédentes, dans lequel on ajoute de la vapeur à la charge des colonnes de distillations atmosphérique et sous vide ou directement dans chacune de ces colonnes.
9. Procédé selon l'une des revendications précédentes, dans lequel les conditions opératoires de l'étape d dliydrotraitement sont les suivantes: température comprise entre 3200C et 4500C, pression comprise entre 4 et 25 MPa, vitesse spatiale du liquide généralement comprise entre 0,1 et 6 litres par litre de catalyseur et par heure, quantité d'hydrogène apporté comprise entre 100 et 2000 Nm3 par m3 de charge.
10. Procédé selon l'une des revendications précédentes, dans lequel la charge de l'étape d'hydrotraitement est constituée par une fraction gas-oil obtenue en tête de la colonne de distillation sous vide utilisé à l'étape c.
PCT/FR2009/000812 2008-07-10 2009-07-01 Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement WO2010004125A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803943A FR2933708B1 (fr) 2008-07-10 2008-07-10 Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement
FR08/03943 2008-07-10

Publications (2)

Publication Number Publication Date
WO2010004125A2 true WO2010004125A2 (fr) 2010-01-14
WO2010004125A3 WO2010004125A3 (fr) 2010-03-04

Family

ID=40316954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000812 WO2010004125A2 (fr) 2008-07-10 2009-07-01 Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement

Country Status (2)

Country Link
FR (1) FR2933708B1 (fr)
WO (1) WO2010004125A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969648B1 (fr) * 2010-12-24 2014-04-11 Total Raffinage Marketing Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage
FR2969651B1 (fr) * 2010-12-24 2014-02-21 Total Raffinage Marketing Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785616A1 (fr) * 1998-11-06 2000-05-12 Inst Francais Du Petrole Procede flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite
US6514403B1 (en) * 2000-04-20 2003-02-04 Abb Lummus Global Inc. Hydrocracking of vacuum gas and other oils using a cocurrent/countercurrent reaction system and a post-treatment reactive distillation system
US20030047486A1 (en) * 2001-09-10 2003-03-13 Cash Dennis R. Process for preparation of fuels and lubes in a single integrated hydrocracking system
US20050006280A1 (en) * 2001-10-25 2005-01-13 Chevron U.S.A. Inc. Hydroprocessing in multiple beds with intermediate flash zones
US20070090019A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing and visbreaking steam cracker feed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785616A1 (fr) * 1998-11-06 2000-05-12 Inst Francais Du Petrole Procede flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite
US6514403B1 (en) * 2000-04-20 2003-02-04 Abb Lummus Global Inc. Hydrocracking of vacuum gas and other oils using a cocurrent/countercurrent reaction system and a post-treatment reactive distillation system
US20030047486A1 (en) * 2001-09-10 2003-03-13 Cash Dennis R. Process for preparation of fuels and lubes in a single integrated hydrocracking system
US20050006280A1 (en) * 2001-10-25 2005-01-13 Chevron U.S.A. Inc. Hydroprocessing in multiple beds with intermediate flash zones
US20070090019A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing and visbreaking steam cracker feed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RANA ET AL: "A review of recent advances on process technologies for upgrading of heavy oils and residua" FUEL, IPC SCIENCE AND TECHNOLOGY PRESS, GUILDFORD, GB, vol. 86, no. 9, 26 janvier 2007 (2007-01-26), pages 1216-1231, XP005862835 ISSN: 0016-2361 *

Also Published As

Publication number Publication date
FR2933708B1 (fr) 2011-07-22
FR2933708A1 (fr) 2010-01-15
WO2010004125A3 (fr) 2010-03-04

Similar Documents

Publication Publication Date Title
EP3415588B1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement
CA2688843C (fr) Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200 ppm poids-2% poids d'asphaltenes
EP2788458B1 (fr) Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
EP3255123B1 (fr) Procédé de conversion comprenant au moins une étape d'hydrotraitement en lit fixe et une étape d'hydrocraquage en réacteurs by passables
EP3303523B1 (fr) Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
EP1505142B1 (fr) Procédé de valorisation de charges lourdes par désasphaltage et hydrocraquage en lit bouillonnant
WO2017186484A1 (fr) Procédé de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
FR2885134A1 (fr) Procede de prerafinage de petrole brut avec hydroconversion moderee en plusieurs etapes de l'asphalte vierge en presence de diluant
FR3036703A1 (fr) Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
EP3018188A1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
WO2006114488A1 (fr) PROCEDE DE PRE-RAFFINAGE DE PETROLE BRUT POUR LA PRODUCTION D’AU MOINS DEUX PETROLES NON ASPHALTENIQUES Pa, Pb ET UN PETROLE ASPHALTENIQUE Pc
WO2012085407A1 (fr) Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
CA2915282C (fr) Procede de conversion profonde de residus maximisant le rendement en essence
FR2950072A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, a l'aide de reacteurs permutables pour la production d'un brut synthetique preraffine.
CA2915286C (fr) Procede de conversion profonde de residus maximisant le rendement en gazole
WO2010004127A2 (fr) Procede de conversion comprenant une viscoreduction de residu puis un desasphaltage et une hydroconversion
WO2010004126A2 (fr) Procede de conversion comprenant une hydroconversion d'une charge, un fractionnement puis un desasphaltage de la fraction residu sous vide
FR3098824A1 (fr) Procede de production d’olefines comprenant un hydrotraitement, un desasphaltage, un hydrocraquage et un vapocraquage
WO2010004125A2 (fr) Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement
FR3076297A1 (fr) Procede integre d’hydrocraquage deux etapes pour maximiser la production de naphta
WO2010004128A2 (fr) Procede de conversion comprenant un desasphaltage et une conversion de residu
WO2020144096A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
CA2621905C (fr) Petrole non asphaltenique
FR3084371A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784239

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09784239

Country of ref document: EP

Kind code of ref document: A2