WO2010003366A1 - 一种动力电池高压输出监控装置及系统 - Google Patents

一种动力电池高压输出监控装置及系统 Download PDF

Info

Publication number
WO2010003366A1
WO2010003366A1 PCT/CN2009/072662 CN2009072662W WO2010003366A1 WO 2010003366 A1 WO2010003366 A1 WO 2010003366A1 CN 2009072662 W CN2009072662 W CN 2009072662W WO 2010003366 A1 WO2010003366 A1 WO 2010003366A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
monitoring
voltage
voltage output
battery
Prior art date
Application number
PCT/CN2009/072662
Other languages
English (en)
French (fr)
Inventor
刘兵
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Priority to US13/002,978 priority Critical patent/US8456135B2/en
Publication of WO2010003366A1 publication Critical patent/WO2010003366A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a high-voltage output monitoring device for a large-scale series-parallel battery system, in particular to a high-voltage output monitoring device and system for a hybrid vehicle power battery. Background technique
  • the high-voltage output monitoring of the power battery is very important, and it is an indispensable part of the vehicle safety control management.
  • many domestic and international power battery systems do not have this design or only the pre-charge control part design.
  • the battery management system controls the high voltage output and the high voltage is not output, it is dangerous for the battery management system to control the high voltage disconnection and the high voltage not to be disconnected.
  • the relay health status alarm signal is sent in real time, which can avoid the harm caused when the relay is damaged and cannot be closed.
  • a power Battery high voltage output monitoring devices are necessary for hybrid vehicles. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a high-voltage output monitoring device and system for a power battery, which is used for predicting the life of a high-voltage relay, thereby avoiding a hazard when the relay is damaged and cannot be closed, and improving the life of the battery.
  • the present invention provides the following specific technical solutions:
  • a high-voltage output monitoring device includes a monitoring module, a control module and a central processing unit module, wherein the monitoring module performs high-voltage output monitoring, pre-charging monitoring, and relay switching times monitoring; the control module controls the relay switch; and the central processing unit module performs monitoring signals Processing analysis, the packet relay status signal is sent to the battery management system BMS, predicting the relay health status to send an early warning signal to the BMS, judging the pre-charging state, controlling the high-voltage system to open or close, accepting the BMS control, forcibly opening or closing the high-voltage system.
  • the monitoring module performs high-voltage output monitoring, pre-charging monitoring, and relay switching times monitoring
  • the control module controls the relay switch
  • the central processing unit module performs monitoring signals Processing analysis, the packet relay status signal is sent to the battery management system BMS, predicting the relay health status to send an early warning signal to the BMS, judging the pre-charging state, controlling the high-voltage system to open or close, accepting the BMS control, forc
  • the high-voltage output monitoring part of the monitoring module allows the battery management system to monitor the status of the battery high-voltage relay in real time through the collected relay status signal, determine the high-voltage output status, and determine the cause of the high-voltage output fault according to the transmitted relay status signal; the pre-charge monitoring part passes The pre-charging process monitors the battery terminal voltage and the output load terminal voltage to determine whether the pre-charging is successful.
  • the monitoring points of the high-voltage output monitoring part for the high-voltage output state are the positive and negative poles, the source of the high-power MOS tube of the pre-charging relay, and the monitoring signal is input to the central processor module through isolation filtering, and the monitoring signal is high level. Indicates that the relay is closed, low level indicates that the relay is disconnected, and the relay status is in real time. Three relay status monitoring signals are sent to the BMS in real time.
  • the precharge monitoring section monitors the battery terminal voltage and the output load terminal voltage, and the CPU module compares the monitored values during the precharge process.
  • the control module circuit uses a high-power MOS tube, and the monitoring module determines the relay operating state by collecting the MOS tube status signal.
  • the invention also discloses a power battery high voltage system, comprising a battery body, a battery management system, a positive pole, a negative pole, a pre-charging relay, a pre-charging resistor, and the above-mentioned high-voltage output monitoring device.
  • the life of the high-voltage relay can be predicted, and the relay health state alarm signal can be sent in real time, which can avoid the harm caused when the relay is damaged and cannot be closed; and the monitoring and control of the pre-charging state of the power battery is beneficial to Improve battery life.
  • Figure 1 is an electrical schematic diagram of a battery high voltage system
  • FIG. 2 is a schematic diagram of a control module
  • FIG. 3 is a schematic diagram of the monitoring module one high voltage output monitoring part
  • FIG. 4 is a schematic diagram of the monitoring module one by one pre-charge monitoring part
  • Figure 5 is a schematic diagram of a central processing unit module
  • Figure 6 shows the power supply
  • CAN HIGH, CAN LOW is the CAN communication signal
  • BAT+ ⁇ B BAT- is the battery terminal positive and negative electrode monitoring point
  • RELAY K RELAY2 RELAY3 is the positive side, negative side, low-voltage side drive end of pre-charge relay;
  • LINK+W B LINK- is the voltage output load terminal voltage monitoring point;
  • M0S1, MOS2, and MOS3 are positive and negative terminals, and the precharge relay controls the source monitoring point of the MOS transistor;
  • Sl, S2, and S3 are relay feedback signals monitored by the monitoring module MOS monitoring point;
  • CTRL1 is an isolated sampling control signal
  • BAT, LINK are voltage acquisition signals
  • the 12V power supply is the vehicle lead-acid battery power supply, and GND is the vehicle chassis ground. detailed description
  • the power battery high-voltage system includes a battery body, a battery management system BMS, a high-voltage output monitoring device, a positive pole, a negative pole, a pre-charge relay, a pre-charging resistor, etc., and the battery management system controls the high-voltage output of the battery to a pre-control by controlling the high-voltage relay.
  • Charging capacitors and inverters, the pre-charging process is to increase the stability of the high-voltage system.
  • the high voltage output monitoring device realizes the following functions:
  • Function 1 The relay status signal collected by the device allows the battery management system to monitor the battery high-voltage relay status in real time, determine the high-voltage output status, and determine the cause of the high-voltage output fault based on the relay status signal sent by the unit.
  • Function 2 Monitor the battery terminal voltage and the output load terminal voltage through the pre-charging process to determine whether the pre-charging is successful.
  • Function 3 This unit has a relay control function to perform high voltage lap and disconnect control by the success or failure of the precharge signal. At the same time, it has the function of accepting the signal sent by BMS to forcibly open or close the high voltage relay.
  • This device has a 3-level relay health status alarm signal, and the alarm signal is sent to the BMS. Through the alarm of this device, the hybrid vehicle owner needs to perform the replaceable relay operation and must replace the relay operation.
  • the high-voltage output monitoring device is divided into three modules: a monitoring module, a control module and a central processing unit module.
  • the upper controller of the device is a battery management system BMS, which communicates with the BMS via CAN.
  • the monitoring module is shown in Figures 3 and 4, and realizes the following functions: 1) high-voltage output monitoring; 2) pre-charge monitoring; 3) relay switching times monitoring.
  • the monitoring point of the high-voltage output monitoring part of the high-voltage output state is the three relay PWM control switches in the device - the source of three high-power MOS tubes, the three monitoring points are pressed positive, negative, pre-charged
  • the order of the relays is M0S1, MOS2, and MOS3.
  • the three feedback monitoring signals are S1, S2, and S3 in the order of positive, negative, and pre-charge relays, respectively, and are connected to the central processing unit of the device.
  • the high level of these three monitoring signals indicates that the relay is closed, the low level indicates that the relay is disconnected, and the status of the relay is in real time.
  • the three relay status monitoring signals are transmitted to the central processor module through the isolation filter circuit, and are sent to the BMS in real time.
  • the BMS can monitor the number of relays and switches by these three relay monitoring signals.
  • the pre-charge monitoring section monitors the pre-charging state to determine whether the pre-charging is successful, as shown in Figure 4,
  • the voltage monitoring points of the pool terminal voltage and the output load terminal voltage are the positive and negative terminals of the battery terminal, namely BAT+ and BAT -, and the isolated sampling control signal sent by the central processing unit module is CTRL1.
  • the monitored total voltage divided voltage value is BAT; the voltage output load terminal voltage monitoring points are LINK+ and LINK - respectively, and the central processing unit sends an isolated sampling control signal CTRL1, and the total voltage divided voltage value monitored is LINK.
  • the central processor module compares the monitored values during the pre-charge process time.
  • the precharge time is a precharge limit time calculated by the battery voltage, precharge resistor, and precharge capacitor size.
  • control module The function of the control module is to control the relay switch.
  • the current control of high-voltage relays generally uses PWM technology to save power.
  • the control module circuit of this device is implemented by PWM control generated by the central processing module.
  • the three PWM control signals for the positive, negative and pre-charged relays are respectively PWM1.
  • PWM2, PWM3, low-voltage drive terminals are RELAY1, RELAY2, RELAY3, respectively, to achieve low-side drive of the relay.
  • the monitoring module of the device determines the working state of the relay by collecting the MOS tubular state signal.
  • the central processor module is shown in Figure 5, which implements the following functions: 1) analyzing the monitoring signal, and transmitting the relay status signal to the BMS; 2) predicting the relay health status and sending the warning signal to the BMS; 3) judging the pre-charging state, controlling The high pressure system is opened or closed; 4) BMS control is accepted, and the high voltage system is forcibly opened or closed.
  • the central processor module is implemented using an 8-bit microcontroller.
  • the central processor module counts the output of the high-voltage output monitoring module S to achieve the purpose of counting the number of times the three high-voltage relays are turned on and off, and counts the three relay health ratio variables in the EEPROM of the central processing unit module once.
  • the proportional variables are A, B, and C in the order of positive, negative, and precharge relays.
  • the proportional constant does not reach 80% for level 3 alarm, 80%-100% for level 2 alarm, more than 100% for level 1 alarm, 3 relays for 3 alarm signals, and real-time transmission.
  • the device is powered by a 5V DC regulated power supply chip, as shown in Figure 6.
  • the high-voltage battery starts to overlap with the vehicle high-voltage system, and the pre-charging process begins.
  • the positive and pre-charge relay status signals S1 and S3 are high level, and the negative relay status signal No. S2 signal is low level, pre-charging works normally.
  • the monitoring module collects the voltage signal LINK>80%*BAT in the pre-charge monitoring part.
  • the control module of the device controls the positive pole and the negative relay closes.
  • the positive and negative relay state signals S1 and S2 should be at a high level, and the precharge relay state signal S3 signal is at a low level, and the power battery and the high voltage system are successfully connected.
  • the three relay status signals S1, S2, S3 are sent to the BMS in real time via CAN.
  • any of the three relay status signals does not match, indicating that the pre-charging error, such as during the pre-charging time, the monitoring module one pre-charge monitoring part of the collected voltage signal LINK ⁇ 80 *BAT, then the pre-charging failure
  • the control module does not allow the positive pole, the negative relay is closed, and the power battery fails to overlap with the high voltage system.
  • the cause of the precharge failure can be determined by monitoring the positive electrode, the negative electrode, and the precharge relay state signals S1, S2, and S3. If the BMS sends a relay close command via CAN, the unit unconditionally closes the relay.
  • each closing is disconnected once, RELAY2 is inactive, and the central processing unit module will add a constant to each of the positive and pre-charge relay proportional constants.
  • 1/Relay mechanical life switch The number of times
  • the three relay proportional constants are not up to 80% for level 3 alarms, 80%-100% for level 2 alarms, more than 100% for level one alarms, and three relays for each of three alarm signals, real-time transmission of BMS .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

一种动力电池高压输出监控装置及系统 技术领域
本发明涉及一种大规模串并联电池系统的高压输出监控装置, 特别是一种用于混 合动力汽车动力电池的高压输出监控装置及系统。 背景技术
对于混合动力车辆, 动力电池的高压输出监控是很重要的, 是整车安全控制管理 中必不可少的一块, 但是很多国内外的动力电池系统中没有这一块的设计或只有预充 电控制部分设计。 当电池管理系统控制高压输出而高压未输出, 电池管理系统控制高 压断开而高压未断开时将是危险的。 通过对高压继电器寿命的预测, 实时发送继电器 健康状态报警信号, 能够避免在继电器损坏不能闭合时造成危害; 通过对动力电池预 充电状态进行监测、 控制, 有利于提高电池的寿命, 因此, 一个动力电池高压输出监 测装置对混合动力车辆来说是必须的。 发明内容
本发明要解决的技术问题在于, 提供一种动力电池高压输出监控装置及系统, 用 于对高压继电器的寿命进行预测, 避免在继电器损坏不能闭合时造成危害, 提高电池 的寿命。
为了解决上述的技术问题, 本发明提供如下具体技术方案:
一种高压输出监控装置, 包括监测模块、 控制模块和中央处理器模块, 其中监测 模块进行高压输出监测、 预充电监测和继电器开关次数监测; 控制模块控制继电器开 关; 中央处理器模块对监测信号进行处理分析, 打包继电器状态信号发送给电池管理 系统 BMS , 预测继电器健康状态发送预警信号给 BMS , 判断预充电状态, 控制高压 系统断开或闭合, 接受 BMS控制, 强行断开或闭合高压系统。
监测模块的高压输出监测部分通过采集的继电器状态信号让电池管理系统实时 监视电池高压继电器状态, 确定高压输出状态, 并可根据所发送的继电器状态信号判 断高压输出故障原因; 预充电监测部分通过在预充电过程对电池端电压和输出负载端 电压监测, 判断预充电是否成功。
高压输出监测部分对高压输出状态的监测点是正极、 负极, 预充电继电器的大功 率 MOS 管的源极, 监测信号通过隔离滤波后输入中央处理器模块, 监测信号高电平 表示继电器闭合, 低电平表示继电器断开, 与继电器状态实时对应, 3 个继电器状态 监测信号对 BMS实时发送。
预充电监测部分监测电池端电压和输出负载端电压, 中央处理器模块在预充电过 程时间内对监测值进行对比。
控制模块电路采用大功率 MOS管,监测模块通过采集 MOS管状态信号来确定继 电器工作状态。
本发明还公开了一种动力电池高压系统, 包括电池本体、 电池管理系统、 正极、 负极、 预充电继电器, 预充电电阻, 以及上述的高压输出监控装置。
通过利用本发明的监控装置, 可以对高压继电器寿命进行预测, 实时发送继电器 健康状态报警信号, 能够避免在继电器损坏不能闭合时造成危害; 而且通过对动力电 池预充电状态进行监测、 控制, 有利于提高电池的寿命。 附图说明
图 1为电池高压系统电气示意图;
图 2为控制模块示意图;
图 3为监测模块一一高压输出监测部分示意图;
图 4为监测模块一一预充电监测部分示意图;
图 5为中央处理器模块示意图;
图 6为电源示意图。
图中标记符号说明:
CAN HIGH、 CAN LOW是 CAN通讯信号;
BAT+禾 B BAT-是电池端正, 负电极监测点;
RELAY K RELAY2、 RELAY3是正极, 负极, 预充电继电器的低压侧驱动端; LINK+禾 B LINK-是电压输出负载端电压监测点;
M0S1、 MOS2、 MOS3是正极, 负极, 预充电继电器控制 MOS管的源极监测点;
Sl、 S2、 S3是监测模块 MOS监测点监测到的继电器反馈信号;
CTRL1是隔离采样控制信号;
BAT、 LINK是电压采集信号;
12V电源是车辆铅酸蓄电池电源, GND是车辆底盘地。 具体实施方式
以下结合附图介绍本发明在混合动力车上的应用及产生的效果。
如图 1所示, 动力电池高压系统包括电池本体、 电池管理系统 BMS, 高压输出监 测装置、 正极、 负极、 预充电继电器, 预充电电阻等, 电池管理系统通过控制高压继 电器控制电池高压输出至预充电电容和逆变器, 预充电过程是为了增加高压系统的稳 定性。
其中的高压输出监控装置实现如下功能:
功能 1 : 通过本装置采集的继电器状态信号让电池管理系统实时监视电池高压继 电器状态, 确定高压输出状态, 并可根据本装置所发送的继电器状态信号判断高压输 出故障原因。
功能 2: 通过预充电过程对电池端电压和输出负载端电压监测, 判断预充电是否 成功。
功能 3: 本装置有继电器控制功能, 通过预充电信号成功与否进行高压搭接和断 开控制。 同时具有接受 BMS发送的信号强行断开或闭合高压继电器功能。
功能 4 : 本装置有 3级继电器健康状态报警信号, 报警信号发送给 BMS , 通过 本装置的报警, 混合动力车主需进行可更换继电器操作和必须更换继电器操作。
这 4大功能都是通过在电池高压端采集信号实现的。
高压输出监控装置分 3个模块: 监测模块、 控制模块和中央处理器模块, 该装置 的上位控制器是电池管理系统 BMS, 与 BMS通过 CAN通讯。
下面对各个模块进行具体描述。
一、 监测模块
监测模块如图 3、 4所示, 实现如下功能: 1 ) 高压输出监测; 2) 预充电监测; 3 ) 继电器开关次数监测。
如图 3所示, 高压输出监测部分对高压输出状态的监测点是本装置中 3个继电器 PWM控制开关—— 3个大功率 MOS管的源极, 3个监测点按正极, 负极, 预充电继 电器的顺序分别为 M0S1、 MOS2、 MOS3, 3个反馈监测信号按正极、 负极、 预充电 继电器的顺序分别是 Sl、 S2、 S3, 接入本装置中央处理器模块。 这 3个监测信号高电 平表示继电器闭合, 低电平表示继电器断开, 与继电器状态实时对应, 3 个继电器状 态监测信号通过隔离滤波电路传递到中央处理器模块, 并对 BMS实时发送。 BMS可 通过这三个继电器监测信号对继电器器开关次数进行监测。
预充电监测部分对预充电状态进行监测, 判断预充电是否成功, 如图 4所示, 电 池端电压和输出负载端电压的电压监测点分别为电池端正极、负极, 即 BAT+和 BAT -, 由中央处理器模块发出隔离采样控制信号是 CTRL1 。 监测到的总电压分压电压值为 BAT; 电压输出负载端电压监测点分别为 LINK+和 LINK -, 由中央处理器模块发出隔 离采样控制信号 CTRL1 , 监测到的总电压分压电压值为 LINK。 中央处理器模块在预 充电过程时间内对监测值进行对比。 预充电时间是通过对电池电压, 预充电电阻, 预 充电电容大小计算得到的一个预充电限制时间。 当预充电开始, 在设定的预充电时间 T内, 监测到 LINK>80%*BAT, 则预充电成功, 本装置控制正极, 负极继电器闭合, 动力电池与高压系统成功搭接;如在设定的预充电时间 T内,监测到 LINK<80%*BAT, 预充电失败, 本装置不允许正极, 负极继电器闭合, 动力电池与高压系统搭接失败。
二、 控制模块
控制模块的功能是控制继电器开关。
如图 2所示, 现在控制高压继电器一般采用 PWM技术可以节省功耗, 本装置控 制模块电路采用中央处理模块产生的 PWM控制实现, 对正极、 负极、 预充电继电器 3条 PWM控制信号分别为 PWM1、 PWM2、 PWM3, 低压驱动端分别为 RELAY1、 RELAY2、 RELAY3, 实现对继电器低压侧驱动。 本装置监测模块通过采集 MOS管状 态信号来确定继电器工作状态。
三、 中央处理器模块
中央处理器模块如图 5 所示, 实现如下功能: 1 ) 对监测信号进行分析, 打包继 电器状态信号发送给 BMS ; 2) 预测继电器健康状态发送预警信号给 BMS ; 3 ) 判断 预充电状态, 控制高压系统断开或闭合; 4) 接受 BMS 控制, 强行断开或闭合高压 系统。 中央处理器模块采用 8位单片机实现。
中央处理器模块通过对高压输出监测模块输出信号 S计数, 达到对 3个高压继电 器通断次数进行计数的目的,计数一次刷新一次中央处理器模块 EEPROM中 3个继电 器健康比例变量。 比例变量按正极、 负极、 预充电继电器的顺序分别为 A、 B、 C。 算 法是, 在一次新的计数后, 现在的比例常数=原比例常数 +1/继电器机械寿命 (开关次 数)。 比例常数未达到 80%为 3级报警, 80%-100%为 2级报警, 超过 100%为一级报 警, 3个继电器 3条报警信号, 实时发送。
本装置由 5V直流稳压电源芯片供电, 如图 6所示。
下面说明本发明的应用效果。
当混合动力车用车钥匙发动点火时, 高压电池与整车高压系统开始搭接, 预充电 过程开始, 此时正极和预充电继电器状态信号 S1和 S3是高电平, 负极继电器状态信 号 S2信号是低电平, 预充电工作正常, 如在预充电时间内, 监测模块一一预充电监测 部分采集的电压信号 LINK>80%*BAT, 本装置控制模块控制正极, 负极继电器闭合, 此时正极和负极继电器状态信号 S1和 S2应该是高电平, 预充电继电器状态信号 S3 信号是低电平, 动力电池与高压系统搭接成功。 3个继电器状态信号 Sl、 S2、 S3通过 CAN实时发送给 BMS。 如在预充电状态, 3个继电器状态信号任一信号不符, 说明预 充电失误, 如在预充电时间内, 监测模块一一预充电监测部分采集的电压信号 LINK<80 *BAT, 那么预充电失败, 控制模块不允许正极, 负极继电器闭合, 动力电 池与高压系统搭接失败。此时可以通过对正极, 负极, 预充电继电器状态信号 Sl、 S2、 S3的监测确定预充电失败原因。如 BMS通过 CAN发送继电器闭合指令, 则本装置无 条件闭合继电器。 如预充电失败, 且 RELAY1和 RELAY3被监测模块监测, 各闭合断 开一次, RELAY2无动作, 中央处理器模块将对正极和预充电继电器比例常数各自加 一个常数—— 1/继电器机械寿命(开关次数), 此时 3个继电器比例常数未达到 80%为 3级报警, 80%-100%为 2级报警, 超过 100%为一级报警, 3个继电器分别有 3条报警 信号, 实时发送 BMS。
最后所应说明的是: 以上实施例仅用以说明本发明而非限制, 尽管参照较佳实施 例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明进行修 改或者等同替换, 而不脱离本发明的精神和范围, 其均应涵盖在本发明的权利要求范 围当中。

Claims

权利要求书
1、 一种动力电池高压输出监控装置, 包括监测模块、 控制模块和中央处理器模 块, 其中监测模块进行高压输出监测、 预充电监测和继电器开关次数监测; 控制模块 控制继电器开关; 中央处理器模块对监测信号进行处理分析, 打包继电器状态信号发 送给电池管理系统, 预测继电器健康状态发送预警信号给电池管理系统, 判断预充电 状态, 控制高压系统断开或闭合, 接受电池管理系统控制, 强行断开或闭合高压系统。
2、 如权利要求 1 所述的动力电池高压输出监控装置, 其特征在于: 监测模块的 高压输出监测部分通过采集的继电器状态信号让电池管理系统实时监视电池高压继电 器状态, 确定高压输出状态, 并可根据所发送的继电器状态信号判断高压输出故障原 因; 预充电监测部分通过在预充电过程对电池端电压和输出负载端电压监测, 判断预 充电是否成功。
3、 如权利要求 1 或 2所述的动力电池高压输出监控装置, 其特征在于: 高压输 出监测部分对高压输出状态的监测点是正极、 负极、 预充电继电器的大功率 MOS 管 的源极, 监测信号通过隔离滤波后输入中央处理器模块, 监测信号高电平表示继电器 闭合, 低电平表示继电器断开, 与继电器状态实时对应, 3 个继电器状态监测信号对 电池管理系统实时发送。
4、 如权利要求 1一 3任一项所述的动力电池高压输出监控装置, 其特征在于: 预 充电监测部分监测电池端电压和输出负载端电压, 中央处理器模块在预充电过程时间 内对监测值进行对比。
5、 如权利要求 1一 4任一项所述的动力电池高压输出监控装置, 其特征在于: 预 充电时间是通过对电池电压, 预充电电阻, 预充电电容大小计算得到的一个预充电限 制时间, 当预充电开始, 在设定的预充电时间 T 内, 监测到总电压分压电压值 LINK>80%*总电压分压电压值 BAT, 则预充电成功, 监控装置控制正极, 负极继电器 闭合, 动力电池与高压系统成功搭接; 在设定的预充电时间 T 内, 监测到 LINK<80 *BAT, 预充电失败, 监控装置不允许正极、 负极继电器闭合, 动力电池与 高压系统搭接失败, 其中 LINK是指负载端总电压分压电压值, BAT是指电池端总电 压分压电压值。
6、 如权利要求 1一 5 任一项所述的动力电池高压输出监控装置, 其特征在于: 控制模块电路采用大功率 MOS管, 监测模块通过采集 MOS管状态信号来确定继电器 工作状态。
7、 如权利要求 1一 6任一项所述的动力电池高压输出监控装置, 其特征在于: 中 央处理器模块对 3个高压继电器通断次数进行计数, 计数一次刷新一次中央处理器模 块存储器 EEPROM中 3个继电器健康比例变量, 在一次新的计数后, 现在的比例常数 =原比例常数 +1/继电器机械寿命, 当比例常数未达到 80%为 3级报警, 80%-100%为 2 级报警, 超过 100%为一级报警, 3个继电器 3条报警信号, 实时发送。
8、 一种动力电池高压系统, 包括电池本体、 电池管理系统、 正极、 负极、 预充 电继电器, 预充电电阻, 以及如权利要求 1一 7任一项所述的动力电池高压输出监控装 置。
PCT/CN2009/072662 2008-07-08 2009-07-07 一种动力电池高压输出监控装置及系统 WO2010003366A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/002,978 US8456135B2 (en) 2008-07-08 2009-07-07 High voltage output monitoring device and system for a power battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101330732A CN101330225B (zh) 2008-07-08 2008-07-08 一种动力电池高压输出监控装置
CN200810133073.2 2008-07-08

Publications (1)

Publication Number Publication Date
WO2010003366A1 true WO2010003366A1 (zh) 2010-01-14

Family

ID=40205876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072662 WO2010003366A1 (zh) 2008-07-08 2009-07-07 一种动力电池高压输出监控装置及系统

Country Status (3)

Country Link
US (1) US8456135B2 (zh)
CN (1) CN101330225B (zh)
WO (1) WO2010003366A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120086404A1 (en) * 2010-10-06 2012-04-12 Samsung Sdi Co., Ltd. Apparatus and method of controlling high current and power storage apparatus using the same
WO2012048929A1 (de) * 2010-09-28 2012-04-19 Robert Bosch Gmbh Verfahren und anordnung zur überwachung mindestens einer batterie, batterie mit einer solchen anordnung sowie ein kraftfahrzeug mit einer entsprechenden batterie
CN102729835A (zh) * 2012-06-05 2012-10-17 郑州宇通客车股份有限公司 一种车载超级电容管理系统及方法
CN109030930A (zh) * 2018-08-17 2018-12-18 国网江苏省电力有限公司盐城供电分公司 一种基于变电站的电压检测系统及其检测方法
CN111965730A (zh) * 2020-07-31 2020-11-20 中国铁道科学研究院集团有限公司 铁路地震预警监测系统牵变接口检测设备及方法
CN112098831A (zh) * 2020-09-17 2020-12-18 北京车和家信息技术有限公司 电池组继电器的寿命预测方法、装置、电路及汽车
CN114295974A (zh) * 2021-12-30 2022-04-08 上海儒竞智控技术有限公司 预充电继电器失效的检测方法及检测电路
CN114906333A (zh) * 2022-04-27 2022-08-16 上海沃兰特航空技术有限责任公司 电动飞机的动力域控制系统及电动飞机

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330225B (zh) 2008-07-08 2010-07-07 奇瑞汽车股份有限公司 一种动力电池高压输出监控装置
KR101028291B1 (ko) * 2008-09-01 2011-04-11 주식회사 엘지화학 배터리 팩과 부하 간의 스위치부 제어장치 및 방법, 그리고 상기 장치를 포함하는 배터리 팩 및 배터리 관리 장치
CN101570147B (zh) * 2009-06-01 2011-05-11 奇瑞汽车股份有限公司 一种电动汽车电池系统结构
CN101572332B (zh) * 2009-06-08 2012-03-28 奇瑞汽车股份有限公司 一种高压电池的控制系统及其控制方法
CN101841177B (zh) * 2010-04-23 2012-10-24 北汽福田汽车股份有限公司 一种保护电动汽车预充电电路的方法与系统
CN101834457B (zh) * 2010-04-30 2012-11-07 重庆长安汽车股份有限公司 一种锂电池管理系统
CN101826745B (zh) * 2010-05-18 2014-06-04 郁百超 锂离子动力电池无损充电机
JP5686238B2 (ja) * 2010-09-03 2015-03-18 ソニー株式会社 電気回路、充電制御装置、充電システム、制御方法、蓄電装置、および蓄電システム
RU2013135285A (ru) 2010-12-27 2015-02-10 Хонда Мотор Ко., Лтд. Устройство управления генерированием и способ управления генерированием
CN102723689A (zh) * 2011-03-30 2012-10-10 比亚迪股份有限公司 电源自动切断保护电路及其控制方法
FR2978879B1 (fr) * 2011-08-02 2015-03-13 Renault Sa Procede de diagnostic d'un court-circuit dans un ensemble electrique d'un vehicule automobile comprenant une composante capacitive et dispositif de diagnostic
CN103001265B (zh) * 2011-09-08 2014-10-29 北汽福田汽车股份有限公司 动力电池高压输出电气盒
KR101542641B1 (ko) 2011-09-23 2015-08-07 주식회사 엘지화학 배터리 충전 시스템 및 이를 이용한 충전 방법
KR20130046234A (ko) * 2011-10-27 2013-05-07 삼성에스디아이 주식회사 배터리 팩 및 이의 제어 방법
CN102866353B (zh) * 2012-09-26 2015-11-18 长沙学院 一种直流电源系统的主回路继电器状态检测装置及方法
CN103072464B (zh) * 2013-02-05 2015-09-09 安徽安凯汽车股份有限公司 一种串联混合动力车高压系统上下电控制电路及控制方法
CN103192777B (zh) * 2013-04-08 2015-05-13 富奥汽车零部件股份有限公司 一种电动汽车高压控制电路
US9411387B2 (en) * 2013-11-18 2016-08-09 Broadcom Corporation Pre-charging mechanism for multi-input switching charger
CN103692924B (zh) * 2013-11-25 2016-06-15 上海安科瑞电源管理系统有限公司 一种数据可异构的电动摩托车电池管理方法及其控制装置
CN104749454A (zh) * 2013-12-30 2015-07-01 上海普锐马电子有限公司 用于高压电容的程控监控电路
CN103869175B (zh) * 2014-03-20 2016-08-17 奇瑞汽车股份有限公司 一种汽车电器回路电压损耗检测系统及其检测方法
CN104868513B (zh) * 2014-09-09 2017-10-10 北汽福田汽车股份有限公司 一种动力电池预充电过程的控制方法
CN104648178B (zh) * 2015-02-11 2017-03-08 安徽江淮汽车集团股份有限公司 一种基于纯电动汽车的充电上电控制方法
CN104917144A (zh) * 2015-06-04 2015-09-16 科力远混合动力技术有限公司 混合动力汽车用高压系统中继电器控制电路
JP6200461B2 (ja) 2015-07-14 2017-09-20 ファナック株式会社 ダイナミックブレーキ回路を有するモータ駆動装置
CN106564390B (zh) * 2015-10-12 2020-04-21 北京新能源汽车股份有限公司 电动汽车及其高压系统、检测方法和预充电电路
US20170187204A1 (en) * 2015-12-24 2017-06-29 Hangzhou Chic Intelligent Technology Co., Ltd Battery management system for human-machine interaction vehicles
CN106019163B (zh) * 2016-05-23 2018-11-27 重庆长安汽车股份有限公司 一种动力电池高压回路自检方法、装置及系统
CN106911160B (zh) * 2017-04-10 2023-10-17 上海蔚来汽车有限公司 直流充电继电器的状态检测装置及其方法、直流充电系统
CN106950947A (zh) * 2017-05-24 2017-07-14 成都大运汽车集团有限公司 新能源汽车高压继电器状态监控系统
CN109217871B (zh) * 2017-06-30 2022-07-08 宁德时代新能源科技股份有限公司 一种采样控制电路
CN107482591A (zh) * 2017-08-01 2017-12-15 安徽欧鹏巴赫新能源科技有限公司 一种车载高压继电器安全防护方法
CN107863791B (zh) * 2017-09-28 2024-08-06 惠州市蓝微新源技术有限公司 一种电池簇的同步投切电路
CN107621565B (zh) * 2017-10-23 2024-03-22 宁德时代新能源科技股份有限公司 高压检测电路、检测器、电池装置和运载工具
CN107991605B (zh) * 2017-11-16 2019-12-06 湖南工业大学 继电器寿命计数测量方法
CN109823180B (zh) * 2017-11-22 2022-04-26 上海汽车集团股份有限公司 一种动力电池的预充电路
CN108382234B (zh) * 2018-02-24 2019-11-08 广汽丰田汽车有限公司 车辆及其预充电阻的控制方法、系统和存储介质
CN108515846B (zh) * 2018-04-08 2023-09-29 深圳市海德森科技股份有限公司 电动车电池管理系统与电动车电池管理方法
CN109032030B (zh) * 2018-08-16 2024-04-09 株洲联诚集团控股股份有限公司 一种超长无轨巴士高压箱及辅助变流柜监测系统及方法
CN109119708A (zh) * 2018-08-17 2019-01-01 深圳市铭隆动力科技有限公司 一种多功能电池动力系统
JP7066590B2 (ja) * 2018-10-05 2022-05-13 本田技研工業株式会社 診断装置、診断方法、及びプログラム
CN109116230B (zh) * 2018-10-26 2024-05-03 常州是为电子有限公司 高压继电器状态在线监测装置和方法
CN109515248A (zh) * 2018-12-14 2019-03-26 蜂巢能源科技有限公司 电动汽车预充电完成判断电路及预充电装置
CN110188373A (zh) * 2019-04-11 2019-08-30 汉腾汽车有限公司 一种动力电池主正继电器开关控制方法
CN112039134A (zh) * 2019-06-03 2020-12-04 浙江吉智新能源汽车科技有限公司 一种电池回路通断的控制方法、装置、设备及终端
CN110588435A (zh) * 2019-09-20 2019-12-20 宝能(广州)汽车研究院有限公司 电动汽车的高压控制系统及其高压上电的控制方法
CN110861530B (zh) * 2019-11-25 2024-02-20 芜湖天量电池系统有限公司 一种动力电池的监控系统及方法
CN110994562A (zh) * 2019-12-24 2020-04-10 沃太能源南通有限公司 一种储能电池管理系统中的高压保护功能模块及控制方法
CN111152659B (zh) * 2019-12-25 2021-09-10 浙江合众新能源汽车有限公司 电池包高压拓补结构及基于该结构的继电器粘连检测方法
CN111890939A (zh) * 2020-08-04 2020-11-06 山推工程机械股份有限公司 一种整车系统、非道路电动车辆以及整车系统的控制方法
CN112231910A (zh) * 2020-10-15 2021-01-15 华人运通(江苏)技术有限公司 一种高压直流接触器的寿命判定系统及方法
CN113066272A (zh) * 2021-03-02 2021-07-02 绍兴知乐电子科技股份有限公司 一种基于电池管理的模拟前端采集系统
CN113960465B (zh) * 2021-09-29 2023-01-17 北汽福田汽车股份有限公司 继电器的检测方法和装置
FR3132599A1 (fr) * 2022-02-04 2023-08-11 Psa Automobiles Sa Surveillance d’un circuit de précharge d’un circuit d’interface d’un système
WO2024187433A1 (zh) * 2023-03-15 2024-09-19 浙江极氪智能科技有限公司 一种高压采样电路、高压采样方法及电池管理系统
CN117767569B (zh) * 2023-12-27 2024-07-05 国网黑龙江省电力有限公司大庆供电公司 一种基于继电器的远程控制系统
CN118658750A (zh) * 2024-08-20 2024-09-17 深圳通业科技股份有限公司 交流继电器控制电路及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139005A1 (en) * 2005-12-16 2007-06-21 Panasonic Ev Energy Co., Ltd. Power supply device and method of controlling the same
CN101194406A (zh) * 2005-06-07 2008-06-04 丰田自动车株式会社 车辆电源系统和车辆
JP2008133742A (ja) * 2006-11-27 2008-06-12 Honda Motor Co Ltd 車両の電源制御装置
CN101330225A (zh) * 2008-07-08 2008-12-24 奇瑞汽车股份有限公司 一种动力电池高压输出监控装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805142A (en) * 1973-01-10 1974-04-16 Bell Telephone Labor Inc Current limit circuit with superseding characteristic to activate overcurrent protection circuit
US5373197A (en) * 1992-11-02 1994-12-13 Labconco Corporation High voltage dual output laboratory power supply
US5602462A (en) * 1995-02-21 1997-02-11 Best Power Technology, Incorporated Uninterruptible power system
US5737168A (en) * 1995-05-04 1998-04-07 Baker; George T. Electrical power management system
DE19650381C1 (de) * 1996-12-05 1998-05-28 Kostal Leopold Gmbh & Co Kg Schaltungsanordnung
JP4605952B2 (ja) * 2001-08-29 2011-01-05 株式会社日立製作所 蓄電装置及びその制御方法
US20080157718A1 (en) * 2006-12-19 2008-07-03 Honda Motor Co., Ltd. Voltage monitor circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194406A (zh) * 2005-06-07 2008-06-04 丰田自动车株式会社 车辆电源系统和车辆
US20070139005A1 (en) * 2005-12-16 2007-06-21 Panasonic Ev Energy Co., Ltd. Power supply device and method of controlling the same
JP2008133742A (ja) * 2006-11-27 2008-06-12 Honda Motor Co Ltd 車両の電源制御装置
CN101330225A (zh) * 2008-07-08 2008-12-24 奇瑞汽车股份有限公司 一种动力电池高压输出监控装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048929A1 (de) * 2010-09-28 2012-04-19 Robert Bosch Gmbh Verfahren und anordnung zur überwachung mindestens einer batterie, batterie mit einer solchen anordnung sowie ein kraftfahrzeug mit einer entsprechenden batterie
CN103250429A (zh) * 2010-09-28 2013-08-14 罗伯特·博世有限公司 用于监控至少一个蓄电池的方法和装置、具有这样的装置的蓄电池以及具有相应的蓄电池的机动车
US9367420B2 (en) 2010-09-28 2016-06-14 Robert Bosch Gmbh Method and arrangement for monitoring at least one battery, battery having such an arrangement, and motor vehicle having a corresponding battery
CN103250429B (zh) * 2010-09-28 2016-09-21 罗伯特·博世有限公司 用于监控至少一个蓄电池的方法和装置、具有这样的装置的蓄电池以及具有相应的蓄电池的机动车
US20120086404A1 (en) * 2010-10-06 2012-04-12 Samsung Sdi Co., Ltd. Apparatus and method of controlling high current and power storage apparatus using the same
CN102729835A (zh) * 2012-06-05 2012-10-17 郑州宇通客车股份有限公司 一种车载超级电容管理系统及方法
CN109030930A (zh) * 2018-08-17 2018-12-18 国网江苏省电力有限公司盐城供电分公司 一种基于变电站的电压检测系统及其检测方法
CN111965730A (zh) * 2020-07-31 2020-11-20 中国铁道科学研究院集团有限公司 铁路地震预警监测系统牵变接口检测设备及方法
CN112098831A (zh) * 2020-09-17 2020-12-18 北京车和家信息技术有限公司 电池组继电器的寿命预测方法、装置、电路及汽车
CN112098831B (zh) * 2020-09-17 2023-11-03 北京车和家信息技术有限公司 电池组继电器的寿命预测方法、装置、电路及汽车
CN114295974A (zh) * 2021-12-30 2022-04-08 上海儒竞智控技术有限公司 预充电继电器失效的检测方法及检测电路
CN114295974B (zh) * 2021-12-30 2023-11-10 上海儒竞智控技术有限公司 预充电继电器失效的检测方法及检测电路
CN114906333A (zh) * 2022-04-27 2022-08-16 上海沃兰特航空技术有限责任公司 电动飞机的动力域控制系统及电动飞机
CN114906333B (zh) * 2022-04-27 2024-05-03 上海沃兰特航空技术有限责任公司 电动飞机的动力域控制系统及电动飞机

Also Published As

Publication number Publication date
US20110115438A1 (en) 2011-05-19
US8456135B2 (en) 2013-06-04
CN101330225A (zh) 2008-12-24
CN101330225B (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2010003366A1 (zh) 一种动力电池高压输出监控装置及系统
CN205790155U (zh) 电池包及电动车动力系统
CN102175971B (zh) 一种电动车高压系统的继电器状态检测方法和装置
CN100579814C (zh) 用于can总线技术汽车的车载智能电源管理系统
CN104412444B (zh) 蓄电池的安全设计
CN104842814B (zh) 轻型客车双路冗余安全高压设备及其控制系统与控制方法
CN106809014A (zh) 一种电动汽车及其电源系统
CN204567343U (zh) 轻型客车双路冗余安全高压设备及其控制系统
CN110861495B (zh) 一种新能源汽车高压电击防护安全系统及方法
CN107482591A (zh) 一种车载高压继电器安全防护方法
CN108767808A (zh) 一种eps控制器电源诊断与保护系统及方法
CN105811388A (zh) 一种用于电机控制器的高压放电方法、电路和具有该电路的电动汽车
WO2023077359A1 (zh) 控制系统、应急启动电源和电瓶夹
CN112009247B (zh) 一种电动汽车车载充电系统的高压上电方法
CN109334756A (zh) 一种助力转向双驱动控制系统及其控制方法
CN210652696U (zh) 一种新能源汽车及其低压供电电路
CN107813731A (zh) 一种电动车用电系统
CN210062685U (zh) 高压放电装置和车辆
CN113561810B (zh) 一种充电口断电保护装置及电动车
CN216993911U (zh) 一种电动汽车的高压系统及电动汽车
CN214138248U (zh) 一种绝缘安全防护装置及具有其的电动车
CN105353319B (zh) 基于无源隔离的电动汽车预充电完成状态检测装置
CN103457344B (zh) 一种高压电容电荷泄放系统
CN216709035U (zh) 一种电源控制系统及汽车
CN205263276U (zh) 基于无源隔离的电动汽车预充电完成状态检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13002978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09793841

Country of ref document: EP

Kind code of ref document: A1