WO2010003343A1 - 通过流体温差产生能量的设备 - Google Patents

通过流体温差产生能量的设备 Download PDF

Info

Publication number
WO2010003343A1
WO2010003343A1 PCT/CN2009/072525 CN2009072525W WO2010003343A1 WO 2010003343 A1 WO2010003343 A1 WO 2010003343A1 CN 2009072525 W CN2009072525 W CN 2009072525W WO 2010003343 A1 WO2010003343 A1 WO 2010003343A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piston
high pressure
gas
pressure gas
Prior art date
Application number
PCT/CN2009/072525
Other languages
English (en)
French (fr)
Inventor
张中和
史杜尔·威廉
Original Assignee
Chang Chungho
Stuhr Wilhelm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chungho, Stuhr Wilhelm filed Critical Chang Chungho
Priority to EP09793818.7A priority Critical patent/EP2360376A4/en
Publication of WO2010003343A1 publication Critical patent/WO2010003343A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/0055Devices for producing mechanical power from solar energy having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • Chinese Patent Publication No. CN1671573A discloses a thermal solar energy system for recovering electrical energy from a low-grade geothermal/solar energy system including a closed loop refrigerant circuit and a pressurized refrigerant fluid. It is pumped through a heat exchanger connected to the heat/solar energy at ambient temperature, and the refrigerant fluid absorbs thermal energy into high pressure gas during the conversion. The heated/pressurized gas is supplied to the expander to drive the output shaft during the expansion of the high pressure gas into the cooling gas. The cooled other refrigerant condenses into a liquid at low pressure and ambient temperature and is recirculated to the heat exchanger under pressure.
  • the expander is a reverse modified gas compressor.
  • the pressurized hot refrigerant gas is normally introduced as an outlet, and the normal inlet becomes the end of the expander.
  • Refrigerant gas pressure/temperature drop drives the expander shaft for direct output of mechanical energy or coupling to a synchronous or induction generator for power generation.
  • a disadvantage of this geothermal solar system is that the energy output is unstable, thereby affecting the output stability of the terminal energy generating device such as a motor or generator. Therefore, there is a need to provide an apparatus that can efficiently utilize solar energy and other sources of heat to generate energy and that can stabilize energy output.
  • the present invention is directed to a novel apparatus for generating energy by a heat source, which is capable of efficiently utilizing solar energy and other heat sources to generate energy, and is capable of ensuring stable output such as Energy such as mechanical energy or electrical energy.
  • the present invention provides an apparatus for generating energy by a temperature difference of a fluid, the apparatus comprising: a gas differential pressure generating device that generates a gas pressure difference by a heat source; a high pressure gas generating device that passes the gas line and the a gas pressure difference generating means for generating a high pressure gas by a gas pressure difference from the gas pressure difference generating means; a pressure accumulating means communicating with the high pressure gas generating means via a gas line, accumulating pressure a device for storing high pressure gas generated by the high pressure gas generating device; and an energy generating device communicating with the pressure accumulating device through a gas line, the energy generating device being in a high pressure gas stored in the pressure accumulating device Generate energy under the action.
  • the heat source is a hot fluid source
  • the gas differential pressure generating device comprises: a high pressure gas generating component comprising at least one hot fluid source and at least one first heat exchanger, each of the hot fluid sources being connected to Each of the respective first heat exchangers, the first heat exchanger is filled with a pressurized gas, and each of the first heat exchangers is connected to the first through a first common gas line via a first common gas line a high pressure gas generating device; a low pressure gas generating assembly comprising at least one cold fluid source and at least one second heat exchanger, each of said cold fluid sources being coupled to each respective said second heat exchanger, said a second heat exchanger is filled with a pressurized gas, and each of the second heat exchangers is connected to the high pressure gas generating device via a second wide and through a second common gas line; wherein, in the operating state, each Each of the hot fluid sources heats each of the first heat exchangers connected thereto to increase a gas pressure in each of the first heat exchangers
  • the high pressure gas generating device is a master cylinder assembly, the master cylinder assembly comprising: a master cylinder in which a master piston is disposed, the master cylinder being connected to the first share via a third valve or a fourth valve a gas line connected to the second common gas line via a fifth valve or a sixth valve, the third valve and the fifth valve being connected to a left side of the main piston, the fourth valve and the first a six valve connected to the right side of the main piston; a first compressor disposed to be integrally connected to the left side of the main cylinder and provided with a first piston, the first compressor being used for the first piston to the left Mobile Outputting a high pressure gas; a second compressor disposed to be integrally connected to the right side of the master cylinder and provided with a second piston for outputting high pressure gas when the second piston moves to the right, And the second compressor is connected to the pressure accumulating device via a unidirectional wide connection on the right side of the second piston so that the high pressure gas can flow into the pressure
  • the pressure accumulating device includes at least one high pressure gas storage tank, and a ninth valve and a tenth valve are respectively disposed at the input port and the output port of each of the high pressure gas storage tanks.
  • the energy generating device may be a pneumatic motor, and the air motor is connected to the high pressure gas storage tank via a pressure regulating device disposed downstream of the high pressure gas storage tank, thereby being stored in the high pressure storage Rotate under the action of high pressure gas in the gas tank.
  • the energy generating device may include: an auxiliary cylinder assembly connected to the high pressure gas storage tank for converting a gas pressure in the high pressure gas storage tank into a hydraulic pressure, the auxiliary cylinder assembly including An auxiliary cylinder in which an auxiliary piston is provided, the auxiliary cylinder being connected to the high pressure gas storage tank via a seventh valve and a eighth valve, the seventh valve being connected to the left side of the auxiliary piston, the eighth valve Connected to the right side of the auxiliary piston; a third compressor disposed to be airtightly connected to the left side of the auxiliary cylinder and provided with a third piston for outputting when the third piston moves to the left a fourth compressor, which is disposed to be connected to the right side of the auxiliary cylinder in a gastight manner and provided with a fourth piston for outputting pressurized liquid, a hydraulic motor, when the fourth piston moves to the left, Connected to the auxiliary cylinder assembly and rotated by the pressurized liquid output by the auxiliary cylinder assembly, wherein the auxiliary piston
  • the energy generating device further includes a generator disposed downstream of the hydraulic motor, the hydraulic motor driving the generator to generate power. More preferably, a first circulation pump is disposed between each of the first heat exchanger and each of the hot fluid sources connected thereto, and the first circulation pump is used to make the thermal fluid source a hot fluid circulating to the first heat exchanger; a second circulating pump is also disposed between each of the second heat exchanger and each of the cold fluid sources connected thereto, the second A circulation pump is used to circulate the cold fluid in the source of cold fluid into the second heat exchanger.
  • the hot fluid in the hot fluid source is hot water from a solar collector or cooling water in a power station for equipment cooling;
  • the cold fluid in the cold fluid source is an underground cooling pipe in a building Cold water in the group.
  • each of the first heat exchanger and each of the second heat exchangers are connected to the high pressure gas storage tank via a one-way valve, so that the initial state and the occurrence of leakage may be The first heat exchanger and the second heat exchanger are filled with a gas.
  • the apparatus further includes a pressure equalizing valve connected between each of the first heat exchangers and each of the respective second heat exchangers for completing one of the main pistons of the master cylinder
  • Each of the first heat exchangers is equal to the air pressure in each of the respective second heat exchangers after the stroke.
  • the pressure of the high pressure gas output by the first compressor is 60 bar; and the pressure of the high pressure gas output by the second compressor is 200 bar.
  • the apparatus further includes an electronic control unit for controlling the first to tenth valves, and a left side of the first compressor and a right side of the second compressor are provided with position sensors.
  • the left position sensor sends a control signal to the electronic control unit, so that the electronic control unit sequentially performs the following operations: Closing one or more of the first valves and a corresponding one or more of the second valves; closing the fourth valve and the fifth valve; opening a corresponding pressure equalizing valve; closing the corresponding a pressure equalizing valve; opening the third valve and the sixth valve and the next one or more of the first valve and the corresponding one or more of the second broad.
  • the right position sensor sends a control signal to the electronic control unit, so that the electronic control unit sequentially performs the following Operation: closing one or more of the first broads and a corresponding one of the second broads Closing the third valve and the sixth valve; opening a corresponding equalizing valve; closing the corresponding equalizing valve; opening the fourth valve and the fifth valve and the first valve One or more of the next one and a corresponding one or more of the second broadest.
  • the electronic control unit is a programmable logic controller and the position sensor is a limit switch.
  • each of the high-pressure gas storage tanks is provided with a pressure sensor, and when the pressure in at least one of the high-pressure gas storage tanks in an operating state reaches a predetermined value, the corresponding pressure sensor is directed to the electronic control unit And issuing a control signal, so that the electronic control unit sequentially performs the following operations: closing a ninth valve at an input port of the high-pressure gas storage tank whose pressure reaches a predetermined value; opening the high-pressure gas storage tank whose pressure reaches a predetermined value a tenth valve at the output port; opening a ninth valve at an input port of at least one other high pressure gas storage tank other than the high pressure gas storage tank whose pressure reaches a predetermined value.
  • each of the high pressure gas storage tanks is provided with a pressure switch at an input port thereof, and each of the ninth widths is maintained in a normally open state, when at least one of the high pressure gas storage tanks in an operating state
  • the corresponding pressure switch sends a control signal to the electronic control unit while automatically closing, so that the electronic control unit sequentially performs the following operations: opening the high-pressure gas storage pressure to a predetermined value a tenth valve at the outlet of the tank; opening a pressure switch at an input of at least one other high pressure gas storage tank other than the high pressure gas storage tank whose pressure reaches a predetermined value.
  • the apparatus further includes a programmable logic controller for controlling the first to tenth valves, and a left side of the third compressor and a right side of the fourth compressor are all set to a limited position switch.
  • the programmable logic controller opens the seventh valve and closes the eighth in response to a left limit a valve; when the auxiliary piston moves to the right side with the third piston and the fourth piston, the programmable logic controller opens the eighth valve in response to a right limit and closes the The seventh valve.
  • the gas differential pressure generating means is connected downstream to the high pressure gas generating means and
  • the accumulator rather than being directly connected to the terminal energy generating device, can avoid affecting the output stability of the terminal energy generating device, thereby effectively utilizing solar energy and other heat sources and enabling stable output of energy such as mechanical energy or electrical energy.
  • FIG. 1 is a schematic view of an apparatus for generating energy by a temperature difference of a fluid according to the present invention
  • FIG. 2 is a partial schematic view of the apparatus of FIG. 1 at the end of one stroke
  • FIG. 3 is a diagram of the apparatus of FIG. Partial schematic of the time.
  • the apparatus includes: a gas differential pressure generating device 100 that generates a gas pressure difference by a heat source; a high pressure gas generating device 500 that communicates with a gas differential pressure generating device 100 through a gas line, and the high pressure gas generating device 500 is configured to pass a pressure difference from the gas
  • the gas pressure difference of the device 100 is generated to generate a high pressure gas
  • the pressure accumulating device 600 is connected to the high pressure gas generating device 500 through a gas line, the pressure accumulating device 600 is configured to store the high pressure gas generated by the high pressure gas generating device 500
  • the energy generating device 700 which communicates with the pressure accumulating device 600 through a gas line, and the energy generating device 700 rotates under the action of the high pressure gas stored in the pressure accumulating device 600.
  • the gas differential pressure generating device 100 includes a high pressure gas generating assembly 10 and a low pressure. Gas generating assembly 20. It should be noted that “high pressure” in the “high pressure gas generating component 10" means that the gas pressure generated therein is higher than the gas pressure generated in the "low pressure gas generating component 20".
  • the high pressure gas generating assembly 10 includes at least one source of thermal fluid 11-16 and at least one first heat exchanger 21-26. As shown, each source of hot fluid is connected to each respective first heat exchanger via a first circulating pump CP1, in particular, a source of hot fluid 11 is connected to the first heat exchanger 21, and the source of hot fluid 12 is connected To the first heat exchanger 22, and so on.
  • each of the first heat exchangers is connected to each respective source of hot fluid via a return line R1 so that the hot fluid can be returned to each of the sources of hot fluid after heat exchange.
  • the function of the first circulation pump CP1 is to circulate the hot fluid in the hot fluid source into the first heat exchanger to heat the first heat exchanger to raise the pressure of the pressurized gas in the first heat exchanger.
  • the source of hot fluid shown in Figure 1 is a solar collector for providing hot water to the first heat exchanger, but it should be understood that the source of hot fluid may also be a hot fluid such as a power station cooling water system. Other heat sources.
  • each of the first heat exchangers is connected to the high pressure gas generating device 500 via the first valves VI, V4, V7, V10.V13.V16 and through the first common gas line P1.
  • the valve is a conventional type valve for fluid continuity such as a ball valve.
  • the low pressure gas generating assembly 20 includes at least one cold fluid source 41-46 and at least one second heat exchanger 31-36.
  • each source of cold fluid is connected to each respective second heat exchanger via a second circulating pump CP2, in particular, a source of cold fluid 41 is coupled to a second heat exchanger 31, a source of cold fluid 42 Connected to the second heat exchanger 32, and so on.
  • each second heat exchanger is connected to each respective source of cold fluid via a return line R2 such that the cold fluid is returned to each of the sources of cold fluid after heat exchange.
  • the function of the second circulation pump CP2 is to circulate the cold fluid in the cold fluid source into the second heat exchanger to heat the second heat exchanger to lower the pressure of the pressurized gas in the second heat exchanger.
  • the cold fluid source shown in Figure 1 is an underground cooling tube set for a building for providing cold water to a second heat exchanger, but it should be understood that the cold fluid source may also be other capable of providing cold fluid Cold fluid source.
  • the cold fluid source may also be other capable of providing cold fluid Cold fluid source.
  • six cold fluid sources and six second heat exchangers are shown, it should be understood that the invention is not limited thereto, depending on the particular application and the source of the hot fluid and the first heat exchanger.
  • Number, available in the device To set any number of sources of cold fluid and second heat exchanger, and the number of cold fluid sources and second heat exchangers may not be equal to the number of hot fluid sources and first heat exchangers.
  • the number of first heat exchangers can be twice that of the second heat exchanger.
  • each of the second heat exchangers is connected to the high pressure gas generating device 500 via the second valves V3, V6, V9, V12, V15, V18 and through the second common gas line P2, respectively.
  • the valve is a conventional type valve for fluid on and off such as a ball valve.
  • the hot fluid circulates through one side of the first heat exchanger, thereby heating the gas filled on the other side of the first heat exchanger by heat exchange, so that the gas The pressure is rising.
  • the cold fluid circulates through one side of the second heat exchanger, thereby cooling the gas on the other side of the second heat exchanger by heat exchange, so that the pressure of the gas is lowered.
  • a pressure difference is formed between the gas in the first heat exchanger and the gas in the second heat exchanger.
  • the gas-filled side of each first heat exchanger is connected to the filling of each of the respective second heat exchangers via pressure equalizing valves V2, V5, V8, VII, V14, V17, respectively.
  • pressure equalizing valves V2, V5, V8, VII, V14, V17 are used to equalize the gas pressures in a pair of respective first and second heat exchangers, respectively.
  • the valve V2 is opened, the gas pressures in the first heat exchanger 21 and the second heat exchanger 31 become equal.
  • each of the first heat exchangers 21 - 26 and each of the second heat exchangers 31 - 36 is connected to a common line P3 via a one-way valve and is connected to the shared line via the shared line.
  • Pressing device 600 the plurality of unidirectional widths only allow gas to flow unidirectionally from the accumulator device 600 into the first heat exchanger and the second heat exchanger, thereby applying the first heat before the operation of the device and in the event of a leak
  • the exchanger and the second heat exchanger are filled.
  • a pressure regulating device may be disposed on the common line adjacent to the accumulator 600 side to input a gas of a given pressure into the first heat exchanger and the second heat exchanger according to a specific situation.
  • the functions of the above heat source and cold source are to form a temperature difference of air (high pressure gas), and thus the solar collector and the cooling tube group underground of the building are merely proposed as an example.
  • any environment and/or apparatus capable of forming a certain temperature difference can be used as the heat source and cold source of the present invention. For example, in the position where the sun shines outside and too There is a useful temperature difference between the shades where the sun is not exposed, and so on.
  • the temperature difference can be formed on the sunny and shaded faces of the building, outdoors and indoors, above and below ground, on water and underwater, and even from geothermal, wind and rain.
  • the high-pressure gas generating device 500 may be a cylinder assembly, and the high-pressure gas generating device shown in the drawing is a master cylinder assembly 5.
  • the master cylinder assembly 5 includes a master cylinder 50, a first compressor 51, a second compressor 52, and an air cleaner 13.
  • a main piston 501 is disposed in the main gas rainbow 50, and the main gas rainbow 50 is connected to the first common gas line P1 via the third valve V19 or the fourth valve V20 and is connected to the second common gas via the fifth valve V21 or the sixth valve V22.
  • the line P2, the third valve V19 and the fifth valve V21 are connected to the left side of the main piston 501, and the fourth valve V20 and the sixth valve V22 are connected to the right side of the main piston 501.
  • the first compressor 51 is disposed integrally connected to the left side of the main cylinder 50 and is provided with a first piston 511 for outputting high pressure gas when the first piston 511 is moved to the left.
  • the second compressor 52 is disposed integrally connected to the right side of the main cylinder 50 and is provided with a second piston 521 for outputting high-pressure gas when the second piston 521 is moved to the right. Further, the second compressor 52 is connected to the pressure accumulating device 600 via the check valve on the right side of the second piston 521 so that the high pressure gas can flow into the pressure accumulating device 600 only in one direction.
  • the air cleaner 13 is connected to the left side of the first compressor 51 via a one-way valve that causes the outside air filtered through the air cleaner 13 to flow unidirectionally into the first compressor 51.
  • the main piston 501 is integrally formed with the first piston 511 and the second piston 521 through the first link L1, and the first link L1 is disposed to pass through the side wall of the main cylinder 50 in a gastight manner, and the first compression
  • the machine 51 is connected to the right side of the second piston 521 of the second compressor 52 via the one-way valve on the left side of the first piston 511, so that the gas can flow only from the first compressor 51 to the second compressor 52 unidirectionally.
  • the gas pressure output by the first compressor 51 is 60 bar; the gas pressure output by the second compressor 52 is 200 bar.
  • the first compressor 51 When the three pistons integrally move to the left, the first compressor 51 outputs 60 bar of high-pressure gas flowing into the first via a check valve connected between the first compressor 51 and the second compressor 52.
  • the second compressor 52 is on the right side and finally flows into the pressure accumulating device 600; when the piston integrally moves to the right, the second compressor 52 outputs a high voltage of 200 bar.
  • the master cylinder assembly 5 can generate a pendulum motion (piston left and right movement) to output High-pressure gas;
  • the main cylinder assembly 5 can perform standard pendulum motion.
  • the larger the temperature difference the stronger the pendulum motion and the higher the output power. Therefore, as described above, any environment and/or equipment capable of forming a certain temperature difference (about 2.5 ° C) can be used as the heat source and the cold source of the present invention.
  • the pressure accumulator pressure accumulator 600 comprises at least one (only three are shown in the figures) of any known type of high pressure gas storage device, such as a high pressure gas storage tank 6, for storing the compressor 51 or The high pressure gas output from the compressor 52.
  • the high pressure gas storage tank 6 is also connected to the first heat exchanger and the second heat exchanger via a plurality of one-way valves to the first heat exchanger and the second heat in an initial state and in the event of a leak.
  • the exchanger is filled with gas.
  • a ninth valve 25 and a tenth valve 26 are provided at the input port and the output port of each of the high pressure gas storage tanks 6, respectively.
  • the ninth valve 25 is for controlling the on and off of the high pressure gas flowing from the master cylinder assembly 5 to the high pressure gas storage tank 6, and the tenth valve 26 is for controlling the on and off of the high pressure gas flowing from the high pressure gas storage tank 6 to the energy generating device.
  • the ninth valve 25 at the input of one or more of the high pressure gas storage tanks 6 can be simultaneously opened to cause the high pressure gas generated in the master cylinder assembly 5 to flow into the one or more high pressure gas storage tanks 6.
  • the ninth valve 25 For example, first open the ninth valve 25 at the input port of the left high pressure gas storage tank 6; when the gas pressure in the left high pressure gas storage tank 6 reaches a predetermined value, close the input port of the left high pressure gas storage tank 6
  • the ninth valve 25 opens the tenth valve 26 at the output of the left high pressure gas storage tank 6, and opens the ninth valve 25 at the input port of the intermediate high pressure gas storage tank 6.
  • the left high pressure gas storage tank 6 delivers high pressure gas to the downstream energy generating device, and the high pressure gas generated in the main cylinder assembly 5 flows into the intermediate high pressure gas storage tank 6, and so on, when the intermediate high pressure gas storage tank 6
  • the high pressure gas generated in the master cylinder assembly 5 flows into the right high pressure gas storage tank 6.
  • the high-pressure gas storage tank 6 can be continuously used cyclically to ensure continuous and stable delivery of high-pressure gas to the downstream energy generating device. body.
  • the energy generating device 700 includes an auxiliary cylinder assembly 7 and a hydraulic motor 8.
  • the auxiliary cylinder assembly 7 is connected to the high pressure gas storage tank 6 for converting the gas pressure in the high pressure gas storage tank 6 into the hydraulic pressure.
  • the hydraulic motor 8 is coupled to the auxiliary cylinder assembly 7 and is rotated by the pressurized liquid output from the auxiliary cylinder assembly 7. As shown, the hydraulic motor 8 is connected to the generator 9 and drives the generator 9 to generate electricity. It should be understood that the hydraulic motor 8 can also be used as a direct power source to drive other terminal equipment to rotate.
  • the auxiliary cylinder assembly 7 includes an auxiliary cylinder 70, a third compressor 71, and a fourth compressor 72.
  • An auxiliary piston 701 is disposed in the auxiliary cylinder 70, and the auxiliary cylinder 70 is connected to the high pressure gas storage tank 6 via the seventh valve V23 and the eighth valve V24. As shown, the seventh valve V23 is connected to the left side of the auxiliary piston 701, and the eighth valve V24 is connected to the right side of the auxiliary piston 701.
  • the third compressor 71 is disposed to be connected to the left side of the auxiliary cylinder 70 in a gastight manner and is provided with a third piston 711 for outputting pressurized liquid when the third piston 711 is moved to the left.
  • the fourth compressor 72 is disposed to be airtightly connected to the right side of the auxiliary gas rainbow 70 and provided with a fourth piston 721 for outputting pressurized liquid when the fourth piston 721 is moved to the left.
  • the auxiliary piston 701 is integrally provided with the third piston 711 and the fourth piston 721 through the second link L2, and the second link L2 is disposed to pass through the side wall of the auxiliary cylinder 7 in a gastight manner.
  • the third compressor 71 and the fourth compressor 72 are similar in structure to the first compressor 51 and the second compressor 52, and differ only in the third compressor 71 and the fourth compressor.
  • 72 is a liquid compressor that outputs a pressurized liquid such as hydraulic oil.
  • the third compressor 71 is connected to the reservoir ( ) and the hydraulic motor 8 through two check valves respectively; the fourth compressor 72 is also connected to the reservoir through two check valves, respectively ( And hydraulic motor 8. Therefore, when the piston moves to the left, the third compressor 71 outputs pressurized liquid and the fourth compressor 72 draws liquid from the reservoir; when the piston moves to the right, the fourth compressor 72 outputs The liquid is pressurized while the third compressor 71 draws liquid from the reservoir.
  • the energy generating device 700 is a pneumatic motor, and the pneumatic motor is connected to the high pressure gas storage tank via a pressure regulating device (not shown) disposed downstream of the high pressure gas storage tank 6. 6.
  • the air motor thus rotates under the action of the high pressure gas stored in the high pressure gas storage tank 6.
  • the air motor can be connected to the generator 9 and drive the generator 9 to generate electricity.
  • the air motor can also be used as a direct power source to drive other terminal equipment to rotate. Operation Procedure An exemplary operation of the apparatus will be described below with reference to the accompanying drawings, in which the first heat exchanger 21 and the second heat exchanger 31 as the first group are first opened, and then applied as the second group The first heat exchanger 22 and the second heat exchanger 32, followed by the third group, and so on, eventually return to the first heat exchanger 21 and the second heat exchanger 31.
  • a specific operation process of the apparatus includes the following steps: First, a pressure regulating device (not shown) upstream of the pressure accumulating device 600 is opened, thereby passing through a plurality of unidirectional widths to the first
  • the heat exchanger and the second heat exchanger are filled with a gas of a given pressure.
  • the gas pressure initially charged into both the first heat exchanger and the second heat exchanger is 200 bar.
  • the gas in the heat exchanger may have other pressures, and the gas pressure in the first heat exchanger may be slightly greater than the gas pressure in the second heat exchanger.
  • the first valve VI and the second valve V22 are opened, and the first valves V4, V7, V10, V13 are closed.
  • the corresponding first circulation pump CP1 circulates the hot water generated in the solar heat collector 11 to the first heat exchanger 21, thereby raising the gas pressure in the first heat exchanger 21 (above 200 bar).
  • the corresponding second circulation pump CP2 delivers the cold water circulation in the cooling pipe group 41 to the second heat exchanger 31, thereby lowering the gas pressure in the second heat exchanger 31 (below 200 bar).
  • the left side pressure of the master cylinder 50 is higher than the right side pressure, thereby causing the main piston in the master cylinder 50.
  • 501 moves from the equilibrium state to the right.
  • the main piston 501 is integrally provided with the first piston 511 and the second piston 521 by means of the link, the rightward movement of the main piston 501 causes the first piston 511 and the second piston 521 to also move to the right.
  • the second compressor 52 inputs the high pressure gas into the pressure accumulating device 600 while the first compressor passes through the air.
  • the filter 13 draws in outside air.
  • the fourth valve V20 and the fifth valve V21 may be opened first, at which time the right side pressure of the main cylinder 50 is higher than the left side pressure, the main piston 501 and the first piston 511 and the second piston 521. Will move to the left.
  • the third valve V19 and the sixth valve V22 and the first valve VI and the second valve V3 are closed, and the pressure equalizing valve V2 is opened to Keeping in the open state for a while, until the pressures in the first heat exchanger 21 and the second heat exchanger 31 become equal, then opening the first valve V4 and the second valve V6 and the fourth valve V20 and Five valves V21, and close the first valves VI, V7, V10, V13, V16, the second valves V3, V9, V12, V15, V18 and the pressure equalizing valves V2, V5, V8, VII, V14, V17.
  • the pressure on the right side of the main piston 501 is higher than the left side, so that the main piston 501 moves leftward with the first and second pistons 521.
  • the first compressor 51 inputs the high pressure gas into the pressure accumulating device 600.
  • a work cycle is completed. This cycle is repeated until the first valve VI and the second valve V3 are opened again - that is, the first heat exchanger 21 and the second heat exchanger 31 are used again.
  • first heat exchanger and one or more corresponding second heat exchangers may be opened simultaneously, or all of the first heat exchanger and all of the second heat exchangers may be simultaneously opened.
  • the corresponding valve opening and closing operations should be performed at this time. While the above operation is being performed, when high pressure gas is generated in the master cylinder assembly 5, the high pressure gas is first input into the left high pressure gas storage tank 6 shown in the drawing, that is, the first high pressure gas storage tank is first opened at the start of operation.
  • the ninth valve 25 at the input port of 6.
  • the ninth valve 25 at the input port of the left high pressure gas storage tank 6 is closed and the output port of the left high pressure gas storage tank 6 is opened.
  • the tenth valve 26 opens the ninth valve 25 at the input of the intermediate high pressure gas storage tank 6.
  • the left high pressure gas storage tank 6 delivers high pressure gas to the downstream energy generating device, and the high pressure gas generated in the main cylinder assembly 5 flows into the intermediate high pressure storage.
  • the intermediate high-pressure gas storage tank 6 delivers high-pressure gas to the downstream energy generating device, the high-pressure gas generated in the main cylinder assembly 5 flows into the right high-pressure gas storage tank 6.
  • the high-pressure gas storage tank 6 can be continuously used cyclically to ensure continuous and stable delivery of high-pressure gas to the downstream energy generating device.
  • the pressure accumulating device 600 may include a plurality of high pressure gas storage tanks 6, it is possible to simultaneously open more than one high pressure gas storage tank 6 without affecting the continuous circulation operation. Of course, it is also possible to open all of the high pressure gas storage tanks 6 at the same time. Accordingly, in the case where all of the high-pressure gas storage tanks 6 are simultaneously opened, when the gas pressure in the high-pressure gas storage tank 6 reaches a predetermined value, it is necessary to temporarily deactivate the apparatus of the present invention, such as the large in the high-pressure gas storage tank 6.
  • the apparatus of the present invention can be restarted, and thus this mode of operation does not ensure continuous delivery of the high pressure gas.
  • the auxiliary cylinder assembly 7 drives the hydraulic motor to rotate by the pressurized liquid under the action of the high pressure gas.
  • the air motor directly rotates under the action of the high pressure gas in the high pressure gas storage tank 6, and finally drives the generator to generate electricity by rotation.
  • the apparatus of the present invention further includes an electronic control unit (not shown) for controlling the first to tenth valves, which may be any known, for example, for use in a motor vehicle.
  • an electronic control unit for controlling the first to tenth valves, which may be any known, for example, for use in a motor vehicle.
  • a type of electronic control assembly, and a left side of the first compressor 51 and a right side of the second compressor 52 are provided with a position sensor (not shown), wherein the main piston 501 is coupled to the first piston 511 and the second piston
  • the left position sensor sends a control signal to the electronic control unit, so that the electronic control unit sequentially performs the following operations: closing one or more of the first valves and a corresponding one of the second valves or Multiple, closing the fourth valve V20 and the fifth valve V21, opening the corresponding pressure equalizing valve, closing the corresponding pressure equalizing valve, opening the third valve V19 and the sixth valve V22, and the next one or more of the first valves Corresponding one or more
  • the electronic control unit is a programmable logic controller (PLC) and the position sensor is a limit switch.
  • PLC programmable logic controller
  • the programmable logic controller can be any known type of programmable logic controller, and the limit switch can be, for example, a reed contact electromagnetic system or the like.
  • each of the high pressure gas storage tanks 6 is provided with a pressure sensor (not shown), and when the pressure in the at least one high pressure gas storage tank 6 in the working state reaches a predetermined value, the pressure reaches a predetermined value.
  • the pressure sensor of the high pressure gas storage tank 6 sends a control signal to the electronic control unit, so that the electronic control unit sequentially performs the following operations: closing the ninth valve 25 at the input port of the high pressure gas storage tank 6 whose pressure reaches a predetermined value; a tenth valve 26 at an output port of the high pressure gas storage tank 6 reaching a predetermined value; opening a ninth valve at an input port of at least one other high pressure gas storage tank 6 other than the high pressure gas storage tank 6 whose pressure reaches a predetermined value 25.
  • the electronic control unit closes the ninth valve 25 at the input port of the left high pressure gas storage tank 6 in response to the pressure sensor of the left high pressure gas storage tank 6, and opens The tenth valve 26 at the output port of the left high pressure gas storage tank 6 is such that the high pressure gas therein drives the downstream energy generating device and opens the ninth valve 25 at the input port of the intermediate or right high pressure gas storage tank 6,
  • a continuous cycle operation can be performed to ensure continuous and stable supply of high pressure gas to the downstream energy generating device.
  • the pressure accumulating device 600 may include a plurality of high pressure gas storage tanks 6, the ninth valve 25 of more than one high pressure gas storage tank 6 may be simultaneously opened, and the purpose of continuous operation of the cycle may also be achieved.
  • a pressure switch (not shown) is provided at the input port of each of the high pressure gas storage tanks 6, and each of the ninth valves 25 is maintained in a normally open state when in operation.
  • the pressure switch at the input port of the high-pressure gas storage tank 6 whose pressure reaches a predetermined value sends a control signal to the electronic control unit while automatically closing, so that The electronic control unit sequentially performs the following operations: opening the tenth valve 26 at the output port of the high pressure gas storage tank 6 whose pressure reaches a predetermined value; opening at least one other high pressure storage other than the high pressure gas storage tank 6 whose pressure reaches a predetermined value
  • the pressure switches at the input ports of more than one high-pressure gas storage tank 6 can be simultaneously opened, and continuous input and output of high-pressure gas can also be realized at this time. It can be seen that since each of the ninth valves 25 is maintained in the normally open state in the present embodiment, the ninth valve 25 in the present embodiment is used only for performing airflow on and off in the event of maintenance or an emergency. Further, a limit switch may be provided to the left side of the third compressor 71 and the right side of the fourth compressor 72.
  • the programmable logic controller opens the seventh valve V23 and closes the eighth valve V24 in response to the left limit switch;
  • the programmable logic controller opens the eighth valve V24 and closes the seventh valve V23 in response to the right limit switch.
  • the hydraulic motor 8 can be continuously driven, thereby making the energy output more stable.
  • the present invention can be used as, for example, fixed installation equipment in apartment buildings, factories, and supermarkets, and can also be used as a mobile unit in, for example, automobiles, ships, and trucks.
  • the apparatus of the present invention when used in various buildings, can be used as an independent power generation system of the building to power the building; on the other hand, when used in a vehicle such as a vehicle
  • the apparatus of the present invention can be used as a power source for the drive system of the vehicle, or as a power source for the brake system, steering system, and the like of the vehicle.
  • the hot air which is a gas line (not shown) delivers the hot air to an upstream high pressure gas generating component, whereby the hot air acts as a source of hot fluid, heating the first heat exchanger by heat exchange; the hot air can also be used in a building Or a heating system in the vehicle, or used to heat water or the like through a heat exchanger.
  • the high pressure gas in the high pressure gas storage tank 6 is delivered into the auxiliary cylinder assembly 7, cold air can be taken from the point B shown in Fig. 1, and the cold air can be sent to the upstream through a gas line (not shown).
  • the low pressure gas generating assembly whereby the cold air acts as a source of cold fluid, and cools the second heat exchanger by heat exchange; the cold air can also be used in an air conditioning system or the like in a building or a vehicle. In this way, on the one hand, it can prevent the temperature of the master cylinder assembly from being too high and prevent the temperature of the auxiliary cylinder assembly from being too low; on the other hand, the hot air and the cold air can be recovered to further realize the energy efficiency. use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

通过流体温差产生能量的设备 本申请要求于 2008 年 7 月 10 日提交中国专利局、 申请号为 200810126888.8、 发明名称为"通过流体温差产生能量的设备"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及一种产生能量的设备, 更具体地涉及一种通过流体温差产 生能量的设备。 背景技术 近年来, 能源 -特别是热能的有效利用问题受到了越来越多的关注, 其中, 太阳能作为一种清洁能源更是倍受青睐。 现有技术中已经存在各种 利用太阳能及其它热能产生能量(例如机械能或电能) 的设备。 例如, 中 国专利公报第 CN1671573A号公开了一种廈热太阳能系统, 其用于从低等 级廈热 /太阳能回收电能, 该廈热太阳能系统包括封闭循环的制冷剂回路, 加压后的制冷剂流体在外界环境温度下被泵送通过连接于廈热 /太阳能的 热交换器, 制冷剂流体在转换期间吸收热能变成高压气体。 加热 /加压后的 气体被输入膨胀器, 在高压气体膨胀成冷却气体期间驱动输出轴。 冷却后 的其它制冷剂凝缩成处于低压和外界温度下的液体, 在压力下重新循环到 热交换器。 该膨胀器是颠倒改装的气体压缩机。 加压后的热制冷剂气体在 通常被作为出口之处被输入, 正常的入口变成膨胀器的端部。 制冷剂气体 压力 /温度下降驱动膨胀器轴, 以便直接输出机械能或联接到同步或感应发 电机而进行发电。 然而, 该廈热太阳能系统的缺点是能量输出不稳定, 从 而影响诸如马达或发电机之类的终端能量产生装置的输出稳定性。 因此, 需要提供一种不仅能够有效利用太阳能及其它廈热源来产生能 量、 而且能够使能量输出更为稳定的设备。 发明内容 本发明旨在提供一种通过热源产生能量的新型设备, 该设备不仅能够 有效利用太阳能及其它廈热源来产生能量, 而且能够确保稳定地输出诸如 机械能或电能之类的能量。 为此目的, 本发明提供一种通过流体温差产生能量的设备, 该设备的 特征在于包括: 气体压差产生装置, 其通过热源产生气体压力差; 高压气 体产生装置, 其通过气体管线与所述气体压差产生装置连通, 高压气体产 生装置用于通过来自所述气体压差产生装置的气体压力差来生成高压气 体; 蓄压装置, 其通过气体管线与所述高压气体产生装置连通, 蓄压装置 用于储存所述高压气体产生装置生成的高压气体; 以及能量产生装置, 其 通过气体管线与所述蓄压装置连通, 所述能量产生装置在储存于所述蓄压 装置中的高压气体的作用下产生能量。 优选地, 所述热源为热流体源, 所述气体压差产生装置包括: 高压气 体产生组件, 其包括至少一个热流体源和至少一个第一热交换器, 每个所 述热流体源连接到每个相应的所述第一热交换器, 所述第一热交换器中填 充有加压气体, 并且每个所述第一热交换器经由第一阔并通过第一共用气 体管线连接到所述高压气体产生装置; 低压气体产生组件, 其包括至少一 个冷流体源和至少一个第二热交换器, 每个所述冷流体源连接到每个相应 的所述第二热交换器, 所述第二热交换器中填充有加压气体, 并且每个所 述第二热交换器经由第二阔并通过第二共用气体管线连接到所述高压气体 产生装置; 其中, 在工作状态下, 每个所述热流体源加热与其相连接的每 个所述第一热交换器从而使每个所述第一热交换器中的气体压力升高, 每 个所述冷流体源冷却与其相连接的每个所述第二热交换器从而使每个所述 第二热交换器中的气体压力降低, 从而所述高压气体产生组件与所述低压 气体产生组件之间形成气体压力差。 更优选地, 所述高压气体产生装置是主气缸组件, 所述主气缸组件包 括: 主气缸, 其中设置有主活塞, 所述主气缸经由第三阀或第四阀连接到 所述第一共用气体管线并经由第五阀或第六阀连接到所述第二共用气体管 线, 所述第三阀和所述第五阀连接到所述主活塞左侧, 所述第四阀和所述 第六阀连接到所述主活塞右侧; 第一压缩机, 其设置成一体地连接到所述 主气缸左侧并设置有第一活塞, 第一压缩机用于在所述第一活塞向左移动 时输出高压气体; 第二压缩机, 其设置成一体地连接到所述主气缸右侧并 设置有第二活塞, 第二压缩机用于在所述第二活塞向右移动时输出高压气 体, 并且所述第二压缩机在所述第二活塞右侧经由单向阔连接到所述蓄压 装置从而使高压气体只能单向地流入所述蓄压装置; 空气滤清器, 其经由 单向阀连接到所述第一压缩机左侧, 使得经所述空气滤清器过滤的外界空 气单向地流入所述第一压缩机内, 其中, 所述主活塞通过第一连杆与所述 第一活塞和所述第二活塞设置成一体, 并且所述第一连杆设置成以气密方 式穿过所述主气缸的侧壁, 并且所述第一压缩机在所述第一活塞左侧经由 单向阀连通到所述第二压缩机的第二活塞的右侧, 使得气体只能从所述第 一压缩机左侧单向地流入所述第二压缩机右侧。 更优选地, 所述蓄压装置包括至少一个高压储气罐, 每个所述高压储 气罐的输入口和输出口处分别设置有第九阀和第十阀。 更优选地, 所述能量产生装置可以是气动马达, 并且所述气动马达经 由设置在所述高压储气罐下游的调压装置连接到所述高压储气罐, 从而在 储存于所述高压储气罐中的高压气体的作用下转动。 替代性地, 所述能量产生装置可以包括: 辅助气缸组件, 其连接到所 述高压储气罐, 用于将所述高压储气罐中的气体压力转化为液压力, 所述 辅助气缸组件包括: 辅助气缸, 其中设置有辅助活塞, 所述辅助气缸经由 第七阀和第八阀连接到所述高压储气罐, 所述第七阀连接到所述辅助活塞 左侧, 所述第八阀连接到所述辅助活塞右侧; 第三压缩机, 其设置成以气 密方式连接在所述辅助气缸左侧并设置有第三活塞, 用于在所述第三活塞 向左移动时输出加压液体; 第四压缩机, 其设置成以气密方式连接在所述 辅助气缸右侧并设置有第四活塞, 用于在所述第四活塞向左移动时输出加 压液体, 液压马达, 其连接到所述辅助气缸组件并在所述辅助气缸组件输 出的加压液体的作用下转动, 其中, 所述辅助活塞通过第二连杆与所述第 三活塞和所述第四活塞设置成一体, 并且所述第二连杆设置成以气密方式 穿过所述辅助气缸的侧壁。 另外, 所述能量产生装置还包括设置在所述液 压马达下游的发电机, 所述液压马达带动所述发电机旋转发电。 更优选地, 每个所述第一热交换器和与其相连接的每个所述热流体源 之间都设置有第一循环泵, 所述第一循环泵用于使所述热流体源中的热流 体循环流动到所述第一热交换器中; 每个所述第二热交换器和与其相连接 的每个所述冷流体源之间也设置有第二循环泵, 所述第二循环泵用于使所 述冷流体源中的冷流体循环流动到所述第二热交换器中。 优选地, 所述热流体源中的热流体是来自太阳能集热器的热水或发电 站中用于设备冷却的冷却水; 所述冷流体源中的冷流体是建筑物中的地下 冷却管组中的冷水。 优选地, 每个所述第一热交换器以及每个所述第二热交换器都经由单 向阀连接到所述高压储气罐, 使得能够在初始状态以及发生泄漏的情况下 向所述第一热交换器和所述第二热交换器中填充气体。 优选地, 所述设备还包括连接在每个所述第一热交换器与每个相应的 所述第二热交换器之间的均压阀, 用于在所述主气缸的主活塞完成一个行 程之后使每个所述第一热交换器与每个相应的所述第二热交换器中的气压 相等。 优选地, 所述第一压缩机输出的高压气体的压力是 60巴; 而所述第二 压缩机输出的高压气体的压力是 200巴。 优选地,所述设备还包括用于控制所述第一至第十阀的电子控制单元, 并且所述第一压缩机的左侧和所述第二压缩机的右侧都设置有位置传感 器。 当所述主活塞与所述第一活塞和所述第二活塞一起移动到左侧时, 左 侧位置传感器向所述电子控制单元发出控制信号, 从而所述电子控制单元 顺次执行下列操作: 关闭所述第一阀中的一个或多个和所述第二阀中相应 的一个或多个; 关闭所述第四阀和所述第五阀; 打开相应的均压阀; 关闭 所述相应的均压阀; 打开所述第三阀和所述第六阀以及所述第一阀中接下 来的一个或多个和所述第二阔中接下来的相应的一个或多个。 并且, 当所 述主活塞与所述第一活塞和所述第二活塞一起移动到右侧时, 右侧位置传 感器向所述电子控制单元发出控制信号, 从而所述电子控制单元顺次执行 下列操作: 关闭所述第一阔中的一个或多个和所述第二阔中相应的一个或 多个; 关闭所述第三阀和所述第六阀; 打开相应的均压阀; 关闭所述相应 的均压阀; 打开所述第四阀和所述第五阀以及所述第一阀中接下来的一个 或多个和所述第二阔中接下来的相应的一个或多个。 在一种更优选的实施 方式中, 所述电子控制单元是可编程逻辑控制器, 并且所述位置传感器是 限位开关。 优选地, 每个所述高压储气罐都设置有压力传感器, 当处于工作状态 的至少一个所述高压储气罐中的压力达到预定值时, 相应的所述压力传感 器向所述电子控制单元发出控制信号, 从而所述电子控制单元顺次执行下 列操作: 关闭压力达到预定值的所述高压储气罐的输入口处的第九阀; 打 开压力达到预定值的所述高压储气罐的输出口处的第十阀; 打开除压力达 到预定值的所述高压储气罐之外的至少一个其它高压储气罐的输入口处的 第九阀。 优选地, 每个所述高压储气罐的输入口处都设置有压力开关, 并且每 个所述第九阔都保持常开状态, 当处于工作状态的至少一个所述高压储气 罐中的压力达到预定值时, 相应的所述压力开关在自动关闭的同时向所述 电子控制单元发出控制信号, 从而所述电子控制单元顺次执行下列操作: 打开压力达到预定值的所述高压储气罐的输出口处的第十阀; 打开除压力 达到预定值的所述高压储气罐之外的至少一个其它高压储气罐的输入口处 的压力开关。 优选地, 所述设备还包括用于控制所述第一至第十阀的可编程逻辑控 制器, 并且所述第三压缩机的左侧和所述第四压缩机的右侧都设置有限位 开关。当所述辅助活塞与所述第三活塞和所述第四活塞一起移动到左侧时, 所述可编程逻辑控制器响应于左侧限位而打开所述第七阀并关闭所述第八 阀; 当所述辅助活塞与所述第三活塞和所述第四活塞一起移动到右侧时, 所述可编程逻辑控制器响应于右侧限位而打开所述第八阀并关闭所述第七 阀。 根据具有上述结构的本发明的设备, 即便气体压差产生装置部分的热 能输入不稳定, 由于气体压差产生装置在下游连接到高压气体产生装置和 蓄压器, 而不是直接连接到终端能量产生装置, 所以能够避免影响终端能 量产生装置的输出稳定性, 从而能够有效地利用太阳能及其它热源并使得 能够稳定地输出诸如机械能或电能之类的能量。另外,根据本发明的设备, 在升压过程中, 可以从气体压差产生装置下游获取热空气, 该热空气可用 于建筑物或车辆内的加热系统或者用于通过热交换器来加热水; 在降压过 程中, 可以从蓄压器下游获取冷空气, 该冷空气可用于建筑物或车辆内的 空调系统。 附图说明 图 1是根据本发明的通过流体温差产生能量的设备的示意图; 图 2是图 1中的设备在一个行程结束时的局部示意图; 图 3是图 1中的设备在另一个行程结束时的局部示意图。 具体实施方式 下面参照附图详细描述本发明的实施方式。 应当指出的是, 本发明并 不限于所述实施方式, 在不偏离权利要求限定的保护范围的情况下, 本领 域的技术人员可以做出本发明的各种改型和变型。 总体结构 首先参照图 1 , 图 1 示出了根据本发明的通过流体温差产生能量的设 备的示意图。 该设备包括: 气体压差产生装置 100, 其通过热源产生气体 压力差; 高压气体产生装置 500,其通过气体管线与气体压差产生装置 100 连通, 高压气体产生装置 500用于通过来自气体压差产生装置 100的气体 压力差来生成高压气体; 蓄压装置 600, 其通过气体管线与高压气体产生 装置 500连通, 蓄压装置 600用于储存高压气体产生装置 500生成的高压 气体; 以及能量产生装置 700, 其通过气体管线与蓄压装置 600连通, 能 量产生装置 700在储存于蓄压装置 600中的高压气体的作用下转动。 气体压差产生装置 如图 1所示,气体压差产生装置 100包括高压气体产生组件 10和低压 气体产生组件 20。 应当指出的是, "高压气体产生组件 10" 中的 "高压" 意指其中产生的气体压力高于 "低压气体产生组件 20"中产生的气体压力。 高压气体产生组件 10包括至少一个热流体源 11 - 16和至少一个第一 热交换器 21 - 26。如图所示,每个热流体源经由第一循环泵 CP1连接到每 个相应的第一热交换器, 具体而言, 热流体源 11连接到第一热交换器 21 , 热流体源 12连接到第一热交换器 22, 依此类推。 并且每个第一热交换器 经由回流管线 R1 连接到每个相应的热流体源, 从而使热流体得以在进行 热交换之后回流到每个热流体源中。 第一循环泵 CP1的功能是使热流体源 中的热流体循环流入第一热交换器, 以便加热第一热交换器从而使第一热 交换器中的加压气体压力升高。 图 1所示的热流体源是用于向第一热交换 器提供热水的太阳能集热器, 但是应当理解的是, 该热流体源还可以是诸 如发电站冷却水系统等能够提供热流体的其它热源。 另外, 尽管图中示出 了 6个热流体源和 6个第一热交换器,应该理解的是本发明并不局限于此, 根据具体应用场合, 该设备中可以设置任意数目的热流体源和第一热交换 器。 并且, 如图所示, 每个第一热交换器分别经由第一阀 VI、 V4、 V7、 V10.V13.V16并通过第一共用气体管线 P1连接到高压气体产生装置 500。 所述阀是诸如球阀之类用于流体通断的常规型阀门。 低压气体产生组件 20包括至少一个冷流体源 41 - 46和至少一个第二 热交换器 31 - 36。如图 1所示,每个冷流体源经由第二循环泵 CP2连接到 每个相应的第二热交换器, 具体而言, 冷流体源 41 连接到第二热交换器 31 , 冷流体源 42连接到第二热交换器 32, 依此类推。 并且每个第二热交 换器经由回流管线 R2连接到每个相应的冷流体源, 从而使冷流体得以在 进行热交换之后回流到每个冷流体源中。 第二循环泵 CP2的功能是使冷流 体源中的冷流体循环流入第二热交换器, 以便加热第二热交换器从而使第 二热交换器中的加压气体压力降低。 图 1中示出的冷流体源是用于向第二 热交换器提供冷水的用于建筑物的地下冷却管组, 但是应当理解的是, 该 冷流体源还可以是能够提供冷流体的其它冷流体源。 类似地, 尽管图中示 出了 6个冷流体源和 6个第二热交换器, 应该理解的是本发明并不局限于 此, 根据具体应用场合以及热流体源和第一热交换器的数目, 该设备中可 以设置任意数目的冷流体源和第二热交换器, 并且冷流体源和第二热交换 器的数目可以不等于热流体源和第一热交换器的数目。 例如, 第一热交换 器的数目可以是第二热交换器的 2倍。 并且, 如图所示, 每个第二热交换 器分别经由第二阀 V3、 V6、 V9、 V12、 V15、 V18并通过第二共用气体管 线 P2连接到高压气体产生装置 500。所述阀是诸如球阀之类用于流体通断 的常规型阀门。 显然, 从上文的描述中可以看出, 热流体在第一热交换器的一侧循环 流过, 从而通过热交换来加热填充在第一热交换器另一侧的气体, 使得所 述气体的压力升高。 类似地, 冷流体在第二热交换器的一侧循环流过, 从 而通过热交换来对第二热交换器另一侧的气体进行制冷, 使得所述气体的 压力降低。 因此, 在初始压力相等的情况下, 第一热交换器中的气体与第 二热交换器中的气体之间会形成压力差。 此外, 如图所示, 每个第一热交换器的填充有气体的一侧分别经由均 压阀 V2、 V5、 V8、 VII、 V14、 V17连接到相应的每个第二热交换器的填 充有气体的一侧, 均压阀 V2、 V5、 V8、 VII、 V14、 V17分别用于使一对 相应的第一和第二热交换器中的气体压力变得相等。 例如, 从图 1中可以 清楚地看出, 当阀 V2打开时, 第一热交换器 21与第二热交换器 31中的 气体压力会变得相等。 从图 1 中还可以看到, 每个第一热交换器 21 - 26 以及每个第二热交换器 31 - 36都经由单向阀连接到一根共用管线 P3并通 过该共用管线连接到蓄压装置 600, 所述多个单向阔仅允许气体从蓄压装 置 600单向地流入第一热交换器和第二热交换器, 从而在设备运行之前以 及发生泄漏的情况下对第一热交换器和第二热交换器进行填充。 相应地, 可以在该共用管线上靠近蓄压装置 600—侧设置调压装置(未图示), 以便 根据具体情形将给定压力的气体输入第一热交换器和第二热交换器中。 需要说明的是, 上述热源和冷源的功能是形成空气(高压气体)温差, 因此太阳能集热器和建筑物地下的冷却管组仅仅是作为示例提出的。 对于 本领域技术人员来说显而易见的是,任何能够形成一定温差的环境和 /或设 备都可以作为本发明的热源和冷源。 例如, 在室外太阳照射到的位置和太 阳没有照射到的阴凉位置之间便可形成有用温差, 依此类推, 建筑物的阳 面和阴面、 室外和室内、 地上和地下、 水上和水下甚至于地热、 风和雨等 都可以形成温差, 从而作为本发明的热源和冷源。 高压气体产生装置 高压气体产生装置 500可以是气缸组件, 图中所示的高压气体产生装 置是主气缸组件 5。 主气缸组件 5包括主气缸 50、 第一压缩机 51、 第二压 缩机 52和空气滤清器 13。 主气虹 50中设置有主活塞 501 , 主气虹 50经由第三阀 V19或第四阀 V20连接到第一共用气体管线 P1并经由第五阀 V21或第六阀 V22连接到 第二共用气体管线 P2, 第三阀 V19和第五阀 V21连接到主活塞 501左侧, 第四阀 V20和第六阀 V22连接到主活塞 501右侧。 第一压缩机 51设置成 一体地连接到主气缸 50左侧并设置有第一活塞 511 , 第一压缩机 51用于 在第一活塞 511向左移动时输出高压气体。第二压缩机 52设置成一体地连 接到主气缸 50右侧并设置有第二活塞 521 , 第二压缩机 52用于在第二活 塞 521 向右移动时输出高压气体。 并且, 第二压缩机 52在第二活塞 521 右侧经由单向阀连接到蓄压装置 600从而使高压气体只能单向地流入蓄压 装置 600。 空气滤清器 13经由单向阀连接到第一压缩机 51左侧, 所述单 向阀使得经空气滤清器 13过滤的外界空气单向地流入第一压缩机 51内。 其中, 主活塞 501通过第一连杆 L1与第一活塞 511和第二活塞 521设置 成一体, 并且第一连杆 L1设置成以气密方式穿过主气缸 50的侧壁, 并且 第一压缩机 51在第一活塞 511左侧经由单向阀连通到第二压缩机 52的第 二活塞 521的右侧,使得气体只能从第一压缩机 51单向地流入第二压缩机 52。 在优选实施方式中, 第一压缩机 51输出的气体压力是 60巴; 第二压 缩机 52输出的气体压力是 200巴。 当所述三个活塞一体地向左移动时,第 一压缩机 51输出 60巴的高压气体, 该高压气体经由连接在第一压缩机 51 和第二压缩机 52之间的单向阀流入第二压缩机 52右侧并最终流入蓄压装 置 600; 当所述活塞一体地向右移动时, 第二压缩机 52输出 200巴的高压 气体, 同时第一压缩机 51经由单向阀吸入经过空气滤清器 13过滤的外界 空气。 实验表明, 在根据本发明的设备的工作过程中, 当上文所述的冷源与 热源之间的温差达到 2.5 °C时, 主气缸组件 5便可产生钟摆运动 (活塞左 右移动)从而输出高压气体; 当所述温差达到 10°C时, 主气缸组件 5便可 进行标准的钟摆运动, 温差越大则钟摆运动越强劲, 输出功率也越大。 因 此, 正如上文所述, 任何能够形成一定温差 (大约 2.5 °C即可) 的环境和 / 或设备都可以作为本发明的热源和冷源。 蓄压装置 蓄压装置 600包括至少一个(为了清楚起见, 图中仅示出了 3个)诸 如高压储气罐 6之类的任何公知类型的高压气体储存装置, 其用于储存压 缩机 51或压缩机 52输出的高压气体。 如上所述, 高压储气罐 6还经由多 个单向阀连接到第一热交换器和第二热交换器, 以便在初始状态以及发生 泄漏的情况下向第一热交换器和第二热交换器中填充气体。 此外, 如图 1所示, 每个高压储气罐 6的输入口和输出口处分别设置 有第九阀 25和第十阀 26。 第九阀 25用于控制从主气缸组件 5流向高压储 气罐 6的高压气体的通断,而第十阀 26用于控制从高压储气罐 6流向能量 产生装置的高压气体的通断。 在操作过程中, 可以同时打开一个或多个高 压储气罐 6的输入口处的第九阀 25 ,使主气缸组件 5中产生的高压气体流 向一个或多个高压储气罐 6中。 例如, 先打开左侧高压储气罐 6的输入口 处的第九阀 25; 当左侧高压储气罐 6中的气体压力达到预定值时, 关闭左 侧高压储气罐 6的输入口处的第九阀 25并打开左侧高压储气罐 6的输出口 处的第十阀 26,并且打开中间高压储气罐 6的输入口处的第九阀 25。此时, 左侧高压储气罐 6向下游的能量产生装置输送高压气体, 而主气缸组件 5 中产生的高压气体流入中间高压储气罐 6中, 依此类推, 当中间高压储气 罐 6向下游的能量产生装置输送高压气体时, 主气缸组件 5中产生的高压 气体便流入右侧高压储气罐 6中。 这样一来, 便能够循环地连续使用所述 高压储气罐 6, 从而保证向下游的能量产生装置连续、 稳定地输送高压气 体。 能量产生装置 在一种实施方式中, 能量产生装置 700包括辅助气缸组件 7和液压马 达 8。辅助气缸组件 7连接到高压储气罐 6,用于将高压储气罐 6中的气体 压力转化为液压力。 液压马达 8连接到辅助气缸组件 7并在辅助气缸组件 7输出的加压液体的作用下转动。 如图所示, 液压马达 8连接到发电机 9 并带动发电机 9旋转发电。 应当理解的是, 液压马达 8也可以作为直接动 力源而驱动其它终端设备旋转。 辅助气缸组件 7包括辅助气缸 70、第三压缩机 71以及第四压缩机 72。 辅助气缸 70中设置有辅助活塞 701 , 辅助气缸 70经由第七阀 V23和第八 阀 V24连接到高压储气罐 6。 如图所示, 第七阀 V23连接到辅助活塞 701 左侧, 第八阀 V24连接到辅助活塞 701右侧。 第三压缩机 71设置成以气 密方式连接在辅助气缸 70左侧并设置有第三活塞 711 , 第三压缩机 71用 于在第三活塞 711向左移动时输出加压液体。第四压缩机 72设置成以气密 方式连接在辅助气虹 70右侧并设置有第四活塞 721 , 第四压缩机 72用于 在第四活塞 721向左移动时输出加压液体。 其中, 辅助活塞 701通过第二 连杆 L2与第三活塞 711和第四活塞 721设置成一体, 并且第二连杆 L2设 置成以气密方式穿过辅助气缸 7的侧壁。 此外, 应当指出的是, 第三压缩 机 71和第四压缩机 72与第一压缩机 51和第二压缩机 52的结构类似, 其 区别之处仅在于第三压缩机 71和第四压缩机 72是液体压缩机, 输出的是 诸如液压油之类的加压液体。 另外, 如图所示, 第三压缩机 71通过两个单 向阀分别连接到储液箱 ( )和液压马达 8; 第四压缩机 72也通过两个单向 阀分别连接到储液箱 ( )和液压马达 8。 因此, 当所述活塞向左移动时, 第三压缩机 71输出加压液体而第四压缩机 72从储液箱中抽吸液体; 当所 述活塞向右移动时, 第四压缩机 72输出加压液体而第三压缩机 71从储液 箱中抽吸液体。 在另一种实施方式中, 能量产生装置 700是气动马达, 并且该气动马 达经由设置在高压储气罐 6下游的调压装置(未图示)连接到高压储气罐 6,从而该气动马达在储存于高压储气罐 6中的高压气体的作用下转动。如 上所述, 气动马达可以连接到发电机 9并带动发电机 9旋转发电。 同时, 气动马达也可以作为直接动力源而驱动其它终端设备旋转。 操作过程 下面参照附图说明该设备的示例性操作过程,在该示例性操作过程中, 首先打开作为第一组的第一热交换器 21和第二热交换器 31 , 然后应用作 为第二组的第一热交换器 22和第二热交换器 32, 接下来是第三组, 依此 类推, 最终又回到第一热交换器 21和第二热交换器 31。 参照图 1至图 3 , 根据本发明的设备的具体操作过程包括下列步骤: 第一步, 打开蓄压装置 600上游的调压装置(未图示), 从而通过多个 单向阔向第一热交换器和第二热交换器中填充给定压力的气体。 在一种优 选实施方式中, 最初向第一热交换器和第二热交换器中充入的气体压力均 为 200巴。 然而, 应该认识到, 本发明并不局限于此, 所述热交换器中的 气体可以具有其它压力, 并且第一热交换器中的气体压力可以略微大于第 二热交换器中的气体压力。 二步, 打开第一阀 VI和第二阀 V22, 并且关闭第一阀 V4、 V7、 V10、 V13、
Figure imgf000014_0001
V15、 V18以及均压阀 V2、 V5、 V8、 VII、 V14、 V17。 相应的第一循环泵 CP1 将太阳能集热器 11中产生的热水循环输送到第一热交换器 21中, 从而使 第一热交换器 21 中的气体压力升高 (200 巴以上)。 与此同时, 相应的第 二循环泵 CP2将冷却管组 4 1中的冷水循环输送到第二热交换器 31中,从 而使第二热交换器 31 内的气体压力降低(200 巴以下)。 如图所示, 由于 三阀 V19和第六阀 V22打开而第四阀 V20和第五阀 V21关闭, 所以主 气缸 50的左侧压力高于右侧压力, 从而导致主气缸 50中的主活塞 501从 平衡状态向右移动。如图 2所示,由于主活塞 501借助连杆与第一活塞 511 和第二活塞 521设置成一体,所以主活塞 501的右向移动导致第一活塞 511 和第二活塞 521也向右移动。 如上所述, 当所述活塞一体地向右移动时, 第二压缩机 52将高压气体输入蓄压装置 600中,同时第一压缩机经由空气 滤清器 13吸入外界空气。 当主活塞 501移动到主气缸 50右侧时, 一个运 动行程结束。 另外,如图 3所示,也可以先打开第四阀 V20和第五阀 V21 , 此时主气缸 50的右侧压力高于左侧压力,主活塞 501及第一活塞 511和第 二活塞 521将移动到左侧。 第三步, 如上所述, 当主活塞 501移动到主气缸 50右侧时, 关闭第三 阀 V19和第六阀 V22以及第一阀 VI和第二阀 V3, 并打开均压阀 V2, 使 其在打开状态下保持一小会儿, 直到第一热交换器 21与第二热交换器 31 中的压力变得相等时, 再打开第一阀 V4和第二阀 V6以及第四阀 V20和 第五阀 V21 , 并关闭第一阀 VI、 V7、 V10、 V13、 V16、 第二阀 V3、 V9、 V12、 V15、 V18以及均压阀 V2、 V5、 V8、 VII、 V14、 V17。 此时, 主活 塞 501右侧的压力高于左侧, 于是主活塞 501与第一和第二活塞 521—起 向左移动。 如上所述, 当所述活塞一体地向左移动时, 第一压缩机 51将高 压气体输入蓄压装置 600中。 如图 3所示, 当主活塞 501移动到主气缸 50 左侧时, 又一个运动行程结束, 至此完成了一个工作循环。 如此循环, 直 到再次打开第一阀 VI和第二阀 V3 -即再次使用第一热交换器 21和第二 热交换器 31。 应当理解的是, 本发明并不限于上述示例性操作过程, 在不偏离本发 明的原理的情况下, 也可以采用其它操作过程。 例如, 可以同时打开一个 以上的第一热交换器和一个以上相应的第二热交换器, 或者同时打开所有 的第一热交换器和所有的第二热交换器。 此时应当进行相应的阀门打开和 关闭操作。 在进行上述操作的同时, 当主气缸组件 5中产生高压气体时, 所述高 压气体首先输入图中示出的左侧高压储气罐 6中, 即在开始操作时首先打 开左侧高压储气罐 6的输入口处的第九阀 25。 之后, 当左侧高压储气罐 6 中的气体压力达到预定值时, 关闭左侧高压储气罐 6的输入口处的第九阀 25并打开左侧高压储气罐 6的输出口处的第十阀 26,并且打开中间高压储 气罐 6的输入口处的第九阀 25。 此时, 左侧高压储气罐 6向下游的能量产 生装置输送高压气体, 而主气缸组件 5中产生的高压气体流入中间高压储 气罐 6中, 依此类推, 当中间高压储气罐 6向下游的能量产生装置输送高 压气体时, 主气缸组件 5中产生的高压气体便流入右侧高压储气罐 6中。 因此, 如同上述热交换器一样, 能够循环地连续使用所述高压储气罐 6, 从而保证向下游的能量产生装置连续、 稳定地输送高压气体。 应当指出的 是, 由于蓄压装置 600可包括多个高压储气罐 6, 因此可以在不影响连续 循环操作的情况下同时打开一个以上的高压储气罐 6。 当然, 也可以同时 打开所有的高压储气罐 6。 相应地, 在同时打开所有高压储气罐 6的情况 下, 当高压储气罐 6中的气体压力达到预定值时, 便需要暂时停用本发明 的设备, 等高压储气罐 6中的大部分高压气体输送到下游能量产生装置之 后, 才能再次起动本发明的设备, 因而这种操作方式不能保证高压气体的 连续输送。 另外, 在高压储气罐 6的下游, 当高压储气罐 6的输出口处的第十阀 26打开时,辅助气缸组件 7在高压气体的作用下以加压液体的方式驱动液 压马达旋转, 或者气动马达直接在高压储气罐 6中的高压气体的作用下旋 转, 并最终驱动发电机旋转发电。 自动控制 在一种优选实施方式中, 本发明的设备还包括用于控制第一至第十阀 的电子控制单元(未图示),该电子控制单元可以是例如用于机动车中的任 何公知类型的电子控制总成, 并且第一压缩机 51的左侧和第二压缩机 52 的右侧都设置有位置传感器 (未图示), 其中, 当主活塞 501 与第一活塞 511和第二活塞 521—起移动到左侧时, 左侧位置传感器向电子控制单元 发出控制信号, 从而电子控制单元顺次执行下列操作: 关闭第一阀中的一 个或多个和第二阀中相应的一个或多个、 关闭第四阀 V20和第五阀 V21、 打开相应的均压阀、 关闭该相应的均压阀、 打开第三阀 V19和第六阀 V22 以及第一阀中接下来的一个或多个和第二阀中接下来的相应的一个或多 个; 当主活塞 501与第一活塞 511和第二活塞 521—起移动到右侧时, 右 侧位置传感器向电子控制单元发出控制信号, 从而电子控制单元顺次执行 下列操作: 关闭第一阀中的一个或多个和第二阀中相应的一个或多个、 关 闭第三阀 V19和第六阀 V22、 打开相应的均压阀、 关闭该相应的均压阀、 打开第四阀 V20和第五阀 V21以及第一阀中接下来的一个或多个和第二阀 中接下来的相应的一个或多个。 因此, 在一个单向行程结束时, 可以实现 各个阀门之间的正确开启及关闭, 从而使得该设备得以连续运行并使得能 量得以稳定输出。 在另一种更优选的实施方式中, 该电子控制单元是可编程逻辑控制器 ( PLC ), 并且该位置传感器是限位开关。 该可编程逻辑控制器可以是任何 公知类型的可编程逻辑控制器, 并且该限位开关可以是例如簧片触点电磁 系统等。 在一种优选实施方式中, 每个高压储气罐 6都设置有压力传感器(未 图示), 当处于工作状态的至少一个高压储气罐 6中的压力达到预定值时, 压力达到预定值的高压储气罐 6的压力传感器向电子控制单元发出控制信 号, 从而电子控制单元顺次执行下列操作: 关闭压力达到预定值的高压储 气罐 6的输入口处的第九阀 25; 打开压力达到预定值的高压储气罐 6的输 出口处的第十阀 26; 打开除压力达到预定值的高压储气罐 6之外的至少一 个其它高压储气罐 6的输入口处的第九阀 25。 例如, 在最初操作时, 仅打 开左侧高压储气罐 6输入口处的第九阀 25从而使主气缸组件 5中产生的高 压气体仅流入左侧高压储气罐 6中; 接下来, 当左侧高压储气罐 6中的气 体压力达到预定值时, 电子控制单元响应于左侧高压储气罐 6的压力传感 器而关闭左侧高压储气罐 6输入口处的第九阀 25、 打开左侧高压储气罐 6 的输出口处的第十阀 26从而使其中的高压气体驱动下游的能量产生装置、 并打开中间或右侧高压储气罐 6的输入口处的第九阀 25 , 依此类推, 便可 以进行循环式连续操作, 从而保证连续、 稳定地向下游的能量产生装置供 给高压气体。 应当理解的是, 由于蓄压装置 600可包括多个高压储气罐 6, 因此可以同时打开一个以上的高压储气罐 6的第九阀 25 , 此时也可以实现 循环连续操作的目的。 在另一种优选实施方式中, 每个高压储气罐 6的输入口处都设置有压 力开关 (未图示), 并且每个第九阀 25都保持常开状态, 当处于工作状态 的至少一个高压储气罐 6中的压力达到预定值时, 压力达到预定值的高压 储气罐 6输入口处的压力开关在自动关闭的同时向所述电子控制单元发出 控制信号, 从而所述电子控制单元顺次执行下列操作: 打开压力达到预定 值的高压储气罐 6的输出口处的第十阀 26; 打开除压力达到预定值的高压 储气罐 6之外的至少一个其它高压储气罐 6的输入口处的压力开关。 与上 述实施方式相似, 可以同时打开一个以上的高压储气罐 6的输入口处的压 力开关, 此时也可以实现高压气体的连续输入和输出。 可以看出, 由于在 本实施方式中每个第九阀 25都保持常开状态,因此本实施方式中的第九阀 25仅用于在维护或发生紧急情况时进行气流通断。 另外, 第三压缩机 71的左侧和第四压缩机 72的右侧也可以设置有限 位开关。 当辅助活塞 701与第三活塞 711和第四活塞 721—起移动到左侧 时, 可编程逻辑控制器响应于左侧限位开关而打开第七阀 V23并关闭第八 阀 V24; 当辅助活塞 701与第三活塞 711和第四活塞 721一起移动到右侧 时, 可编程逻辑控制器响应于右侧限位开关而打开第八阀 V24并关闭第七 阀 V23。 这样一来, 使得液压马达 8能够被连续驱动, 从而使得能量输出 更加稳定。 工业实用性 本发明可用作例如公寓楼、 工厂以及超市中的固定安装设备, 也可用 作例如汽车、 轮船、 卡车中的移动单元。 例如, 一方面, 当用于各种建筑 物中时, 本发明的设备可用作所述建筑物的独立发电系统以便为所述建筑 物供电; 另一方面, 当用于车辆等交通工具上时, 本发明的设备可作为所 述交通工具的驱动系统的动力源, 也可作为所述交通工具的制动系统及转 向系统等的动力源。 实验表明, 在根据本发明的设备中, 当主气缸组件 5中产生高压气体 时, 所述高压气体由于被压缩而产生高温, 其温度最高可达 280 °C ; 当高 压储气罐 6中的高压气体输送到下游的能量产生装置中时, 所述高压气体 由于释放而产生冰冷现象, 其温度最低可至零下 55 °C。 因此, 当主气缸组 件 5中产生高压气体时, 可以从例如图 1所示的点 A处获取热空气, 可通 过气体管线 (未图示)将该热空气输送到上游的高压气体产生组件, 从而 该热空气作为热流体源、 通过热交换作用来加热第一热交换器; 该热空气 也可用于建筑物或车辆内的加热系统,或者用于通过热交换器来加热水等。 当高压储气罐 6中的高压气体输送到辅助气缸组件 7中时, 可以从图 1所 示的点 B处获取冷空气, 可通过气体管线(未图示)将该冷空气输送到上 游的低压气体产生组件, 从而该冷空气作为冷流体源、 通过热交换作用来 冷却第二热交换器; 该冷空气也可用于建筑物或车辆内的空调系统等。 如 此一来, 一方面, 既能防止主气缸组件的温度过高又能防止辅助气缸组件 的温度过低; 另一方面, 还能对所述热空气和冷空气进行回收从而进一步 实现能量的有效利用。

Claims

权 利 要 求
1. 一种通过流体温差产生能量的设备, 其特征在于包括:
气体压差产生装置(100 ), 其通过所述热源产生气体压力差; 高压气体产生装置(500 ), 其通过气体管线与所述气体压差产生装置 ( 100 )连通, 所述高压气体产生装置 (500 )通过来自所述气体压差产生 装置(100 ) 的气体压力差来生成高压气体;
蓄压装置(600 ), 其通过气体管线与所述高压气体产生装置(500 )连 通, 所述蓄压装置(600 )储存所述高压气体产生装置(500 )生成的高压 气体; 以及
能量产生装置(700 ), 其通过气体管线与所述蓄压装置 (600 )连通, 所述能量产生装置(700 )通过储存于所述蓄压装置 (600 ) 中的高压气体 产生所述能量。
2.根据权利要求 1所述的通过流体温差产生能量的设备,其特征在于, 所述热源为热流体源, 所述气体压差产生装置(100 ) 包括:
高压气体产生组件( 10 ), 其包括至少一个所述热流体源和至少一个第 一热交换器, 每个所述热流体源连接到每个相应的所述第一热交换器, 所 述第一热交换器中填充有加压气体, 并且每个所述第一热交换器经由第一 阀并通过第一共用气体管线(P1 )连接到所述高压气体产生装置;
低压气体产生组件( 20 ), 其包括至少一个冷流体源和至少一个第二热 交换器, 每个所述冷流体源连接到每个相应的所述第二热交换器, 所述第 二热交换器中填充有加压气体, 并且每个所述第二热交换器经由第二阀并 通过第二共用气体管线 (P2 )连接到所述高压气体产生装置;
其中, 在工作状态下, 每个所述热流体源加热与其相连接的每个所述 第一热交换器从而使每个所述第一热交换器中的气体压力升高, 每个所述 冷流体源冷却与其相连接的每个所述第二热交换器从而使每个所述第二热 交换器中的气体压力降低, 从而所述高压气体产生组件与所述低压气体产 生组件之间形成气体压力差。
3.根据权利要求 2所述的通过流体温差产生能量的设备,其特征在于, 所述高压气体产生装置 (500)是主气缸组件(5), 所述主气缸组件 (5) 包括:
主气缸(50), 其中设置有主活塞(501), 所述主气缸(50)经由第三 阀 (V19)或第四阀 (V20)连接到所述第一共用气体管线(P1)并经由第 五阀 (V21)或第六阀 (V22)连接到所述第二共用气体管线 (P2), 所述 第三阀 (V19)和所述第五阀 (V21 )连接到所述主活塞(501 )左侧, 所 述第四阀 (V20)和所述第六阀 (V22)连接到所述主活塞(501 )右侧; 第一压缩机( 51 ), 其设置成一体地连接到所述主气缸( 50 )左侧并设 置有第一活塞( 511 ), 所述第一压缩机( 51 )用于在所述第一活塞( 511 ) 向左移动时输出高压气体;
第二压缩机(52), 其设置成一体地连接到所述主气缸(50)右侧并设 置有第二活塞(521), 所述第二压缩机(52)用于在所述第二活塞(521) 向右移动时输出高压气体,并且所述第二压缩机( 52 )在所述第二活塞( 521 ) 右侧经由单向阀连接到所述蓄压装置( 600 )从而使高压气体只能单向地流 入所述蓄压装置 (600);
空气滤清器(13), 其经由单向阀连接到所述第一压缩机(51)左侧, 使得经所述空气滤清器(13)过滤的外界空气单向地流入所述第一压缩机 (51),
其中, 所述主活塞(501 )通过第一连杆(L1 )与所述第一活塞(511 ) 和所述第二活塞(521 )设置成一体, 并且所述第一连杆(L1 )设置成以 气密方式穿过所述主气缸(50) 的侧壁, 并且所述第一压缩机(51 )在所 述第一活塞(511 )左侧经由单向阀连通到所述第二压缩机(52)的第二活 塞(521 )的右侧, 使得气体只能从所述第一压缩机(51 )左侧单向地流入 所述第二压缩机(52)右侧。
4.根据权利要求 3所述的通过流体温差产生能量的设备,其特征在于, 所述蓄压装置(600)包括至少一个高压储气罐(6), 每个所述高压储气罐
(6) 的输入口和输出口处分别设置有第九阀 (25)和第十阀 (26)。
5.根据权利要求 4所述的通过流体温差产生能量的设备,其特征在于, 所述能量产生装置(700)是气动马达, 并且所述气动马达经由设置在所述 高压储气罐(6)下游的调压装置连接到所述高压储气罐(6), 从而在储存 于所述高压储气罐 (6) 中的高压气体的作用下转动。
6.根据权利要求 4所述的通过流体温差产生能量的设备,其特征在于, 所述能量产生装置(700) 包括:
辅助气缸组件 (7), 其通过气体管线连接到所述高压储气罐(6), 用 于将所述高压储气罐(6)中的气体压力转化为液压力, 所述辅助气缸组件 (7) 包括:
辅助气缸(70), 其中设置有辅助活塞(701), 所述辅助气缸经由第七 阀( V23 )和第八阀( V24 )连接到所述高压储气罐 ( 6 ),所述第七阀( V23 ) 连接到所述辅助活塞(701)左侧, 并且所述第八阀 (V24)连接到所述辅 助活塞(701)右侧;
第三压缩机(71 ), 其设置成以气密方式连接在所述辅助气缸(70)左 侧并设置有第三活塞(711), 所述第三压缩机(71)用于在所述第三活塞 (711 ) 向左移动时输出加压液体;
第四压缩机(72), 其设置成以气密方式连接在所述辅助气缸(70)右 侧并设置有第四活塞(721), 所述第四压缩机 (72)用于在所述第四活塞 (721 ) 向左移动时输出加压液体,
液压马达(8), 其连接到所述辅助气缸组件(7)并在所述辅助气缸组 件(7)输出的加压液体的作用下转动,
其中,所述辅助活塞( 701 )通过第二连杆( L2 )与所述第三活塞( 711 ) 和所述第四活塞(721 )设置成一体, 并且所述第二连杆(L2)设置成以 气密方式穿过所述辅助气缸(70) 的侧壁。
7.根据权利要求 6所述的通过流体温差产生能量的设备,其特征在于, 所述能量产生装置(700)还包括设置在所述液压马达(8) 下游的发电机
(9), 所述液压马达(8) 带动所述发电机(9)旋转发电。
8.根据权利要求 7所述的通过流体温差产生能量的设备,其特征在于, 每个所述第一热交换器和与其相连接的每个所述热流体源之间都设置有第 一循环泵(CP1 ), 所述第一循环泵(CP1 )用于使所述热流体源中的热流 体循环流动到所述第一热交换器中; 每个所述第二热交换器和与其相连接 的每个所述冷流体源之间也设置有第二循环泵 (CP2 ), 所述第二循环泵 ( CP2 )用于使所述冷流体源中的冷流体循环流动到所述第二热交换器中。
9.根据权利要求 2 - 8中任一项所述的通过流体温差产生能量的设备, 其特征在于, 所述热流体源中的热流体是来自太阳能集热器的热水或发电 站中用于设备冷却的冷却水; 所述冷流体源中的冷流体是建筑物中的地下 冷却管组中的冷水。
10. 根据权利要求 4 - 8 中任一项所述的通过流体温差产生能量的设 备, 其特征在于, 每个所述第一热交换器以及每个所述第二热交换器都经 由单向阀连接到所述高压储气罐(6 ), 使得能够在初始状态以及发生泄漏 的情况下向所述第一热交换器和所述第二热交换器中填充气体。
11. 根据权利要求 9所述的通过流体温差产生能量的设备, 其特征在 于, 每个所述第一热交换器以及每个所述第二热交换器都经由单向阀连接 到所述高压储气罐(6 ), 使得能够在初始状态以及发生泄漏的情况下向所 述第一热交换器和所述第二热交换器中填充气体。
12. 根据权利要求 2 - 8 中任一项所述的通过流体温差产生能量的设 备, 其特征在于, 所述设备还包括连接在每个所述第一热交换器和每个相 应的所述第二热交换器之间的均压阔,所述均压阔用于在所述主气缸(50 ) 的主活塞( 501 )完成一个行程之后使每个所述第一热交换器与每个相应的 所述第二热交换器中的气体压力变得相等。
13. 根据权利要求 9所述的通过流体温差产生能量的设备, 其特征在 于, 所述设备还包括连接在每个所述第一热交换器和每个相应的所述第二 热交换器之间的均压阀 ,所述均压阀用于在所述主气缸( 50 )的主活塞( 501 ) 完成一个行程之后使每个所述第一热交换器与每个相应的所述第二热交换 器中的气体压力变得相等。
14. 根据权利要求 2 - 8 中任一项所述的通过流体温差产生能量的设 备, 其特征在于, 所述第一压缩机(51 )输出的高压气体的压力是 60巴; 而所述第二压缩机(52 )输出的高压气体的压力是 200巴。
15. 根据权利要求 12所述的通过流体温差产生能量的设备, 其特征在 于, 所述设备还包括用于控制所述第一至第十阀的电子控制单元, 并且所 述第一压缩机(51 ) 的左侧和所述第二压缩机(52 ) 的右侧都设置有位置 传感器,
其中, 当所述主活塞(501 ) 与所述第一活塞(511 )和所述第二活塞 ( 521 )一起移动到左侧时,左侧位置传感器向所述电子控制单元发出控制 信号, 从而所述电子控制单元顺次执行下列操作:
关闭所述第一阀中的一个或多个和所述第二阀中相应的一个或多个; 关闭所述第四阀 V20和所述第五阀 V21;
打开相应的均压阀;
关闭所述相应的均压阀;
打开所述第三阀 V19和所述第六阀 V22以及所述第一阀中接下来的一 个或多个和所述第二阔中接下来的相应的一个或多个;
并且, 当所述主活塞(501 ) 与所述第一活塞(511 )和所述第二活塞 ( 521 )—起移动到右侧时,右侧位置传感器向所述电子控制单元发出控制 信号, 从而所述电子控制单元顺次执行下列操作:
关闭所述第一阀中的一个或多个和所述第二阀中相应的一个或多个; 关闭所述第三阀 V19和所述第六阀 V22;
打开相应的均压阀;
关闭所述相应的均压阀; 打开所述第四阀 V20和所述第五阀 V21以及所述第一阀中接下来的一 个或多个和所述第二阔中接下来的相应的一个或多个。
16. 根据权利要求 15所述的通过流体温差产生能量的设备, 其特征在 于, 所述电子控制单元是可编程逻辑控制器, 并且所述位置传感器是限位 开关。
17. 根据权利要求 15所述的通过流体温差产生能量的设备, 其特征在 于, 每个所述高压储气罐(6 )都设置有压力传感器, 当处于工作状态的至 少一个所述高压储气罐(6 )中的压力达到预定值时, 相应的所述压力传感 器向所述电子控制单元发出控制信号, 从而所述电子控制单元顺次执行下 列操作:
关闭压力达到预定值的所述高压储气罐(6 )的输入口处的第九阀(25 ); 打开压力达到预定值的所述高压储气罐( 6 )的输出口处的第十阀( 26 ); 打开除压力达到预定值的所述高压储气罐 ( 6 )之外的至少一个其它高 压储气罐 ( 6 ) 的输入口处的第九阀 (25 )。
18. 根据权利要求 15所述的通过流体温差产生能量的设备, 其特征在 于, 每个所述高压储气罐(6 )的输入口处都设置有压力开关, 并且每个所 述第九阀 (25 )都保持常开状态, 当处于工作状态的至少一个所述高压储 气罐(6 )中的压力达到预定值时, 相应的所述压力开关在自动关闭的同时 向所述电子控制单元发出控制信号, 从而所述电子控制单元顺次执行下列 操作:
打开压力达到预定值的所述高压储气罐( 6 )的输出口处的第十阀( 26 ); 打开除压力达到预定值的所述高压储气罐 ( 6 )之外的至少一个其它高 压储气罐 ( 6 ) 的输入口处的压力开关。
19. 根据权利要求 6 - 8 中任一项所述的通过流体温差产生能量的设 备, 其特征在于, 所述设备还包括用于控制所述第一至第十阀的可编程逻 辑控制器, 并且所述第三压缩机(71) 的左侧和所述第四压缩机(72) 的 右侧都设置有限位开关,
其中, 当所述辅助活塞(701) 与所述第三活塞(711)和所述第四活 塞(721 )—起移动到左侧时, 所述可编程逻辑控制器响应于左侧限位而打 开所述第七阀 (V23)并关闭所述第八阀 (V24); 当所述辅助活塞(701) 与所述第三活塞(711)和所述第四活塞(721)—起移动到右侧时, 所述 可编程逻辑控制器响应于右侧限位而打开所述第八阀 (V24) 并关闭所述 第七阀 (V23)。
PCT/CN2009/072525 2008-07-10 2009-06-30 通过流体温差产生能量的设备 WO2010003343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09793818.7A EP2360376A4 (en) 2008-07-10 2009-06-30 DEVICE FOR GENERATING ENERGY VIA THE TEMPERATURE DIFFERENCE OF A FLUID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101268888A CN101302945B (zh) 2008-07-10 2008-07-10 通过流体温差产生能量的设备
CN200810126888.8 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010003343A1 true WO2010003343A1 (zh) 2010-01-14

Family

ID=40113010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072525 WO2010003343A1 (zh) 2008-07-10 2009-06-30 通过流体温差产生能量的设备

Country Status (3)

Country Link
EP (1) EP2360376A4 (zh)
CN (1) CN101302945B (zh)
WO (1) WO2010003343A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302945B (zh) * 2008-07-10 2011-04-27 张中和 通过流体温差产生能量的设备
CN102269021B (zh) * 2010-06-03 2013-11-13 韩树君 空气热能循环发电机组
CN102852740B (zh) * 2012-04-23 2014-08-20 安瑞生 蒸汽动力循环发电系统
CN202560491U (zh) * 2012-04-23 2012-11-28 安瑞生 蒸汽动力循环发电系统
CN104061029B (zh) * 2014-05-16 2015-12-30 张中和 一种太阳能集热流体温差空气增压发电设备
CN104500261A (zh) * 2014-12-01 2015-04-08 上海领势新能源科技有限公司 一种多缸式温差发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091491C (zh) * 1997-12-08 2002-09-25 徐志勤 温差能装置及其汽动机
US20030015471A1 (en) * 2001-07-19 2003-01-23 Dietrich Reichwein Reverse osmosis device
CN1498310A (zh) * 2001-03-16 2004-05-19 P��Ĭ��� 利用太阳和/或周围的热量压缩气体的装置
CN1671573A (zh) 2002-02-25 2005-09-21 奥特菲特能源公司 废热太阳能系统
CN101010507A (zh) * 2004-06-08 2007-08-01 国际创新有限公司 热力发动机
CN101302945A (zh) * 2008-07-10 2008-11-12 张中和 通过热源产生能量的设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220071A1 (de) * 1982-05-27 1983-12-01 Franz X. Prof. Dr.-Ing. 8000 München Eder Durch waermezufuhr direkt betriebener gasverdichter
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
CN1065702A (zh) * 1991-04-08 1992-10-28 刘义申 超膨胀涡轮机组
AUPS138202A0 (en) * 2002-03-27 2002-05-09 Lewellin, Richard Laurance Engine
CA2393386A1 (en) * 2002-07-22 2004-01-22 Douglas Wilbert Paul Smith Method of converting energy
JP4303626B2 (ja) * 2004-03-29 2009-07-29 三井造船株式会社 発電システム
DE102006035273B4 (de) * 2006-07-31 2010-03-04 Siegfried Dr. Westmeier Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung
CN101135252A (zh) * 2007-09-14 2008-03-05 翁志远 一种发电技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091491C (zh) * 1997-12-08 2002-09-25 徐志勤 温差能装置及其汽动机
CN1498310A (zh) * 2001-03-16 2004-05-19 P��Ĭ��� 利用太阳和/或周围的热量压缩气体的装置
US20030015471A1 (en) * 2001-07-19 2003-01-23 Dietrich Reichwein Reverse osmosis device
CN1671573A (zh) 2002-02-25 2005-09-21 奥特菲特能源公司 废热太阳能系统
CN101010507A (zh) * 2004-06-08 2007-08-01 国际创新有限公司 热力发动机
CN101302945A (zh) * 2008-07-10 2008-11-12 张中和 通过热源产生能量的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360376A4

Also Published As

Publication number Publication date
EP2360376A1 (en) 2011-08-24
CN101302945B (zh) 2011-04-27
CN101302945A (zh) 2008-11-12
EP2360376A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US8495872B2 (en) Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US20180156506A1 (en) Integrated Power, Cooling, and Heating Device and Method Thereof
US5548957A (en) Recovery of power from low level heat sources
US8250863B2 (en) Heat exchange with compressed gas in energy-storage systems
WO2010003343A1 (zh) 通过流体温差产生能量的设备
CN106677848B (zh) 一种以空气及水为储能工质的联合储能系统及方法
CN105370408B (zh) 一种蓄热式压缩空气储能系统
CN104132487B (zh) 双压控制的空气源热泵系统
WO2017073433A1 (ja) ヒートポンプ
JP6913044B2 (ja) 圧縮空気貯蔵発電装置
JP2013531218A (ja) 圧縮ガスを用いる熱交換装置を有する熱エネルギー貯蔵および回収装置ならびにシステム
US20100242517A1 (en) Solar Photovoltaic Closed Fluid Loop Evaporative Tower
CN108167038A (zh) 有机朗肯循环-跨临界co2热泵发动机排气余热回收联合系统
CN106574554A (zh) 压缩流体储藏发电装置
CN104501445A (zh) 一种电动车废热利用变频热泵空调系统及其方法
CN107313819A (zh) 一种集成热泵和发电功能的新型热能利用系统
JP2005172336A (ja) 自然冷媒ヒートポンプシステム
US20130091884A1 (en) Heat Powered Reciprocating Piston Engine
CN104302876A (zh) 具有蓄热器和蓄冷器的热能存储及释放设备及其运行方法
CN105115012B (zh) 一种用于暖气片采暖的热泵机组及其控制方法
CN105134322A (zh) 一种配合汽车发动机的余热发电系统
JP2011043273A (ja) ヒートポンプ式加熱液体システム
CN207214479U (zh) 一种太阳能空气能聚合制热系统
JP2015210070A (ja) 複合空調冷凍装置
JP6906013B2 (ja) ヒートポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009793818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 509/DELNP/2011

Country of ref document: IN