WO2010002850A1 - Hole transport materials containing triphenylene - Google Patents
Hole transport materials containing triphenylene Download PDFInfo
- Publication number
- WO2010002850A1 WO2010002850A1 PCT/US2009/049188 US2009049188W WO2010002850A1 WO 2010002850 A1 WO2010002850 A1 WO 2010002850A1 US 2009049188 W US2009049188 W US 2009049188W WO 2010002850 A1 WO2010002850 A1 WO 2010002850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- matter
- composition
- group
- materials
- formula
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 88
- 230000005525 hole transport Effects 0.000 title claims abstract description 29
- 125000005580 triphenylene group Chemical group 0.000 title claims abstract description 25
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 title claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 23
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 20
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims description 57
- 150000001875 compounds Chemical class 0.000 claims description 34
- 125000001424 substituent group Chemical group 0.000 claims description 15
- 229940125782 compound 2 Drugs 0.000 claims description 8
- 229940126214 compound 3 Drugs 0.000 claims description 8
- 239000002019 doping agent Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 6
- 229930192474 thiophene Natural products 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 125000002524 organometallic group Chemical group 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 64
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 17
- 150000003384 small molecules Chemical class 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000000412 dendrimer Substances 0.000 description 5
- 229920000736 dendritic polymer Polymers 0.000 description 5
- 230000005693 optoelectronics Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 239000003480 eluent Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002506 high-vacuum sublimation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 3
- QUGJLZNUGVQTGP-UHFFFAOYSA-N (3-triphenylen-2-ylphenyl) trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=CC(C=2C=C3C4=CC=CC=C4C4=CC=CC=C4C3=CC=2)=C1 QUGJLZNUGVQTGP-UHFFFAOYSA-N 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- FAWPKVGTGSNUMQ-UHFFFAOYSA-N Cc(cc1)ccc1-c1ccc(c2ccccc2c2c3cccc2)c3c1 Chemical compound Cc(cc1)ccc1-c1ccc(c2ccccc2c2c3cccc2)c3c1 FAWPKVGTGSNUMQ-UHFFFAOYSA-N 0.000 description 2
- BOJZSXCXPRENSQ-UHFFFAOYSA-N Cc1cccc(-c2cc3c(cccc4)c4c(cccc4)c4c3cc2)c1 Chemical compound Cc1cccc(-c2cc3c(cccc4)c4c(cccc4)c4c3cc2)c1 BOJZSXCXPRENSQ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- -1 arylkyl Chemical group 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical group [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- MWRPTYPXCLUMLH-UHFFFAOYSA-N n-phenyltriphenylen-2-amine Chemical compound C=1C=C2C3=CC=CC=C3C3=CC=CC=C3C2=CC=1NC1=CC=CC=C1 MWRPTYPXCLUMLH-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 150000003643 triphenylenes Chemical class 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- HQJQYILBCQPYBI-UHFFFAOYSA-N 1-bromo-4-(4-bromophenyl)benzene Chemical group C1=CC(Br)=CC=C1C1=CC=C(Br)C=C1 HQJQYILBCQPYBI-UHFFFAOYSA-N 0.000 description 1
- GEDOYYDMCZUHNW-UHFFFAOYSA-N 2-bromotriphenylene Chemical group C1=CC=C2C3=CC(Br)=CC=C3C3=CC=CC=C3C2=C1 GEDOYYDMCZUHNW-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical group C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- KTCJNXNAXQFFKU-UHFFFAOYSA-N 4-(4-aminophenyl)aniline Chemical group C1=CC(N)=CC=C1C1=CC=C(N)C=C1.C1=CC(N)=CC=C1C1=CC=C(N)C=C1 KTCJNXNAXQFFKU-UHFFFAOYSA-N 0.000 description 1
- FDRNXKXKFNHNCA-UHFFFAOYSA-N 4-(4-anilinophenyl)-n-phenylaniline Chemical compound C=1C=C(C=2C=CC(NC=3C=CC=CC=3)=CC=2)C=CC=1NC1=CC=CC=C1 FDRNXKXKFNHNCA-UHFFFAOYSA-N 0.000 description 1
- CCIVUDMVXNBUCY-UHFFFAOYSA-N 4-bromo-n-phenylaniline Chemical compound C1=CC(Br)=CC=C1NC1=CC=CC=C1 CCIVUDMVXNBUCY-UHFFFAOYSA-N 0.000 description 1
- TWWQCBRELPOMER-UHFFFAOYSA-N [4-(n-phenylanilino)phenyl]boronic acid Chemical compound C1=CC(B(O)O)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 TWWQCBRELPOMER-UHFFFAOYSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- XHPBZHOZZVRDHL-UHFFFAOYSA-N n-phenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C=1C=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 XHPBZHOZZVRDHL-UHFFFAOYSA-N 0.000 description 1
- TWZQSHQSKDESNY-UHFFFAOYSA-N n-phenyl-n-[4-[4-(n-triphenylen-2-ylanilino)phenyl]phenyl]triphenylen-2-amine Chemical compound C1=CC=CC=C1N(C=1C=C2C3=CC=CC=C3C3=CC=CC=C3C2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C4=CC=CC=C4C4=CC=CC=C4C3=CC=2)C=C1 TWZQSHQSKDESNY-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
- C07C211/55—Diphenylamines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/22—Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
- C07C2603/28—Phenalenes; Hydrogenated phenalenes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
Definitions
- This claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
- the present invention relates to novel materials. More specifically, the present invention relates to novel materials useful in organic light emitting devices (OLEDs).
- OLEDs organic light emitting devices
- Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
- OLEDs organic light emitting devices
- the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
- OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
- One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
- One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy) 3 , which has the structure:
- organic includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices.
- Small molecule refers to any organic material that is not a polymer, and "small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety.
- the core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter.
- a dendrimer may be a "small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
- top means furthest away from the substrate, while “bottom” means closest to the substrate.
- first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer.
- a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
- solution processible means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
- a ligand is referred to as "photoactive" when it is believed that the ligand contributes to the photoactive properties of an emissive material.
- n 1 , 2 or 3
- the phenyl rings between the nitrogen atoms may be attached to each other and to the nitrogen atoms in a para or meta configuration independently selected for each attachment.
- Each of Ri, R 2 , R3 and R 4 are independently selected from the group consisting of:
- At least one of Ri, R 2 , R3 and R 4 is selected from the group consisting of:
- Ri, R 2 , R 3 and R 4 are not all the same.
- at least one of Ri, R 2 , R 3 and R 4 is S-2 .
- at least one of Ri, R 2 , R3 and R 4 is S-3.
- at least one of Ri, R 2 , R3 and R 4 is S-4.
- Each of Ri, R 2 , R3 and R 4 may be further substituted with substituents that are not fused to Ri, R 2 , R 3 and R 4 .
- compositions of matter provided having the structure of Formula I more specifically have the chemical structure of Formula II.
- each of Ri, R 2 , R 3 and R 4 is selected from the group consisting of S-I though S-6.
- compositions of matter having Formula I are also provided, including compositions of matter having a structure selected from the group consisting of A-I through A-6. Preferably, the composition of matter has the structure A-I or A-5. Additionally, specific compositions of matter having Formula I are also provided, including compositions of matter having a structure selected from the group consisting of B-I through B-6. Moreover, specific compositions of matter having Formula I are also provided, including compositions of matter having a structure selected from the group consisting of C-I through C-6. Preferably, the composition of matter has the structure C-6.
- Organic light-emitting devices and consumer products containing such devices are also provided, where the novel materials are used as a hole transport material in the device.
- Selections for the composition of matter having the structure of Formula I described as preferred for use in the materials having Formula I are also preferred for use in a device or consumer product that includes a composition of matter having the structure of Formula I. These selections include those for the substituents Ri, R 2 , R3, and R 4 , Formula II, and structures A-I though A-6, B-I through B-6, and C-I through C-6.
- the host is a compound comprising a triphenylene containing benzo-fused thiophene.
- the host is Compound 3.
- the host is an aryltriphenylene compound.
- the host is Compound 2.
- FIG. 1 shows an organic light emitting device.
- FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.
- FIG. 3 shows chemical structures
- an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode.
- the anode injects holes and the cathode injects electrons into the organic layer(s).
- the injected holes and electrons each migrate toward the oppositely charged electrode.
- an "exciton” which is a localized electron-hole pair having an excited energy state, is formed.
- Light is emitted when the exciton relaxes via a photoemissive mechanism.
- the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
- the initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
- FIG. 1 shows an organic light emitting device 100.
- Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160.
- Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164.
- Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in US 7,279,704 at cols. 6- 10, which are incorporated by reference.
- each of these layers are available.
- a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety.
- An example of a p-doped hole transport layer is m- MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
- Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety.
- n- doped electron transport layer is BPhen doped with Li at a molar ratio of 1 : 1 , as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
- Mg metal
- ITO overlying transparent, electrically-conductive, sputter-deposited ITO layer.
- FIG. 2 shows an inverted OLED 200.
- the device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230.
- Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200.
- FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.
- FIGS. 1 and 2 The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non- limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures.
- the specific materials and structures described are exemplary in nature, and other materials and structures may be used.
- Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers.
- hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer.
- an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.
- OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety.
- PLEDs polymeric materials
- OLEDs having a single organic layer may be used.
- OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety.
- the OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2.
- the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
- any of the layers of the various embodiments may be deposited by any suitable method.
- preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety.
- OVPD organic vapor phase deposition
- OJP organic vapor jet printing
- Other suitable deposition methods include spin coating and other solution based processes.
- Solution based processes are preferably carried out in nitrogen or an inert atmosphere.
- preferred methods include thermal evaporation.
- Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used.
- the materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing.
- Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
- Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfmders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign.
- PDAs personal digital assistants
- Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C, and more preferably at room temperature (20-25 degrees C).
- the materials and structures described herein may have applications in devices other than OLEDs.
- other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures.
- organic devices such as organic transistors, may employ the materials and structures.
- halo halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in US 7,279,704 at cols. 31-32, which are incorporated herein by reference.
- a novel composition of matter is provided.
- the novel composition of matter includes a "core" similar to that of naphthylphenylbiphenyl diamine (NPD).
- NPD naphthylphenylbiphenyl diamine
- the core of NPD has two nitrogen atoms connected to each other by two phenyl rings, all connected in the para position.
- Novel compositions of matter are provided having more possibilities for the core, including two nitrogen atoms connected by 1 , 2 or 3 phenyl rings, where each connection may independently be para or meta.
- At least one group attached to a nitrogen atom of the core includes a triphenylene group.
- Ri, R 2 , R3 and R 4 is independently selected from the group consisting of:
- At least one of Ri, R 2 , R3 and R 4 is selected from the group consisting of:
- Ri, R 2 , R 3 and R 4 are not all the same. Each of Ri, R 2 , R 3 and R 4 may be further substituted with substituents that are not fused to Ri, R 2 , R3 and R 4 .
- FIG. 3 shows chemical structures relevant to some compositions of matter described herein.
- Benzidine (4,4'-diaminobiphenyl) core along with the variations described herein, are particularly desirable.
- Benzidine with one phenyl and one 1-naphthyl attached to each of the nitrogens is ⁇ -NPD, which is a widely used hole transport layer in OLEDs, and it is believed that the core contributes to the desirability of NPD.
- NPD does not work well in certain devices, particularly blue and green devices, which have higher energy triplets and charge carriers.
- Triphenylene is a polyaromatic compound which has extended ⁇ -conjugation and yet relatively high triplet energy. The benefits of triphenylene compounds, particularly in phosphorescent OLEDs, are further described in US20060280965, which is incorporated by reference in its entirety. For many of the triphenylene containing materials described herein, the hole transport materials retain the hole transporting properties by having the triarylamine moieties.
- triphenylene moiety is believed to provide stabilization toward reduction of the hole transport materials when electrons leak into the hole transporting layer.
- the advantage of having triphenylene groups are demonstrated in the device examples compared to a hole transporting material ⁇ -NPD which contains a 1-naphthyl group as the most conjugated part. It is believed that a naphthyl group does not provide as much reduction stabilization as a triphenylene group, and consequently, triphenylene containing hole transport materials described herein result in more stable OLEDs. Furthermore, such materials result in more efficient OLEDs compared to devices with ⁇ -NPD, which may be due to the higher triplet energy of triphenylene as compared to naphthalene.
- At least one of Ri and R3, and at least one of R 2 and R 4 is a group that includes a triphenylene group. While molecules having a group with a triphenylene attached to only one nitrogen of the core are useable, it is believed that molecules having at least one group containing a triphenylene attached to each nitrogen of the core, by providing more triphenylenes in more places, results in a more stable molecule. It is also believed that adding additional triphenylenes after there is at least one attached to each nitrogen may not result in much further improvement. While it is generally easier to have all of the triphenylene groups in a molecule be the same group, possible multiple times, different triphenylene groups may also be used in the same molecule.
- phenyl spacer include a phenyl spacer. Different triplet energies are preferred for different device architectures, and the ability to insert or omit a phenyl spacer gives flexibility in designing devices.
- the benzidene core is preferred, i.e., the part of the composition represented by Formula I is more specifically:
- composition of matter where at least one of Ri, R 2 , R 3 and R 4 is
- composition of matter where at least one of Ri, R 2 , R 3 and R 4 is
- composition of matter of Formula I is preferred where each of Ri, R 2 , R 3 and R 4 is independently selected from the group consisting of:
- R 1 , R 2 , R 3 and R 4 there are no further substitutions to R 1 , R 2 , R 3 and R 4 .
- Molecules A-I, A-5 and C-I have been synthesized, and a description of the synthesis is provided.
- the other molecules in the A, B and C groups of molecules, and the variations to those molecules described herein, can be readily fabricated using similar chemical synthesis.
- the device may include an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode.
- the organic emissive layer may includes a host and a phosphorescent dopant.
- the device may also include an organic hole transport layer comprising a hole transport material, disposed between the organic emissive layer and the anode, and in direct contact with the organic emissive layer.
- the hole transport layer may have the structure of the novel compositions of matter disclosed herein, i.e., the structure of the novel materials having a core consistent with Formula I.
- the phosphorescent dopant is preferably an organometallic iridium material.
- consumer products wherein the consumer product includes an organic light emitting device including a composition of matter having the structure of Formula I, as described, are provided.
- Selections for the substituents and structures described as preferred for the compositions of matter having the structure Formula I are also preferred for the devices and the consumer products including devices that comprise a composition of matter having the structure of Formula I. These selections include those described for substituents R 1 , R 2 , R3, and R 4 , Formula II, and structures A-I through A-6, B-I through B-6, and C-I through C-6.
- Organic light emitting devices having at least one of Ri, R 2 , R3 and R 4 being:
- Organic light emitting devices having at least one of Ri, R 2 , R3 and R 4 being:
- triphenylene-containing compounds disclosed herein when used as a hole transport layer, work particularly well in devices where the host is a compound comprising a triphenylene containing benzo-fused thiophene. Devices fabricated with this combination showed particularly good performance.
- Such hosts are disclosed in U.S. Patent Application 61/013,391, filed December 28, 2007, inventor Ma, Bin, which is incorporated herein by reference in its entirety and particularly for claimed subject matter.
- the C group of compounds are preferred hole transport materials for this combination.
- Compound 3 is a preferred example of such a host.
- triphenylene-containing compounds disclosed herein when used as a hole transport layer, work particularly well in devices where the host is an aryltriphenylene compound.
- Such hosts are disclosed in U.S. Patent Publication 2006- 0280965, filed May 31, 2006, inventors Kwong et al., which is incorporated herein by reference in its entirety and particularly for claimed subject matter.
- the C group of compounds are preferred hole transport materials for this combination.
- Compound 2 is a preferred example of such a host.
- triphenylene containing hole transport materials described herein are desirable for use in fluorescent OLEDs in addition to phosphorescent OLEDs.
- 4-(diphenylamino)phenylboronic acid (4.87 g, 16.8 mmol), 4-bromo-N-phenylaniline (3.5 g, 14 mmol), potassium phosphate (9.2 g, 42 mmol), dicyclohexyl(2',6'-dimethoxybiphenyl- 2-yl)phosphine (0.23 g, 0.56 mmol) were added to a three-neck flask under nitrogen. 200 mL of toluene and 20 mL of water was then added. The solution was degassed with nitrogen for 20 minutes. Pd 2 (dba)3 (0.13 g, 0.14 mmol) was added to the mixture. The mixture was then heated up to reflux overnight.
- Pd2(dba) 3 (0.07 g, 0.07 mmol)
- dicyclohexyl(2',6'-dimethoxybiphenyl-2-yl)phosphine (0.13 g, 0.3 mmol) were added to a three-neck flask under nitrogen. 150 mL of xylene was then added. The solution was stirred under nitrogen for 20 minutes.
- Pd 2 (dba) 3 (0.1 g, 0.1 mmol) and dicyclohexyl(2',6'-dimethoxybiphenyl-2-yl)phosphine (0.17 g, 0.4 mmol) were added to a three-neck flask under nitrogen. 150 mL of xylene was then added. The solution was stirred under nitrogen for 20 minutes.
- N 4 ,N 4 '-diphenyl-N 4 ,N 4 '-di(triphenylen-2-yl)biphenyl-4,4'-diamine palladium acetate 0.2 mg, 0.03 mmol
- 1.0 M tri(t-butyl)phosphine solution in toluene 0.1 mL, 0.1 mmol
- 60 mL of xylene was then added. The solution was stirred under nitrogen until the color disappeared.
- Devices were fabricated using standard techniques. The devices have structures similar to that shown in FIG. 1, but including the specific layers and materials described in the tables. Cmpd. is an abbreviation of compound. Ex. is an abbreviation of Example.
- Example 1 has an ⁇ -NPD HTL
- Example 2 has an HTL of compound C-I.
- the combination of HTL C-I with Compound 2 as a host gives results superior to a similar device using an ⁇ -NPD HTL.
- Example 2 shows superior performance in device voltage, luminous efficiency and the lifetime.
- the results for Example 2 are particularly good for a green-emitting device in general, showing the desirability of combining HTLs with compounds similar to C-I with hosts similar to Compound 2.
- Example 3 has an ⁇ -NPD HTL
- Example 4 has an HTL of Compound C-I.
- HIL hole injection layer
- the combination of HTL C-I with Compound 3 as a host gives results superior to a similar device using an ⁇ -NPD HTL.
- Example 4 shows superior performance in efficiency and the lifetime.
- the results for Example 4 are particularly good for a green-emitting device in general, showing the desirability of combining HTLs with compounds similar to C-I with hosts similar to Compound 3.
- Group 3 makes a similar comparison to that made in Group 2, except using an ETL ofAlq 3 instead of LG-201. The same conclusions can be drawn from Group 3 as from Group 2.
- Example 7 has an NPD HTL
- Examples 8 and 9 have an HTLs of compound C-I and A-I, respectively. All HTLs are shown in combination with BAIq host.
- Examples 8 and 9 reveal performance lower in terms of efficiency and lifetime vs. ⁇ -NPD HTL comparative example 7. However, the performance of the devices of Examples 8 and 9 are still well above what is needed for a commercial device.
- Group 5 makes a similar comparison to that made in Group 4, except using an HIL of LG-101 instead of Compound 1. The same conclusions can be drawn from Group 5 as from Group 4.
- HTL materials similar to C-I and A-I for a common device architecture is shown. It is desirable in many manufacturing scenarios to use the same materials in different devices as much as possible. For devices emitting different colors, such as red and green, the emissive molecule may be different. But it is still desirable that the red and green devices use the same non-emissive materials, such as the HTL, to as large an extent as possible.
- green PHOLED lifetime is more of a limiting factor for commercialization than red PHOLED lifetime.
- Red PHOLEDs with any HTL have typically good performance (lifetime), enough for the mass production.
- an HTL material that exhibits superior performance in a green device is highly desirable, even if the material has lower performance in a red device.
- a comparison of Groups 1 , 2 and 3 with Groups 4 and 5 also shows that, while compounds similar to A-I and C-I can be used in different device architectures, those architectures having a combination of compounds similar to A-I and C-I in the HTL with certain hosts, such as those similar to Compound 2 and Compound 3, are particularly desirable and lead to unexpectedly good device performance.
- the materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device.
- emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present.
- the materials described or referred to below are non- limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.
- hole injection materials In addition to and / or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED.
- Non- limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 5 below. Table 5 lists non- limiting classes of materials, non- limiting examples of compounds for each class, and references that disclose the materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011516801A JP5591800B2 (en) | 2008-06-30 | 2009-06-30 | Hole transport material containing triphenylene |
US13/001,949 US8440326B2 (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
EP09774301.7A EP2313362B1 (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
KR1020117001066A KR101676501B1 (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
KR1020167030066A KR101778910B1 (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
CN2009801324876A CN102131767B (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7709508P | 2008-06-30 | 2008-06-30 | |
US61/077,095 | 2008-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010002850A1 true WO2010002850A1 (en) | 2010-01-07 |
Family
ID=40974592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/049188 WO2010002850A1 (en) | 2008-06-30 | 2009-06-30 | Hole transport materials containing triphenylene |
Country Status (6)
Country | Link |
---|---|
US (1) | US8440326B2 (en) |
EP (2) | EP2860171B1 (en) |
JP (1) | JP5591800B2 (en) |
KR (2) | KR101676501B1 (en) |
CN (1) | CN102131767B (en) |
WO (1) | WO2010002850A1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651083A (en) * | 1992-07-28 | 1994-02-25 | Ishikawajima Harima Heavy Ind Co Ltd | Cooling device for nuclear reactor suppression pool |
WO2012050008A1 (en) * | 2010-10-13 | 2012-04-19 | 富士フイルム株式会社 | Organic electroluminescent element and charge-transporting material |
WO2012060307A1 (en) * | 2010-11-05 | 2012-05-10 | Canon Kabushiki Kaisha | Phenanthrene compound and organic light emitting device using the same |
WO2012091428A3 (en) * | 2010-12-29 | 2012-10-18 | 주식회사 엘지화학 | Novel compound, and organic light-emitting device using same |
WO2012176675A1 (en) * | 2011-06-23 | 2012-12-27 | 東レ株式会社 | Light-emitting element |
WO2012176674A1 (en) * | 2011-06-23 | 2012-12-27 | 東レ株式会社 | Light-emitting element |
WO2013061805A1 (en) | 2011-10-24 | 2013-05-02 | 保土谷化学工業株式会社 | New triphenylene derivative and organic electroluminescent element using said derivative |
WO2013104649A1 (en) | 2012-01-12 | 2013-07-18 | Basf Se | Metal complexes with dibenzo[f,h]quinoxalines |
JP2013530515A (en) * | 2010-04-28 | 2013-07-25 | ユニバーサル ディスプレイ コーポレイション | Premixed material deposition |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
EP3184534A1 (en) | 2015-12-21 | 2017-06-28 | UDC Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in oleds |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
JP2018009030A (en) * | 2011-01-13 | 2018-01-18 | ユニバーサル ディスプレイ コーポレイション | 5-substituted 2-phenylquinoline complex materials for light emitting diode |
EP3418285A1 (en) | 2017-06-20 | 2018-12-26 | Idemitsu Kosan Co., Ltd. | Composition comprising a substituted ir complex and a phenylquinazoline bridged with a heteroatom |
EP3466957A1 (en) | 2014-08-08 | 2019-04-10 | UDC Ireland Limited | Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes |
EP3466954A1 (en) | 2017-10-04 | 2019-04-10 | Idemitsu Kosan Co., Ltd. | Fused phenylquinazolines bridged with a heteroatom |
EP3916822A1 (en) | 2013-12-20 | 2021-12-01 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5872944B2 (en) * | 2011-03-31 | 2016-03-01 | ユー・ディー・シー アイルランド リミテッド | Charge transport material, organic electroluminescent element, and light emitting device, display device or illumination device using the element |
DE102012203466B4 (en) * | 2012-03-06 | 2021-10-28 | Pictiva Displays International Limited | ORGANIC LIGHT EMITTING COMPONENT |
JP2015115372A (en) * | 2013-12-09 | 2015-06-22 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | Material for organic electroluminescent devices, and organic electroluminescent device using the same |
US9812649B2 (en) | 2015-02-17 | 2017-11-07 | Luminescence Technology Corp. | Indenotriphenylene-based amine derivative for organic electroluminescent device |
US9698351B2 (en) * | 2015-04-29 | 2017-07-04 | Feng-wen Yen | Organic material for electroluminescent device |
US10014478B2 (en) * | 2015-05-19 | 2018-07-03 | Feng-wen Yen | Indenotriphenylene-based diamine derivative and organic electroluminescence device using the same |
CN105949443B (en) * | 2016-04-21 | 2019-04-05 | 复旦大学 | A kind of azepine condensed ring aromatic hydrocarbons stephanoporate framework of two-dimensional slice structure and its preparation method and application |
CN109627175A (en) * | 2017-10-09 | 2019-04-16 | 北京夏禾科技有限公司 | Cross-linking deuterated charge transport compound, organic electroluminescence device and solution formula comprising the compound |
CN107814726B (en) * | 2017-10-31 | 2020-02-07 | 长春海谱润斯科技有限公司 | Organic compound containing fluorene and organic light-emitting device thereof |
CN109400488A (en) * | 2018-11-29 | 2019-03-01 | 长春海谱润斯科技有限公司 | A kind of aromatic amino-derivative and its organic electroluminescence device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060088728A1 (en) * | 2004-10-22 | 2006-04-27 | Raymond Kwong | Arylcarbazoles as hosts in PHOLEDs |
US20060280965A1 (en) * | 2005-05-31 | 2006-12-14 | Raymond Kwong | Triphenylene hosts in phosphorescent light emitting diodes |
US20070088167A1 (en) * | 2005-05-06 | 2007-04-19 | Chun Lin | Stability OLED materials and devices |
WO2008073440A2 (en) * | 2006-12-08 | 2008-06-19 | Universal Display Corporation | Cross-linkable iridium complexes and organic light-emitting devices using the same |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1339107A (en) | 1918-08-28 | 1920-05-04 | Elmer C Dittmar | Apparatus for coating and finishing flooring |
US4423408A (en) | 1981-02-09 | 1983-12-27 | Honeywell Inc. | Remote data gathering panel |
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
GB8909011D0 (en) * | 1989-04-20 | 1989-06-07 | Friend Richard H | Electroluminescent devices |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
DE69412567T2 (en) | 1993-11-01 | 1999-02-04 | Hodogaya Chemical Co., Ltd., Tokio/Tokyo | Amine compound and electroluminescent device containing it |
US5707745A (en) * | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5703436A (en) * | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US6939625B2 (en) | 1996-06-25 | 2005-09-06 | Nôrthwestern University | Organic light-emitting diodes and methods for assembly and enhanced charge injection |
US5844363A (en) | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US6091195A (en) | 1997-02-03 | 2000-07-18 | The Trustees Of Princeton University | Displays having mesa pixel configuration |
US6013982A (en) * | 1996-12-23 | 2000-01-11 | The Trustees Of Princeton University | Multicolor display devices |
US5834893A (en) * | 1996-12-23 | 1998-11-10 | The Trustees Of Princeton University | High efficiency organic light emitting devices with light directing structures |
US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
US6337102B1 (en) * | 1997-11-17 | 2002-01-08 | The Trustees Of Princeton University | Low pressure vapor phase deposition of organic thin films |
US6087196A (en) | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6528187B1 (en) | 1998-09-08 | 2003-03-04 | Fuji Photo Film Co., Ltd. | Material for luminescence element and luminescence element using the same |
US6830828B2 (en) | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
JP3770014B2 (en) | 1999-02-09 | 2006-04-26 | 日亜化学工業株式会社 | Nitride semiconductor device |
US6294398B1 (en) | 1999-11-23 | 2001-09-25 | The Trustees Of Princeton University | Method for patterning devices |
US6458475B1 (en) | 1999-11-24 | 2002-10-01 | The Trustee Of Princeton University | Organic light emitting diode having a blue phosphorescent molecule as an emitter |
KR100377321B1 (en) | 1999-12-31 | 2003-03-26 | 주식회사 엘지화학 | Electronic device comprising organic compound having p-type semiconducting characteristics |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
CN100505375C (en) | 2000-08-11 | 2009-06-24 | 普林斯顿大学理事会 | Organometallic compounds and emission-shifting organic electrophosphorescence |
US6579630B2 (en) | 2000-12-07 | 2003-06-17 | Canon Kabushiki Kaisha | Deuterated semiconducting organic compounds used for opto-electronic devices |
JP3812730B2 (en) | 2001-02-01 | 2006-08-23 | 富士写真フイルム株式会社 | Transition metal complex and light emitting device |
JP4307000B2 (en) | 2001-03-08 | 2009-08-05 | キヤノン株式会社 | Metal coordination compound, electroluminescent element and display device |
JP4310077B2 (en) | 2001-06-19 | 2009-08-05 | キヤノン株式会社 | Metal coordination compound and organic light emitting device |
EP1407501B1 (en) | 2001-06-20 | 2009-05-20 | Showa Denko K.K. | Light emitting material and organic light-emitting device |
US7071615B2 (en) | 2001-08-20 | 2006-07-04 | Universal Display Corporation | Transparent electrodes |
US7250226B2 (en) | 2001-08-31 | 2007-07-31 | Nippon Hoso Kyokai | Phosphorescent compound, a phosphorescent composition and an organic light-emitting device |
US7431968B1 (en) | 2001-09-04 | 2008-10-07 | The Trustees Of Princeton University | Process and apparatus for organic vapor jet deposition |
US6835469B2 (en) | 2001-10-17 | 2004-12-28 | The University Of Southern California | Phosphorescent compounds and devices comprising the same |
US7166368B2 (en) | 2001-11-07 | 2007-01-23 | E. I. Du Pont De Nemours And Company | Electroluminescent platinum compounds and devices made with such compounds |
US6863997B2 (en) | 2001-12-28 | 2005-03-08 | The Trustees Of Princeton University | White light emitting OLEDs from combined monomer and aggregate emission |
KR100691543B1 (en) | 2002-01-18 | 2007-03-09 | 주식회사 엘지화학 | New material for transporting electron and organic electroluminescent display using the same |
US20030230980A1 (en) | 2002-06-18 | 2003-12-18 | Forrest Stephen R | Very low voltage, high efficiency phosphorescent oled in a p-i-n structure |
US7189989B2 (en) | 2002-08-22 | 2007-03-13 | Fuji Photo Film Co., Ltd. | Light emitting element |
EP1550707B1 (en) | 2002-08-27 | 2016-03-23 | UDC Ireland Limited | Organometallic complexes, organic el devices, and organic el displays |
US6687266B1 (en) | 2002-11-08 | 2004-02-03 | Universal Display Corporation | Organic light emitting materials and devices |
JP4365199B2 (en) | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4365196B2 (en) | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | Organic electroluminescence device |
ATE438654T1 (en) | 2003-03-24 | 2009-08-15 | Univ Southern California | IR-PHENYLPYRAZOLE COMPLEXES |
US7090928B2 (en) | 2003-04-01 | 2006-08-15 | The University Of Southern California | Binuclear compounds |
EP1618170A2 (en) | 2003-04-15 | 2006-01-25 | Covion Organic Semiconductors GmbH | Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures |
US7029765B2 (en) | 2003-04-22 | 2006-04-18 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
US20060186791A1 (en) | 2003-05-29 | 2006-08-24 | Osamu Yoshitake | Organic electroluminescent element |
JP2005011610A (en) | 2003-06-18 | 2005-01-13 | Nippon Steel Chem Co Ltd | Organic electroluminescent element |
US20050025993A1 (en) | 2003-07-25 | 2005-02-03 | Thompson Mark E. | Materials and structures for enhancing the performance of organic light emitting devices |
JP4703139B2 (en) * | 2003-08-04 | 2011-06-15 | 富士フイルム株式会社 | Organic electroluminescence device |
TWI390006B (en) | 2003-08-07 | 2013-03-21 | Nippon Steel Chemical Co | Organic EL materials with aluminum clamps |
DE10338550A1 (en) | 2003-08-19 | 2005-03-31 | Basf Ag | Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs) |
US20060269780A1 (en) | 2003-09-25 | 2006-11-30 | Takayuki Fukumatsu | Organic electroluminescent device |
JP4822687B2 (en) | 2003-11-21 | 2011-11-24 | 富士フイルム株式会社 | Organic electroluminescence device |
US7332232B2 (en) | 2004-02-03 | 2008-02-19 | Universal Display Corporation | OLEDs utilizing multidentate ligand systems |
JP4906235B2 (en) * | 2004-03-10 | 2012-03-28 | 富士フイルム株式会社 | Organic electroluminescence device |
KR20080064201A (en) | 2004-03-11 | 2008-07-08 | 미쓰비시 가가꾸 가부시키가이샤 | Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film |
TW200531592A (en) | 2004-03-15 | 2005-09-16 | Nippon Steel Chemical Co | Organic electroluminescent device |
JP4869565B2 (en) | 2004-04-23 | 2012-02-08 | 富士フイルム株式会社 | Organic electroluminescence device |
US7154114B2 (en) | 2004-05-18 | 2006-12-26 | Universal Display Corporation | Cyclometallated iridium carbene complexes for use as hosts |
US7491823B2 (en) | 2004-05-18 | 2009-02-17 | The University Of Southern California | Luminescent compounds with carbene ligands |
US7534505B2 (en) | 2004-05-18 | 2009-05-19 | The University Of Southern California | Organometallic compounds for use in electroluminescent devices |
US7279704B2 (en) | 2004-05-18 | 2007-10-09 | The University Of Southern California | Complexes with tridentate ligands |
US7393599B2 (en) | 2004-05-18 | 2008-07-01 | The University Of Southern California | Luminescent compounds with carbene ligands |
US7445855B2 (en) | 2004-05-18 | 2008-11-04 | The University Of Southern California | Cationic metal-carbene complexes |
WO2005123873A1 (en) | 2004-06-17 | 2005-12-29 | Konica Minolta Holdings, Inc. | Organic electroluminescent device material, organic electroluminescent device, display and illuminating device |
JP5000496B2 (en) | 2004-06-28 | 2012-08-15 | チバ ホールディング インコーポレーテッド | Electroluminescent metal complexes of triazole and benzotriazole |
US20060008670A1 (en) | 2004-07-06 | 2006-01-12 | Chun Lin | Organic light emitting materials and devices |
JP4858169B2 (en) | 2004-07-23 | 2012-01-18 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
DE102004057072A1 (en) | 2004-11-25 | 2006-06-01 | Basf Ag | Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs) |
KR100803125B1 (en) | 2005-03-08 | 2008-02-14 | 엘지전자 주식회사 | Red phosphorescent compounds and organic electroluminescence devices using the same |
US7807275B2 (en) | 2005-04-21 | 2010-10-05 | Universal Display Corporation | Non-blocked phosphorescent OLEDs |
JP4533796B2 (en) | 2005-05-06 | 2010-09-01 | 富士フイルム株式会社 | Organic electroluminescence device |
US9051344B2 (en) | 2005-05-06 | 2015-06-09 | Universal Display Corporation | Stability OLED materials and devices |
US8007927B2 (en) | 2007-12-28 | 2011-08-30 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
WO2007028417A1 (en) | 2005-09-07 | 2007-03-15 | Technische Universität Braunschweig | Triplett emitter having condensed five-membered rings |
JP4887731B2 (en) | 2005-10-26 | 2012-02-29 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element, display device and lighting device |
US8142909B2 (en) | 2006-02-10 | 2012-03-27 | Universal Display Corporation | Blue phosphorescent imidazophenanthridine materials |
KR102103062B1 (en) | 2006-02-10 | 2020-04-22 | 유니버셜 디스플레이 코포레이션 | METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF |
JP4823730B2 (en) | 2006-03-20 | 2011-11-24 | 新日鐵化学株式会社 | Luminescent layer compound and organic electroluminescent device |
WO2007125714A1 (en) | 2006-04-26 | 2007-11-08 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, and organic electroluminescence element using the same |
US8076839B2 (en) | 2006-05-11 | 2011-12-13 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US8563145B2 (en) | 2006-06-02 | 2013-10-22 | Idemitsu Kosan Co., Ltd. | Material containing two or three dibenzofuran groups, dibenzothiophene groups, or a combination thereof, which is operable for organic electroluminescence elements, and organic electroluminescence elements using the material |
JP5203207B2 (en) | 2006-08-23 | 2013-06-05 | 出光興産株式会社 | Aromatic amine derivatives and organic electroluminescence devices using them |
JP5589251B2 (en) | 2006-09-21 | 2014-09-17 | コニカミノルタ株式会社 | Organic electroluminescence element material |
EP2518045A1 (en) | 2006-11-24 | 2012-10-31 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
US8778508B2 (en) | 2006-12-08 | 2014-07-15 | Universal Display Corporation | Light-emitting organometallic complexes |
US7421968B1 (en) * | 2007-02-20 | 2008-09-09 | Yen-Lu Hu | Boat that is provided with floating tubes in a multi-layer design |
TWI510598B (en) * | 2007-03-08 | 2015-12-01 | Universal Display Corp | Phosphorescent materials |
WO2009008201A1 (en) | 2007-07-07 | 2009-01-15 | Idemitsu Kosan Co., Ltd. | Naphthalene derivative, material for organic el element, and organic el element using the material |
US20090045731A1 (en) | 2007-07-07 | 2009-02-19 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
US8779655B2 (en) | 2007-07-07 | 2014-07-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
WO2009008205A1 (en) | 2007-07-07 | 2009-01-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and material for organic electroluminescent device |
US8114530B2 (en) | 2007-07-10 | 2012-02-14 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence device and organic electroluminescence device utilizing the same |
US8080658B2 (en) | 2007-07-10 | 2011-12-20 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent element and organic electroluminescent element employing the same |
JP2009040728A (en) | 2007-08-09 | 2009-02-26 | Canon Inc | Organometallic complex and organic light-emitting element using the same |
US20090101870A1 (en) | 2007-10-22 | 2009-04-23 | E. I. Du Pont De Nemours And Company | Electron transport bi-layers and devices made with such bi-layers |
US7914908B2 (en) | 2007-11-02 | 2011-03-29 | Global Oled Technology Llc | Organic electroluminescent device having an azatriphenylene derivative |
-
2009
- 2009-06-30 JP JP2011516801A patent/JP5591800B2/en active Active
- 2009-06-30 EP EP14194736.6A patent/EP2860171B1/en active Active
- 2009-06-30 WO PCT/US2009/049188 patent/WO2010002850A1/en active Application Filing
- 2009-06-30 KR KR1020117001066A patent/KR101676501B1/en active IP Right Grant
- 2009-06-30 EP EP09774301.7A patent/EP2313362B1/en active Active
- 2009-06-30 US US13/001,949 patent/US8440326B2/en active Active
- 2009-06-30 CN CN2009801324876A patent/CN102131767B/en active Active
- 2009-06-30 KR KR1020167030066A patent/KR101778910B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060088728A1 (en) * | 2004-10-22 | 2006-04-27 | Raymond Kwong | Arylcarbazoles as hosts in PHOLEDs |
US20070088167A1 (en) * | 2005-05-06 | 2007-04-19 | Chun Lin | Stability OLED materials and devices |
US20060280965A1 (en) * | 2005-05-31 | 2006-12-14 | Raymond Kwong | Triphenylene hosts in phosphorescent light emitting diodes |
WO2008073440A2 (en) * | 2006-12-08 | 2008-06-19 | Universal Display Corporation | Cross-linkable iridium complexes and organic light-emitting devices using the same |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651083A (en) * | 1992-07-28 | 1994-02-25 | Ishikawajima Harima Heavy Ind Co Ltd | Cooling device for nuclear reactor suppression pool |
JP2013530515A (en) * | 2010-04-28 | 2013-07-25 | ユニバーサル ディスプレイ コーポレイション | Premixed material deposition |
JP2012104509A (en) * | 2010-10-13 | 2012-05-31 | Fujifilm Corp | Organic electroluminescent element and charge transport material |
WO2012050008A1 (en) * | 2010-10-13 | 2012-04-19 | 富士フイルム株式会社 | Organic electroluminescent element and charge-transporting material |
KR101523153B1 (en) * | 2010-11-05 | 2015-05-26 | 캐논 가부시끼가이샤 | Phenanthrene compound and organic light emitting device using the same |
JP2012097056A (en) * | 2010-11-05 | 2012-05-24 | Canon Inc | Phenanthrene compound and organic luminescent element using the same |
WO2012060307A1 (en) * | 2010-11-05 | 2012-05-10 | Canon Kabushiki Kaisha | Phenanthrene compound and organic light emitting device using the same |
US8729541B2 (en) | 2010-11-05 | 2014-05-20 | Canon Kabushiki Kaisha | Phenanthrene compound and organic light emitting device using the same |
CN104220555B (en) * | 2010-12-29 | 2017-03-08 | 株式会社Lg化学 | New compound and use its organic luminescent device |
WO2012091428A3 (en) * | 2010-12-29 | 2012-10-18 | 주식회사 엘지화학 | Novel compound, and organic light-emitting device using same |
JP2014509306A (en) * | 2010-12-29 | 2014-04-17 | エルジー・ケム・リミテッド | Novel compound and organic light emitting device using the same |
JP2016026172A (en) * | 2010-12-29 | 2016-02-12 | エルジー・ケム・リミテッド | Novel compound, and organic light-emitting device using the same |
CN104220555A (en) * | 2010-12-29 | 2014-12-17 | 株式会社Lg化学 | Novel compound, and organic light-emitting device using same |
US8946695B2 (en) | 2010-12-29 | 2015-02-03 | Lg Chem, Ltd. | Compound, and organic light-emitting device using same |
JP2018009030A (en) * | 2011-01-13 | 2018-01-18 | ユニバーサル ディスプレイ コーポレイション | 5-substituted 2-phenylquinoline complex materials for light emitting diode |
WO2012176674A1 (en) * | 2011-06-23 | 2012-12-27 | 東レ株式会社 | Light-emitting element |
WO2012176675A1 (en) * | 2011-06-23 | 2012-12-27 | 東レ株式会社 | Light-emitting element |
WO2013061805A1 (en) | 2011-10-24 | 2013-05-02 | 保土谷化学工業株式会社 | New triphenylene derivative and organic electroluminescent element using said derivative |
US9472762B2 (en) | 2012-01-12 | 2016-10-18 | Udc Ireland Limited | Iridium organometallic complex containing a substituted dibenzo[f,h]quinoxaline and an electronic device having an emitting layer containing the iridium complex |
WO2013104649A1 (en) | 2012-01-12 | 2013-07-18 | Basf Se | Metal complexes with dibenzo[f,h]quinoxalines |
US10167303B2 (en) | 2012-01-12 | 2019-01-01 | Udc Ireland Limited | Iridium organometallic complex containing a substituted dibenzo[f,h]quinoxaline and an electronic device having an emitting layer containing the iridium complex |
EP3916822A1 (en) | 2013-12-20 | 2021-12-01 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP3466957A1 (en) | 2014-08-08 | 2019-04-10 | UDC Ireland Limited | Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
WO2016067261A1 (en) | 2014-10-30 | 2016-05-06 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
WO2016097983A1 (en) | 2014-12-15 | 2016-06-23 | Idemitsu Kosan Co., Ltd. | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds) |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
WO2016125110A1 (en) | 2015-02-06 | 2016-08-11 | Idemitsu Kosan Co., Ltd. | Bisimidazolodiazocines |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016157113A1 (en) | 2015-03-31 | 2016-10-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP4060757A1 (en) | 2015-06-03 | 2022-09-21 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056052A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
EP3184534A1 (en) | 2015-12-21 | 2017-06-28 | UDC Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in oleds |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
WO2017109722A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them |
US10490754B2 (en) | 2015-12-21 | 2019-11-26 | Udc Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in OLEDs |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3418285A1 (en) | 2017-06-20 | 2018-12-26 | Idemitsu Kosan Co., Ltd. | Composition comprising a substituted ir complex and a phenylquinazoline bridged with a heteroatom |
EP3466954A1 (en) | 2017-10-04 | 2019-04-10 | Idemitsu Kosan Co., Ltd. | Fused phenylquinazolines bridged with a heteroatom |
Also Published As
Publication number | Publication date |
---|---|
EP2313362A1 (en) | 2011-04-27 |
EP2860171B1 (en) | 2017-02-01 |
KR20160129908A (en) | 2016-11-09 |
US20110180786A1 (en) | 2011-07-28 |
JP5591800B2 (en) | 2014-09-17 |
KR20110018945A (en) | 2011-02-24 |
KR101676501B1 (en) | 2016-11-15 |
US8440326B2 (en) | 2013-05-14 |
JP2011526914A (en) | 2011-10-20 |
KR101778910B1 (en) | 2017-09-14 |
CN102131767A (en) | 2011-07-20 |
EP2860171A1 (en) | 2015-04-15 |
CN102131767B (en) | 2013-08-21 |
EP2313362B1 (en) | 2014-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5591800B2 (en) | Hole transport material containing triphenylene | |
JP6025959B2 (en) | 2-Azatriphenylene materials for organic light-emitting diodes | |
JP6262190B2 (en) | Phosphorescent substance | |
JP5981603B2 (en) | Heteroleptic iridium complex | |
JP5854839B2 (en) | Phosphorescent emitter | |
JP5872491B2 (en) | Phosphorescent substance | |
TWI751419B (en) | Metal complex comprising novel ligand structures | |
EP2628778B1 (en) | Hole transport materials having a sulfur-containing group | |
TWI496772B (en) | Iridium complex with methyl-d3 substitution | |
EP2541635B1 (en) | Organic electroluminescent element | |
JP2016225646A (en) | Phosphorescence substance | |
EP2329540A1 (en) | Organoselenium materials and their uses in organic light emitting devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980132487.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09774301 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011516801 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8474/CHENP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117001066 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009774301 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13001949 Country of ref document: US |