WO2010001960A1 - Method for production of recombinant protein by using genetically engineered brevibacillus bacterium - Google Patents
Method for production of recombinant protein by using genetically engineered brevibacillus bacterium Download PDFInfo
- Publication number
- WO2010001960A1 WO2010001960A1 PCT/JP2009/062121 JP2009062121W WO2010001960A1 WO 2010001960 A1 WO2010001960 A1 WO 2010001960A1 JP 2009062121 W JP2009062121 W JP 2009062121W WO 2010001960 A1 WO2010001960 A1 WO 2010001960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- recombinant protein
- brevibacillus
- producing
- fructose
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to a method for producing a recombinant protein using a recombinant Brevibacillus bacterium.
- Non-patent Document 1 Production of recombinant proteins using Brevibacillus bacteria as a host is used for the production of various heterologous proteins.
- Various culture conditions have been studied to improve the secretory production of recombinant protein per cell and to increase the density of cells during culture.
- glucose has been used as the main carbon source of the medium.
- Sucrose, glycerin and the like are usually used.
- fructose is used as a suitable carbon source for improving the secretory production amount and increasing the density of the cells, although it is the same monosaccharide as glucose.
- Non-patent Document 2 This is considered to be caused by the fact that fructose is more rapidly colored in the presence of amino acids than glucose (Non-patent Document 2), so that the culture supernatant is easily colored.
- the colored substance derived from the fructose binds to the expressed recombinant protein, and the protein to which the colored substance is bound is treated as an impurity derived from the target substance in the purification process. Need to be removed. The generation of these impurities is presumed to prevent the use of fructose as the main carbon source because it results in a significant reduction in the yield of the target product and is difficult to remove due to its approximate properties.
- Antibody drugs are mainly produced using cultured CHO cells as glycoproteins of about 150 kDa.
- affinity chromatography having antibody binding ability is generally used, and the most commonly used protein such as protein A, protein G and protein L is immobilized on an appropriate resin. Chromatography with a carrier. Among the proteins used as ligands for these purification carriers, protein A is particularly frequently used.
- an affinity carrier having a protein as a ligand is required to have high quality as a material for producing pharmaceuticals.
- Protein ligands themselves are also required to have the same level of quality as protein pharmaceuticals, and it is not possible to inexpensively supply affinity carriers using these as raw materials.
- These affinity carriers account for a large proportion of the antibody drug production cost, which is a major impediment to reducing the cost of antibody drug products. Therefore, a method for procuring these ligand proteins with high quality at low cost has been desired.
- Patent Document 1 In order to establish a technique for stably producing a large amount of a partial sequence of protein A so far, the present inventors have used a Brevibacillus bacterium as a host to efficiently produce a large amount of the partial sequence of protein A into a culture solution. Has been found to be secreted and stably accumulated, and can be easily separated and recovered with high purity (Patent Document 1).
- feline proinsulin is one such bioactive protein. Purified feline proinsulin has not been put on the market so far, and the reliability of proinsulin measurement at the time of diagnosis of feline diabetes has been low, which has prevented early detection of feline diabetes.
- other types of insulin are used as therapeutic agents for diabetes, and it has been desired to develop an industrial production method of cat proinsulin as a raw material for cat insulin.
- Non-patent Document 3 a technique for expressing feline proinsulin in Escherichia coli has been constructed, and inclusion bodies are formed in Escherichia coli during the culture. Forming inclusion bodies during culture increases the load on the purification process, resulting in higher product costs. Therefore, realization of an economical production method of feline proinsulin in a secretory expression system is strongly desired.
- the secretory production of the recombinant protein per cell is improved and the density of the cell at the time of cultivation is increased compared to the conventional techniques. It is an object of the present invention to provide new culture conditions for Brevibacillus bacteria that can be achieved and can be prepared at a lower cost and can be scaled up to an industrial scale.
- the present inventors surprisingly cultivate using, as a carbon source, fructose that has been avoided so far due to the ease of browning.
- the secretory production amount of the recombinant protein per microbial cell was improved, and the microbial cell during the cultivation was found to have a higher density, thereby completing the present invention.
- the present invention provides a method for producing a recombinant protein, which comprises culturing using fructose as a carbon source when producing a recombinant protein using a recombinant Brevibacillus bacterium. It is.
- the secretory production amount of the recombinant protein per cell is improved, and the cell density during culture is increased, It is possible to achieve the productivity of recombinant protein more than 3 times the conventional.
- FIG. 7 shows a DNA sequence encoding a promoter sequence, Shine-Dalgarno sequence, signal peptide and protein A (SPA ′) of a partial sequence expression vector (Spa′-pNK3260) of protein A (SPA ′) according to Example 2 of the present invention.
- FIG. 7 shows a DNA sequence encoding a promoter sequence, Shine-Dalgarno sequence, signal peptide and protein A (SPA ′) of a partial sequence expression vector (Spa′-pNK3260) of protein A (SPA ′) according to Example 2 of the present invention.
- the present invention achieves high secretion expression and / or high density of cells during culture by using fructose as a carbon source when producing a recombinant protein using a recombinant Brevibacillus bacterium. Is.
- the present invention will be described in detail below.
- a recombinant Brevibacillus bacterium refers to a bacterium obtained by inserting a DNA encoding a recombinant protein into an expression vector and transforming the expression vector into a host Brevibacillus bacterium.
- the DNA encoding the recombinant protein may be any DNA as long as the amino acid sequence obtained by translating the base sequence of the DNA constitutes the target recombinant protein.
- a DNA sequence can be obtained by using a commonly known method such as a polymerase chain reaction (hereinafter abbreviated as PCR) method. Further, it can be synthesized by a known chemical synthesis method (NucleicNacids Res., 1984, 12: 4359), and can also be obtained from a DNA library.
- the DNA sequence may have a codon substituted with a degenerate codon, and need not be identical to the original DNA sequence as long as it encodes the same amino acid when translated in the genus Brevibacillus .
- the expression vector includes a DNA sequence encoding the recombinant protein or a partial sequence thereof, and a promoter capable of functioning in Brevibacillus bacteria operably linked to the sequence.
- the promoter is not limited as long as it can function in bacteria of the genus Brevibacillus, but Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus
- a promoter derived from a bacterium such as (Corynebacterium) and operable in a bacterium belonging to the genus Brevibacillus is preferred.
- Brevibacillus bacterial cell wall proteins middle wall protein (MWP) and outer wall protein (OWP) (Udaka, S. et al. Method Enzymol., 1993, 217: 23-33), or Brevibacillus choshinensis HPD31
- MBP middle wall protein
- OBP outer wall protein
- HWP Brevibacillus choshinensis HPD31
- a promoter of a gene encoding the cell wall protein HWP J. Bacteriol., 1990, 172: 1312-1320 is more preferable.
- the expression vector preferably further includes a Shine-Dalgarno sequence (SD sequence) and a signal sequence that can function in Brevibacillus bacteria downstream of the promoter.
- SD sequence Shine-Dalgarno sequence
- the expression vector may optionally include a marker sequence.
- the SD sequence following the above promoter is derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus SD sequence operable in Brevibacillus genus bacteria
- the SD sequence present in the upstream of the gene encoding MWP, OWP or HWP is more preferable.
- the DNA encoding the secretory signal peptide following the SD sequence is not particularly limited as long as it encodes the following secretory signal peptide, and encodes the same amino acid when translated in Brevibacillus brevis. As long as it is, it does not have to be the same as the original base sequence.
- the secretory signal peptide is derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus, and the like in the Brevibacillus genus bacteria
- the secretory signal peptide that can be operated is preferable, and the secretory signal peptide of MWP, OWP, or HWP is more preferable.
- DNA encoding the above promoter, SD sequence, and secretory signal peptide can be obtained from, for example, Brevibacillus bacteria.
- Brevibacillus brevis 47 strain (FERM BP-1223), Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus choshinensis HPD31
- FERM BP-1087 a chromosomal DNA of a strain
- FERM BP-1087 Brevibacillus choshinensis HPD31-S strain
- FERM BP-4573 Brevibacillus choshinensis HPD31-OK strain
- any of the above promoters, any of the above SD sequences, any DNA encoding any of the above signal peptides, and DNA encoding the recombinant protein can operate in Brevibacillus bacteria. It is preferable that it is connected to.
- the vector is preferably a plasmid vector.
- plasmid vectors useful for expression of genes of the genus Brevibacillus include, for example, pUB110, which is known as a Bacillus subtilis vector, or pHY500 (JP-A-2-31682), pNY700 (JP-A-4-278091). Gazette), pHY4831 (J. Bacteriol. 1987. 1239-1245), pNU200 (Takazo Takataka, Journal of Japanese Society of Agricultural Chemistry 1987. 61: 669-676), pNU100 (Appl. Microbiol. Biotechnol. -80), pNU211 (J.
- the above plasmid vector can be prepared by those skilled in the art based on literature information.
- an expression vector containing a promoter that functions in a bacterium of the genus Brevibacillus, an SD sequence, and a DNA encoding the target protein, or a gene fragment containing each of these nucleotide sequences is directly incorporated into a chromosome and expressed (specifically (Kaihei 9-135893) may also be used.
- a known method already used in Bacillus subtilis or yeast can be transferred to Brevibacillus bacteria.
- Brevibacillus bacteria include, but are not limited to, Brevibacillus agri, Brevibacillus bolsterensis, Brevibacillus brevis, Brevibacillus centroporus, Brevibacillus choshinensis, Brevibacillus formosas, Brevibacillus invocatus, ⁇ Includes Latinosporus, Brevibacillus limnophilus, Brevibacillus parabrevis, Brevibacillus reuszeli, Brevibacillus thermolver, etc.
- the bacterium belonging to the genus Brevibacillus is Brevibacillus brevis 47 strain (FERM BP-1223), Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus brevis 47-5Q strain (JCM8975), Brevibacillus choshinensis HPD31 strain (FERM BP-1087), Brevibacillus choshinensis HPD31-S strain (FERM BP-6623), Brevibacillus choshinensis HPD31-OK Strain (FERM ⁇ ⁇ BP-4573) and Brevibacillus choshinensis SP3 strain (Takara).
- FERM BP-1223 Brevibacillus brevis 47K strain
- FERM BP-1664 Brevibacillus brevis 47-5Q strain
- JCM8975 Brevibacillus choshinensis
- Brevibacillus brevis 47 strain Brevibacillus brevis 47-5Q strain
- Brevibacillus choshinensis HPD31 strain Brevibacillus choshinensis HPD31-S strain are suitable.
- Brevibacillus brevis 47-5Q (JCM8975) can be obtained from the independent administrative corporation Biochemicals Research Institute, Bioresource Center (JCM) (2-1 Hirosawa, Wako, Saitama 351-0198).
- a mutant strain such as a protease-deficient strain or a high-expression strain of the aforementioned Brevibacillus bacterium may be used.
- Brevibacillus choshinensis HPD31-derived protease mutant Brevibacillus choshinensis HPD31-OK (FERM BP-4573)
- Brevibacillus choshinensis HPD31-derived spore-forming ability Brevibacillus choshinensis SP3 strain (manufactured by Takara), which is a protease mutant
- Transformation of a host cell of Brevibacillus genus bacteria used in the present invention can be performed by the known method of Takahashi et al. (J. Bacteriol., 1983, 156: 1130-1134) or the method of Takagi et al. (Agric. Biol. Chem. , 1989, 53: 3099-3100), or the method of Okamoto et al. (Biosci. Biotechnol. Biochem., 1997, 61: 202-203).
- heterologous protein When a heterologous protein is highly expressed in microorganisms including Brevibacillus bacteria, it often forms an inactive protein without being correctly folded, especially when a protein with many disulfide bonds is highly expressed. Insoluble in many cases.
- expressing the target protein it is known that the insolubilization of the target protein and the decrease in the secretion efficiency can be suppressed by acting chaperone protein, disulfide bond isomerase and / or proline isomerase, etc. .
- a widely attempted method is a method in which a protein having disulfide redox activity such as PDI (protein disulfide isomerase) and / or DsbA is allowed to act (JP-A 63-294796, JP-A-5-336986). is there.
- PDI protein disulfide isomerase
- DsbA DsbA
- a method for producing a protein having a correct disulfide bond by introducing a gene encoding a protein having disulfide redox activity into a host organism and simultaneously expressing the target protein and a protein having disulfide redox activity is also known.
- Japanese Patent Laid-Open No. 2000-83670 Japanese Patent Laid-Open No. 2001-514490, etc.
- the expression of the protein is performed in order to reduce the burden on the host cell due to excessive protein synthesis and to facilitate protein secretion.
- DsbA of E. coli (Cell, 1991, 67: 582-589, EMBO. J., which is involved in protein disulfide bonds and is considered to be an analog of protein disulfide isomerase when the protein is expressed in Brevibacillus bacteria. 1992, 11: 57-62.)
- chaperone proteins such as DnaK, DnaJ, GrpE (JP-A-9-180558) can be expressed simultaneously.
- enzyme PDI Japanese Patent Application No. 2001-567367
- disulfide oxidoreductase Japanese Patent Application Laid-Open No.
- the medium used for culturing the recombinant Brevibacillus bacterium is not particularly limited as long as it contains fructose as long as it can produce recombinant protein with high efficiency and high yield.
- a known carbon source or nitrogen source such as glucose, sucrose, glycerol, polypeptone, meat extract, yeast extract, casamino acid, and amino acid can be used.
- inorganic salts such as potassium salt, sodium salt, phosphate, magnesium salt, manganese salt, zinc salt and iron salt may be added as necessary.
- anti-foaming effects such as soybean oil, lard oil, surfactant, etc., or change the permeability of the cell membrane material, and increase in the production of recombinant protein per cell is expected.
- a compound to be prepared may be added.
- the use of a surfactant is preferable because the effect of the present invention may be enhanced.
- the surfactant is not particularly limited as long as it does not adversely affect the growth of recombinant Brevibacillus bacteria and / or recombinant protein production, and is preferably a polyoxyalkylene glycol surfactant.
- auxotrophic host cells When using auxotrophic host cells, nutrients required for growth may be added. If necessary, antibiotics such as penicillin, erythromycin, chloramphenicol and neomycin may be added.
- protease inhibitors may be added at an appropriate concentration in order to suppress degradation of the target protein by the host-derived protease existing outside the cell body, and to lower the molecular weight.
- protease inhibitors include phenylmethane sulfonylPfluoride (PMSF), Benzamidine, 4- (2-aminoethyl) -benzenesulfonyl fluoride (AEBSF), Antipain, Chymostatin, Leupeptin, Pepstatin A, Phosphoramidon, Aprotinin, Ethylenediaminetetra acetic acid (EDTA)
- PMSF phenylmethane sulfonylPfluoride
- AEBSF 4- (2-aminoethyl) -benzenesulfonyl fluoride
- Antipain Chymostatin, Leupeptin, Pepstatin A, Phosphoramidon, Aprotinin, Ethylenediamine
- the initial concentration is 1%. Above or 9% or less is preferable, more preferably 1 to 9% of the initial. More preferably, fructose is added in a timely manner so that the fructose concentration is 9% or less, particularly 4% or less during the culture.
- Fructose addition methods include divided or continuous addition. Examples of such a method include, but are not limited to, a method of adding fructose after 6 hours from the start of culture.
- Antibody-binding protein is not a protein that is recognized as an antigen by an antibody, but is a protein that can bind to a portion other than the antigen recognition site of an antibody (for example, an Fc portion).
- the structure is not particularly limited as long as it is a protein that can bind to a site different from the antigen recognition site of the antibody. Examples of such proteins include protein A, protein G, and protein L.
- Protein A is a kind of cell wall protein produced by the Gram-positive bacterium Staphylococcus aureus and is a protein having a molecular weight of about 42,000. Its structure consists of seven functional domains (signal sequence S from the amino terminus, immunoglobulin binding domain E, immunoglobulin binding domain D, immunoglobulin binding domain A, immunoglobulin binding domain B, immunoglobulin binding domain C, Staphylococcus aureus) Bacterial cell wall binding domain X) (Proc. Natl. Acad. Sci. USA, 1983, 80: 697-701, Gene, 1987, 58: 283-295, J. Bio. Chem., 1984, 259 : 1695-1702).
- the relative affinity of this protein A for the immunoglobulin binding domain includes pH, Staphylococcus aureus strain (Infec. Immun., 1987, 55: 843-847), and immunoglobulin classes (IgG, IgM, IgA, IgD, IgE) and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2) are known to depend on many factors, particularly in the immunoglobulin class, human IgG1, human IgG2, human IgG4 and mouse IgG2a, It shows strong binding to the Fc part of mouse IgG2b and mouse IgG3.
- immunoglobulin classes IgG, IgM, IgA, IgD, IgE
- subclasses IgG1, IgG2, IgG3, IgG4, IgA1, IgA2
- human IgG1, human IgG2, human IgG4 and mouse IgG2a It shows strong binding to the Fc part
- Protein G is one of cell wall proteins produced by Group C and G Streptococcus bacteria, and has a molecular weight of about 59,000.
- the structure consists of five functional domains (from the amino terminus, signal sequence SS, albumin binding domain by repetition of sequences A and B, immunoglobulin binding domain by repetition of sequences C and D, cell wall transmembrane domain W, and transmembrane domain. M).
- This immunoglobulin G binding domain of protein G exhibits extensive binding to the Fc portion of mammalian IgG compared to that of protein A (J. Immunol., 1984, 133: 969-974, J. Biol. Chem. , 1991, 266: 399-405).
- Protein L is a kind of protein produced by Peptostreptococcus magnus and has a molecular weight of about 79,000.
- the structure consists of 6 functional domains (from the amino terminus, signal sequence SS, amino terminal domain A, immunoglobulin binding domain B, 5 repeats, unknown function domain 2 repeats, transmembrane domain W, transmembrane domain M) It is composed of
- the immunoglobulin binding domain of this protein L shows binding to the kappa light chain of immunoglobulin.
- “Partial sequence” of protein A, protein G, and protein L is a protein that is composed of an arbitrary part of amino acid sequences constituting protein A, protein G, and protein L and has antibody binding activity.
- the amino acid sequence shown after the 31st Ala of SEQ ID NO: 9 obtained by removing the above-mentioned signal sequence S and cell wall binding domain X from protein A corresponds to the“ partial sequence ”of protein A.
- a peptide having an antibody binding activity obtained by removing one or a plurality of immunoglobulin binding domains is also included in the “partial sequence” as long as it has an antibody binding activity.
- “Functional variants and their linking sequences” of protein A, protein G and protein L are amino acids in the state in which at least one of the immunoglobulin binding domains of protein A, protein G and protein L retains antibody binding activity. This refers to antibody-binding proteins that have been subjected to substitution, insertion, and deletion treatments, and have changed sensitivities to physicochemical environmental factors such as drugs, enzymes, heat, and pH, and constructs that are homozygous or heterozygically linked. The combination and the number of connections are not limited.
- Physiologically active protein is a protein used as a pharmaceutically active ingredient, and specifically includes peptide hormones, cytokines, growth factors, hematopoietic factors, enzymes, and precursors thereof.
- Peptide hormones are peptides that are produced and secreted by endocrine cells in animal tissues according to information inside and outside the body, and are transported to the target cells by the bloodstream to regulate the activity of the target cells as foreign signals.
- peptide hormones or precursors thereof include insulin, proinsulin, or preproinsulin, particularly feline insulin, feline proinsulin, or feline preproinsulin.
- Insulin is a peptide hormone that is synthesized as proinsulin which is a biosynthetic precursor in the rough endoplasmic reticulum of pancreatic B cells, is converted into insulin, is stored in B granules, and is released into the blood in response to secretory stimulation. is there.
- Cat feinsulin is a biosynthetic precursor of cat insulin.
- Example 1 Construction of Brevibacillus expression vector pNK3260
- the MWP P5 promoter contained in pNH326 (J. Bacteriol., 1995, 177: 745-749) was converted to the MWP P2 promoter to obtain the Brevibacillus expression vector pNK3260. It was constructed as follows. First, using pNH326 as a template, PCR was performed using two oligonucleotide primers Primer-1 and Primer-2 having the nucleotide sequences shown in SEQ ID NOs: 3 and 4, and a portion of pNH326 excluding the MWP P5 promoter was amplified. The ends were digested with restriction enzymes EcoRI and HindIII.
- a double-stranded DNA fragment containing the MWP P2 promoter having the base sequence shown in SEQ ID NO: 5 was prepared according to a conventional method, and its ends were digested with restriction enzymes MunI and HindIII. These two DNA fragments were ligated using T4 DNA ligase to construct pNK3260.
- Staphylococcus aureus cowan I strain (JCM2179) Staphylococcus aureus cowan I strain (JCM2179) was prepared from T2 liquid medium (polypeptone 1%, Yeast extract 0.2%, glucose 1%, fish meat extract 0.5%, pH 7.0) and cultured with shaking at 37 ° C. overnight. The cells were collected from the obtained culture broth by centrifugation, and washed twice with 10 mM Tris-HCl buffer (pH 8.0). The bacterial cells were suspended in the same buffer, lysed with 1% SDS, heated at 60 ° C.
- Staphylococcus aureus cowan I strain (JCM2179) can be obtained from RIKEN BioResource Center, Microbial Materials Development Office (JCM) (2-1 Hirosawa, Wako, Saitama 351-0198) .
- PCR is performed using these two oligonucleotide primers Primer-3 and Primer-4, and a signal sequence from protein A (S domain)
- S domain a DNA fragment (about 0.9 kbp) encoding a portion excluding the cell wall binding domain (X domain) (hereinafter referred to as SPA ′) was amplified.
- the obtained DNA fragment was digested with restriction enzymes NcoI and BamHI, and then separated and recovered from an agarose gel.
- the Brevibacillus expression vector pNK3260 constructed in Reference Example 1 was similarly digested with restriction enzymes NcoI and BamHI, purified and recovered, and dephosphorylated by alkaline phosphatase treatment.
- FIG. 2 shows a DNA encoding a promoter, SD sequence, signal peptide and protein A (SPA ') contained in Spa'-pNK3260.
- the base sequence shown in SEQ ID NO: 8 shows the promoter, SD sequence, signal peptide and DNA encoding protein A (SPA ′) contained in Spa′-pNK3260, and SEQ ID NO: 9 shows the signal peptide and protein A (SPA ′).
- SEQ ID NO: 8 shows the promoter, SD sequence, signal peptide and DNA encoding protein A (SPA ′) contained in Spa′-pNK3260
- SEQ ID NO: 9 shows the signal peptide and protein A (SPA ′).
- MWP-P2 is the P2 promoter region of Brevibacillus brevis cell wall protein MWP
- SDM is the SD sequence of Brevibacillus brevis cell wall protein MWP
- SP ′ is the Brevibacillus brevis cell wall.
- spam ′ is a DNA sequence encoding SPA ′
- Nm is a neomycin resistance gene coding region
- Rep / pUB110 is a replica of vector pNK3260 Means the starting point.
- P2-35 and “P2-10” mean the ⁇ 35 region and the ⁇ 10 region of the P2 promoter of Brevibacillus brevis cell wall protein MWP, respectively.
- This Spa'-pNK3260 was used to transform Brevibacillus choshinensis HPD31-OK strain (FERM BP-4573) by a known method.
- Comparative Example 1 Production of recombinant protein using glucose as a carbon source 1
- the transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) with a glucose concentration of 1, 3, 9% 500 ppm of Adecanol LG109 (manufactured by Adeka Co., Ltd.) was added to the prepared medium and cultured under aerobic conditions at 30 ° C.
- Adecanol LG109 manufactured by Adeka Co., Ltd.
- the culture solution is collected, the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant is analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, the glucose concentration was 0.3 g / L at 1%, 0.9 g / L at 3%, and 0.7 g / L at 9%.
- the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer.
- the glucose concentration was 17 at 3%, 24 at 9%, and 16 at 9%.
- Example 3 Production of recombinant protein using fructose as a carbon source 1
- the transformant obtained in Example 2 was cultured in the same manner as in Comparative Example 1 except that the carbon source of the medium was changed from glucose to fructose 1, 3, and 9%.
- the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed.
- the fructose concentration was 1%, 0.6 g / L, 3%, 1.1 g / L, 9%, 0.9 g / L.
- the results are shown in Table 1.
- the culture solution was collected 48 hours after the start of culture and analyzed for turbidity at 660 nm using a spectrophotometer.
- the fructose concentration was 17% at 1%, 29 at 9%, 19 at 9%, and 19 at any concentration, which was equal to or higher than the addition of glucose.
- the results are shown in Table 1.
- Example 2 Production of recombinant protein using glucose as a carbon source 2
- the transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 500 ppm of fats and oils) was added and cultured under aerobic conditions at 30 ° C.
- 3YC medium polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0
- the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, it was 1.3 g / L.
- the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, it was 23.
- Example 4 Production of recombinant protein using fructose as a carbon source 2
- the transformant obtained in Example 2 was treated with 3YC2 medium (peptone 1%, yeast extract 0.5%, fructose 2%, phosphate 0.3%, MgSO 4 .7H 2 O 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 750 ppm of Disperse CC-118 was added, The cells were cultured under aerobic conditions while controlling the pH from 7.0 to 7.8. At 30 hours of culture, 2% fructose was added.
- 3YC2 medium peptone 1%, yeast extract 0.5%, fructose 2%, phosphate 0.3%, MgSO 4 .7H 2 O 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O
- the culture solution is collected and the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography.
- concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography.
- Example 5 Production of recombinant protein using fructose as a carbon source 3
- the transformant obtained in Example 2 was treated with 3YC3 medium (1% peptone, 0.5% yeast extract, 4% fructose, 0.3% phosphate, 0.01% MgSO 4 .7H 2 O, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0, fructose 4% from 6 to 48 hours after the start of culture 750 ppm of Disperse CC-118 was added to the continuous addition, and the cells were cultured under aerobic conditions of 30 ° C. while controlling the pH from 7.0 to 7.8.
- 3YC3 medium 1% peptone, 0.5% yeast extract, 4% fructose, 0.3% phosphate, 0.01% MgSO 4 .7H 2 O, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%,
- the culture solution is collected, the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography.
- the concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography.
- it was 5.0 g / L, and by carrying out the culture by a novel technique, it was about 4 times as compared with 1.3 g / L in the conventional culture method using glucose shown in Comparative Example 2. It was found that the secretion amount of the recombinant protein increased.
- Table 2 The results are shown in Table 2.
- the culture solution was collected 72 hours after the start of the culture, and the turbidity at 660 nm was analyzed using a spectrophotometer. As a result, it was 45.
- the cell density at the end of the culture was greatly doubled compared with 23 in the conventional culture method using glucose shown in Comparative Example 2 and about twice. It turned out to increase. The results are shown in Table 2.
- Example 6 Preparation of Transformant Expressing 5 Conjugates of Functional Variant of C Domain of Protein BR> ⁇ Protein of Concatenated Protein by Modifying 29th Gly of C Domain of Protein A to Ala Back translation was performed from an amino acid sequence (SEQ ID NO: 10, hereinafter referred to as C-G29A), and a DNA sequence encoding the protein was designed.
- the codon usage of the protein is close to the codon usage of HWP (J. Bacteriol., 172, p. 1312-1320, 1990), a cell surface protein that is expressed in large amounts in the Brevibacillus choshinensis HPD31 strain.
- the codons were distributed so that the sequence identity of the base sequences encoding each of the five domains was low.
- a restriction enzyme recognition site for PstI on the 5 ′ side and XbaI on the 3 ′ side of the sequence encoding the 5 linking domain was prepared.
- the sequence of the prepared DNA fragment is shown in SEQ ID NO: 11.
- the prepared DNA fragment was digested with PstI and XbaI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis.
- pNCMO2 manufactured by Takara
- pNCMO2 manufactured by Takara
- pNCMO2 manufactured by Takara
- Example 3 Production of Recombinant Protein Using Glucose as a Carbon Source 3
- the transformant obtained in Example 6 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) and aerobic conditions at 30 ° C. Cultured under.
- 3YC medium polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0
- the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, it was 1.4 g / L.
- the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, it was 26.
- Example 7 Production of recombinant protein using fructose as a carbon source 4
- the transformant obtained in Example 6 was cultured in the same manner as in Comparative Example 2 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, when it was cultured with glucose shown in Comparative Example 3, it was 1.4 g / L, whereas it was 2.2 g / L. The results are shown in Table 3.
- Example 8 Preparation of transformant expressing feline proinsulin fusion protein From the amino acid sequence of feline proinsulin shown in (Non-patent Document 3) and E and D domains of protein A, feline proinsulin fusion protein The amino acid sequence was designed (SEQ ID NO: 12). In consideration of codon usage, a feline proinsulin fusion protein gene having the base sequence shown in SEQ ID NO: 13 was prepared. The prepared DNA fragment was digested with NcoI and EcoRI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis.
- pNH326 which is a plasmid vector for Brevibacillus spp., was digested with NcoI and EcoRI and purified and recovered. After mixing both, it was ligated using Ligation High (manufactured by TOYOBO) to construct a plasmid vector pNH326EDCIP. Using the plasmid vector obtained by the above operation, a transformant of Brevibacillus choshinensis HPD31-OK was prepared.
- Comparative Example 4 Production of recombinant protein using glucose as a carbon source 4
- the transformant obtained in Example 8 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0)
- the cells were cultured under aerobic conditions at 30 ° C.
- the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE was analyzed.
- Example 9 Production of recombinant protein using fructose as a carbon source 5
- the transformant obtained in Example 8 was cultured in the same manner as in Comparative Example 3 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE was analyzed by ChemiDoc XRS system (Bio-Rad). As a result, about twice the production amount when cultured with glucose shown in Comparative Example 4 was confirmed. The results are shown in Table 4.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
In the production of a recombinant protein by using a genetically engineered Brevibacillus bacterium, the culture of the bacterium is carried out by using fructose as a carbon source. This is a novel condition for culturing the Brevibacillus bacterium, which enables the improvement in the quantity of the recombinant protein secreted/produced per cell and the increase in the density of cells during the culture and also enables the preparation of the recombinant protein at a lower cost compared with those achieved by conventional techniques, and can be scaled up to an industrial level.
Description
本発明は、組換えブレビバチルス属細菌を使用した、組換え蛋白質の製造方法に関する。
The present invention relates to a method for producing a recombinant protein using a recombinant Brevibacillus bacterium.
ブレビバチルス属細菌を宿主とした組換え蛋白質の生産は種々の異種蛋白質の製造に用いられている(非特許文献1)。菌体当たりの組換え蛋白質の分泌生産量の向上および培養時の菌体の高密度化のために種々の培養条件の検討が行われており、その結果、培地の主な炭素源として、グルコース、ショ糖、グリセリン等が通常使用されている。しかしグルコースと同じ単糖でありながら、分泌生産量の向上および菌体の高密度化の為にフルクトースが好適な炭素源として使用されることはこれまで知られていない。
Production of recombinant proteins using Brevibacillus bacteria as a host is used for the production of various heterologous proteins (Non-patent Document 1). Various culture conditions have been studied to improve the secretory production of recombinant protein per cell and to increase the density of cells during culture. As a result, glucose has been used as the main carbon source of the medium. Sucrose, glycerin and the like are usually used. However, it has not been known so far that fructose is used as a suitable carbon source for improving the secretory production amount and increasing the density of the cells, although it is the same monosaccharide as glucose.
これは、フルクトースがグルコースと比較してアミノ酸共存下での渇変速度が早い(非特許文献2)ため、培養上清が着色しやすいことが原因であると考えられる。特に分泌発現系であるブレビバチルス属細菌による組換え蛋白質の生産では、そのフルクトースに由来する着色物質が発現した組換え蛋白質に結合し、着色物が結合した蛋白質は目的物由来不純物として精製工程で除去する必要がある。これら不純物の発生は、目的物の収率を大きく下げる結果となると共に、その近似する性質により除去が困難となるため、フルクトースの主たる炭素源としての使用を妨げているものと推察される。
This is considered to be caused by the fact that fructose is more rapidly colored in the presence of amino acids than glucose (Non-patent Document 2), so that the culture supernatant is easily colored. In particular, in the production of recombinant proteins by the Brevibacillus bacterium, which is a secretory expression system, the colored substance derived from the fructose binds to the expressed recombinant protein, and the protein to which the colored substance is bound is treated as an impurity derived from the target substance in the purification process. Need to be removed. The generation of these impurities is presumed to prevent the use of fructose as the main carbon source because it results in a significant reduction in the yield of the target product and is difficult to remove due to its approximate properties.
このように、ブレビバチルス属細菌を宿主とした組換え蛋白質の生産は種々の培養条件検討行われているにも関わらず、従来の条件では、発現させる組換え蛋白質によっては、高分泌発現に至らず、他の宿主ベクター系に対する優位性を見出すことができない場合があった。
Thus, although production of recombinant proteins using Brevibacillus bacteria as a host has been conducted under various culture conditions, under the conventional conditions, depending on the recombinant protein to be expressed, high secretory expression was reached. In other cases, superiority to other host vector systems could not be found.
ところで、遺伝子組換え技術を用いて生産される蛋白質医薬品の内、抗体医薬品は急速にその需要を拡大している。抗体医薬品は、約150kDaの糖蛋白質として、主にCHO培養細胞を用いて生産される。
By the way, among protein drugs produced using genetic recombination technology, antibody drugs are rapidly expanding their demand. Antibody drugs are mainly produced using cultured CHO cells as glycoproteins of about 150 kDa.
抗体医薬品の製造には、抗体結合能を有するアフィニティークロマトグラフィーが一般に使用されており、最も良く利用されているのが、プロテインA、プロテインG及びプロテインLなどの蛋白質を適当な樹脂に固定化した担体によるクロマトグラフィーである。これらの精製用担体のリガンドとして用いる蛋白質の中で特によく利用されているのがプロテインAである。
In the manufacture of antibody pharmaceuticals, affinity chromatography having antibody binding ability is generally used, and the most commonly used protein such as protein A, protein G and protein L is immobilized on an appropriate resin. Chromatography with a carrier. Among the proteins used as ligands for these purification carriers, protein A is particularly frequently used.
一方で、蛋白質をリガンドとするアフィニティー担体は、医薬品製造用資材として高い品質が求められている。蛋白質リガンド自体も、蛋白質医薬品と同等レベルの品質を要求され、それらを原料とするアフィニティー担体の安価供給ができない状況となっている。これらアフィニティー担体が抗体医薬品製造コストに占める割合は大きく、抗体医薬品のコスト低減に大きな足かせとなっている。よって、これらリガンド蛋白質を高品質で安価に調達する方法が望まれていた。
On the other hand, an affinity carrier having a protein as a ligand is required to have high quality as a material for producing pharmaceuticals. Protein ligands themselves are also required to have the same level of quality as protein pharmaceuticals, and it is not possible to inexpensively supply affinity carriers using these as raw materials. These affinity carriers account for a large proportion of the antibody drug production cost, which is a major impediment to reducing the cost of antibody drug products. Therefore, a method for procuring these ligand proteins with high quality at low cost has been desired.
本発明者らは、これまでに、プロテインAの部分配列を安定、大量に生産する技術を確立するため、ブレビバチルス属細菌を宿主に使い、プロテインAの部分配列を効率良く培養液中へ大量に分泌発現、そして安定に蓄積させ、容易に高純度で分離回収できることを見いだしている(特許文献1)。
In order to establish a technique for stably producing a large amount of a partial sequence of protein A so far, the present inventors have used a Brevibacillus bacterium as a host to efficiently produce a large amount of the partial sequence of protein A into a culture solution. Has been found to be secreted and stably accumulated, and can be easily separated and recovered with high purity (Patent Document 1).
また、遺伝子組換え技術を用いて生産される組換え蛋白質の内、インスリン等の生理活性蛋白質もその需要を拡大している。そのような生理活性蛋白質の一つとしてネコプロインスリンが存在する。これまで精製されたネコプロインスリンは市場に出回っておらず、ネコの糖尿病診断時におけるプロインスリン測定の信頼性が低く、ネコの糖尿病の早期発見を妨げてきた。また、糖尿病の治療薬としても他種のインスリンが使用されており、ネコのインスリンの原料としてもネコプロインスリンの工業的製法の開発が望まれてきた。そこで、近年、ネコプロインスリンの製法として、大腸菌でネコプロインスリンを発現する技術が構築されたが、その培養の際に大腸菌内で封入体を形成している(非特許文献3)。培養の際に封入体を形成すると精製工程への負荷が大きくなり、その結果製品の高価格化へと繋がる。そのため、分泌発現系でのネコプロインスリンの経済的な製造方法の実現が強く望まれている。
In addition, among the recombinant proteins produced using genetic recombination technology, the demand for physiologically active proteins such as insulin is also expanding. One such bioactive protein is feline proinsulin. Purified feline proinsulin has not been put on the market so far, and the reliability of proinsulin measurement at the time of diagnosis of feline diabetes has been low, which has prevented early detection of feline diabetes. In addition, other types of insulin are used as therapeutic agents for diabetes, and it has been desired to develop an industrial production method of cat proinsulin as a raw material for cat insulin. Therefore, in recent years, as a method for producing feline proinsulin, a technique for expressing feline proinsulin in Escherichia coli has been constructed, and inclusion bodies are formed in Escherichia coli during the culture (Non-patent Document 3). Forming inclusion bodies during culture increases the load on the purification process, resulting in higher product costs. Therefore, realization of an economical production method of feline proinsulin in a secretory expression system is strongly desired.
本発明は組換えブレビバチルス属細菌を用いて、組換え蛋白質を製造する際に、従来の技術より菌体当たりの組換え蛋白質の分泌生産量の向上および培養時の菌体の高密度化を達成し、より安価に組換え蛋白質を調製することのできる、工業化規模にスケールアップ可能なブレビバチルス属細菌の新規な培養条件の提供を課題とする。
In the present invention, when producing a recombinant protein using a recombinant Brevibacillus bacterium, the secretory production of the recombinant protein per cell is improved and the density of the cell at the time of cultivation is increased compared to the conventional techniques. It is an object of the present invention to provide new culture conditions for Brevibacillus bacteria that can be achieved and can be prepared at a lower cost and can be scaled up to an industrial scale.
本発明者らは、上記課題を解決するために鋭意検討を行った結果、驚くべきことに、炭素源としてこれまで褐変のしやすさから、使用が避けられてきたフルクトースを用いて培養をおこなうことで、菌体当たりの組換え蛋白質の分泌生産量が向上し、培養時の菌体も高密度化することも見いだし、本発明を完成した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors surprisingly cultivate using, as a carbon source, fructose that has been avoided so far due to the ease of browning. Thus, the secretory production amount of the recombinant protein per microbial cell was improved, and the microbial cell during the cultivation was found to have a higher density, thereby completing the present invention.
即ち、本発明が提供するのは、組換えブレビバチルス属細菌を用いて、組換え蛋白質を製造する際に、炭素源としてフルクトースを用いて培養することを特徴とする、組換え蛋白質の製造方法である。
That is, the present invention provides a method for producing a recombinant protein, which comprises culturing using fructose as a carbon source when producing a recombinant protein using a recombinant Brevibacillus bacterium. It is.
本発明によれば、組換えブレビバチルス属細菌を用いた組換え淡白質の製造において、菌体当たりの組換え蛋白質の分泌生産量が向上し、培養時の菌体も高密度化し、結果、従来の3倍以上の組換え蛋白質の生産性を達成することができる。
According to the present invention, in the production of recombinant white matter using recombinant Brevibacillus bacteria, the secretory production amount of the recombinant protein per cell is improved, and the cell density during culture is increased, It is possible to achieve the productivity of recombinant protein more than 3 times the conventional.
本発明は、組換えブレビバチルス属細菌を用いて組換え蛋白質を生産する際に炭素源としてフルクトースを用いることで、高分泌発現、および/または、培養時の菌体の高密度化を達成するものである。以下、本発明について詳しく説明する。
The present invention achieves high secretion expression and / or high density of cells during culture by using fructose as a carbon source when producing a recombinant protein using a recombinant Brevibacillus bacterium. Is. The present invention will be described in detail below.
組換えブレビバチルス属細菌とは、組換え蛋白質をコードするDNAを発現ベクターに挿入し、この発現ベクターを宿主であるブレビバチルス属細菌に形質転換して得られる細菌を指す。
A recombinant Brevibacillus bacterium refers to a bacterium obtained by inserting a DNA encoding a recombinant protein into an expression vector and transforming the expression vector into a host Brevibacillus bacterium.
組換え蛋白質をコードするDNAとは、そのDNAが有する塩基配列を翻訳したアミノ酸配列が、目的とする組換え蛋白質を構成するものであればいずれでも良い。そのようなDNA配列は、通常用いられる公知の方法、例えば、ポリメラーゼ・チェーン・リアクション(以下、PCRと略す)法を利用して取得できる。また、公知の化学合成法で合成することも可能であり(Nucleic acids Res., 1984, 12:4359)、さらに、DNAライブラリーから得ることもできる。
The DNA encoding the recombinant protein may be any DNA as long as the amino acid sequence obtained by translating the base sequence of the DNA constitutes the target recombinant protein. Such a DNA sequence can be obtained by using a commonly known method such as a polymerase chain reaction (hereinafter abbreviated as PCR) method. Further, it can be synthesized by a known chemical synthesis method (NucleicNacids Res., 1984, 12: 4359), and can also be obtained from a DNA library.
当該DNA配列は、コドンが縮重コドンで置換されていても良く、ブレビバチルス属内で翻訳されたときに同一のアミノ酸をコードしている限り、本来のDNA配列と同一である必要性は無い。
The DNA sequence may have a codon substituted with a degenerate codon, and need not be identical to the original DNA sequence as long as it encodes the same amino acid when translated in the genus Brevibacillus .
発現ベクターは、組換え蛋白質またはその部分的配列をコードするDNA配列、およびその配列に作動可能に連結されたブレビバチルス属細菌で機能しうるプロモーターを含む。当該プロモーターは、ブレビバチルス属細菌で機能しうるものであればいかなるものでも良いが、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属(Streptomyces)、コリネバクテリウム属(Corynebacterium)等細菌由来でブレビバチルス属細菌内にて作動可能なプロモーターが好ましい。ブレビバチルス属細菌細胞壁蛋白質である、middle wall protein(MWP)やouter wall protein(OWP)(Udaka, S.ら. Method Enzymol., 1993, 217:23-33)、または、ブレビバチルス・チョウシネンシスHPD31細胞壁蛋白質HWP(J. Bacteriol., 1990, 172:1312-1320)をコードする遺伝子のプロモーターがより好ましい。
The expression vector includes a DNA sequence encoding the recombinant protein or a partial sequence thereof, and a promoter capable of functioning in Brevibacillus bacteria operably linked to the sequence. The promoter is not limited as long as it can function in bacteria of the genus Brevibacillus, but Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus A promoter derived from a bacterium such as (Corynebacterium) and operable in a bacterium belonging to the genus Brevibacillus is preferred. Brevibacillus bacterial cell wall proteins, middle wall protein (MWP) and outer wall protein (OWP) (Udaka, S. et al. Method Enzymol., 1993, 217: 23-33), or Brevibacillus choshinensis HPD31 A promoter of a gene encoding the cell wall protein HWP (J. Bacteriol., 1990, 172: 1312-1320) is more preferable.
また、発現ベクターは、該プロモーターの下流に、ブレビバチルス属細菌で機能しうるシャインダルガノ配列(SD配列)及びシグナル配列をさらに含むのが好ましい。発現ベクターは、所望によりマーカー配列を含んでもよい。
The expression vector preferably further includes a Shine-Dalgarno sequence (SD sequence) and a signal sequence that can function in Brevibacillus bacteria downstream of the promoter. The expression vector may optionally include a marker sequence.
上記のプロモーターに続くSD配列は、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属、コリネバクテリウム属等細菌由来でブレビバチルス属細菌内にて作動可能なSD配列が好ましく、前記MWP、OWP、または、HWPをコードする遺伝子の上流に存在するSD配列がより好ましい。
The SD sequence following the above promoter is derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus SD sequence operable in Brevibacillus genus bacteria The SD sequence present in the upstream of the gene encoding MWP, OWP or HWP is more preferable.
上記のSD配列に続く、分泌シグナルペプチドをコードするDNAは、以下の分泌シグナルペプチドをコードするDNAであれば特に制限は無く、ブレビバチルス・ブレビス内で翻訳されたときに同一のアミノ酸をコードしている限り、本来の塩基配列と同一である必要性は無い。分泌シグナルペプチドとしては、例えば、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属(Streptomyces)、コリネバクテリウム属(Corynebacterium)等細菌由来で、ブレビバチルス属細菌内にて作動可能な分泌シグナルペプチドが好ましく、前記MWP、OWPまたは、HWPの分泌シグナルペプチドがより好ましい。
The DNA encoding the secretory signal peptide following the SD sequence is not particularly limited as long as it encodes the following secretory signal peptide, and encodes the same amino acid when translated in Brevibacillus brevis. As long as it is, it does not have to be the same as the original base sequence. The secretory signal peptide is derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus, and the like in the Brevibacillus genus bacteria The secretory signal peptide that can be operated is preferable, and the secretory signal peptide of MWP, OWP, or HWP is more preferable.
また従来の分泌シグナルペプチドのアミノ酸配列を改良したものでも構わない。例えば、MWPのシグナルペプチド、Met-Lys-Lys-Val-Val-Asn-Ser-Val-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr-Val-Ala-Pro-Met-Ala-Phe-Ala(配列番号1)を、Met-Lys-Lys-Arg-Arg-Val-Val-Asn-Ser-Val-Leu-Leu-Leu-Leu-Leu-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr-Val-Ala-Pro-Met-Ala-Phe-Ala(配列番号2)の下線部のように塩基性や疎水性アミノ酸残基など付加した分泌シグナルペプチドでも構わない。また従来からブレビバチルス属の分泌蛋白質において使われている分泌シグナルペプチドでも構わない。さらに発現しようとする組換え蛋白質が本来有するシグナルペプチドでも構わない。
Moreover, what improved the amino acid sequence of the conventional secretion signal peptide may be used. For example, the signal peptide of MWP, Met-Lys-Lys-Val-Val-Asn-Ser-Val-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr-Val-Ala-Pro-Met-Ala-Phe -Ala (SEQ ID NO: 1) is converted to Met-Lys-Lys- Arg-Arg -Val-Val-Asn-Ser-Val- Leu-Leu-Leu-Leu-Leu-Leu- Ala-Ser-Ala-Leu-Ala -Leu-Thr-Val-Ala-Pro-Met-Ala-Phe-Ala (SEQ ID NO: 2) may be a secretory signal peptide to which basic or hydrophobic amino acid residues are added, as indicated by the underlined portion. Moreover, the secretion signal peptide conventionally used in the secretory protein of the genus Brevibacillus may be used. Further, a signal peptide inherently possessed by the recombinant protein to be expressed may be used.
上記のプロモーター、SD配列、および分泌シグナルペプチドをコードするDNAは、例えば、ブレビバチルス属細菌から得ることができる。好ましくは、ブレビバチルス・ブレビス47株(FERM BP-1223)、ブレビバチルス・ブレビス47K株(FERM BP-2308)、ブレビバチルス・ブレビス47-5株(FERM BP-1664)、ブレビバチルス・チョウシネンシスHPD31株(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S株(FERM BP-6623)、またはブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)の染色体DNAを鋳型として、公知のPCR法で特異的に増やすことにより取得できる。
DNA encoding the above promoter, SD sequence, and secretory signal peptide can be obtained from, for example, Brevibacillus bacteria. Preferably, Brevibacillus brevis 47 strain (FERM BP-1223), Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus choshinensis HPD31 A known PCR using a chromosomal DNA of a strain (FERM BP-1087), Brevibacillus choshinensis HPD31-S strain (FERM BP-6623), or Brevibacillus choshinensis HPD31-OK strain (FERM BP-4573) as a template It can be obtained by specifically increasing by the method.
発現ベクターにおいては、上記の任意のプロモーターと、上記の任意のSD配列、上記の任意のシグナルペプチドをコードするDNAと、該組換え蛋白質をコードするDNAとが、ブレビバチルス属細菌内において作動可能に連結されていることが好ましい。
In an expression vector, any of the above promoters, any of the above SD sequences, any DNA encoding any of the above signal peptides, and DNA encoding the recombinant protein can operate in Brevibacillus bacteria. It is preferable that it is connected to.
ベクターとしては、プラスミドベクターが好ましい。ブレビバチルス属細菌の遺伝子の発現に有用なプラスミドベクターとして具体的には、例えば、枯草菌ベクターとして公知であるpUB110、またはpHY500(特開平2-31682号公報)、pNY700(特開平4-278091号公報)、pHY4831(J. Bacteriol. 1987. 1239-1245)、pNU200(鵜高重三、日本農芸化学会誌1987. 61: 669-676)、pNU100(Appl. Microbiol. Biotechnol., 1989, 30:75-80)、pNU211(J. Biochem., 1992, 112:488-491)、pNU211R2L5(特開平7-170984号公報)、pNH301(Appl. Environ. Microbiol., 1992. 58:525-531.)、pNH326、pNH400(J. Bacteriol., 1995. 177:745-749)、pHT210(特開平6-133782号公報)、pHT110R2L5(Appl. Microbiol. Biotechnol., 1994, 42:358-363)、または大腸菌とブレビバチルス属細菌とのシャトルベクターであるpNCO2(特開2002-238569号公報)が使用可能であるが、これらに限定されることはない。
The vector is preferably a plasmid vector. Specific examples of plasmid vectors useful for expression of genes of the genus Brevibacillus include, for example, pUB110, which is known as a Bacillus subtilis vector, or pHY500 (JP-A-2-31682), pNY700 (JP-A-4-278091). Gazette), pHY4831 (J. Bacteriol. 1987. 1239-1245), pNU200 (Takazo Takataka, Journal of Japanese Society of Agricultural Chemistry 1987. 61: 669-676), pNU100 (Appl. Microbiol. Biotechnol. -80), pNU211 (J. Biochem., 1992, 112: 488-491), pNU211R2L5 (Japanese Unexamined Patent Publication No. 7-170984), pNH301 (Appl. Environ. Microbiol., 1992. 58: 525-531.), pNH326, pNH400 (J. Bacteriol., 1995. 177: 745-749), pHT210 (JP-A-6-133782), pHT110R2L5 (Appl. Microbiol. Biotechnol., 1994, 42: 358-363), or It is a shuttle vector between E. coli and bacteria of the genus Brevibacillus PNCO2 (JP 2002-238569) can be used, without being limited thereto.
上記プラスミドベクターは文献情報を元に、当業者が作製することが可能である。また、ブレビバチルス属細菌で機能するプロモーターとSD配列と目的蛋白質をコードするDNAとを含んだ発現ベクター、または、それらの各塩基配列を含む遺伝子断片を染色体中へ直接組み込み、発現させる方法(特開平9-135693号公報)を用いても良い。そのような方法は、枯草菌や酵母で既に用いられている公知な方法をブレビバチルス属細菌にも転用できる。
The above plasmid vector can be prepared by those skilled in the art based on literature information. In addition, an expression vector containing a promoter that functions in a bacterium of the genus Brevibacillus, an SD sequence, and a DNA encoding the target protein, or a gene fragment containing each of these nucleotide sequences is directly incorporated into a chromosome and expressed (specifically (Kaihei 9-135893) may also be used. In such a method, a known method already used in Bacillus subtilis or yeast can be transferred to Brevibacillus bacteria.
組換え蛋白質を分泌形態で生産する場合、該ポリペプチドをコードするDNAの上流にブレビバチルス属で機能するシグナルペプチドをコードするDNAを付加または連結することが好ましい。
When producing a recombinant protein in a secreted form, it is preferable to add or link DNA encoding a signal peptide that functions in the genus Brevibacillus upstream of the DNA encoding the polypeptide.
形質転換体を得るために用いる宿主細胞としては、任意のブレビバチルス属細菌を使用し得る。ブレビバチルス属細菌は、限定されないが、ブレビバチルス・アグリ、ブレビバチルス・ボルステレンシス、ブレビバチルス・ブレビス、ブレビバチルス・セントロポラス、ブレビバチルス・チョウシネンシス、ブレビバチルス・フォルモサス、ブレビバチルス・インボカツス、ブレビバチルス・ラチロスポラス、ブレビバチルス・リムノフィルス、ブレビバチルス・パラブレビス、ブレビバチルス・レウスゼリ、ブレビバチルス・サーモルバー等を含む。
As a host cell used to obtain a transformant, any Brevibacillus genus bacterium can be used. Brevibacillus bacteria include, but are not limited to, Brevibacillus agri, Brevibacillus bolsterensis, Brevibacillus brevis, Brevibacillus centroporus, Brevibacillus choshinensis, Brevibacillus formosas, Brevibacillus invocatus,・ Includes Latinosporus, Brevibacillus limnophilus, Brevibacillus parabrevis, Brevibacillus reuszeli, Brevibacillus thermolver, etc.
好ましくは、ブレビバチルス属細菌が、ブレビバチルス・ブレビス47株(FERM BP-1223)、ブレビバチルス・ブレビス47K株(FERM BP-2308)、ブレビバチルス・ブレビス47-5株(FERM BP-1664)、ブレビバチルス・ブレビス47-5Q株(JCM8975)、ブレビバチルス・チョウシネンシスHPD31株(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S株(FERM BP-6623)、ブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)およびブレビバチルス・チョウシネンシスSP3株(Takara社製)からなる群より選択される。特に上記のブレビバチルス・ブレビス47株、ブレビバチルス・ブレビス47-5Q株やブレビバチルス・チョウシネンシスHPD31株、ブレビバチルス・チョウシネンシスHPD31-S株が適している。
Preferably, the bacterium belonging to the genus Brevibacillus is Brevibacillus brevis 47 strain (FERM BP-1223), Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus brevis 47-5Q strain (JCM8975), Brevibacillus choshinensis HPD31 strain (FERM BP-1087), Brevibacillus choshinensis HPD31-S strain (FERM BP-6623), Brevibacillus choshinensis HPD31-OK Strain (FERM か ら BP-4573) and Brevibacillus choshinensis SP3 strain (Takara). In particular, the aforementioned Brevibacillus brevis 47 strain, Brevibacillus brevis 47-5Q strain, Brevibacillus choshinensis HPD31 strain, and Brevibacillus choshinensis HPD31-S strain are suitable.
ブレビバチルス・ブレビス47-5Q株(JCM8975)は独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室 (JCM)(〒351-0198埼玉県和光市広沢2-1)より入手することが出来る。
Brevibacillus brevis 47-5Q (JCM8975) can be obtained from the independent administrative corporation Biochemicals Research Institute, Bioresource Center (JCM) (2-1 Hirosawa, Wako, Saitama 351-0198).
生産量の向上などの目的に応じて、上記ブレビバチルス属細菌のプロテアーゼ欠損株や高発現株のような変異株を使用しても良い。具体的に挙げれば、ブレビバチルス・チョウシネンシスHPD31由来のプロテアーゼ変異株であるブレビバチルス・チョウシネンシスHPD31-OK(FERM BP-4573)や、同様にブレビバチルス・チョウシネンシスHPD31由来の芽胞形成能および、プロテアーゼ変異株である、ブレビバチルス・チョウシネンシスSP3株(Takara社製)、および、ヒト唾液アミラーゼ高生産株として取得されたブレビバチルス・ブレビス47K(FERM BP-2308)が使用できる。また前記ブレビバチルス属細菌群に含まれるいずれかの株の変異体を使用してもよい。
Depending on the purpose such as improvement of production amount, a mutant strain such as a protease-deficient strain or a high-expression strain of the aforementioned Brevibacillus bacterium may be used. Specifically, Brevibacillus choshinensis HPD31-derived protease mutant Brevibacillus choshinensis HPD31-OK (FERM BP-4573), and similarly Brevibacillus choshinensis HPD31-derived spore-forming ability, Brevibacillus choshinensis SP3 strain (manufactured by Takara), which is a protease mutant, and Brevibacillus brevis 47K (FERM BP-2308) obtained as a human salivary amylase high-producing strain can be used. Moreover, you may use the variant of either strain | stump | stock contained in the said Brevibacillus genus bacteria group.
本発明において用いられるブレビバチルス属細菌の宿主細胞の形質転換は、公知のTakahashiらの方法(J. Bacteriol., 1983, 156:1130-1134)や、Takagiらの方法(Agric. Biol. Chem., 1989, 53:3099-3100)、またはOkamotoらの方法(Biosci. Biotechnol. Biochem., 1997, 61:202-203) により実施することができる。
Transformation of a host cell of Brevibacillus genus bacteria used in the present invention can be performed by the known method of Takahashi et al. (J. Bacteriol., 1983, 156: 1130-1134) or the method of Takagi et al. (Agric. Biol. Chem. , 1989, 53: 3099-3100), or the method of Okamoto et al. (Biosci. Biotechnol. Biochem., 1997, 61: 202-203).
ブレビバチルス属細菌を含めた微生物において異種蛋白質を高発現させた場合、正しくフォールディングされずに不活性型の蛋白質を形成することが多く、特にジスルフィド結合の多い蛋白質を高発現させた場合、細胞内外にて不溶化することも多い。一方で、目的蛋白質を発現させる際、シャペロン蛋白質やジスルフィド結合異性化酵素および/またはプロリン異性化酵素などを作用させることによって、目的蛋白質の不溶化や分泌効率の低下を抑えられることが知られている。広く試みられている方法は、PDI(プロテインジスルフィドイソメラーゼ)および/またはDsbAなどのジスルフィド酸化還元活性を有する蛋白質を作用させる方法(特開昭63-294796号公報、特開平5-336986号公報)である。
When a heterologous protein is highly expressed in microorganisms including Brevibacillus bacteria, it often forms an inactive protein without being correctly folded, especially when a protein with many disulfide bonds is highly expressed. Insoluble in many cases. On the other hand, when expressing the target protein, it is known that the insolubilization of the target protein and the decrease in the secretion efficiency can be suppressed by acting chaperone protein, disulfide bond isomerase and / or proline isomerase, etc. . A widely attempted method is a method in which a protein having disulfide redox activity such as PDI (protein disulfide isomerase) and / or DsbA is allowed to act (JP-A 63-294796, JP-A-5-336986). is there.
さらに、ジスルフィド酸化還元活性を有する蛋白質をコードする遺伝子を宿主生物に導入し、目的蛋白質とジスルフィド酸化還元活性を有する蛋白質とを同時に発現させて正しいジスルフィド結合を有する蛋白質を生産する方法も知られている(特開2000-83670号公報、特表2001-514490号公報等)。
Furthermore, a method for producing a protein having a correct disulfide bond by introducing a gene encoding a protein having disulfide redox activity into a host organism and simultaneously expressing the target protein and a protein having disulfide redox activity is also known. (Japanese Patent Laid-Open No. 2000-83670, Japanese Patent Laid-Open No. 2001-514490, etc.).
本発明による組換え蛋白質またはその部分配列からなる蛋白質の発現の場合も、過度な蛋白質合成が行われることによる宿主細胞への負担を軽減し、蛋白質分泌をスムーズに行わせるために、当該蛋白質発現の際、数種類のシャペロン蛋白質、ジスルフィド結合酸化還元酵素、および/またはジスルフィド異性化酵素のようなフォールディングを促進する酵素を同時発現させることも可能である。
In the case of expression of a recombinant protein according to the present invention or a protein comprising a partial sequence thereof, the expression of the protein is performed in order to reduce the burden on the host cell due to excessive protein synthesis and to facilitate protein secretion. In this case, it is possible to co-express several types of chaperone proteins, disulfide bond oxidoreductases, and / or enzymes that promote folding, such as disulfide isomerase.
例えば、ブレビバチルス属細菌において当該蛋白質発現時に、蛋白質のジスルフィド結合に関与し、プロテインジスルフィドイソメラーゼの類縁体と考えられている大腸菌のDsbA(Cell, 1991, 67:582-589、EMBO. J., 1992, 11:57-62.)および/または、DnaK、DnaJ、GrpE(特開平9-180558号公報)などのシャペロン蛋白質を同時に発現させることもできる。その他、ポリペプチドの正確なジスルフィド結合に関与している酵素PDI(特願2001-567367号公報)、ジスルフィド酸化還元酵素(特開2003-169675号公報)(Molecular Microbiology, 1993, 8:727-737)、および/またはジスルフィド異性化酵素のようなフォールディングを促進する酵素を当該蛋白質と同時に発現させ、更に分泌効率を向上させることもできる。
For example, DsbA of E. coli (Cell, 1991, 67: 582-589, EMBO. J., which is involved in protein disulfide bonds and is considered to be an analog of protein disulfide isomerase when the protein is expressed in Brevibacillus bacteria. 1992, 11: 57-62.) And / or chaperone proteins such as DnaK, DnaJ, GrpE (JP-A-9-180558) can be expressed simultaneously. In addition, enzyme PDI (Japanese Patent Application No. 2001-567367), disulfide oxidoreductase (Japanese Patent Application Laid-Open No. 2003-169675) (Molecular® Microbiology, 1993, 8: 727-737, which is involved in accurate disulfide bonds of polypeptides. ) And / or an enzyme that promotes folding, such as disulfide isomerase, can be expressed at the same time as the protein to further improve secretion efficiency.
組換えブレビバチルス属細菌の培養に用いる培地は、組換え蛋白質を高効率、高収量で生産できるものであれば、フルクトースを含むことを除いて、他に特に制限は無い。具体的には、グルコース、蔗糖、グリセロール、ポリペプトン、肉エキス、酵母エキス、カザミノ酸、アミノ酸など公知の炭素源や窒素源を使用することが出来る。その他、カリウム塩、ナトリウム塩、リン酸塩、マグネシウム塩、マンガン塩、亜鉛塩、鉄塩等の無機塩類が必要に応じて添加してもよい。
The medium used for culturing the recombinant Brevibacillus bacterium is not particularly limited as long as it contains fructose as long as it can produce recombinant protein with high efficiency and high yield. Specifically, a known carbon source or nitrogen source such as glucose, sucrose, glycerol, polypeptone, meat extract, yeast extract, casamino acid, and amino acid can be used. In addition, inorganic salts such as potassium salt, sodium salt, phosphate, magnesium salt, manganese salt, zinc salt and iron salt may be added as necessary.
また、必要であれば、大豆油、ラード油、界面活性剤等の消泡効果のある、または、細胞膜の物質透過性を変化させ、菌体当たりの組換え蛋白質の分泌生産量の向上が期待される化合物を添加してもよい。界面活性剤の使用は、本発明の効果を増強する場合があり好ましい。界面活性剤としては、組換えブレビバチルス属細菌の生育および/または組換え蛋白質生産に悪影響を及ぼさない限り、特に制限されないが、好ましくはポリオキシアルキレングリコール系の界面活性剤である。
In addition, if necessary, anti-foaming effects such as soybean oil, lard oil, surfactant, etc., or change the permeability of the cell membrane material, and increase in the production of recombinant protein per cell is expected. A compound to be prepared may be added. The use of a surfactant is preferable because the effect of the present invention may be enhanced. The surfactant is not particularly limited as long as it does not adversely affect the growth of recombinant Brevibacillus bacteria and / or recombinant protein production, and is preferably a polyoxyalkylene glycol surfactant.
栄養要求性の宿主細胞を用いる場合は、生育に要求される栄養物質を添加すればよい。また、必要であればペニシリン、エリスロマイシン、クロラムフェニコール、ネオマイシンなどの抗生物質が添加されても良い。
When using auxotrophic host cells, nutrients required for growth may be added. If necessary, antibiotics such as penicillin, erythromycin, chloramphenicol and neomycin may be added.
さらに、菌体内外に存在する宿主由来のプロテアーゼによる当該目的蛋白質の分解、低分子化を抑えるために、公知の各種プロテアーゼ阻害剤を適当な濃度で添加しても良い。プロテアーゼ阻害剤としては、例えば、Phenylmethane sulfonyl fluoride(PMSF)、Benzamidine、4-(2-aminoethyl)-benzenesulfonyl fluoride(AEBSF)、Antipain、Chymostatin、Leupeptin、Pepstatin A、Phosphoramidon、Aprotinin、Ethylenediaminetetra acetic acid(EDTA)、その他市販されているプロテアーゼ阻害剤等を挙げることができる。
Furthermore, various known protease inhibitors may be added at an appropriate concentration in order to suppress degradation of the target protein by the host-derived protease existing outside the cell body, and to lower the molecular weight. Examples of protease inhibitors include phenylmethane sulfonylPfluoride (PMSF), Benzamidine, 4- (2-aminoethyl) -benzenesulfonyl fluoride (AEBSF), Antipain, Chymostatin, Leupeptin, Pepstatin A, Phosphoramidon, Aprotinin, Ethylenediaminetetra acetic acid (EDTA) Other examples include commercially available protease inhibitors.
菌体当たりの組換え蛋白質の分泌生産量の向上と達成する、および/または培養時の菌体の高密度化を達成するために添加される、フルクトースの添加方法としては、初発濃度は1%以上、または、9%以下が好ましく、より好ましくは、初発1から9%である。また、更に好ましくは、培養途中にフルクトース濃度が9%以下、特には4%以下となるように適時フルクトースの追加を行う。フルクトースの追加方法には分割または連続添加があげられる。このような方法として、例えば培養開始後6時間目以降にフルクトースの追加を行う方法が挙げられるが、これに限定されるものではない。
As a method for adding fructose, which is added in order to improve and achieve secretion production of recombinant protein per cell and / or achieve high density of cells during culture, the initial concentration is 1%. Above or 9% or less is preferable, more preferably 1 to 9% of the initial. More preferably, fructose is added in a timely manner so that the fructose concentration is 9% or less, particularly 4% or less during the culture. Fructose addition methods include divided or continuous addition. Examples of such a method include, but are not limited to, a method of adding fructose after 6 hours from the start of culture.
抗体結合性蛋白質とは、抗体によって抗原として認識される蛋白質をいうのではなく、抗体の抗原認識部位以外の部分(例えば、Fc部分)と結合可能な蛋白質である。抗体の抗原認識部位とは異なる部位と結合し得る蛋白質であれば、その構造は特に限定されない。このような蛋白質としては、例えば、プロテインA、プロテインG、プロテインLなどが挙げられる。
Antibody-binding protein is not a protein that is recognized as an antigen by an antibody, but is a protein that can bind to a portion other than the antigen recognition site of an antibody (for example, an Fc portion). The structure is not particularly limited as long as it is a protein that can bind to a site different from the antigen recognition site of the antibody. Examples of such proteins include protein A, protein G, and protein L.
プロテインAとは、グラム陽性細菌スタフィロコッカス・アウレウスによって生産される細胞壁蛋白質の1種であり、約42,000の分子量を有するタンパク質である。その構造は7つの機能ドメイン(アミノ末端からシグナル配列S、イムノグロブリン結合ドメインE、イムノグロブリン結合ドメインD,イムノグロブリン結合ドメインA、イムノグロブリン結合ドメインB、イムノグロブリン結合ドメインC、スタフィロコッカス・アウレウス細菌細胞壁結合ドメインX)から構成されている(Proc. Natl. Acad. Sci. USA, 1983, 80:697-701、Gene, 1987, 58:283-295、J. Bio. Chem., 1984, 259:1695-1702)。
Protein A is a kind of cell wall protein produced by the Gram-positive bacterium Staphylococcus aureus and is a protein having a molecular weight of about 42,000. Its structure consists of seven functional domains (signal sequence S from the amino terminus, immunoglobulin binding domain E, immunoglobulin binding domain D, immunoglobulin binding domain A, immunoglobulin binding domain B, immunoglobulin binding domain C, Staphylococcus aureus) Bacterial cell wall binding domain X) (Proc. Natl. Acad. Sci. USA, 1983, 80: 697-701, Gene, 1987, 58: 283-295, J. Bio. Chem., 1984, 259 : 1695-1702).
このプロテインAのイムノグロブリン結合ドメインに対する相対親和性は、pH、スタフィロコッカス・アウレウス菌株種(Infec. Immun., 1987, 55:843-847)、またイムノグロブリンのクラス(IgG、IgM、IgA、IgD、IgE)及びサブクラス(IgG1、IgG2、IgG3、IgG4、IgA1、IgA2)などの多くの因子に依存することが知られ、特にイムノグロブリンのクラスではヒトIgG1、ヒトIgG2、ヒトIgG4及びマウスIgG2a、マウスIgG2b,マウスIgG3のFc部分と強い結合を示す。
The relative affinity of this protein A for the immunoglobulin binding domain includes pH, Staphylococcus aureus strain (Infec. Immun., 1987, 55: 843-847), and immunoglobulin classes (IgG, IgM, IgA, IgD, IgE) and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2) are known to depend on many factors, particularly in the immunoglobulin class, human IgG1, human IgG2, human IgG4 and mouse IgG2a, It shows strong binding to the Fc part of mouse IgG2b and mouse IgG3.
プロテインGとは、グループC及びGのストレプトコッカス属細菌(Streptococcus)によって生産される細胞壁蛋白質の1種であり、約59,000の分子量を有する蛋白質である。その構造はその構造は5つの機能ドメイン(アミノ末端から、シグナル配列SS、配列AおよびBの繰り返しによるアルブミン結合ドメイン、配列CおよびDの繰り返しによるイムノグロブリン結合ドメイン、細胞壁貫通ドメインW、細胞膜貫通ドメインM)から構成されている。
Protein G is one of cell wall proteins produced by Group C and G Streptococcus bacteria, and has a molecular weight of about 59,000. The structure consists of five functional domains (from the amino terminus, signal sequence SS, albumin binding domain by repetition of sequences A and B, immunoglobulin binding domain by repetition of sequences C and D, cell wall transmembrane domain W, and transmembrane domain. M).
このプロテインGのイムノグロブリン結合ドメインは、プロテインAのそれと比較して、広範に哺乳動物IgGのFc部分と結合を示す(J. Immunol., 1984, 133:969-974、J. Biol. Chem., 1991, 266:399-405)。
This immunoglobulin G binding domain of protein G exhibits extensive binding to the Fc portion of mammalian IgG compared to that of protein A (J. Immunol., 1984, 133: 969-974, J. Biol. Chem. , 1991, 266: 399-405).
プロテインLとは、ペプトストレプトコッカス・マグニウス(Peptostreptococcus magnus)によって生産される蛋白質の1種であり、約79,000の分子量を有する蛋白質である。その構造は6つの機能ドメイン(アミノ末端から、シグナル配列SS、アミノ末端ドメインA、イムノグロブリン結合ドメインBの5回繰り返し、機能不明ドメインCの2回繰り返し、細胞壁貫通ドメインW、細胞膜貫通ドメインM)から構成されている。
Protein L is a kind of protein produced by Peptostreptococcus magnus and has a molecular weight of about 79,000. The structure consists of 6 functional domains (from the amino terminus, signal sequence SS, amino terminal domain A, immunoglobulin binding domain B, 5 repeats, unknown function domain 2 repeats, transmembrane domain W, transmembrane domain M) It is composed of
このプロテインLのイムノグロブリン結合ドメインはイムノグロブリンのκ軽鎖と結合を示す。(J. Biol. Chem., 1989, 264:19740-19746、J. Biol. Chem., 1992, 267:12820-12825)。
The immunoglobulin binding domain of this protein L shows binding to the kappa light chain of immunoglobulin. (J. Biol. Chem., 1989, 264: 19740-19746, J. Biol. Chem., 1992, 267: 12820-12825).
プロテインA、プロテインGおよびプロテインLの「部分配列」とは、プロテインA、プロテインGおよびプロテインLを構成するアミノ酸配列の任意の一部分から構成されるものであって、かつ、抗体結合活性を有する蛋白質を指し、具体的には、例えば、プロテインAから先述のシグナル配列Sおよび細胞壁結合ドメインXを除いて得られる、配列番号9の31番目のAla以降で示されるアミノ酸配列(実施例1の「SPA’」に対応。図1および2、配列番号8および9参照。)が、プロテインAの「部分配列」に対応する。また、複数個あるイムノグロブリン結合ドメインを1つまたは複数個取り除いた抗体結合活性を有するペプチドも、抗体結合活性を有する限り、「部分配列」に含まれる。
“Partial sequence” of protein A, protein G, and protein L is a protein that is composed of an arbitrary part of amino acid sequences constituting protein A, protein G, and protein L and has antibody binding activity. Specifically, for example, the amino acid sequence shown after the 31st Ala of SEQ ID NO: 9 obtained by removing the above-mentioned signal sequence S and cell wall binding domain X from protein A (see “SPA of Example 1”). Corresponds to '". See FIGS. 1 and 2, SEQ ID NOS: 8 and 9.) corresponds to the“ partial sequence ”of protein A. A peptide having an antibody binding activity obtained by removing one or a plurality of immunoglobulin binding domains is also included in the “partial sequence” as long as it has an antibody binding activity.
プロテインA、プロテインGおよびプロテインLの「機能的変異体およびそれらの連結配列」とはプロテインA、プロテインGおよびプロテインLのイムノグロブリン結合ドメインの少なくとも一つを、抗体結合活性を保持した状態でアミノ酸置換、挿入、欠失処理を行い、薬剤、酵素、熱、pH等の物理化学的環境因子に対する感受性を変化させた抗体結合性蛋白質および、それらをホモ又はヘテロに連結した構成体をいう。その組み合わせ、連結数は、限定されない。例えば、プロテインAのCドメインの29番目のGlyをAlaに改変し5連結した配列(実施例6の「C-G29A」に対応する。配列番号10参照。)が、上記「機能的変異体およびそれらの連結配列」として例示される。
“Functional variants and their linking sequences” of protein A, protein G and protein L are amino acids in the state in which at least one of the immunoglobulin binding domains of protein A, protein G and protein L retains antibody binding activity. This refers to antibody-binding proteins that have been subjected to substitution, insertion, and deletion treatments, and have changed sensitivities to physicochemical environmental factors such as drugs, enzymes, heat, and pH, and constructs that are homozygous or heterozygically linked. The combination and the number of connections are not limited. For example, a sequence in which the 29th Gly of the C domain of protein A is modified to Ala and linked five times (corresponding to “C-G29A” in Example 6; see SEQ ID NO: 10) is the above-mentioned “functional mutant and These linkage sequences are exemplified.
生理活性蛋白質とは、医薬活性成分として用いられる蛋白質であり、具体的には、ペプチドホルモン、サイトカイン、成長因子、造血因子、酵素、およびこれらの前駆体等が挙げられる。
Physiologically active protein is a protein used as a pharmaceutically active ingredient, and specifically includes peptide hormones, cytokines, growth factors, hematopoietic factors, enzymes, and precursors thereof.
ペプチドホルモンとは生体内外の情報に応じて動物組織の内分泌細胞によって生産・分泌され、血流によって標的細胞へ輸送され外来性のシグナルとして標的細胞の活性を調節するペプチドである。ペプチドホルモンまたはその前駆体として、インスリン、プロインスリン、または、プレプロインスリン、特にはネコインスリン、ネコプロインスリン、または、ネコプレプロインスリンが例示できる。
Peptide hormones are peptides that are produced and secreted by endocrine cells in animal tissues according to information inside and outside the body, and are transported to the target cells by the bloodstream to regulate the activity of the target cells as foreign signals. Examples of peptide hormones or precursors thereof include insulin, proinsulin, or preproinsulin, particularly feline insulin, feline proinsulin, or feline preproinsulin.
インスリンとは膵臓B細胞の粗面小胞体で生合成前駆体であるプロインスリンとして合成され、インスリンに転換後、B顆粒内に貯蔵され、分泌刺激に応じて血中に放出されるペプチドホルモンである。
Insulin is a peptide hormone that is synthesized as proinsulin which is a biosynthetic precursor in the rough endoplasmic reticulum of pancreatic B cells, is converted into insulin, is stored in B granules, and is released into the blood in response to secretory stimulation. is there.
ネコプロインスリンとはネコのインスリンの生合成前駆体である。
Cat feinsulin is a biosynthetic precursor of cat insulin.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。本実施では、組換えDNAの作製や操作などは特に断わらない限り下記の実験書に従って実施した。 (1) T. Maniatis, E. F. Fritsch, J. Sambrook著、「モレキュラー・クローニング/ア・ラボラトリー・マニュアル(Molecular Cloning/A Laboratory Manual)」、第2版(1989)、Cold Spring Harbor Laboratory 刊(米国)。 (2) 村松正實 編著「ラボマニュアル遺伝子工学」、第3版(1996)、丸善株式会社刊。また、本実施例で用いる試薬、制限酵素等については特に明記しない限り、市販品を用いた。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto. In this implementation, production and manipulation of the recombinant DNA were performed according to the following experiment document unless otherwise specified. (1) T. Maniatis, E. F. Fritsch, J. Sambrook, "Molecular Cloning / A Laboratory Manual", 2nd edition (1989), Cold Spring Harbor Laboratory (USA). (2) Edited by Masaaki Minemura, “Lab Manual Genetic Engineering”, 3rd edition (1996), published by Maruzen Co., Ltd. Moreover, about the reagent, restriction enzyme, etc. which are used in a present Example, unless otherwise indicated, the commercial item was used.
(実施例1)ブレビバチルス発現ベクターpNK3260の構築
pNH326(J. Bacteriol., 1995, 177:745-749)に含まれるMWPのP5プロモーターをMWPのP2プロモーターに変換して、ブレビバチルス発現ベクターpNK3260を以下のように構築した。まず、pNH326を鋳型として、配列番号3および4に示した塩基配列を有する2つのオリゴヌクレオチドプライマーPrimer-1およびPrimer-2を用いてPCRを行い、pNH326のうちMWPのP5プロモーターを除く部分を増幅し、その末端を制限酵素EcoRIとHindIIIとで消化した。次に、配列番号5に示した塩基配列を有するMWPのP2プロモーターを含む2本鎖DNA断片を定法に従い調製し、その末端を制限酵素MunIおよびHindIIIで消化した。これら2つのDNA断片をT4DNAリガーゼを用いて連結し、pNK3260を構築した。 (Example 1) Construction of Brevibacillus expression vector pNK3260 The MWP P5 promoter contained in pNH326 (J. Bacteriol., 1995, 177: 745-749) was converted to the MWP P2 promoter to obtain the Brevibacillus expression vector pNK3260. It was constructed as follows. First, using pNH326 as a template, PCR was performed using two oligonucleotide primers Primer-1 and Primer-2 having the nucleotide sequences shown in SEQ ID NOs: 3 and 4, and a portion of pNH326 excluding the MWP P5 promoter was amplified. The ends were digested with restriction enzymes EcoRI and HindIII. Next, a double-stranded DNA fragment containing the MWP P2 promoter having the base sequence shown in SEQ ID NO: 5 was prepared according to a conventional method, and its ends were digested with restriction enzymes MunI and HindIII. These two DNA fragments were ligated using T4 DNA ligase to construct pNK3260.
pNH326(J. Bacteriol., 1995, 177:745-749)に含まれるMWPのP5プロモーターをMWPのP2プロモーターに変換して、ブレビバチルス発現ベクターpNK3260を以下のように構築した。まず、pNH326を鋳型として、配列番号3および4に示した塩基配列を有する2つのオリゴヌクレオチドプライマーPrimer-1およびPrimer-2を用いてPCRを行い、pNH326のうちMWPのP5プロモーターを除く部分を増幅し、その末端を制限酵素EcoRIとHindIIIとで消化した。次に、配列番号5に示した塩基配列を有するMWPのP2プロモーターを含む2本鎖DNA断片を定法に従い調製し、その末端を制限酵素MunIおよびHindIIIで消化した。これら2つのDNA断片をT4DNAリガーゼを用いて連結し、pNK3260を構築した。 (Example 1) Construction of Brevibacillus expression vector pNK3260 The MWP P5 promoter contained in pNH326 (J. Bacteriol., 1995, 177: 745-749) was converted to the MWP P2 promoter to obtain the Brevibacillus expression vector pNK3260. It was constructed as follows. First, using pNH326 as a template, PCR was performed using two oligonucleotide primers Primer-1 and Primer-2 having the nucleotide sequences shown in SEQ ID NOs: 3 and 4, and a portion of pNH326 excluding the MWP P5 promoter was amplified. The ends were digested with restriction enzymes EcoRI and HindIII. Next, a double-stranded DNA fragment containing the MWP P2 promoter having the base sequence shown in SEQ ID NO: 5 was prepared according to a conventional method, and its ends were digested with restriction enzymes MunI and HindIII. These two DNA fragments were ligated using T4 DNA ligase to construct pNK3260.
(実施例2)スタフィロコッカス・アウレウス・コワンI株(JCM2179)由来のプロテインAをコードするDNA配列のクローニング
スタフィロコッカス・アウレウス・コワンI株(JCM2179)を、T2液体培地(ポリペプトン 1%、イーストエキストラクト 0.2%、グルコース 1%、魚肉エキス 0.5%、pH7.0)で37℃一晩振とう培養した。得られた培養液から菌体を遠心分離により回収後、10mMのトリス-塩酸緩衝液(pH8.0)で2度洗浄した。菌体を同緩衝液に懸濁後、1%SDSで溶菌し、60℃にて30分間加熱後、フェノール抽出及びエタノール沈殿等の定法により全ゲノムDNAを抽出した。なお、スタフィロコッカス・アウレウス・コワンI株(JCM2179)は独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室 (JCM)(〒351-0198埼玉県和光市広沢2-1)より入手することが出来る。 (Example 2) Cloning of DNA sequence encoding protein A derived from Staphylococcus aureus cowan I strain (JCM2179) Staphylococcus aureus cowan I strain (JCM2179) was prepared from T2 liquid medium (polypeptone 1%, Yeast extract 0.2%, glucose 1%, fish meat extract 0.5%, pH 7.0) and cultured with shaking at 37 ° C. overnight. The cells were collected from the obtained culture broth by centrifugation, and washed twice with 10 mM Tris-HCl buffer (pH 8.0). The bacterial cells were suspended in the same buffer, lysed with 1% SDS, heated at 60 ° C. for 30 minutes, and then extracted with whole genome DNA by conventional methods such as phenol extraction and ethanol precipitation. Staphylococcus aureus cowan I strain (JCM2179) can be obtained from RIKEN BioResource Center, Microbial Materials Development Office (JCM) (2-1 Hirosawa, Wako, Saitama 351-0198) .
スタフィロコッカス・アウレウス・コワンI株(JCM2179)を、T2液体培地(ポリペプトン 1%、イーストエキストラクト 0.2%、グルコース 1%、魚肉エキス 0.5%、pH7.0)で37℃一晩振とう培養した。得られた培養液から菌体を遠心分離により回収後、10mMのトリス-塩酸緩衝液(pH8.0)で2度洗浄した。菌体を同緩衝液に懸濁後、1%SDSで溶菌し、60℃にて30分間加熱後、フェノール抽出及びエタノール沈殿等の定法により全ゲノムDNAを抽出した。なお、スタフィロコッカス・アウレウス・コワンI株(JCM2179)は独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室 (JCM)(〒351-0198埼玉県和光市広沢2-1)より入手することが出来る。 (Example 2) Cloning of DNA sequence encoding protein A derived from Staphylococcus aureus cowan I strain (JCM2179) Staphylococcus aureus cowan I strain (JCM2179) was prepared from T2 liquid medium (polypeptone 1%, Yeast extract 0.2%, glucose 1%, fish meat extract 0.5%, pH 7.0) and cultured with shaking at 37 ° C. overnight. The cells were collected from the obtained culture broth by centrifugation, and washed twice with 10 mM Tris-HCl buffer (pH 8.0). The bacterial cells were suspended in the same buffer, lysed with 1% SDS, heated at 60 ° C. for 30 minutes, and then extracted with whole genome DNA by conventional methods such as phenol extraction and ethanol precipitation. Staphylococcus aureus cowan I strain (JCM2179) can be obtained from RIKEN BioResource Center, Microbial Materials Development Office (JCM) (2-1 Hirosawa, Wako, Saitama 351-0198) .
次に、プロテインA遺伝子のDNA配列情報 (Shuttleworth, H. Lら.Gene, 1987, 58:283-295.)を基に、配列番号6及び7に示した塩基配列を有する2つのオリゴヌクレオチドプライマーPrimer-3およびPrimer-4を調製した。上記のスタフィロコッカス・アウレウス・コワンI株(JCM2179)のゲノムDNAを鋳型とし、これら2つのオリゴヌクレオチドプライマーPrimer-3およびPrimer-4を用いてPCRを行い、プロテインAからシグナルシーケンス(Sドメイン)及び細胞壁結合ドメイン(Xドメイン)を除いた部分(これ以降SPA’と称する)をコードするDNA断片(約0.9kbp)を増幅した。得られたDNA断片は、制限酵素NcoI及びBamHIにより消化した後、アガロースゲルより分離回収した。
Next, based on the DNA sequence information of protein A gene (Shuttleworth, H. L et al. Gene, 1987, 58: 283-295.), Two oligonucleotide primers having the nucleotide sequences shown in SEQ ID NOs: 6 and 7 Primer-3 and Primer-4 were prepared. Using the above genomic DNA of Staphylococcus aureus cowan I strain (JCM2179) as a template, PCR is performed using these two oligonucleotide primers Primer-3 and Primer-4, and a signal sequence from protein A (S domain) A DNA fragment (about 0.9 kbp) encoding a portion excluding the cell wall binding domain (X domain) (hereinafter referred to as SPA ′) was amplified. The obtained DNA fragment was digested with restriction enzymes NcoI and BamHI, and then separated and recovered from an agarose gel.
一方、参考例1で構築したブレビバチルス発現ベクターpNK3260もまた同様に制限酵素NcoI及びBamHIにより消化後、精製回収してアルカリフォスファターゼ処理により脱リン酸化処理を行った。
On the other hand, the Brevibacillus expression vector pNK3260 constructed in Reference Example 1 was similarly digested with restriction enzymes NcoI and BamHI, purified and recovered, and dephosphorylated by alkaline phosphatase treatment.
制限酵素処理後の、SPA’をコードする上記DNA断片と上記発現ベクターpNK3260とをT4DNAリガーゼを用いて連結し、図1に示すSPA’発現プラスミドSpa’-pNK3260を構築した。図2には、Spa’-pNK3260に含まれるプロモーター、SD配列、シグナルペプチドおよびプロテインA(SPA’)をコードするDNAを示した。配列番号8に示した塩基配列は、Spa’-pNK3260に含まれるプロモーター、SD配列、シグナルペプチドおよびプロテインA(SPA’)をコードするDNAを示し、配列番号9はシグナルペプチドおよびプロテインA(SPA’)をコードするDNAがコードするアミノ酸配列を示す。
After the restriction enzyme treatment, the DNA fragment encoding SPA 'and the expression vector pNK3260 were ligated using T4 DNA ligase to construct SPA' expression plasmid Spa'-pNK3260 shown in FIG. FIG. 2 shows a DNA encoding a promoter, SD sequence, signal peptide and protein A (SPA ') contained in Spa'-pNK3260. The base sequence shown in SEQ ID NO: 8 shows the promoter, SD sequence, signal peptide and DNA encoding protein A (SPA ′) contained in Spa′-pNK3260, and SEQ ID NO: 9 shows the signal peptide and protein A (SPA ′). ) Represents the amino acid sequence encoded by the DNA encoding.
図1および図2において、「MWP-P2」はブレビバチルス・ブレビス細胞壁蛋白質MWPのP2プロモーター領域、「SDM」はブレビバチルス・ブレビス細胞壁蛋白質MWPのSD配列、「SP’」はブレビバチルス・ブレビス細胞壁蛋白質MWPのシグナルペプチド配列を一部改変した改変型シグナルペプチド配列、「spa’」はSPA’をコードするDNA配列、「Nm」はネオマイシン耐性遺伝子コード領域、「Rep/pUB110」はベクターpNK3260の複製開始点を意味する。また図2において、「P2-35」および「P2-10」は、それぞれ、ブレビバチルス・ブレビス細胞壁蛋白質MWPのP2プロモーターの-35領域および-10領域を意味する。
1 and 2, “MWP-P2” is the P2 promoter region of Brevibacillus brevis cell wall protein MWP, “SDM” is the SD sequence of Brevibacillus brevis cell wall protein MWP, and “SP ′” is the Brevibacillus brevis cell wall. A modified signal peptide sequence obtained by partially modifying the signal peptide sequence of protein MWP, “spa ′” is a DNA sequence encoding SPA ′, “Nm” is a neomycin resistance gene coding region, and “Rep / pUB110” is a replica of vector pNK3260 Means the starting point. In FIG. 2, “P2-35” and “P2-10” mean the −35 region and the −10 region of the P2 promoter of Brevibacillus brevis cell wall protein MWP, respectively.
公知の方法により、このSpa’-pNK3260を用いてブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)の形質転換を行った。
This Spa'-pNK3260 was used to transform Brevibacillus choshinensis HPD31-OK strain (FERM BP-4573) by a known method.
(比較例1)グルコースを炭素源とした組換え蛋白質の生産1
実施例2にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)のグルコース濃度を1、3、9%にした培地にアデカノールLG109(株式会社アデカ製)を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果、グルコース濃度1%で0.3g/L、3%で0.9g/L、9%で0.7g/Lであった。 Comparative Example 1 Production of recombinant protein using glucose as a carbon source 1
The transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) with a glucose concentration of 1, 3, 9% 500 ppm of Adecanol LG109 (manufactured by Adeka Co., Ltd.) was added to the prepared medium and cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution is collected, the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant is analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, the glucose concentration was 0.3 g / L at 1%, 0.9 g / L at 3%, and 0.7 g / L at 9%.
実施例2にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)のグルコース濃度を1、3、9%にした培地にアデカノールLG109(株式会社アデカ製)を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果、グルコース濃度1%で0.3g/L、3%で0.9g/L、9%で0.7g/Lであった。 Comparative Example 1 Production of recombinant protein using glucose as a carbon source 1
The transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) with a glucose concentration of 1, 3, 9% 500 ppm of Adecanol LG109 (manufactured by Adeka Co., Ltd.) was added to the prepared medium and cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution is collected, the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant is analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, the glucose concentration was 0.3 g / L at 1%, 0.9 g / L at 3%, and 0.7 g / L at 9%.
同様に培養開始から、48時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、グルコース濃度1%で17、3%で24、9%で16であった。
Similarly, the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, the glucose concentration was 17 at 3%, 24 at 9%, and 16 at 9%.
(実施例3)フルクトースを炭素源とした組換え蛋白質の生産1
培地の炭素源をグルコースからフルクトース1、3、9%に変更した以外は比較例1と同様に、実施例2にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果、フルクトース濃度1%で0.6g/L、3%で1.1g/L、9%で0.9g/Lといずれの濃度でもグルコースを添加するよりも高濃度であった。結果を表1に示した。 (Example 3) Production of recombinant protein using fructose as a carbon source 1
The transformant obtained in Example 2 was cultured in the same manner as in Comparative Example 1 except that the carbon source of the medium was changed from glucose to fructose 1, 3, and 9%. After 48 hours from the start of the culture, the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, the fructose concentration was 1%, 0.6 g / L, 3%, 1.1 g / L, 9%, 0.9 g / L. The results are shown in Table 1.
培地の炭素源をグルコースからフルクトース1、3、9%に変更した以外は比較例1と同様に、実施例2にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果、フルクトース濃度1%で0.6g/L、3%で1.1g/L、9%で0.9g/Lといずれの濃度でもグルコースを添加するよりも高濃度であった。結果を表1に示した。 (Example 3) Production of recombinant protein using fructose as a carbon source 1
The transformant obtained in Example 2 was cultured in the same manner as in Comparative Example 1 except that the carbon source of the medium was changed from glucose to fructose 1, 3, and 9%. After 48 hours from the start of the culture, the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, the fructose concentration was 1%, 0.6 g / L, 3%, 1.1 g / L, 9%, 0.9 g / L. The results are shown in Table 1.
同様に、培養開始から、48時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、フルクトース濃度1%で17、3%で29、9%で19といずれの濃度でもグルコースを添加するよりも同等以上であった。結果を表1に示した。
Similarly, the culture solution was collected 48 hours after the start of culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, the fructose concentration was 17% at 1%, 29 at 9%, 19 at 9%, and 19 at any concentration, which was equal to or higher than the addition of glucose. The results are shown in Table 1.
(比較例2)グルコースを炭素源とした組換え蛋白質の生産2
実施例2にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118(株式会社日本油脂製)を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果1.3g/Lであった。 (Comparative Example 2) Production of recombinant protein using glucose as a carbon source 2
The transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 500 ppm of fats and oils) was added and cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, it was 1.3 g / L.
実施例2にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118(株式会社日本油脂製)を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’の濃度を分析した。その結果1.3g/Lであった。 (Comparative Example 2) Production of recombinant protein using glucose as a carbon source 2
The transformant obtained in Example 2 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 500 ppm of fats and oils) was added and cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution was collected and the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein SPA ′ in the culture supernatant was analyzed by high performance liquid chromatography. The concentration was analyzed. As a result, it was 1.3 g / L.
同様に培養開始から、48時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、23であった。
Similarly, the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, it was 23.
(実施例4)フルクトースを炭素源とした組換え蛋白質の生産2
実施例2にて得られた形質転換体を、3YC2培地(ペプトン 1%、酵母エキス0.5%、フルクトース2%、リン酸塩0.3%、MgSO4・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118を750ppm添加し、30℃の好気的条件下でpHを7.0から7.8に制御しながら培養した。培養30時間目にフルクトースを2%追加した。 (Example 4) Production of recombinant protein using fructose as a carbon source 2
The transformant obtained in Example 2 was treated with 3YC2 medium (peptone 1%, yeast extract 0.5%, fructose 2%, phosphate 0.3%, MgSO 4 .7H 2 O 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 750 ppm of Disperse CC-118 was added, The cells were cultured under aerobic conditions while controlling the pH from 7.0 to 7.8. At 30 hours of culture, 2% fructose was added.
実施例2にて得られた形質転換体を、3YC2培地(ペプトン 1%、酵母エキス0.5%、フルクトース2%、リン酸塩0.3%、MgSO4・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118を750ppm添加し、30℃の好気的条件下でpHを7.0から7.8に制御しながら培養した。培養30時間目にフルクトースを2%追加した。 (Example 4) Production of recombinant protein using fructose as a carbon source 2
The transformant obtained in Example 2 was treated with 3YC2 medium (peptone 1%, yeast extract 0.5%, fructose 2%, phosphate 0.3%, MgSO 4 .7H 2 O 0.01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) 750 ppm of Disperse CC-118 was added, The cells were cultured under aerobic conditions while controlling the pH from 7.0 to 7.8. At 30 hours of culture, 2% fructose was added.
培養開始から、58時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA’濃度を測定したところ、2.6g/Lであった。
After 58 hours from the start of the culture, the culture solution is collected and the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography. Was 2.6 g / L.
同様に、培養開始から、58時間後に培養液を10mL採取し、遠心分離(3,000rpm、室温、20分間)の後上清を除去し、十分乾燥後、乾燥菌体重量を分析した結果、10.0g/Lであった。
Similarly, 10 mL of the culture solution was collected 58 hours after the start of culture, the supernatant was removed after centrifugation (3,000 rpm, room temperature, 20 minutes), and after drying sufficiently, the weight of the dried cells was analyzed. It was 10.0 g / L.
(実施例5)フルクトースを炭素源とした組換え蛋白質の生産3
実施例2にて得られた形質転換体を、3YC3培地(ペプトン 1%、酵母エキス0.5%、フルクトース4%、リン酸塩0.3%、MgSO4・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0、培養開始後6時間目から48時間目にかけてフルクトース4%分を連続添加)にディスホームCC-118を750ppm添加し、30℃の好気的条件下でpHを7.0から7.8に制御しながら培養した。 (Example 5) Production of recombinant protein using fructose as a carbon source 3
The transformant obtained in Example 2 was treated with 3YC3 medium (1% peptone, 0.5% yeast extract, 4% fructose, 0.3% phosphate, 0.01% MgSO 4 .7H 2 O, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0, fructose 4% from 6 to 48 hours after the start ofculture 750 ppm of Disperse CC-118 was added to the continuous addition, and the cells were cultured under aerobic conditions of 30 ° C. while controlling the pH from 7.0 to 7.8.
実施例2にて得られた形質転換体を、3YC3培地(ペプトン 1%、酵母エキス0.5%、フルクトース4%、リン酸塩0.3%、MgSO4・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0、培養開始後6時間目から48時間目にかけてフルクトース4%分を連続添加)にディスホームCC-118を750ppm添加し、30℃の好気的条件下でpHを7.0から7.8に制御しながら培養した。 (Example 5) Production of recombinant protein using fructose as a carbon source 3
The transformant obtained in Example 2 was treated with 3YC3 medium (1% peptone, 0.5% yeast extract, 4% fructose, 0.3% phosphate, 0.01% MgSO 4 .7H 2 O, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0, fructose 4% from 6 to 48 hours after the start of
培養開始から、72時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質SPA‘濃度を測定した。その結果、5.0g/Lであり、新規な手法で培養を実施することで、比較例2で示したグルコースを用いる従来の培養方法での1.3g/Lと比較して約4倍に組換え蛋白質の分泌量が増加することがわかった。結果を表2に示した。
After 72 hours from the start of the culture, the culture solution is collected, the cells are removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the recombinant protein SPA ′ in the culture supernatant is measured by high performance liquid chromatography. Was measured. As a result, it was 5.0 g / L, and by carrying out the culture by a novel technique, it was about 4 times as compared with 1.3 g / L in the conventional culture method using glucose shown in Comparative Example 2. It was found that the secretion amount of the recombinant protein increased. The results are shown in Table 2.
同様に培養開始から、72時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、45であり、新規な手法で培養することで、比較例2で示したグルコースを用いる従来の培養法での23と比較して約2倍と培養終了時の菌体密度が大幅に増加することが分かった。結果を表2に示した。
Similarly, the culture solution was collected 72 hours after the start of the culture, and the turbidity at 660 nm was analyzed using a spectrophotometer. As a result, it was 45. By culturing by a novel method, the cell density at the end of the culture was greatly doubled compared with 23 in the conventional culture method using glucose shown in Comparative Example 2 and about twice. It turned out to increase. The results are shown in Table 2.
さらに、同様に、培養開始から、72時間後に培養液を10mL採取し、遠心分離(3,000rpm、室温、20分間)の後上清を除去し、十分乾燥後、乾燥菌体重量を分析した。その結果、15.2g/Lであった。
Similarly, 10 mL of the culture solution was collected 72 hours after the start of the culture, the supernatant was removed after centrifugation (3,000 rpm, room temperature, 20 minutes), and after drying sufficiently, the dry cell weight was analyzed. . As a result, it was 15.2 g / L.
(実施例6)プロテイン・BR>`のCドメインの機能的変異体の5連結体を発現した形質転換体の調製
プロテインAのCドメインの29番目のGlyをAlaに改変し5連結したタンパク質のアミノ酸配列(配列番号10、以下C-G29Aとする。)から逆翻訳を行い、該タンパク質をコードするDNA配列を設計した。該タンパク質のコドン使用頻度が、ブレビバチルス・チョウシネンシスHPD31株で大量に発現している細胞表層タンパク質であるHWP(J. Bacteriol.,172, p.1312-1320, 1990)のコドン使用頻度に近くなるように、かつ、5個の各ドメインをコードする塩基配列の配列同一性が低くなるように考慮して、コドンを分配した。また、5連結ドメインをコードする配列の5’側にPstI、および、3’側にXbaIの制限酵素認識部位を作製した。作製したDNA断片の配列を配列番号11に記した。 作製したDNA断片をPstIおよびXbaI(ともにTakara社製)で消化し、アガロースゲル電気泳動で分画、精製した。一方、ブレビバチルス属細菌用のプラスミドベクターであるpNCMO2(Takara社製)を、PstIおよびXbaIにより消化後、精製回収した。両者を混合後、Ligation High(TOYOBO社製)を用いて連結して、プラスミドベクターpNCMO2-C-G29Aを構築した。前記操作により得られたプラスミドベクターを用いて、ブレビバチルス・チョウシネンシスSP3株(Takara社製)の形質転換を行った。 (Example 6) Preparation of Transformant Expressing 5 Conjugates of Functional Variant of C Domain of Protein BR> `Protein of Concatenated Protein by Modifying 29th Gly of C Domain of Protein A to Ala Back translation was performed from an amino acid sequence (SEQ ID NO: 10, hereinafter referred to as C-G29A), and a DNA sequence encoding the protein was designed. The codon usage of the protein is close to the codon usage of HWP (J. Bacteriol., 172, p. 1312-1320, 1990), a cell surface protein that is expressed in large amounts in the Brevibacillus choshinensis HPD31 strain. The codons were distributed so that the sequence identity of the base sequences encoding each of the five domains was low. In addition, a restriction enzyme recognition site for PstI on the 5 ′ side and XbaI on the 3 ′ side of the sequence encoding the 5 linking domain was prepared. The sequence of the prepared DNA fragment is shown in SEQ ID NO: 11. The prepared DNA fragment was digested with PstI and XbaI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis. On the other hand, pNCMO2 (manufactured by Takara) which is a plasmid vector for Brevibacillus bacteria was purified and recovered after digestion with PstI and XbaI. Both were mixed and ligated using Ligation High (manufactured by TOYOBO) to construct plasmid vector pNCMO2-C-G29A. Brevibacillus choshinensis SP3 strain (manufactured by Takara) was transformed using the plasmid vector obtained by the above operation.
プロテインAのCドメインの29番目のGlyをAlaに改変し5連結したタンパク質のアミノ酸配列(配列番号10、以下C-G29Aとする。)から逆翻訳を行い、該タンパク質をコードするDNA配列を設計した。該タンパク質のコドン使用頻度が、ブレビバチルス・チョウシネンシスHPD31株で大量に発現している細胞表層タンパク質であるHWP(J. Bacteriol.,172, p.1312-1320, 1990)のコドン使用頻度に近くなるように、かつ、5個の各ドメインをコードする塩基配列の配列同一性が低くなるように考慮して、コドンを分配した。また、5連結ドメインをコードする配列の5’側にPstI、および、3’側にXbaIの制限酵素認識部位を作製した。作製したDNA断片の配列を配列番号11に記した。 作製したDNA断片をPstIおよびXbaI(ともにTakara社製)で消化し、アガロースゲル電気泳動で分画、精製した。一方、ブレビバチルス属細菌用のプラスミドベクターであるpNCMO2(Takara社製)を、PstIおよびXbaIにより消化後、精製回収した。両者を混合後、Ligation High(TOYOBO社製)を用いて連結して、プラスミドベクターpNCMO2-C-G29Aを構築した。前記操作により得られたプラスミドベクターを用いて、ブレビバチルス・チョウシネンシスSP3株(Takara社製)の形質転換を行った。 (Example 6) Preparation of Transformant Expressing 5 Conjugates of Functional Variant of C Domain of Protein BR> `Protein of Concatenated Protein by Modifying 29th Gly of C Domain of Protein A to Ala Back translation was performed from an amino acid sequence (SEQ ID NO: 10, hereinafter referred to as C-G29A), and a DNA sequence encoding the protein was designed. The codon usage of the protein is close to the codon usage of HWP (J. Bacteriol., 172, p. 1312-1320, 1990), a cell surface protein that is expressed in large amounts in the Brevibacillus choshinensis HPD31 strain. The codons were distributed so that the sequence identity of the base sequences encoding each of the five domains was low. In addition, a restriction enzyme recognition site for PstI on the 5 ′ side and XbaI on the 3 ′ side of the sequence encoding the 5 linking domain was prepared. The sequence of the prepared DNA fragment is shown in SEQ ID NO: 11. The prepared DNA fragment was digested with PstI and XbaI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis. On the other hand, pNCMO2 (manufactured by Takara) which is a plasmid vector for Brevibacillus bacteria was purified and recovered after digestion with PstI and XbaI. Both were mixed and ligated using Ligation High (manufactured by TOYOBO) to construct plasmid vector pNCMO2-C-G29A. Brevibacillus choshinensis SP3 strain (manufactured by Takara) was transformed using the plasmid vector obtained by the above operation.
(比較例3)グルコースを炭素源とした組換え蛋白質の生産3
実施例6にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にて、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質C-G29Aの濃度を分析した。その結果1.4g/Lであった。 Comparative Example 3 Production of Recombinant Protein Using Glucose as a Carbon Source 3
The transformant obtained in Example 6 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) and aerobic conditions at 30 ° C. Cultured under. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, it was 1.4 g / L.
実施例6にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にて、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質C-G29Aの濃度を分析した。その結果1.4g/Lであった。 Comparative Example 3 Production of Recombinant Protein Using Glucose as a Carbon Source 3
The transformant obtained in Example 6 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) and aerobic conditions at 30 ° C. Cultured under. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, it was 1.4 g / L.
同様に培養開始から、48時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、26であった。
Similarly, the culture solution was collected 48 hours after the start of the culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, it was 26.
(実施例7)フルクトースを炭素源とした組換え蛋白質の生産4
培地の炭素源をグルコースからフルクトース3%に変更した以外は比較例2と同様に、実施例6にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質C-G29Aの濃度を分析した。その結果、比較例3に示したグルコースで培養した場合に、1.4g/Lであったのに対し、2.2g/Lであった。結果を表3に示した。 (Example 7) Production of recombinant protein using fructose as a carbon source 4
The transformant obtained in Example 6 was cultured in the same manner as in Comparative Example 2 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, when it was cultured with glucose shown in Comparative Example 3, it was 1.4 g / L, whereas it was 2.2 g / L. The results are shown in Table 3.
培地の炭素源をグルコースからフルクトース3%に変更した以外は比較例2と同様に、実施例6にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質C-G29Aの濃度を分析した。その結果、比較例3に示したグルコースで培養した場合に、1.4g/Lであったのに対し、2.2g/Lであった。結果を表3に示した。 (Example 7) Production of recombinant protein using fructose as a carbon source 4
The transformant obtained in Example 6 was cultured in the same manner as in Comparative Example 2 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the recombinant protein C-G29A in the culture supernatant was analyzed by high performance liquid chromatography. The concentration of was analyzed. As a result, when it was cultured with glucose shown in Comparative Example 3, it was 1.4 g / L, whereas it was 2.2 g / L. The results are shown in Table 3.
同様に培養開始から、48時間後に培養液を採取し、分光光度計を用いて660nmでの濁度を分析した。その結果、比較例3に示したグルコースで培養した場合に、26であったのに対し、31であった。結果を表3に示した。
Similarly, the culture solution was collected 48 hours after the start of culture and analyzed for turbidity at 660 nm using a spectrophotometer. As a result, when it was cultured with glucose shown in Comparative Example 3, it was 31 compared with 26. The results are shown in Table 3.
(実施例8)ネコプロインスリン融合蛋白質を発現する形質転換体の調製
(非特許文献3)に示されたネコプロインスリンのアミノ酸配列とプロテインAのE,Dドメインから、ネコプロインスリン融合蛋白質のアミノ酸配列を設計した(配列番号12)。コドン使用率を考慮して、配列番号13に示した塩基配列からなるネコプロインスリン融合蛋白質遺伝子を作成した。作成したDNA断片をNcoIおよびEcoRI(ともにTakara社製)で消化し、アガロースゲル電気泳動で分画、精製した。一方、ブレビバチルス属細菌用のプラスミドベクターであるpNH326をNcoIおよびEcoRIにより消化後、精製回収した。両者を混合後、Ligation High(TOYOBO社製)を用いて連結して、プラスミドベクターpNH326EDCIPを構築した。前記操作により得られたプラスミドベクターを用いて、ブレビバチルス・チョウシネンシスHPD31-OK株の形質転換体を調製した。 (Example 8) Preparation of transformant expressing feline proinsulin fusion protein From the amino acid sequence of feline proinsulin shown in (Non-patent Document 3) and E and D domains of protein A, feline proinsulin fusion protein The amino acid sequence was designed (SEQ ID NO: 12). In consideration of codon usage, a feline proinsulin fusion protein gene having the base sequence shown in SEQ ID NO: 13 was prepared. The prepared DNA fragment was digested with NcoI and EcoRI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis. On the other hand, pNH326, which is a plasmid vector for Brevibacillus spp., Was digested with NcoI and EcoRI and purified and recovered. After mixing both, it was ligated using Ligation High (manufactured by TOYOBO) to construct a plasmid vector pNH326EDCIP. Using the plasmid vector obtained by the above operation, a transformant of Brevibacillus choshinensis HPD31-OK was prepared.
(非特許文献3)に示されたネコプロインスリンのアミノ酸配列とプロテインAのE,Dドメインから、ネコプロインスリン融合蛋白質のアミノ酸配列を設計した(配列番号12)。コドン使用率を考慮して、配列番号13に示した塩基配列からなるネコプロインスリン融合蛋白質遺伝子を作成した。作成したDNA断片をNcoIおよびEcoRI(ともにTakara社製)で消化し、アガロースゲル電気泳動で分画、精製した。一方、ブレビバチルス属細菌用のプラスミドベクターであるpNH326をNcoIおよびEcoRIにより消化後、精製回収した。両者を混合後、Ligation High(TOYOBO社製)を用いて連結して、プラスミドベクターpNH326EDCIPを構築した。前記操作により得られたプラスミドベクターを用いて、ブレビバチルス・チョウシネンシスHPD31-OK株の形質転換体を調製した。 (Example 8) Preparation of transformant expressing feline proinsulin fusion protein From the amino acid sequence of feline proinsulin shown in (Non-patent Document 3) and E and D domains of protein A, feline proinsulin fusion protein The amino acid sequence was designed (SEQ ID NO: 12). In consideration of codon usage, a feline proinsulin fusion protein gene having the base sequence shown in SEQ ID NO: 13 was prepared. The prepared DNA fragment was digested with NcoI and EcoRI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis. On the other hand, pNH326, which is a plasmid vector for Brevibacillus spp., Was digested with NcoI and EcoRI and purified and recovered. After mixing both, it was ligated using Ligation High (manufactured by TOYOBO) to construct a plasmid vector pNH326EDCIP. Using the plasmid vector obtained by the above operation, a transformant of Brevibacillus choshinensis HPD31-OK was prepared.
(比較例4)グルコースを炭素源とした組換え蛋白質の生産4
実施例8にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、SDS-PAGEで培養上清中のネコプロインスリン融合蛋白質の濃度を解析した。 Comparative Example 4 Production of recombinant protein using glucose as a carbon source 4
The transformant obtained in Example 8 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) The cells were cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE Was analyzed.
実施例8にて得られた形質転換体を、3YC培地(ポリペプトンS 3%、酵母エキス0.5%、グルコース3%、MgSO4・7H2O 0.01%、CaCl2・7H2O 0.01%、MnSO4・4H2O 0.001%、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0001% pH7.0)にディスホームCC-118を500ppm添加し、30℃の好気的条件下で培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、SDS-PAGEで培養上清中のネコプロインスリン融合蛋白質の濃度を解析した。 Comparative Example 4 Production of recombinant protein using glucose as a carbon source 4
The transformant obtained in Example 8 was treated with 3YC medium (polypeptone S 3%, yeast extract 0.5%, glucose 3%, MgSO 4 .7H 2 O 0.01%, CaCl 2 .7H 2 O 0. .01%, MnSO 4 .4H 2 O 0.001%, FeSO 4 .7H 2 O 0.001%, ZnSO 4 .7H 2 O 0.0001% pH 7.0) The cells were cultured under aerobic conditions at 30 ° C. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE Was analyzed.
(実施例9)フルクトースを炭素源とした組換え蛋白質の生産5
培地の炭素源をグルコースからフルクトース3%に変更した以外は比較例3と同様に、実施例8にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、SDS-PAGEで培養上清中のネコプロインスリン融合蛋白質の濃度をChemiDoc XRSシステム(Bio-Rad社)により解析した。その結果、比較例4に示したグルコースで培養した場合の約2倍の生産量が確認された。結果を表4に示した。 (Example 9) Production of recombinant protein using fructose as a carbon source 5
The transformant obtained in Example 8 was cultured in the same manner as in Comparative Example 3 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE Was analyzed by ChemiDoc XRS system (Bio-Rad). As a result, about twice the production amount when cultured with glucose shown in Comparative Example 4 was confirmed. The results are shown in Table 4.
培地の炭素源をグルコースからフルクトース3%に変更した以外は比較例3と同様に、実施例8にて得られた形質転換体を培養した。培養開始から、48時間後に培養液を採取し、遠心分離(10,000rpm、4℃、5分間)により菌体を除去した後、SDS-PAGEで培養上清中のネコプロインスリン融合蛋白質の濃度をChemiDoc XRSシステム(Bio-Rad社)により解析した。その結果、比較例4に示したグルコースで培養した場合の約2倍の生産量が確認された。結果を表4に示した。 (Example 9) Production of recombinant protein using fructose as a carbon source 5
The transformant obtained in Example 8 was cultured in the same manner as in Comparative Example 3 except that the carbon source of the medium was changed from glucose to fructose 3%. After 48 hours from the start of the culture, the culture solution was collected, the cells were removed by centrifugation (10,000 rpm, 4 ° C., 5 minutes), and then the concentration of the feline proinsulin fusion protein in the culture supernatant by SDS-PAGE Was analyzed by ChemiDoc XRS system (Bio-Rad). As a result, about twice the production amount when cultured with glucose shown in Comparative Example 4 was confirmed. The results are shown in Table 4.
以上の結果から、本発明のフルクトースを炭素源に用いた組換えブレビバチルス属の組換え蛋白質の製造によれば、組換え蛋白質の生産性を向上させることができることが明らかになった。更にプロテインAに関しては、フルクトースを炭素源に用いて、フルクトースの添加量と添加方法を適切に選択することにより、従来報告されていた約4倍となる生産性を達成でき、従来問題となっていた低生産性の問題を解決できることが明らかになった。
From the above results, it has been clarified that the production of recombinant protein of the genus Recombinant Brevibacillus using the fructose of the present invention as a carbon source can improve the productivity of the recombinant protein. Furthermore, with regard to protein A, by using fructose as a carbon source and appropriately selecting the addition amount and addition method of fructose, it has been possible to achieve a productivity that has been reported to be about 4 times, which is a problem in the past. It became clear that the problem of low productivity could be solved.
Claims (12)
- 組換えブレビバチルス属細菌を用いて、組換え蛋白質を製造する際に、炭素源としてフルクトースを用いて培養することを特徴とする、組換え蛋白質の製造方法。 A method for producing a recombinant protein, which comprises culturing using fructose as a carbon source when producing a recombinant protein using a recombinant Brevibacillus bacterium.
- フルクトースの初発濃度を1%以上とすることを特徴とする、請求項1に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 1, wherein the initial concentration of fructose is 1% or more.
- フルクトースの初発濃度を9%以下とすることを特徴とする、請求項1または2に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 1 or 2, wherein the initial concentration of fructose is 9% or less.
- フルクトース濃度を9%以下となるよう追加添加することを特徴とする、請求項1から3のいずれかに記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to any one of claims 1 to 3, wherein the fructose concentration is additionally added so as to be 9% or less.
- フルクトース濃度を4%以下となるよう追加添加することを特徴とする、請求項4に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 4, wherein the fructose concentration is additionally added to 4% or less.
- フルクトースの追加添加方法が間欠または連続であることを特徴とする、請求項4または5に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 4 or 5, wherein the additional method of adding fructose is intermittent or continuous.
- 組換え蛋白質が抗体結合性蛋白質である、請求項1から6のいずれかに記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to any one of claims 1 to 6, wherein the recombinant protein is an antibody-binding protein.
- 抗体結合性蛋白質が、プロテインA、プロテインG、プロテインL、抗体結合活性を有するそれらの部分配列、それらの機能的変異体およびそれらの連結体からなる群から選択される1以上の蛋白質であることを特徴とする請求項7に記載の組換え蛋白質の製造方法。 The antibody binding protein is one or more proteins selected from the group consisting of protein A, protein G, protein L, their partial sequences having antibody binding activity, functional variants thereof, and their conjugates. A method for producing a recombinant protein according to claim 7.
- 組換え蛋白質が生理活性蛋白質誘導体である、請求項1から6のいずれかに記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to any one of claims 1 to 6, wherein the recombinant protein is a physiologically active protein derivative.
- 生理活性蛋白質が、ペプチドホルモンまたはその前駆体である、請求項9に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 9, wherein the physiologically active protein is a peptide hormone or a precursor thereof.
- ペプチドホルモンまたはその前駆体が、インスリン、プロインスリン、または、プレプロインスリンである、請求項10に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 10, wherein the peptide hormone or a precursor thereof is insulin, proinsulin, or preproinsulin.
- インスリン、プロインスリン、または、プレプロインスリンが、ネコインスリン、ネコプロインスリン、または、ネコプレプロインスリンである、請求項11に記載の組換え蛋白質の製造方法。 The method for producing a recombinant protein according to claim 11, wherein the insulin, proinsulin, or preproinsulin is feline insulin, feline proinsulin, or feline preproinsulin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010519106A JP5763920B2 (en) | 2008-07-03 | 2009-07-02 | Method for producing recombinant protein by recombinant Brevibacillus bacterium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008174057 | 2008-07-03 | ||
JP2008-174057 | 2008-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010001960A1 true WO2010001960A1 (en) | 2010-01-07 |
Family
ID=41466051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062121 WO2010001960A1 (en) | 2008-07-03 | 2009-07-02 | Method for production of recombinant protein by using genetically engineered brevibacillus bacterium |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP5763920B2 (en) |
WO (1) | WO2010001960A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190458A1 (en) * | 2014-06-09 | 2015-12-17 | 株式会社カネカ | Method for producing recombinant protein using recombinant bacteria of genus brevibacillus |
WO2015190457A1 (en) * | 2014-06-09 | 2015-12-17 | 株式会社カネカ | Method for producing recombinant proteins using recombinant brevibacillus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017022759A1 (en) * | 2015-08-04 | 2018-05-31 | 株式会社カネカ | Immunoglobulin binding modified protein |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068884A1 (en) * | 2000-03-14 | 2001-09-20 | Itoham Foods Inc. | Process for producing polypeptide having disulfide bond |
JP2002330797A (en) * | 2001-05-08 | 2002-11-19 | Chisso Corp | METHOD FOR PRODUCING epsi-POLY-L-LYSINE |
JP2004350513A (en) * | 2003-05-27 | 2004-12-16 | Jellice Co Ltd | Protease, dna encoding the protease, method for producing protease |
WO2006004067A1 (en) * | 2004-07-06 | 2006-01-12 | Kaneka Corporation | Process for producing protein a-like protein with use of brevibacillus genus bacaterium |
WO2007046389A1 (en) * | 2005-10-18 | 2007-04-26 | Ajinomoto Co., Inc. | Process for production of succinic acid |
WO2007099867A1 (en) * | 2006-02-24 | 2007-09-07 | Mitsubishi Chemical Corporation | Bacterium capable of producing organic acid, and method for production of organic acid |
-
2009
- 2009-07-02 WO PCT/JP2009/062121 patent/WO2010001960A1/en active Application Filing
- 2009-07-02 JP JP2010519106A patent/JP5763920B2/en active Active
-
2015
- 2015-01-28 JP JP2015014147A patent/JP2015077152A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068884A1 (en) * | 2000-03-14 | 2001-09-20 | Itoham Foods Inc. | Process for producing polypeptide having disulfide bond |
JP2002330797A (en) * | 2001-05-08 | 2002-11-19 | Chisso Corp | METHOD FOR PRODUCING epsi-POLY-L-LYSINE |
JP2004350513A (en) * | 2003-05-27 | 2004-12-16 | Jellice Co Ltd | Protease, dna encoding the protease, method for producing protease |
WO2006004067A1 (en) * | 2004-07-06 | 2006-01-12 | Kaneka Corporation | Process for producing protein a-like protein with use of brevibacillus genus bacaterium |
WO2007046389A1 (en) * | 2005-10-18 | 2007-04-26 | Ajinomoto Co., Inc. | Process for production of succinic acid |
WO2007099867A1 (en) * | 2006-02-24 | 2007-09-07 | Mitsubishi Chemical Corporation | Bacterium capable of producing organic acid, and method for production of organic acid |
Non-Patent Citations (1)
Title |
---|
PRAYITNO, N. R. ET AL.: "Thermostable protease production process and strain improvement of selected indigenous thermophilic bacteria to overproduce the enzymes", BIOTECHNOLOGY FOR SUSTAINABLE UTILIZATION OF BIOLOGICAL RESOURCES IN THE TROPICS, vol. 15, 2001, pages 378 - 385 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190458A1 (en) * | 2014-06-09 | 2015-12-17 | 株式会社カネカ | Method for producing recombinant protein using recombinant bacteria of genus brevibacillus |
WO2015190457A1 (en) * | 2014-06-09 | 2015-12-17 | 株式会社カネカ | Method for producing recombinant proteins using recombinant brevibacillus |
CN106459953A (en) * | 2014-06-09 | 2017-02-22 | 株式会社钟化 | Method for producing recombinant proteins using recombinant brevibacillus |
JPWO2015190458A1 (en) * | 2014-06-09 | 2017-04-20 | 株式会社カネカ | Method for producing recombinant protein by recombinant Brevibacillus bacterium |
JPWO2015190457A1 (en) * | 2014-06-09 | 2017-04-20 | 株式会社カネカ | Method for producing recombinant protein using recombinant Brevibacillus bacterium |
US10435732B2 (en) | 2014-06-09 | 2019-10-08 | Kaneka Corporation | Method for producing recombinant proteins using recombinant brevibacillus |
Also Published As
Publication number | Publication date |
---|---|
JP2015077152A (en) | 2015-04-23 |
JP5763920B2 (en) | 2015-08-12 |
JPWO2010001960A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1507798B2 (en) | Export and modification of (poly)peptides in the lantibiotic way | |
EP2251425B1 (en) | Process for producing protein A-like protein with use of Brevibacillus genus bacterium | |
Winter et al. | Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA | |
US8148494B2 (en) | Signal peptide for the production of recombinant proteins | |
JP6697383B2 (en) | Method for producing recombinant protein using recombinant Brevibacillus bacterium | |
DE60216245T2 (en) | FUNCTIONAL SURFACE DISPLAY OF POLYPEPTIDES | |
CZ284774B6 (en) | Structural proteins enzymatic splitting process, structural protein per se, recombinant dna, vector and cell containing thereof | |
Gurkan et al. | Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris | |
JP2015077152A (en) | Method for producing recombinant protein by using genetically engineered brevibacillus bacterium | |
KR20140004219A (en) | Novel expression and secretion vector systems for heterologous protein production in escherichia coli | |
WO2015190458A1 (en) | Method for producing recombinant protein using recombinant bacteria of genus brevibacillus | |
US20140154742A1 (en) | Novel expression and secretion vector systems for heterologous protein production in escherichia coli | |
CN109988802B (en) | Expression cassette for efficiently secreting and expressing human FGF21 protein and application thereof | |
CN100359001C (en) | Compartmentalization of recombinant polypeptides in host cells | |
JP3734593B2 (en) | Novel expression plasmid vector and method for producing heterologous gene product using Bacillus bacteria containing the expression plasmid vector | |
JP2004519239A (en) | DNA sequence containing regulatory region for protein expression | |
Lübben et al. | Prokaryotes as protein production facilities | |
JP2006320220A (en) | Dna sequence used for production of protein a fusion polypeptide, recombinant expression vector, transformant, and method for producing the fusion polypeptide | |
JP2004187625A (en) | New disulfide oxidoreductase and method for activating protein by using the same | |
JPH09135693A (en) | Transformant microorganism and production of heterogene product using the same microorganism | |
JPH0759580A (en) | Production of human calcitonin precursor peptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09773538 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010519106 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09773538 Country of ref document: EP Kind code of ref document: A1 |