WO2009157454A1 - Electrochemical reactor and fuel gas manufacturing method using the same - Google Patents

Electrochemical reactor and fuel gas manufacturing method using the same Download PDF

Info

Publication number
WO2009157454A1
WO2009157454A1 PCT/JP2009/061426 JP2009061426W WO2009157454A1 WO 2009157454 A1 WO2009157454 A1 WO 2009157454A1 JP 2009061426 W JP2009061426 W JP 2009061426W WO 2009157454 A1 WO2009157454 A1 WO 2009157454A1
Authority
WO
WIPO (PCT)
Prior art keywords
gdc
electrochemical reactor
gas
cathode electrode
anode electrode
Prior art date
Application number
PCT/JP2009/061426
Other languages
French (fr)
Japanese (ja)
Inventor
好洋 平田
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2010518027A priority Critical patent/JP5376381B2/en
Publication of WO2009157454A1 publication Critical patent/WO2009157454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical reactor suitable for synthesizing fuel gas using an oxidation-reduction reaction and a method for producing fuel gas using the same.
  • Biogas generated by methane fermentation in livestock excreta and sewage treatment plants contains 60% methane (CH 4 ) and 40% carbon dioxide (CO 2 ). Hydrogen and carbon monoxide produced by these reactions can be used as various fuels. In addition, the fuel closed system can be established by mixing carbon dioxide with biogas again.
  • An object of the present invention is to provide an electrochemical reactor capable of synthesizing fuel gas with high efficiency and a method for producing fuel gas using the same.
  • the inventor of the present application has come up with the following aspects of the invention as a result of intensive studies to solve the above problems.
  • An electrochemical reactor includes a ruthenium-containing anode, a ruthenium- or nickel-containing cathode, and a metal oxide that is provided between the anode electrode and the cathode electrode and exhibits oxide ion conductivity. And a porous electrolyte membrane containing.
  • the fuel gas production method includes an anode electrode containing ruthenium, a cathode electrode containing ruthenium or nickel, and an oxide ion conductivity provided between the anode electrode and the cathode electrode.
  • a porous electrolyte membrane containing a metal oxide and a method for producing a fuel gas using an electrochemical reactor, the step of applying a voltage between the anode electrode and the cathode electrode, And a step of supplying a gas containing methane and carbon dioxide toward the cathode electrode.
  • an oxidation-reduction reaction can be caused at the anode electrode and the cathode electrode. Therefore, even when hydrogen gas and carbon monoxide gas are produced from a gas containing methane and carbon dioxide at a high temperature, carbon deposition can be suppressed and fuel gas can be obtained with high efficiency.
  • FIG. 1 is a flowchart showing a configuration of an electrochemical reactor according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a method for producing a GDC electrolyte powder.
  • FIG. 3 is a diagram showing a method for producing SrRuO 3 powder.
  • FIG. 4 is a diagram illustrating a method for producing an electrochemical reactor.
  • FIG. 5 is a graph showing the results of the first experiment.
  • FIG. 6A shows the contents of the second experiment.
  • FIG. 6B is a diagram illustrating a result of the second experiment.
  • FIG. 7 is a graph showing the results of the third experiment.
  • FIG. 8 is a graph showing the results of the fourth experiment.
  • FIG. 9 is a graph showing the results of the fifth experiment.
  • FIG. 10 is a graph showing the results of the sixth experiment.
  • FIG. 11 is a graph showing the results of the seventh experiment.
  • FIG. 12 is a graph showing the results of the eighth experiment.
  • FIG. 13 is
  • FIG. 1 is a flowchart showing a configuration of an electrochemical reactor according to an embodiment of the present invention.
  • an electrolyte membrane 3 is sandwiched between an anode electrode 1 and a cathode electrode 2 as shown in FIG.
  • the anode electrode 1 is composed of, for example, a mixture of SrRuO 3 and Ce 0.8 Gd 0.2 O 1.9 (hereinafter also referred to as GDC), and the cathode electrode 2 is composed of, for example, a mixture of Ni and GDC. ing.
  • the electrolyte membrane 3 is composed of, for example, a GDC porous body.
  • the thickness of the electrolyte membrane 3 is about 10 ⁇ m to 100 ⁇ m, for example, 50 ⁇ m. In this way, an electrochemical reactor is configured. Such an electrochemical reactor is used, for example, in a tube 4.
  • Oxide ions (O 2 ⁇ ) generated by this reduction reaction pass through the electrolyte membrane 3 and reach the anode electrode 1.
  • CH 4 gas also reaches the anode electrode 1.
  • an oxidation reaction occurs in the anode electrode 1 as shown in the equation (5).
  • the H 2 —CO based fuel gas can be synthesized from the CH 4 —CO 2 based gas. Further, as shown in the formula (5), since the reaction between the transported oxide ion (O 2 ⁇ ) and methane proceeds, the thermal decomposition of CH 4 like conventional dry reforming is suppressed. Can do. Therefore, the H 2 —CO based fuel gas can be produced with high efficiency.
  • FIG. 2 is a diagram showing a method for producing a GDC electrolyte powder.
  • this mixed solution is added to a 0.4 M oxalic acid aqueous solution and coprecipitated. Thereafter, filtration and drying are performed.
  • the drying temperature is 100 ° C., and the time is 24 hours. Subsequently, calcination at 600 ° C. is performed for 2 hours. Next, pulverization is performed by a ball mill using alumina spheres having a diameter of 3 mm to obtain GDC powder.
  • FIG. 3 is a diagram showing a method for producing SrRuO 3 powder.
  • this mixed solution is added to a 1.0 M aqueous ammonia solution and coprecipitated. Thereafter, freeze drying is performed. Subsequently, calcination at 1000 ° C. is performed for 2 hours to obtain SrRuO 3 powder.
  • FIG. 4 is a diagram illustrating a method for producing an electrochemical reactor. First, the anode electrode 1 and the cathode electrode 2 are produced individually.
  • anode electrode 1 In the production of the anode electrode 1, SrRuO 3 powder and GDC electrolyte powder are mixed at a volume ratio of 30 to 70, and a suspension of this mixture (suspension) is produced. The amount of solid in this suspension is about 10% by volume. Next, freeze-drying is performed, followed by baking at 600 ° C. for 1 hour. As a result, the anode electrode 1 is produced.
  • a GDC film is sandwiched as the electrolyte membrane 3 between the anode electrode 1 and the cathode electrode 2, and uniaxial press molding of 200 MPa is performed for 1 minute.
  • a GDC film what was formed into a film by the doctor blade method of the nonaqueous suspension containing 30 volume% of GDC can be used.
  • a GDC film having a thickness of about 50 ⁇ m can be produced by a doctor blade having a front blade height of 150 ⁇ m and a rear blade height of 80 ⁇ m.
  • the material of the anode electrode is not limited to the above as long as Ru is included.
  • you may be comprised from the mixture of metal Ru or Ru oxide, and GDC. Further, two or more of metal Ru, Ru oxide and SrRuO 3 may be included.
  • the material of the electrolyte membrane is not limited to the above as long as it contains a metal oxide exhibiting oxide ion conductivity.
  • metal oxides include cerium-rare earth elements (ytterbium, yttrium, gadolinium, samarium, neodymium, lanthanum, etc.) oxides, zirconium-yttrium oxides, and lanthanum-gallium oxides. .
  • Ni (NO 3 ) 2 and Al 2 O 3 powders were mixed at a ratio of 30 vol% Ni-70 vol% Al 2 O 3 and formed into a diameter of 16 mm and a height of 10 mm.
  • the compact was fired at 800 ° C. for 1 hour. Further, NiO was reduced to Ni by heating at 700 ° C. for 10 hours in 70 vol% H 2 -30 vol% Ar gas.
  • only Al 2 O 3 compacts containing no Ni were produced. 50 vol% CH 4 -50 vol% CO 2 mixed gas was allowed to flow through this, and dry reforming was performed. The result is shown in FIG.
  • the carbon content at any of the four points was 13% to 18% with respect to the 100% carbon powder measured as a reference. This result indicates that although carbon deposition occurs uniformly inside the cathode, the amount is not so high as to cause gas blockage.
  • the H 2 / CO ratio becomes 1.
  • the above-described formula (3) also occurs, and the H 2 / CO ratio is 2 or more.
  • the ideal ratio was close to 1 at any temperature. This is in good agreement with the fact that no gas blockage occurs.
  • the oxygen partial pressure was 10 ⁇ 29 Pa to 10 ⁇ 12 Pa in the measured temperature range. This indicates that direct oxidation of methane (CH 4 + 1 / 2O 2 ⁇ CO + H 2 ) did not occur.
  • the cathode reaction and the anode reaction in the formula (7) are expressed by the formula (8) and the formula (9), respectively.
  • reaction shown in the formula (10) proceeds simultaneously with the reaction shown in the formula (6) electrochemically, the ratio B 3 of H 2 and CO to be generated becomes 2 / (3-A).
  • the reaction shown in formula (10) shows the formation of H 2 and acetaldehyde. CH 4 + CO 2 ⁇ 2H 2 + 2CO (6) 3CH 4 + CO 2 ⁇ 2H 2 + 2CH 3 CHO (10)
  • CH 3 CHO is considered to be produced electrochemically by a chemical reaction between CO and CH 4 produced by the reaction shown in the formula (6) (formula (11)).
  • GDC (Ce 0.8 Gd 0.2 O 1.9 ) electrolyte powder was produced by the oxalate coprecipitation method. Further, 1.9 ml of isopropanol and 0.97 ml of toluene as a solvent, 0.63 g of polyethylene glycol as a plasticizer, and 0.35 g of polyvinyl butyral as a binder were mixed to prepare a mixed solution. Next, 7 g of GDC electrolyte powder was dispersed in this mixed solution, and stirred for 24 hours. Thereafter, a GDC electrolyte membrane having a thickness of 50 ⁇ m ( ⁇ 3 ⁇ m) was produced by a doctor blade method.
  • mixed powders mixed powder of NiO and GDC, mixed powder of RuO 2 and GDC, mixed powder of SrRuO 3 and GDC
  • a cathode electrode powder, a GDC electrolyte membrane, and an anode electrode powder were sequentially inserted into a molding machine having a diameter of 10 mm, and uniaxial pressure molding was performed at 100 MPa for 1 minute. Thereafter, isostatic pressing was performed at 298 MPa for 1 minute. The amount of the cathode electrode powder and the anode electrode powder was 1.3 g.
  • Electrochemical cell No. 1 and no. In the preparation of 2, by further supplying a mixed gas of 97% by volume H 2 and 3% H 2 O to the co-sintered body at a flow rate of 50 ml / min, and performing a reduction treatment at 700 ° C. for 24 hours, NiO and RuO 2 in the mixed powder for electrodes were changed to Ni and Ru, respectively. Electrochemical cell No. 1 and no. 2 was completed in this way.
  • the dry forming temperature is the same as that of the electrochemical cell No. 1 is 400 ° C. and 500 ° C. 2, the temperature was set to 400 ° C. to 800 ° C. 3 was 800 ° C.
  • FIGS. 12 shows the relationship between the temperature and time of dry forming (reforming) and the flow rate and current density of the outlet gas.
  • FIG. 13 shows the temperature and time of dry forming (reforming) at 800 ° C. and the results of gas chromatographic analysis of the outlet gas.
  • electrochemical cell no. In No. 1 when the dry forming temperature increased, the outlet gas flow rate rapidly decreased at 500 ° C., and the current density increased rapidly.
  • electrochemical cell No. 1 in which Ru is contained in the anode electrode In No. 2, the outlet gas flow rate increased as the dry forming temperature increased. In addition, as shown in FIG. In 2, the amount of CH 4 gas and CO 2 gas decreased and the amount of H 2 gas and CO gas increased as the temperature of dry forming increased. This indicates that dry reforming was promoted as the temperature increased.
  • Electrochemical cell no. 3 was promoted.
  • electrochemical cell No. 2 and no. In No. 3 the gas flow rate did not decrease until reforming for at least 10 hours. Then, the amount of generated H 2 gas and CO gas were similar to each other.
  • the present invention can be used for synthesis of fuel gas using an oxidation-reduction reaction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

An electrolyte film (3) is sandwiched between an anode electrode (1) and a cathode electrode (2).  The anode electrode (1) is made from, for example, a mixture of SrRuO3 and GDC.  The cathode electrode (2) is made from, for example, a mixture of Ni and GDC.  Moreover, the electrolyte film (3) is made from, for example, a porous material of GDC.  Moreover, the electrolyte film (3) has a thickness in the order of 50 μm, for example.  Thus, an electrochemical reactor is configured.  The electrochemical reactor is inserted into a tube (4), for example, for use.

Description

電気化学反応器及びそれを使用した燃料ガスの製造方法Electrochemical reactor and fuel gas production method using the same
 本発明は、酸化還元反応を利用した燃料ガスの合成に好適な電気化学反応器及びそれを使用した燃料ガスの製造方法に関する。 The present invention relates to an electrochemical reactor suitable for synthesizing fuel gas using an oxidation-reduction reaction and a method for producing fuel gas using the same.
 家畜排泄物及び下水処理場のメタン発酵で発生するバイオガスはメタン(CH)60%及び二酸化炭素(CO)40%を含んでいる。これらの反応により生成する水素及び一酸化炭素は種々の燃料として利用できる。また、二酸化炭素をバイオガスと再度混合することで、燃料のクローズドシステムの確立が可能となる。 Biogas generated by methane fermentation in livestock excreta and sewage treatment plants contains 60% methane (CH 4 ) and 40% carbon dioxide (CO 2 ). Hydrogen and carbon monoxide produced by these reactions can be used as various fuels. In addition, the fuel closed system can be established by mixing carbon dioxide with biogas again.
 従来、電極での酸化還元反応を利用して、CH-CO系ガスからH-CO系燃料ガスを合成する方法として、Ni触媒を用いたメタンのCOドライリフォーミングがある。このドライリフォーミングは(1)式で表される。
 CH+CO→2H+2CO・・・(1)
Conventionally, as a method of synthesizing an H 2 —CO based fuel gas from a CH 4 —CO 2 based gas using an oxidation-reduction reaction at an electrode, there is CO 2 dry reforming of methane using a Ni catalyst. This dry reforming is expressed by equation (1).
CH 4 + CO 2 → 2H 2 + 2CO (1)
 しかしながら、ドライリフォーミングでは、(2)式に示すように、600℃未満の温度で一酸化炭素(CO)がCO及びCに不均化反応を起こす。このため、600℃以上の高温で処理を行う必要がある。
 2CO→CO+C・・・(2)
However, in dry reforming, as shown in the equation (2), carbon monoxide (CO) causes a disproportionation reaction in CO 2 and C at a temperature of less than 600 ° C. For this reason, it is necessary to perform the treatment at a high temperature of 600 ° C. or higher.
2CO → CO 2 + C (2)
 一方、高温下では、(3)式に示すように、CHの熱分解が進行し、析出する炭素がNi触媒を覆う。このため、触媒能が時間の経過とともに低下する。また、析出した炭素により、反応ガスの閉塞が生じる。
 CH→2H+C・・・(3)
On the other hand, at a high temperature, as shown in the equation (3), thermal decomposition of CH 4 proceeds, and the precipitated carbon covers the Ni catalyst. For this reason, catalytic ability falls with progress of time. Further, the deposited carbon causes the reaction gas to be blocked.
CH 4 → 2H 2 + C (3)
 このように、従来のドライリフォーミングでは、どのような温度で処理を行っても、高効率で燃料ガスを合成することができない。 As described above, in the conventional dry reforming, the fuel gas cannot be synthesized with high efficiency no matter what the temperature is.
 本発明は、高い効率で燃料ガスを合成することができる電気化学反応器及びそれを使用した燃料ガスの製造方法を提供することを目的とする。 An object of the present invention is to provide an electrochemical reactor capable of synthesizing fuel gas with high efficiency and a method for producing fuel gas using the same.
 本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。 The inventor of the present application has come up with the following aspects of the invention as a result of intensive studies to solve the above problems.
 本発明に係る電気化学反応器は、ルテニウムを含有するアノードと、ルテニウム又はニッケルを含有するカソードと、前記アノード電極と前記カソード電極との間に設けられ、酸化物イオン導電性を示す金属酸化物を含有する多孔質の電解質膜と、を有することを特徴とする。 An electrochemical reactor according to the present invention includes a ruthenium-containing anode, a ruthenium- or nickel-containing cathode, and a metal oxide that is provided between the anode electrode and the cathode electrode and exhibits oxide ion conductivity. And a porous electrolyte membrane containing.
 本発明に係る燃料ガスの製造方法は、ルテニウムを含有するアノード電極と、ルテニウム又はニッケルを含有するカソード電極と、前記アノード電極と前記カソード電極との間に設けられ、酸化物イオン導電性を示す金属酸化物を含有する多孔質の電解質膜と、を有する電気化学反応器を用いた燃料ガスの製造方法であって、前記アノード電極と前記カソード電極との間に電圧を印加する工程と、前記カソード電極に向けてメタン及び二酸化炭素を含むガスを供給する工程と、を有することを特徴とする。 The fuel gas production method according to the present invention includes an anode electrode containing ruthenium, a cathode electrode containing ruthenium or nickel, and an oxide ion conductivity provided between the anode electrode and the cathode electrode. A porous electrolyte membrane containing a metal oxide, and a method for producing a fuel gas using an electrochemical reactor, the step of applying a voltage between the anode electrode and the cathode electrode, And a step of supplying a gas containing methane and carbon dioxide toward the cathode electrode.
 本発明によれば、アノード電極及びカソード電極において酸化還元反応を生じさせることができる。従って、メタン及び二酸化炭素を含むガスから水素ガス及び一酸化炭素ガスを高温化で製造する場合であっても、炭素の析出を抑制することができ、高い効率で燃料ガスを得ることができる。 According to the present invention, an oxidation-reduction reaction can be caused at the anode electrode and the cathode electrode. Therefore, even when hydrogen gas and carbon monoxide gas are produced from a gas containing methane and carbon dioxide at a high temperature, carbon deposition can be suppressed and fuel gas can be obtained with high efficiency.
図1は、本発明の実施形態に係る電気化学反応器の構成を示すフローチャートである。FIG. 1 is a flowchart showing a configuration of an electrochemical reactor according to an embodiment of the present invention. 図2は、GDC電解質粉体を作製する方法を示す図である。FIG. 2 is a diagram showing a method for producing a GDC electrolyte powder. 図3は、SrRuO粉体を作製する方法を示す図である。FIG. 3 is a diagram showing a method for producing SrRuO 3 powder. 図4は、電気化学反応器を製造する方法を示す図である。FIG. 4 is a diagram illustrating a method for producing an electrochemical reactor. 図5は、第1の実験の結果を示すグラフである。FIG. 5 is a graph showing the results of the first experiment. 図6Aは、第2の実験の内容を示す図である。FIG. 6A shows the contents of the second experiment. 図6Bは、第2の実験の結果を示す図である。FIG. 6B is a diagram illustrating a result of the second experiment. 図7は、第3の実験の結果を示すグラフである。FIG. 7 is a graph showing the results of the third experiment. 図8は、第4の実験の結果を示すグラフである。FIG. 8 is a graph showing the results of the fourth experiment. 図9は、第5の実験の結果を示すグラフである。FIG. 9 is a graph showing the results of the fifth experiment. 図10は、第6の実験の結果を示すグラフである。FIG. 10 is a graph showing the results of the sixth experiment. 図11は、第7の実験の結果を示すグラフである。FIG. 11 is a graph showing the results of the seventh experiment. 図12は、第8の実験の結果を示すグラフである。FIG. 12 is a graph showing the results of the eighth experiment. 図13は、同じく、第8の実験の結果を示すグラフである。FIG. 13 is also a graph showing the results of the eighth experiment.
 以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係る電気化学反応器の構成を示すフローチャートである。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a flowchart showing a configuration of an electrochemical reactor according to an embodiment of the present invention.
 本実施形態に係る電気化学反応器では、図1に示すように、アノード電極1とカソード電極2との間に電解質膜3が挟持されている。アノード電極1は、例えばSrRuOとCe0.8Gd0.21.9(以下、GDCともいう)との混合物から構成され、カソード電極2は、例えばNiとGDCとの混合物から構成されている。また、電解質膜3は、例えばGDCの多孔質体から構成されている。また、電解質膜3の厚さは、10μm~100μm程度、例えば50μmである。このようにして、電気化学反応器が構成されている。このような電気化学反応器は、例えば管4に入れられて使用される。 In the electrochemical reactor according to this embodiment, an electrolyte membrane 3 is sandwiched between an anode electrode 1 and a cathode electrode 2 as shown in FIG. The anode electrode 1 is composed of, for example, a mixture of SrRuO 3 and Ce 0.8 Gd 0.2 O 1.9 (hereinafter also referred to as GDC), and the cathode electrode 2 is composed of, for example, a mixture of Ni and GDC. ing. The electrolyte membrane 3 is composed of, for example, a GDC porous body. The thickness of the electrolyte membrane 3 is about 10 μm to 100 μm, for example, 50 μm. In this way, an electrochemical reactor is configured. Such an electrochemical reactor is used, for example, in a tube 4.
 ここで、本実施形態に係る電気化学反応器の動作について説明する。この電気化学反応器では、アノード電極1とカソード電極2との間に1V~5V程度の電圧が印加される。そして、カソード電極2に向けて、CH及びCO系の原料ガスが供給されると、カソード電極2において、(4)式に示すように、還元反応が生じる。
 CO+2e→CO+O2-・・・(4)
Here, the operation of the electrochemical reactor according to the present embodiment will be described. In this electrochemical reactor, a voltage of about 1 V to 5 V is applied between the anode electrode 1 and the cathode electrode 2. When CH 4 and CO 2 -based source gases are supplied toward the cathode electrode 2, a reduction reaction occurs at the cathode electrode 2 as shown in the formula (4).
CO 2 + 2e → CO + O 2− (4)
 この還元反応で生じた酸化物イオン(O2-)は電解質膜3を透過し、アノード電極1まで到達する。アノード電極1にはCHガスも到達する。そして、酸化物イオン及びCHガスがアノード電極1に到達すると、アノード電極1において、(5)式に示すように、酸化反応が生じる。
 CH+O2-→CO+2H+2e・・・(5)
Oxide ions (O 2− ) generated by this reduction reaction pass through the electrolyte membrane 3 and reach the anode electrode 1. CH 4 gas also reaches the anode electrode 1. When the oxide ions and CH 4 gas reach the anode electrode 1, an oxidation reaction occurs in the anode electrode 1 as shown in the equation (5).
CH 4 + O 2− → CO + 2H 2 + 2e (5)
 従って、この電気化学反応器における全反応の反応式は、(6)式で表わされる。
 CH+CO→2H+2CO・・・(6)
Therefore, the reaction formula of the total reaction in this electrochemical reactor is expressed by equation (6).
CH 4 + CO 2 → 2H 2 + 2CO (6)
 つまり、本実施形態によれば、CH-CO系ガスからH-CO系燃料ガスを合成することができる。また、(5)式に示されるように、輸送された酸化物イオン(O2-)とメタンとの反応が進行するため、従来のドライリフォーミングのようなCHの熱分解を抑制することができる。従って、高い効率でH-CO系燃料ガスを製造することができる。 That is, according to the present embodiment, the H 2 —CO based fuel gas can be synthesized from the CH 4 —CO 2 based gas. Further, as shown in the formula (5), since the reaction between the transported oxide ion (O 2− ) and methane proceeds, the thermal decomposition of CH 4 like conventional dry reforming is suppressed. Can do. Therefore, the H 2 —CO based fuel gas can be produced with high efficiency.
 次に、上述のような電気化学反応器を製造する方法について説明する。 Next, a method for manufacturing the electrochemical reactor as described above will be described.
 先ず、アノード電極1及びカソード電極2に用いるGDC電解質粉体を作製する方法について説明する。図2は、GDC電解質粉体を作製する方法を示す図である。GDC電解質粉体の粉体では、先ず、0.2MのCe(NO水溶液及び0.2MのGd(NO水溶液を、Ce及びGdのモル比を4対1として混合する(Ce:Gd=4:1)。次いで、この混合液を0.4Mのシュウ酸水溶液に加え、共沈させる。その後、ろ過及び乾燥を行う。例えば、乾燥の温度は100℃とし、その時間は24時間とする。続いて、600℃での仮焼を2時間行う。次いで、直径が3mmのアルミナ球を用いたボールミルにより粉化を行い、GDC粉体を得る。 First, a method for producing a GDC electrolyte powder used for the anode electrode 1 and the cathode electrode 2 will be described. FIG. 2 is a diagram showing a method for producing a GDC electrolyte powder. In the case of the GDC electrolyte powder, first, a 0.2 M Ce (NO 3 ) 3 aqueous solution and a 0.2 M Gd (NO 3 ) 3 aqueous solution are mixed at a molar ratio of Ce and Gd of 4 to 1 ( Ce: Gd = 4: 1). Next, this mixed solution is added to a 0.4 M oxalic acid aqueous solution and coprecipitated. Thereafter, filtration and drying are performed. For example, the drying temperature is 100 ° C., and the time is 24 hours. Subsequently, calcination at 600 ° C. is performed for 2 hours. Next, pulverization is performed by a ball mill using alumina spheres having a diameter of 3 mm to obtain GDC powder.
 次に、アノード電極1に用いるSrRuO粉体を作製する方法について説明する。図3は、SrRuO粉体を作製する方法を示す図である。先ず、0.2MのSr(NO水溶液及び0.2MのRuCl水溶液を、Sr2+及びRu3+のモル比を1対1として混合する(Sr2+:Ru3+=1:1)。次いで、この混合液を1.0Mのアンモニア水溶液に加え、共沈させる。その後、凍結乾燥を行う。続いて、1000℃での仮焼を2時間行い、SrRuO粉体を得る。 Next, a method for producing SrRuO 3 powder used for the anode electrode 1 will be described. FIG. 3 is a diagram showing a method for producing SrRuO 3 powder. First, a 0.2 M aqueous solution of Sr (NO 3 ) 2 and a 0.2 M aqueous solution of RuCl 3 are mixed at a molar ratio of Sr 2+ and Ru 3+ of 1: 1 (Sr 2+ : Ru 3+ = 1: 1). Next, this mixed solution is added to a 1.0 M aqueous ammonia solution and coprecipitated. Thereafter, freeze drying is performed. Subsequently, calcination at 1000 ° C. is performed for 2 hours to obtain SrRuO 3 powder.
 次に、電気化学反応器を製造する方法について説明する。図4は、電気化学反応器を製造する方法を示す図である。先ず、アノード電極1及びカソード電極2を個別に作製する。 Next, a method for producing an electrochemical reactor will be described. FIG. 4 is a diagram illustrating a method for producing an electrochemical reactor. First, the anode electrode 1 and the cathode electrode 2 are produced individually.
 アノード電極1の作製では、SrRuO粉体及びGDC電解質粉体を30対70の体積比で混ぜ合わせ、この混合物の懸濁液(サスペンジョン)を作製する。このサスペンジョンにおける固体量は、10体積%程度とする。次いで、凍結乾燥を行い、更に600℃での焼成を1時間行う。この結果、アノード電極1が作製される。 In the production of the anode electrode 1, SrRuO 3 powder and GDC electrolyte powder are mixed at a volume ratio of 30 to 70, and a suspension of this mixture (suspension) is produced. The amount of solid in this suspension is about 10% by volume. Next, freeze-drying is performed, followed by baking at 600 ° C. for 1 hour. As a result, the anode electrode 1 is produced.
 カソード電極2の作製では、Ni(NO及びGDC電解質粉体をNi量に換算してNi:GDC=30:70の体積比で混ぜ合わせ、この混合物の懸濁液(サスペンジョン)を作製する。このサスペンジョンにおける固体量は、10体積%程度とする。次いで、凍結乾燥を行い、更に600℃での焼成を1時間行う。この結果、カソード電極2が作製される。 In the production of the cathode electrode 2, Ni (NO 3 ) 2 and GDC electrolyte powder are mixed in a volume ratio of Ni: GDC = 30: 70 in terms of Ni amount, and a suspension (suspension) of this mixture is produced. To do. The amount of solid in this suspension is about 10% by volume. Next, freeze-drying is performed, followed by baking at 600 ° C. for 1 hour. As a result, the cathode electrode 2 is produced.
 そして、アノード電極1とカソード電極2との間に電解質膜3としてGDCフィルムを挟み込み、200MPaの一軸プレス成形を1分間行う。なお、GDCフィルムとしては、GDCを30体積%含有している非水系サスペンションのドクターブレード法で成膜されたものを用いることができる。前ブレードの高さを150μm、後ブレードの高さを80μmとしたドクターブレードにより、厚さが50μm程度のGDCフィルムを作製することができる。 Then, a GDC film is sandwiched as the electrolyte membrane 3 between the anode electrode 1 and the cathode electrode 2, and uniaxial press molding of 200 MPa is performed for 1 minute. In addition, as a GDC film, what was formed into a film by the doctor blade method of the nonaqueous suspension containing 30 volume% of GDC can be used. A GDC film having a thickness of about 50 μm can be produced by a doctor blade having a front blade height of 150 μm and a rear blade height of 80 μm.
 電解質膜3の挟み込み後には、1200℃での焼結を2時間行う。次いで、50ml/分の水素雰囲気下、800℃で24時間の還元処理を行うことにより、カソード電極2中のNiOをNiに還元する。これらの一連の処理により、電気化学反応器を製造することができる。 After sandwiching the electrolyte membrane 3, sintering at 1200 ° C. is performed for 2 hours. Subsequently, NiO in the cathode electrode 2 is reduced to Ni by performing reduction treatment at 800 ° C. for 24 hours under a hydrogen atmosphere of 50 ml / min. An electrochemical reactor can be manufactured by these series of processes.
 なお、アノード電極の材料は、Ruが含まれていれば上記のものに限定されない。例えば、金属Ru又はRu酸化物とGDCとの混合物から構成されていてもよい。更に、金属Ru、Ru酸化物及びSrRuOの2種以上が含まれていてもよい。 The material of the anode electrode is not limited to the above as long as Ru is included. For example, you may be comprised from the mixture of metal Ru or Ru oxide, and GDC. Further, two or more of metal Ru, Ru oxide and SrRuO 3 may be included.
 また、電解質膜の材料は、酸化物イオン導電性を示す金属酸化物を含有していれば上記のものに限定されない。このような金属酸化物としては、例えば、セリウム-希土類元素(イッテルビウム、イットリウム、ガドリニウム、サマリウム、ネオジム、ランタン等)系酸化物、ジルコニウム-イットリウム系酸化物、及びランタン-ガリウム系酸化物が挙げられる。 The material of the electrolyte membrane is not limited to the above as long as it contains a metal oxide exhibiting oxide ion conductivity. Examples of such metal oxides include cerium-rare earth elements (ytterbium, yttrium, gadolinium, samarium, neodymium, lanthanum, etc.) oxides, zirconium-yttrium oxides, and lanthanum-gallium oxides. .
 次に、本発明者らが行った実験について説明する。 Next, the experiment conducted by the inventors will be described.
 (第1の実験)
 第1の実験では、図1のカソード側からCH(25cm/分)及びCO(25cm/分)の混合ガスを流通させ、アノード側から流れ出たガスの流量の経時変化を測定した。なお、1.25V/cmの電場を印加し、反応温度は400℃-700℃とした。この結果を図5(b)に示す。
(First experiment)
In the first experiment, a mixed gas of CH 4 (25 cm 3 / min) and CO 2 (25 cm 3 / min) was circulated from the cathode side in FIG. 1, and the change over time in the flow rate of the gas flowing out from the anode side was measured. . An electric field of 1.25 V / cm was applied and the reaction temperature was 400 ° C.-700 ° C. The result is shown in FIG.
 また、比較のための実験も行った。この比較のための実験では、Ni(NO及びAl粉体を30vol%Ni-70vol%Alの割合で混合し、これを直径16mm、高さ10mmに成形した。成形体は800℃で1時間焼成した。更に、70vol%H-30vol%Arガス中、700℃で10時間加熱して、NiOをNiへ還元した。一部の実験では、Niを含まないAl成形体のみを作製した。これに50vol%CH-50vol%COの混合ガスを流し、ドライリフォーミングを行った。この結果を図5(a)に示す。 An experiment for comparison was also conducted. In an experiment for comparison, Ni (NO 3 ) 2 and Al 2 O 3 powders were mixed at a ratio of 30 vol% Ni-70 vol% Al 2 O 3 and formed into a diameter of 16 mm and a height of 10 mm. The compact was fired at 800 ° C. for 1 hour. Further, NiO was reduced to Ni by heating at 700 ° C. for 10 hours in 70 vol% H 2 -30 vol% Ar gas. In some experiments, only Al 2 O 3 compacts containing no Ni were produced. 50 vol% CH 4 -50 vol% CO 2 mixed gas was allowed to flow through this, and dry reforming was performed. The result is shown in FIG.
 図5(a)に示すように、Al焼結体のみに混合ガスを流すと、流量の変化は起きなかった。これは、CH及びCOの分解反応が進行しないためで、炭素析出が起こらず閉塞が生じない。一方、Ni/Al触媒を用いた場合(500℃-700℃)、温度によらず、30分後には出口ガスの流量が減少した。これはNi触媒によりCH及びCOの分解反応が進行し、炭素析出により触媒内でガスの閉塞が生じたためである。 As shown in FIG. 5A, when the mixed gas was allowed to flow only through the Al 2 O 3 sintered body, the flow rate did not change. This is because the decomposition reaction of CH 4 and CO 2 does not proceed, so that no carbon deposition occurs and no blockage occurs. On the other hand, when the Ni / Al 2 O 3 catalyst was used (500 ° C.-700 ° C.), the flow rate of the outlet gas decreased after 30 minutes regardless of the temperature. This is because the decomposition reaction of CH 4 and CO 2 progressed by the Ni catalyst, and gas clogging occurred in the catalyst due to carbon deposition.
 一方、1.25V/cmの電場を印加したNi/GDC-GDC-SrRuO/GDC反応器では、測定した時間(1.5時間-6時間)では流量の減少は見られず、ガスの閉塞は起こらなかった。これは電場を印加したことによる電気化学反応が進行し、炭素析出が抑制されたためである。 On the other hand, in the Ni / GDC-GDC-SrRuO 3 / GDC reactor to which an electric field of 1.25 V / cm was applied, the flow rate did not decrease during the measured time (1.5 hours-6 hours), and the gas was blocked. Did not happen. This is because the electrochemical reaction due to the application of the electric field has progressed and carbon deposition has been suppressed.
 (第2の実験)
 第2の実験では、図6Aに示すように、カソード電極2の長さを4mmとし、その端部から0.5mm、1.5mm、2.5mm、3.5mm離間した4ヵ所(位置A~D)において、燃料ガスの合成後の炭素のEPMA分析(Electron Probe Micro-Analysis)を行った。この結果を図6Bに示す。
(Second experiment)
In the second experiment, as shown in FIG. 6A, the length of the cathode electrode 2 is 4 mm, and four positions (positions A to A, 0.5 mm, 1.5 mm, 2.5 mm, and 3.5 mm away from the end). In D), EPMA analysis (Electron Probe Micro-Analysis) of carbon after synthesis of the fuel gas was performed. The result is shown in FIG. 6B.
 なお、EPMA分析では、50vol%CH-50vol%COの分解反応を1.25V/cmの電場下、400℃-700℃で行い、通算11時間後のカソード表面を分析した。 In EPMA analysis, a decomposition reaction of 50 vol% CH 4 -50 vol% CO 2 was carried out at 400 ° C. to 700 ° C. under an electric field of 1.25 V / cm, and the cathode surface after 11 hours in total was analyzed.
 図6Bに示すように、4点(位置A~D)のいずれにおいても、炭素量は、リファレンスとして測定した炭素100%粉末に対して13%-18%であった。この結果は、カソード内部で均一に炭素析出が起きているものの、その量はガス閉塞を起こすほどではないことを示している。 As shown in FIG. 6B, the carbon content at any of the four points (positions A to D) was 13% to 18% with respect to the 100% carbon powder measured as a reference. This result indicates that although carbon deposition occurs uniformly inside the cathode, the amount is not so high as to cause gas blockage.
 (第3の実験)
 第3の実験では、電場1.25V/cmを印加したNi/GDC-GDC-SrRuO/GDC反応器を使用して、50vol%CH-50vol%COの分解反応を400℃-700℃で行い、出口ガスの割合を調べた。この結果を図7に示す。
(Third experiment)
In the third experiment, using a Ni / GDC-GDC-SrRuO 3 / GDC reactor to which an electric field of 1.25 V / cm was applied, a decomposition reaction of 50 vol% CH 4 -50 vol% CO 2 was performed at 400 ° C. to 700 ° C. The ratio of outlet gas was examined. The result is shown in FIG.
 図7に示すように、温度の上昇にともない、導入したCH及びCOの分解が進行し、その結果、H及びCOの量が増加した。また、各温度でのガス割合は時間によらずほぼ一定であった。700℃で残存するCH及びCOはそれぞれ10%程度であった。更なる分解には700℃以上の温度が必要である。 As shown in FIG. 7, as the temperature increased, decomposition of the introduced CH 4 and CO 2 proceeded, and as a result, the amounts of H 2 and CO increased. The gas ratio at each temperature was almost constant regardless of time. CH 4 and CO 2 remaining at 700 ° C. were each about 10%. Further decomposition requires temperatures above 700 ° C.
 (第4の実験)
 第4の実験では、Ni/GDC-GDC-SrRuO/GDC反応器を800℃、印加電場を1.25V/cm又は6.25V/cmとして、作動させた。そして、導入するCH及びCOの混合ガスの割合を30/70、40/60、50/50、60/40、又は70/30として、出口ガスの割合を測定した。この結果を図8に示す。
(Fourth experiment)
In the fourth experiment, the Ni / GDC-GDC-SrRuO 3 / GDC reactor was operated at 800 ° C. and the applied electric field was 1.25 V / cm or 6.25 V / cm. And the ratio of the exit gas was measured by setting the ratio of the mixed gas of CH 4 and CO 2 to be introduced to 30/70, 40/60, 50/50, 60/40, or 70/30. The result is shown in FIG.
 図8に示すように、印加電場を1.25V/cmとした場合、CH及びCOの残量はほぼ0となった。いずれの割合で混合しても、H及びCOが生成した。入口のメタン量が増加すると、水素がより多く生成する。印加電場を6.25V/cmとした場合にも同様の傾向が見られた。但し、CHの割合が小さいとCOの残存が確認された。電場の大きさで反応のメカニズムが異なることが考えられる。これについては後に詳述する。 As shown in FIG. 8, when the applied electric field was 1.25 V / cm, the remaining amounts of CH 4 and CO 2 were almost zero. H 2 and CO were produced by mixing at any ratio. As the amount of methane at the inlet increases, more hydrogen is produced. A similar tendency was observed when the applied electric field was 6.25 V / cm. However, when the proportion of CH 4 was small, it was confirmed that CO 2 remained. It is conceivable that the reaction mechanism varies depending on the magnitude of the electric field. This will be described in detail later.
 (第5の実験)
 第5の実験では、1.25V/cmの電場を印加したNi/GDC-GDC-SrRuO/GDC反応器と、第1の実験で作製したNi/Al触媒を使用して、50vol%CH-50vol%COの分解反応を400℃-700℃で行い、生成するH及びCOのモル比を測定した。この結果を図9に示す。
(Fifth experiment)
In the fifth experiment, using a Ni / GDC-GDC-SrRuO 3 / GDC reactor to which an electric field of 1.25 V / cm was applied and the Ni / Al 2 O 3 catalyst prepared in the first experiment, 50 vol. % CH 4 -50 vol% CO 2 was decomposed at 400 ° C. to 700 ° C., and the molar ratio of H 2 and CO produced was measured. The result is shown in FIG.
 理想的に反応(CH+CO→2CO+2H)が進行すると、H/CO比は1になる。Ni/Al触媒の場合、前述の(3)式も起こり、H/CO比は2以上となる。一方、1.25V/cmの電場を印加した電気化学反応器では、いずれの温度においても理想的な比の1に近くなった。このことは、ガス閉塞が起きないこととも良く一致する。 When the reaction (CH 4 + CO 2 → 2CO + 2H 2 ) proceeds ideally, the H 2 / CO ratio becomes 1. In the case of the Ni / Al 2 O 3 catalyst, the above-described formula (3) also occurs, and the H 2 / CO ratio is 2 or more. On the other hand, in an electrochemical reactor to which an electric field of 1.25 V / cm was applied, the ideal ratio was close to 1 at any temperature. This is in good agreement with the fact that no gas blockage occurs.
 (第6の実験)
 第6の実験では、1.25V/cmの電場を印加した電気化学反応器を使用して、50vol%CH-50vol%COの分解反応を400℃-700℃で行い、出口ガスのO分圧を測定した。この結果を図10に示す。
(Sixth experiment)
In the sixth experiment, the decomposition reaction of 50 vol% CH 4 -50 vol% CO 2 was performed at 400 ° C. to 700 ° C. using an electrochemical reactor to which an electric field of 1.25 V / cm was applied. Two partial pressures were measured. The result is shown in FIG.
 図10に示すように、測定した温度範囲で10-29Pa~10-12Paの酸素分圧であった。このことは、メタンの直接酸化(CH+1/2O→CO+H)は起きなかったことを示している。 As shown in FIG. 10, the oxygen partial pressure was 10 −29 Pa to 10 −12 Pa in the measured temperature range. This indicates that direct oxidation of methane (CH 4 + 1 / 2O 2 → CO + H 2 ) did not occur.
 (第7の実験)
 第7の実験では、1.25V/cm又は6.25V/cmの電場を印加した電気化学反応器による入口ガスのCH/CO比(A)、及び出口ガスのH/CO比(B)を測定した。反応温度は800℃とした。この結果を図11に示す。
(Seventh experiment)
In the seventh experiment, the CH 4 / CO 2 ratio (A) of the inlet gas and the H 2 / CO ratio of the outlet gas (A) by an electrochemical reactor applied with an electric field of 1.25 V / cm or 6.25 V / cm ( B) was measured. The reaction temperature was 800 ° C. The result is shown in FIG.
 ここで、図11中のB、B、及びBについて説明する。 Here, B 1 , B 2 , and B 3 in FIG. 11 will be described.
 上記の(6)式に示す反応と共に、(7)式に示す反応が電気化学的に同時に進行すると、生成するH及びCOの割合Bは、(3A-1)/(A+1)となる。
 CH+CO→2H+2CO・・・(6)
 CH+3CO→4CO+2H0・・・(7)
When the reaction shown in the formula (7) and the reaction shown in the formula (7) proceed simultaneously electrochemically, the ratio B 1 of H 2 and CO produced is (3A-1) / (A + 1). .
CH 4 + CO 2 → 2H 2 + 2CO (6)
CH 4 + 3CO 2 → 4CO + 2H 2 0 (7)
 (7)式におけるカソード反応及びアノード反応は、夫々(8)式、(9)式で表わされる。
 3CO+6e→3CO+3O2-・・・(8)
 CH+3O2-→CO+2HO+6e・・・(9)
The cathode reaction and the anode reaction in the formula (7) are expressed by the formula (8) and the formula (9), respectively.
3CO 2 + 6e → 3CO + 3O 2- (8)
CH 4 + 3O 2− → CO + 2H 2 O + 6e (9)
 一方、(6)式に示す反応及び(3)式に示す反応が同時に進行すると、生成するH及びCOの割合Bは、Aとなる。
 CH+CO→2H+2CO・・・(6)
 CH→2H+C・・・(3)
On the other hand, when the reaction shown in the formula (6) and the reaction shown in the formula (3) proceed simultaneously, the ratio B 2 of H 2 and CO to be generated becomes A.
CH 4 + CO 2 → 2H 2 + 2CO (6)
CH 4 → 2H 2 + C (3)
 また、(6)式に示す反応と共に、(10)式に示す反応が電気化学的に同時に進行すると、生成するH及びCOの割合Bは、2/(3-A)となる。(10)式に示す反応はHとアセトアルデヒドとの生成を示す。
 CH+CO→2H+2CO・・・(6)
 3CH+CO→2H+2CHCHO・・・(10)
Further, when the reaction shown in the formula (10) proceeds simultaneously with the reaction shown in the formula (6) electrochemically, the ratio B 3 of H 2 and CO to be generated becomes 2 / (3-A). The reaction shown in formula (10) shows the formation of H 2 and acetaldehyde.
CH 4 + CO 2 → 2H 2 + 2CO (6)
3CH 4 + CO 2 → 2H 2 + 2CH 3 CHO (10)
 CHCHOは電気化学的に(6)式に示す反応で生成するCOとCHとの化学反応で生成すると考えられる((11)式)。
 CH+CO→CHCHO・・・(11)
CH 3 CHO is considered to be produced electrochemically by a chemical reaction between CO and CH 4 produced by the reaction shown in the formula (6) (formula (11)).
CH 4 + CO → CH 3 CHO (11)
 そして、(11)式に示す反応と(6)式に示す反応との総括反応が(10)式に示す反応である。 And the overall reaction of the reaction shown in the formula (11) and the reaction shown in the formula (6) is the reaction shown in the formula (10).
 これらの割合B、B、及びBの計算値を図11に示す。印加電場が6.25V/cmの場合には、H/CO比はBの計算値と一致した。一方、1.25V/cmの電場では、Aが1より小さいとH/CO比はBに近くなった。Aが1より大きいと、H/CO比はBの計算値と傾向が一致した。従って、Aの値で反応の機構が変わったと推察される。 The calculated values of these ratios B 1 , B 2 , and B 3 are shown in FIG. When the applied electric field was 6.25 V / cm, the H 2 / CO ratio coincided with the calculated value of B 3 . On the other hand, in the electric field of 1.25 V / cm, when A is smaller than 1, the H 2 / CO ratio is close to B 2 . When A was larger than 1, the H 2 / CO ratio agreed with the calculated value of B 1 . Therefore, it is inferred that the value of A changed the reaction mechanism.
 (第8の実験)
 第8の実験では、シュウ酸塩共沈法でGDC(Ce0.8Gd0.21.9)電解質粉体を作製した。また、溶媒としての1.9mlのイソプロパノール及び0.97mlのトルエン、可塑剤としての0.63gのポリエチレングリコール、並びに結合剤としての0.35gのポリビニルブチラールを混合して混合溶液を作製した。次いで、この混合溶液に、7gのGDC電解質粉体を分散させ、24時間の撹拌を行った。その後、ドクターブレード法により厚さが50μm(±3μm)のGDC電解質膜を作製した。
(Eighth experiment)
In the eighth experiment, GDC (Ce 0.8 Gd 0.2 O 1.9 ) electrolyte powder was produced by the oxalate coprecipitation method. Further, 1.9 ml of isopropanol and 0.97 ml of toluene as a solvent, 0.63 g of polyethylene glycol as a plasticizer, and 0.35 g of polyvinyl butyral as a binder were mixed to prepare a mixed solution. Next, 7 g of GDC electrolyte powder was dispersed in this mixed solution, and stirred for 24 hours. Thereafter, a GDC electrolyte membrane having a thickness of 50 μm (± 3 μm) was produced by a doctor blade method.
 また、電極用に3種類の混合粉体(NiO及びGDCの混合粉体、RuO及びGDCの混合粉体、SrRuO及びGDCの混合粉体)を作製した。NiO及びGDCの混合粉体の作製では、GDC電解質粉体及び1.4MのNi(NO水溶液をNi:GDC=30:70(体積比)となるよう混合して6時間の撹拌を行った。その後、凍結乾燥を行い、空気中で600℃で1時間仮焼した。RuO及びGDCの混合粉体の作製では、GDC電解質粉体及びRuCl・2.7HO粉体をRu:GDC=30:70(体積比)となるよう混合して、これに蒸留水を加えて6時間の撹拌を行った。その後、凍結乾燥を行い、空気中で800℃で1時間仮焼した。SrRuO及びGDCの混合粉体の作製では、GDC電解質粉体及びSrRuO粉体をSrRuO:GDC=30:70(体積比)となるよう混合して、蒸留水を加えて6時間の撹拌を行った。その後、凍結乾燥を行い、空気中で600℃で1時間仮焼した。 Also, three types of mixed powders (mixed powder of NiO and GDC, mixed powder of RuO 2 and GDC, mixed powder of SrRuO 3 and GDC) were prepared for electrodes. In preparation of NiO and GDC mixed powder, GDC electrolyte powder and 1.4M Ni (NO 3 ) 2 aqueous solution are mixed so that Ni: GDC = 30: 70 (volume ratio) and stirred for 6 hours. went. Then, it lyophilized | freeze-dried and calcined at 600 degreeC in the air for 1 hour. In the preparation of the mixed powder of RuO 2 and GDC, the GDC electrolyte powder and the RuCl 3 · 2.7H 2 O powder are mixed so that Ru: GDC = 30: 70 (volume ratio), and this is mixed with distilled water. And stirred for 6 hours. Then, it lyophilized | freeze-dried and calcined at 800 degreeC in the air for 1 hour. In the preparation of the mixed powder of SrRuO 3 and GDC, the GDC electrolyte powder and the SrRuO 3 powder were mixed so that SrRuO 3 : GDC = 30: 70 (volume ratio), and distilled water was added and stirred for 6 hours. Went. Then, it lyophilized | freeze-dried and calcined at 600 degreeC in the air for 1 hour.
 そして、上記のGDC電解質膜及び電極用の混合粉体を用いて、表1に示す3種類の電気化学セルを作製した。以下、その詳細について説明する。 Then, three types of electrochemical cells shown in Table 1 were prepared using the above-mentioned mixed powder for GDC electrolyte membrane and electrode. The details will be described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 先ず、直径が10mmの成型器の中に、カソード電極用の粉体、GDC電解質膜及びアノード電極用の粉体を順に挿入し、100MPaで1分間の一軸加圧成形を行った。その後、298MPaで1分間の等方加圧成形を行った。なお、カソード電極用の粉体及びアノード電極用の粉体の量は、いずれも1.3gとした。 First, a cathode electrode powder, a GDC electrolyte membrane, and an anode electrode powder were sequentially inserted into a molding machine having a diameter of 10 mm, and uniaxial pressure molding was performed at 100 MPa for 1 minute. Thereafter, isostatic pressing was performed at 298 MPa for 1 minute. The amount of the cathode electrode powder and the anode electrode powder was 1.3 g.
 等方加圧成形の後、空気中で2時間の共焼結を行った。電気化学セルNo.1の作製では、共焼結の温度を1000℃とし、電気化学セルNo.2及びNo.3の作製では、共焼結の温度を1200℃とした。このように共焼結の温度を相違させたのは、他の実験において、NiO及びGDCの混合粉体の共焼結を1200℃で行うと、RuO及びGDCの混合粉体の共焼結を1200℃で行った場合及びSrRuO及びGDCの混合粉体の共焼結を1200℃で行った場合と比較して収縮率が高くなって、ガスの流量が低くなることが判明していたからである。 After isostatic pressing, co-sintering was performed in air for 2 hours. Electrochemical cell No. In the production of No. 1, the co-sintering temperature was set to 1000 ° C. 2 and no. In the production of 3, the co-sintering temperature was 1200 ° C. The co-sintering temperature was made different in this way in another experiment, when the NiO and GDC mixed powder was co-sintered at 1200 ° C., the RuO 2 and GDC mixed powder was co-sintered. It was found that the shrinkage rate was higher and the gas flow rate was lower than when the SrRuO 3 and GDC mixed powder was co-sintered at 1200 ° C. is there.
 続いて、共焼結により得られた共焼結体の両面、即ち、電極用の粉体が焼結した部分に、Ptペーストを用いて、Pt線を溶接したPtメッシュ(集電体)を接着させた。次いで、このようなPt線が接続された共焼結体をアルミナ製のホルダーにセットし、これらの間の隙間をガラスリング及びガラス粉体を用いて閉塞した。電気化学セルNo.3はこのようにして完成させた。 Subsequently, on both sides of the co-sintered body obtained by co-sintering, that is, on the portion where the powder for the electrode is sintered, a Pt mesh (current collector) in which Pt wire is welded using Pt paste. Glued. Next, the co-sintered body to which such Pt wires were connected was set in an alumina holder, and the gap between them was closed using a glass ring and glass powder. Electrochemical cell No. 3 was completed in this way.
 電気化学セルNo.1及びNo.2の作製では、更に、共焼結体に50ml/分の流量で、97体積%H及び3%HOの混合気体を供給し、700℃で24時間の還元処理を行うことにより、電極用の混合粉体中のNiO、RuOを、夫々Ni、Ruに変化させた。電気化学セルNo.1及びNo.2はこのようにして完成させた。 Electrochemical cell No. 1 and no. In the preparation of 2, by further supplying a mixed gas of 97% by volume H 2 and 3% H 2 O to the co-sintered body at a flow rate of 50 ml / min, and performing a reduction treatment at 700 ° C. for 24 hours, NiO and RuO 2 in the mixed powder for electrodes were changed to Ni and Ru, respectively. Electrochemical cell No. 1 and no. 2 was completed in this way.
 電気化学セルNo.1~No.2の作製後、これらを用いてドライリフォーミングを行った。このドライリフォーミングでは、還元処理の温度である700℃からアルゴンガスを流しながら400℃まで降温した。そして、400℃から800℃までポテンショスタットで電気化学セルNo.1~No.2に1.00Vを印加した。そして、カソード側にCH及びCOを、夫々25ml/分の流量で流した。また、ドライフォーミングの温度は、電気化学セルNo.1では、400℃及び500℃とし、電気化学セルNo.2では、400℃から800℃とし、電気化学セルNo.3では、800℃とした。そして、出口ガスの流量の測定及びガスクロマトグラフによる分析を行い、また、各電気化学セルを流れる電流の電流密度を測定した。これらの結果を図12、図13に示す。図12は、ドライフォーミング(改質)の温度及び時間と、出口ガスの流量及び電流密度との関係を示す。図13は、800℃でのドライフォーミング(改質)の温度及び時間と、出口ガスのガスクロマトグラフによる分析の結果を示す。 Electrochemical cell No. 1-No. After producing 2, dry reforming was performed using these. In this dry reforming, the temperature was reduced from 400 ° C., which is the temperature of the reduction treatment, to 400 ° C. while flowing argon gas. Then, the electrochemical cell no. 1-No. 1.00 V was applied to 2. Then, CH 4 and CO 2 were allowed to flow at a flow rate of 25 ml / min on the cathode side. The dry forming temperature is the same as that of the electrochemical cell No. 1 is 400 ° C. and 500 ° C. 2, the temperature was set to 400 ° C. to 800 ° C. 3 was 800 ° C. And the measurement of the flow rate of an exit gas and the analysis by a gas chromatograph were performed, and the current density of the electric current which flows through each electrochemical cell was measured. These results are shown in FIGS. FIG. 12 shows the relationship between the temperature and time of dry forming (reforming) and the flow rate and current density of the outlet gas. FIG. 13 shows the temperature and time of dry forming (reforming) at 800 ° C. and the results of gas chromatographic analysis of the outlet gas.
 図12に示すように、アノード電極にRuが含まれていない電気化学セルNo.1では、ドライフォーミングの温度が上昇すると、500℃で出口ガス流量が急激に低下し、電流密度が急激に増加した。 As shown in FIG. 12, electrochemical cell no. In No. 1, when the dry forming temperature increased, the outlet gas flow rate rapidly decreased at 500 ° C., and the current density increased rapidly.
 一方、アノード電極にRuが含まれている電気化学セルNo.2では、ドライフォーミングの温度の上昇につれて出口ガス流量が増加した。また、図13に示すように、電気化学セルNo.2では、ドライフォーミングの温度の上昇につれてCHガス及びCOガスの量が減少し、Hガス及びCOガスの量が増加した。これは、温度の上昇に伴いドライリフォーミングが促進されたことを示している。 On the other hand, electrochemical cell No. 1 in which Ru is contained in the anode electrode. In No. 2, the outlet gas flow rate increased as the dry forming temperature increased. In addition, as shown in FIG. In 2, the amount of CH 4 gas and CO 2 gas decreased and the amount of H 2 gas and CO gas increased as the temperature of dry forming increased. This indicates that dry reforming was promoted as the temperature increased.
 更に、図13に示すように、ガスの改質は800℃において、電気化学セルNo.2よりも電気化学セルNo.3で促進された。また、電気化学セルNo.2及びNo.3では、少なくとも10時間の改質まではガスの流量が低下しなかった。そして、生成されたHガス及びCOガスの量は互いに同程度であった。なお、電気化学セルNo.3では、13時間の改質で流量が低下し始め、カソード電極のPtメッシュ上に炭素が析出していた。 Furthermore, as shown in FIG. Electrochemical cell no. 3 was promoted. In addition, electrochemical cell No. 2 and no. In No. 3, the gas flow rate did not decrease until reforming for at least 10 hours. Then, the amount of generated H 2 gas and CO gas were similar to each other. The electrochemical cell No. In No. 3, the flow rate began to decrease after 13 hours of reforming, and carbon was deposited on the Pt mesh of the cathode electrode.
 本発明は、酸化還元反応を利用した燃料ガスの合成等に利用することができる。 The present invention can be used for synthesis of fuel gas using an oxidation-reduction reaction.

Claims (6)

  1.  ルテニウムを含有するアノード電極と、
     ルテニウム又はニッケルを含有するカソード電極と、
     前記アノード電極と前記カソード電極との間に設けられ、酸化物イオン導電性を示す金属酸化物を含有する多孔質の電解質膜と、
     を有することを特徴とする電気化学反応器。
    An anode electrode containing ruthenium;
    A cathode electrode containing ruthenium or nickel;
    A porous electrolyte membrane provided between the anode electrode and the cathode electrode and containing a metal oxide exhibiting oxide ion conductivity;
    An electrochemical reactor comprising:
  2.  前記電解質膜は、前記金属酸化物として、セリウム-希土類元素系酸化物、ジルコニウム-イットリウム系酸化物、及びランタン-ガリウム系酸化物からなる群から選択された少なくとも1種を含有することを特徴とする請求項1に記載の電気化学反応器。 The electrolyte membrane contains at least one selected from the group consisting of a cerium-rare earth element oxide, a zirconium-yttrium oxide, and a lanthanum-gallium oxide as the metal oxide. The electrochemical reactor according to claim 1.
  3.  前記アノード電極は、金属ルテニウム、ルテニウム酸化物及びストロンチウムルテニウム酸化物からなる群から選択された少なくとも1種を含有することを特徴とする請求項1に記載の電気化学反応器。 The electrochemical reactor according to claim 1, wherein the anode electrode contains at least one selected from the group consisting of metal ruthenium, ruthenium oxide, and strontium ruthenium oxide.
  4.  前記カソード電極は、前記電解質膜を構成する材料及びニッケル又はルテニウムを含有することを特徴とする請求項1に記載の電気化学反応器。 The electrochemical reactor according to claim 1, wherein the cathode electrode contains a material constituting the electrolyte membrane and nickel or ruthenium.
  5.  前記電解質膜の厚さは、10μm乃至100μmであることを特徴とする請求項1に記載の電気化学反応器。 2. The electrochemical reactor according to claim 1, wherein the thickness of the electrolyte membrane is 10 μm to 100 μm.
  6.  ルテニウムを含有するアノード電極と、ルテニウム又はニッケルを含有するカソード電極と、前記アノード電極と前記カソード電極との間に設けられ、酸化物イオン導電性を示す金属酸化物を含有する多孔質の電解質膜と、を有する電気化学反応器を用いた燃料ガスの製造方法であって、
     前記アノード電極と前記カソード電極との間に電圧を印加する工程と、
     前記カソード電極に向けてメタン及び二酸化炭素を含むガスを供給する工程と、
     を有することを特徴とする燃料ガスの製造方法。
    A porous electrolyte membrane containing an anode electrode containing ruthenium, a cathode electrode containing ruthenium or nickel, and a metal oxide provided between the anode electrode and the cathode electrode and exhibiting oxide ion conductivity And a method for producing fuel gas using an electrochemical reactor comprising:
    Applying a voltage between the anode electrode and the cathode electrode;
    Supplying a gas containing methane and carbon dioxide toward the cathode electrode;
    A method for producing fuel gas, comprising:
PCT/JP2009/061426 2008-06-27 2009-06-23 Electrochemical reactor and fuel gas manufacturing method using the same WO2009157454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518027A JP5376381B2 (en) 2008-06-27 2009-06-23 Electrochemical reactor and fuel gas production method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169449 2008-06-27
JP2008169449 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009157454A1 true WO2009157454A1 (en) 2009-12-30

Family

ID=41444520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061426 WO2009157454A1 (en) 2008-06-27 2009-06-23 Electrochemical reactor and fuel gas manufacturing method using the same

Country Status (2)

Country Link
JP (1) JP5376381B2 (en)
WO (1) WO2009157454A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173980A (en) * 2012-02-24 2013-09-05 Kagoshima Univ Electrochemical reactor and method for producing carbon and oxygen gas from carbon dioxide or carbon monoxide using the same
WO2013180081A1 (en) 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 Electrochemical reactor and method for production of fuel gas
JP2014183032A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Electrode for energy-conversion device use, energy-conversion device arranged by use thereof, and energy conversion method
WO2015022912A1 (en) * 2013-08-14 2015-02-19 国立大学法人 鹿児島大学 Electrochemical reactor, and method for producing hydrogen and carbon dioxide from carbon monoxide and water vapor using same
US9315913B2 (en) 2013-12-03 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Formic acid generation apparatus and method
JP2019056153A (en) * 2017-09-22 2019-04-11 国立大学法人 鹿児島大学 Electrochemical reactor, production system of fuel gas, and production method of fuel gas
US10981786B2 (en) 2016-10-14 2021-04-20 Coorstek Membrane Sciences As Process for producing compressed hydrogen in a membrane reactor and reactor therefor
US11677088B2 (en) 2016-10-14 2023-06-13 Coorstek Membrane Sciences As Process for the manufacture of a solid oxide membrane electrode assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235666B2 (en) 2017-09-27 2023-03-08 積水化学工業株式会社 Carbon dioxide reduction device and porous electrode
US11105006B2 (en) 2018-03-22 2021-08-31 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
US11390955B2 (en) 2019-08-07 2022-07-19 Sekisui Chemical Co., Ltd. Electrochemical cell, electrochemical system, and method of producing carbonate compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241195A (en) * 1998-02-27 1999-09-07 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and production of hydrogen
JP2002047591A (en) * 2000-07-28 2002-02-15 Japan Atom Energy Res Inst Electrochemical reaction device
JP2007527468A (en) * 2003-07-10 2007-09-27 プラクスエア・テクノロジー・インコーポレイテッド Oxygen ion transport complex element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241195A (en) * 1998-02-27 1999-09-07 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and production of hydrogen
JP2002047591A (en) * 2000-07-28 2002-02-15 Japan Atom Energy Res Inst Electrochemical reaction device
JP2007527468A (en) * 2003-07-10 2007-09-27 プラクスエア・テクノロジー・インコーポレイテッド Oxygen ion transport complex element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173980A (en) * 2012-02-24 2013-09-05 Kagoshima Univ Electrochemical reactor and method for producing carbon and oxygen gas from carbon dioxide or carbon monoxide using the same
WO2013180081A1 (en) 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 Electrochemical reactor and method for production of fuel gas
CN104350180A (en) * 2012-05-28 2015-02-11 国立大学法人鹿儿岛大学 Electrochemical reactor and method for production of fuel gas
JPWO2013180081A1 (en) * 2012-05-28 2016-01-21 国立研究開発法人科学技術振興機構 Electrochemical reactor
JP2014183032A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Electrode for energy-conversion device use, energy-conversion device arranged by use thereof, and energy conversion method
WO2015022912A1 (en) * 2013-08-14 2015-02-19 国立大学法人 鹿児島大学 Electrochemical reactor, and method for producing hydrogen and carbon dioxide from carbon monoxide and water vapor using same
JPWO2015022912A1 (en) * 2013-08-14 2017-03-02 国立研究開発法人科学技術振興機構 Electrochemical reactor and method for producing hydrogen and carbon dioxide from carbon monoxide and water vapor using the same
US9315913B2 (en) 2013-12-03 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Formic acid generation apparatus and method
US10981786B2 (en) 2016-10-14 2021-04-20 Coorstek Membrane Sciences As Process for producing compressed hydrogen in a membrane reactor and reactor therefor
US11677088B2 (en) 2016-10-14 2023-06-13 Coorstek Membrane Sciences As Process for the manufacture of a solid oxide membrane electrode assembly
JP2019056153A (en) * 2017-09-22 2019-04-11 国立大学法人 鹿児島大学 Electrochemical reactor, production system of fuel gas, and production method of fuel gas

Also Published As

Publication number Publication date
JPWO2009157454A1 (en) 2011-12-15
JP5376381B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5376381B2 (en) Electrochemical reactor and fuel gas production method using the same
CN107406332B (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including cell structure
Shang et al. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3− δ
JP5391391B2 (en) Method for producing NiO-ceramic composite powder
Chang et al. In situ fabrication of (Sr, La) FeO 4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
EP2797147B1 (en) Solid oxide fuel cell
US20110195342A1 (en) Solid oxide fuel cell reactor
EP2857554A1 (en) Electrochemical reactor and method for production of fuel gas
JP2009037874A (en) Manufacturing method of air electrode support type single cell for intermediate temperature actuating solid oxide fuel cell
KR20200015060A (en) Solid oxide fuel cell and method of preparing the same
WO2018084279A1 (en) Composite particle powder, electrode material for solid oxide cells, and electrode for solid oxide cells using same
JP6805054B2 (en) Steam electrolysis cell
JP5175154B2 (en) Production method of nickel composite oxide, nickel composite oxide obtained by the method, nickel oxide-stabilized zirconia composite oxide using the nickel composite oxide, and nickel oxide-stabilized zirconia composite oxide Fuel electrode for solid oxide fuel cell
JP5196502B2 (en) Composite material suitable for use as an electrode material in SOC
JP7055473B2 (en) Electrodes for solid oxide fuel cells and solid oxide fuel cells using them
JP2003208902A (en) Solid electrolyte-type fuel cell
JP6480330B2 (en) Electrochemical reactor and method for producing hydrogen and carbon dioxide from carbon monoxide and water vapor using the same
JP2003217597A (en) Solid electrolyte type fuel cell
JP2017071831A (en) Steam electrolysis cell
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP6898646B2 (en) Electrochemical reactor, fuel gas production system and fuel gas production method
Furukawa et al. Evaluation of electric power of SOFC using reformed biogas
EP3960906A1 (en) Membrane electrode assembly, solid oxide-type fuel cell, and electrochemical device
JP6532049B2 (en) Fuel electrode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the fuel electrode
EP3815782A1 (en) Steam reforming catalyst, and fuel cell system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770164

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010518027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770164

Country of ref document: EP

Kind code of ref document: A1