WO2009157123A1 - Sensor device and method for manufacturing the same - Google Patents

Sensor device and method for manufacturing the same Download PDF

Info

Publication number
WO2009157123A1
WO2009157123A1 PCT/JP2009/001935 JP2009001935W WO2009157123A1 WO 2009157123 A1 WO2009157123 A1 WO 2009157123A1 JP 2009001935 W JP2009001935 W JP 2009001935W WO 2009157123 A1 WO2009157123 A1 WO 2009157123A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
detection layer
layer
gas
sensor device
Prior art date
Application number
PCT/JP2009/001935
Other languages
French (fr)
Japanese (ja)
Inventor
中村大佐
山田一
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2009157123A1 publication Critical patent/WO2009157123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to a sensor device and a manufacturing method thereof, and more particularly to a sensor device that detects heat due to a reaction between a gas and a catalyst and a manufacturing method thereof.
  • Patent Document 1 (1) a first method in which an intermediate layer made of ultrafine particles is provided on a substrate and a metal oxide semiconductor film corresponding to the irregularities of the intermediate layer is formed thereon; (2) A second method of forming minute irregularities on the substrate surface itself on which the thin film is formed; and (3) forming minute irregularities on the substrate surface, and further providing an intermediate layer made of ultrafine particles thereon to form irregularities.
  • a third method of forming a corresponding metal oxide semiconductor film is disclosed.
  • Patent Document 2 discloses that the surface of a sensitive body is etched with a volatile solvent vapor to form minute irregularities.
  • Patent Document 3 discloses that a gas excited in a vacuum atmosphere collides with the substrate surface to roughen the surface and form a thin film on the rough substrate surface.
  • the present invention intends to provide a sensor device that can form irregularities on the surface of a detection layer without complicating the manufacturing process and a manufacturing method thereof.
  • the present invention provides a sensor device configured as follows.
  • the sensor device has at least one reaction detection element.
  • the reaction detection element includes a detection layer for detecting a specific object, and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer.
  • the detection layer has at least one of cracks and voids formed therein, and has irregularities formed on the surface thereof.
  • the temperature detector includes (a) a thermistor substrate made of a thinned bulk material, and (b) formed on the thermistor substrate, and detects a change in electrical resistance of the thermistor substrate due to a temperature change of the detection layer. And an electrode.
  • the specific object is a gas.
  • the detection layer is a reaction catalyst layer including a catalyst that increases a reaction rate of a chemical reaction accompanied by heat generation with respect to the gas.
  • the sensor device is a gas sensor.
  • the sensitivity of the gas sensor is improved by increasing the surface area of the detection layer.
  • the present invention also provides a method of manufacturing a sensor device configured as follows.
  • the sensor device manufacturing method includes at least one reaction detection element including a detection layer for detecting a specific target object, and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer.
  • the manufacturing method of the sensor apparatus which has this. It includes a vapor deposition step of forming the detection layer by vapor deposition, and vapor deposition is performed by introducing an atmospheric gas in the vapor deposition step.
  • cracks and voids can be formed inside the detection layer by introducing atmospheric gas in the vapor deposition process for forming the detection layer, and irregularities are formed on the surface of the detection layer. There is no need to add a special process in order to achieve this.
  • the atmospheric gas is an inert gas.
  • the introduced gas can be prevented from adversely affecting the detection layer.
  • Example 1 It is a cross section of a gas sensor.
  • Example 1 It is a cross section which shows the manufacturing process of a gas sensor.
  • Example 1 It is a cross section which shows the manufacturing process of a gas sensor.
  • Example 1 It is a photograph of the SEM image of the surface of the catalyst layer for reaction.
  • Example 1 It is a photograph of the AFM image of the surface of the catalyst layer for reaction.
  • Example 1 It is a photograph of the SIM image of the cross section of the catalyst layer for reaction.
  • Example 1 It is a photograph of the SEM image of the surface of the catalyst layer for reaction.
  • Example 1 It is a photograph of the AFM image of the surface of the catalyst layer for reaction.
  • Example 1 It is a photograph of the SIM image of the cross section of the catalyst layer for reaction.
  • two thermistor substrates 12 a and 12 b are joined to a support substrate 22 via a support unit 20, and a gap 24 is formed between the support substrate 22 and the thermistor substrates 12 a and 12 b. It is supposed to be formed.
  • the support portion 20 can be formed in an arbitrary shape such as a frame shape, but is preferably formed in a column shape so that heat transfer from the thermistor substrates 12a and 12b to the support substrate 22 is minimized.
  • columnar support portions 20 are formed of resin, solder, or the like at the four corners of the rectangular thermistor substrates 12a and 12b.
  • the thermistor substrates 12a and 12b are thinned bulk materials such as a Mn 3 O 4 -based NTC thermistor material to which Ni, Co, Fe, Al, Cu or the like is added, or a BaTiO 3 -based PTC thermistor material.
  • the thermistor substrates 12a and 12b having a thin bulk material do not vary in composition as compared to the thermistors formed by the thin film process. As a result, when the thermistor substrates 12a and 12b in which the bulk material is thinned are used, the sensor characteristics are stabilized as compared with the case where the thermistor formed by the thin film process is used.
  • the material of the composition that is difficult to produce with a thin film can be used for the bulk material of the thermistor substrates 12a and 12b, sensor characteristics that are difficult to realize with a bulk ceramic or a thin film can be extracted.
  • the thin film process can be reduced, and the manufacturing cost can be reduced.
  • a detection electrode 14, an extraction electrode 13, and a wiring pattern (not shown) for connecting the electrodes 13 and 14 are formed using a conductive material.
  • the detection electrode 14 is used to measure the electric resistance of the thermistor substrate 12 between the detection electrodes 14.
  • the detection electrode 14 can be formed in an arbitrary shape.
  • the detection electrode 14 is formed so that a pair of comb-shaped electrodes enter a gap between the other comb-teeth portions.
  • a comb-teeth electrode by changing the length of the comb-teeth portion and the size of the gap (gap) between the comb-teeth portion of one electrode and the comb-teeth portion of the other electrode, Since the resistance value between the electrodes can be adjusted, matching with the peripheral circuit system can be easily achieved.
  • An insulating film 16 is formed on the top surfaces 12x of the thermistor substrates 12a and 12b so as to cover the detection electrodes. Although a configuration without the insulating film 16 is possible, when the insulating film 16 is provided, the surface of the detection electrode 14 is protected and the deterioration of the detection electrode 14 is prevented, so that the highly accurate gas sensor 10 with stable characteristics is provided. it can.
  • a reaction catalyst layer 18 is formed immediately above a portion between the detection electrodes 14 serving as a gas detection portion.
  • the reaction catalyst layer 18 includes a catalyst that increases the reaction rate of a chemical reaction accompanied by heat generation for a specific gas.
  • the catalyst contained in the reaction catalyst layer 18 is selected according to the gas to be detected.
  • a Pt catalyst when detecting hydrogen gas, a Pt catalyst is used.
  • hydrogen molecules dissociate into protons on the Pt catalyst, react with oxygen in the air to generate water, and heat is generated at this time.
  • This heat is transmitted to the thermistor substrate 12a through the reaction catalyst layer 18 and the insulating film 16, and the electrical resistance of the thermistor substrate 12a between the detection electrodes 14 changes.
  • hydrogen gas can be detected.
  • hydrogen gas is detected by a change in the output voltage of the extraction electrode 13.
  • the temperature detection unit composed of the thermistor substrate 12 a and the detection electrode 14 has a membrane structure on the support substrate 22 via the support unit 20, and an air layer is formed in the gap 24 between the thermistor substrate 12 a and the support substrate 22. Due to the presence, the temperature detection unit is thermally separated from the support substrate 22. Therefore, the ratio of the amount of heat transmitted from the reaction catalyst layer 18 to the temperature detection unit further to the support substrate 22 side is reduced, and the ratio of the amount of heat contributing to the temperature change of the thermistor substrate 12a is increased. . As a result, the gas detection sensitivity is improved, and the gas sensor 10 having good sensor characteristics can be provided.
  • the temperature detection unit constituted by the thermistor substrate 12b and the detection electrode 14 forms a membrane structure on the support substrate 22 via the support unit 20, and the thermistor substrate 12b and the support substrate 22 are provided. Therefore, the temperature detection unit is thermally separated from the support substrate 22.
  • the reaction catalyst layer 18 is not formed on the insulating film 16 on the other thermistor substrate 12b side, the electrical resistance of the thermistor substrate 12b changes only due to a temperature change due to the surrounding environment.
  • the first portion 11a on the one thermistor substrate 12a side includes a reaction detection element including a reaction catalyst layer 18 and a temperature detection unit.
  • the second portion 11b on the other thermistor substrate 12b side does not include the reaction catalyst layer 18 but includes an environmental temperature detection element including only the temperature detection unit.
  • the gas sensor 10 detects the temperature change due to the surrounding environment by the environmental temperature detection element of the second portion 11b, and thereby compensates the change of the resistance value due to the temperature change due to the surrounding environment for the reaction detection element of the first portion 11a. be able to. Therefore, it is possible to provide a highly accurate gas sensor 10 that is not affected by temperature changes due to the surrounding environment.
  • the environment temperature detecting element 11b may be omitted, and the gas sensor may be configured only by the reaction detecting element 11a.
  • the characteristics of the gas sensor 10 are determined by the catalyst capacity of the reaction catalyst layer 18, the heat capacity of the sensor, and the like.
  • the sensor sensitivity varies greatly depending on the catalyst capability of the reaction catalyst layer 18.
  • the ability of the catalyst in the reaction catalyst layer 18 varies depending on the surface area and temperature of the catalyst. The larger the surface area, the better the catalyst ability. Therefore, cracks and voids are formed inside the reaction catalyst layer 18 and irregularities are formed on the surface of the reaction catalyst layer 18.
  • the reaction catalyst layer 18 is formed by vapor deposition
  • vapor deposition is performed by introducing an atmospheric gas instead of a vacuum state.
  • cracks and voids are formed inside the reaction catalyst layer 18 that has been vapor-deposited under the influence of the atmospheric gas, and the cracks and voids are connected to the surface. Unevenness is formed on the surface.
  • irregularities are formed on the surface, the surface area of the reaction catalyst layer 18 that reacts with the gas increases, so that the sensitivity of the gas sensor 10 is improved.
  • FIGS. 2 and 3 are cross-sectional views showing a process flow of the gas sensor 10.
  • a plurality of gas sensors 10 are manufactured in a state of a collective substrate.
  • FIG. 2 and FIG. 3 schematically show a part of the collective substrate.
  • a comb-like electrode is formed on the upper surface 12x of a thermistor substrate 12k of a bulk material of Mn 3 O 4 system or BaTiO 3 system using a method such as photolithography, vapor deposition, or sputtering. 14, an extraction electrode 13 and a wiring pattern (not shown) for connecting the electrodes 13 and 14 are formed.
  • the comb electrode 14 a material configuration capable of obtaining ohmic contact with the thermistor material, for example, Al / NiCr (/ thermistor) is used. That is, a NiCr film is formed on the thermistor substrate 12k, and an Al film is formed thereon.
  • an insulating film 16 is formed on the comb-teeth electrode 14 with an insulating material such as SiO 2 or Al 2 O 3 .
  • a reaction catalyst layer 18 is formed on the insulating film 16 directly above the gas detection unit using Pt and Pd for a hydrogen sensor and Au for a CO sensor. Thereby, a highly sensitive hydrogen sensor or CO sensor can be realized.
  • the reaction catalyst layer 18 is formed by introducing an atmospheric gas and performing vapor deposition.
  • the evaporated molecules and atoms fly in a certain direction and enter from one direction and adhere to form a uniform film.
  • a film containing voids and cracks is formed inside due to the influence of molecules and atoms of the atmospheric gas. That is, when vapor deposition is performed by introducing atmospheric gas, the evaporated molecules / atoms collide with the molecules / atoms of the atmospheric gas and are scattered, enter from multiple directions, and form a film in a disordered state.
  • a film containing voids and cracks is formed under the influence of the atmospheric gas, such as molecules and atoms of the atmospheric gas entering the inside.
  • the pressure of the atmospheric gas is preferably about 0.1 to 1.0 Pa, for example. If the pressure of the atmospheric gas is too high, vapor deposition itself cannot be performed. On the other hand, when the pressure of the atmospheric gas is too low, voids and cracks are not formed, which is the same as vapor deposition in a vacuum state.
  • the introduced atmospheric gas is preferably an inert gas such as N 2 or Ar that does not chemically react with the material constituting the deposited film so as not to adversely affect the deposited film.
  • the film thickness of the reaction catalyst layer 18 may be such that voids and cracks inside the film are connected to the surface.
  • the reaction catalyst layer 18 having a film thickness of 50 nm, 100 nm, or 200 nm was formed under the same conditions except for the film thickness, the sensor sensitivity was not affected. From this, it is considered that the voids and cracks in the deep part of 50 nm or more are not connected to the surface, and therefore the sensor sensitivity is not affected.
  • the lower surface 12y side of the thermistor substrate 12k is shown in FIG.
  • the thinning process is performed until the thermistor substrate 12 having a predetermined thickness is obtained.
  • the thermistor substrate 12k is thinned to 50 ⁇ m or less using a method such as polishing, grinding, milling, or RIE (reactive ion etching). Polishing and grinding are suitable for cost reduction. Since the thinning process is performed in a state of being attached to the support substrate 82, the thermistor substrate 12k can be thinned without being destroyed.
  • posts 20 a and 20 b used for bonding and heat separation are formed on the thinned surface 12 y of the thermistor substrate 12 and the support substrate 22.
  • a material of the posts 20a and 20b for example, a Cu—Sn solder material is used.
  • the posts 20a and 20b are joined to face each other. Thereby, the support substrate 22 and the thermistor substrate 12 are joined via the posts 20a and 20b. At least a pressure process is used for bonding.
  • the support substrate 82 and the resin 80 are peeled from the thermistor substrate 12.
  • the thermistor substrate 12 and the support substrate 22 are divided along the boundary line of the gas sensor 10 by a method such as dicing using a blade 84 and separated into individual pieces.
  • cracks and voids can be formed in the reaction catalyst layer 18 by introducing the atmospheric gas in the vapor deposition step for forming the reaction catalyst layer 18 and performing the vapor deposition. It is not necessary to add a special process in order to form irregularities on the surface of the reaction catalyst layer 18.
  • a Pt film was formed as the reaction catalyst layer 18 by EB (electron beam) deposition. At this time, N 2 was introduced as an atmospheric gas. As a comparative example, a Pt film was formed by EB vapor deposition in a vacuum state.
  • the film forming conditions are shown in Table 1 below.
  • normal vapor deposition is a comparative example
  • N 2 introduction vapor deposition is a production example.
  • FIG. 4 is a photograph of an SEM image of the surface of the Pt film formed as the reaction catalyst layer 18. From the comparative example of FIG. 4A and the production example of FIG. 4B, it can be seen that when N 2 is introduced and evaporated as in the production example, irregularities are formed on the surface.
  • FIG. 5 is a photograph of an AFM image of the surface of the Pt film formed as the reaction catalyst layer 18.
  • Ra (arithmetic mean roughness) of the comparative example of FIG. 5A was 0.64 nm, and Ra of the preparation example of FIG. 6B was 6.4 nm. That is, the surface roughness of the production example was about 10 times that of the comparative example.
  • FIG. 6 is a photograph of a SIM image of the surface of the Pt film formed as the reaction catalyst layer 18.
  • FIG. 6 (a) there are no cracks or voids in the film and is uniform, whereas in the example of production in FIG. 6 (b), it is understood that cracks / voids are generated in the film. .
  • the surface area of the production example was about three times the surface area of the comparative example.
  • the gas sensor 10 using the reaction catalyst layer 18 of the production example was the same as that of the comparative example.
  • the sensitivity was improved by 30% compared with the gas sensor using the reaction catalyst layer.
  • the present invention can be applied to various sensor devices other than the gas sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Provided are a sensor device and a method for manufacturing the same for forming convex/concave portions on the surface of a detection layer without complicating the manufacturing process. The sensor device (10) has at least one reaction detection element (11a).  The reaction detection element (11a) includes: a detection layer (18) for detecting a specific object; and a temperature detection unit on which the detection layer (18) is arranged and which detects a temperature change of the detection layer (18) (a thermistor substrate (12a) and a detection electrode (14)).  The detection layer (18) has cracks or voids formed therein and convex/concave portions on the surface thereof.  When forming the detection layer (18) by deposition, an atmospheric gas is introduced so as to form cracks and voids inside the detection layer (18).

Description

センサ装置及びその製造方法Sensor device and manufacturing method thereof
 本発明はセンサ装置及びその製造方法に関し、詳しくは、ガスと触媒との反応などによる熱を検出するセンサ装置及びその製造方法に関する。 The present invention relates to a sensor device and a manufacturing method thereof, and more particularly to a sensor device that detects heat due to a reaction between a gas and a catalyst and a manufacturing method thereof.
 特定の対象物を検出する検出層を有するセンサにおいて、検出層として用いられる薄膜の表面に凹凸が形成され、表面積が広いほど、感度が向上する傾向がある。そのため、検出層の薄膜の表面に凹凸を形成する種々の方法が提案されている。 In a sensor having a detection layer for detecting a specific object, unevenness is formed on the surface of a thin film used as the detection layer, and the sensitivity tends to increase as the surface area increases. For this reason, various methods for forming irregularities on the surface of the thin film of the detection layer have been proposed.
 例えば、特許文献1には、(1)基板上に超微粒子からなる中間層を設け、その上に中間層の凹凸に対応した金属酸化物半導体膜を形成する第1の方法と、(2)薄膜を形成する基板表面それ自体に微小な凹凸を形成する第2の方法と、(3)基板表面に微小な凹凸を形成し、さらにその上に超微粒子からなる中間層を設けて、凹凸に対応した金属酸化物半導体膜を形成する第3の方法とが開示されている。 For example, in Patent Document 1, (1) a first method in which an intermediate layer made of ultrafine particles is provided on a substrate and a metal oxide semiconductor film corresponding to the irregularities of the intermediate layer is formed thereon; (2) A second method of forming minute irregularities on the substrate surface itself on which the thin film is formed; and (3) forming minute irregularities on the substrate surface, and further providing an intermediate layer made of ultrafine particles thereon to form irregularities. A third method of forming a corresponding metal oxide semiconductor film is disclosed.
 特許文献2には、感応体表面を揮発性溶剤の蒸気によってエッチング処理を行い、微小な凹凸を形成することが開示されている。 Patent Document 2 discloses that the surface of a sensitive body is etched with a volatile solvent vapor to form minute irregularities.
 特許文献3には、真空雰囲気下で励起された気体を基板表面に衝突させることにより表面を粗し、粗した基板表面上に薄膜を形成することが開示されている。 Patent Document 3 discloses that a gas excited in a vacuum atmosphere collides with the substrate surface to roughen the surface and form a thin film on the rough substrate surface.
特開平5-52790号公報JP-A-5-52790 特開2001-165888号公報JP 2001-165888 A 特開2001-296267号公報JP 2001-296267 A
 しかし、従来の方法では、検出層の下地に凹凸を形成したり、検出層の表面自体に凹凸を形成したりする特別な工程を追加する必要があるため、製造工程が煩雑になる。 However, in the conventional method, since it is necessary to add a special process for forming irregularities on the base of the detection layer or forming irregularities on the surface of the detection layer itself, the manufacturing process becomes complicated.
 本発明は、かかる実情に鑑み、製造工程が煩雑にならずに検出層の表面に凹凸を形成することができるセンサ装置及びその製造方法を提供しようとするものである。 In view of such circumstances, the present invention intends to provide a sensor device that can form irregularities on the surface of a detection layer without complicating the manufacturing process and a manufacturing method thereof.
 本発明は、上記課題を解決するために、以下のように構成したセンサ装置を提供する。 In order to solve the above problems, the present invention provides a sensor device configured as follows.
 センサ装置は、少なくとも一つの反応検知素子を有する。前記反応検知素子は、特定の対象物を検出する検出層と、その上に前記検出層が配置され、前記検出層の温度変化を検知する温度検出部とを備える。前記検出層は、その内部に亀裂及び空隙の少なくとも一方が形成され、その表面に凹凸が形成されている。前記温度検出部は、(a)薄化されたバルク材からなるサーミスタ基板と、(b)前記サーミスタ基板上に形成され、前記検出層の温度変化による前記サーミスタ基板の電気抵抗の変化を検出するための電極とを備える。 The sensor device has at least one reaction detection element. The reaction detection element includes a detection layer for detecting a specific object, and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer. The detection layer has at least one of cracks and voids formed therein, and has irregularities formed on the surface thereof. The temperature detector includes (a) a thermistor substrate made of a thinned bulk material, and (b) formed on the thermistor substrate, and detects a change in electrical resistance of the thermistor substrate due to a temperature change of the detection layer. And an electrode.
 上記構成において、検出層の内部に形成された亀裂や空隙が検出層の表面につながって検出層の表面に凹凸が形成されることで、検出層の表面積が増加するため、センサ装置の感度が向上する。 In the above configuration, cracks and voids formed inside the detection layer are connected to the surface of the detection layer and irregularities are formed on the surface of the detection layer. improves.
 上記構成によれば、検出層を形成する際の条件を適宜に選択することにより、検出層の内部に亀裂や空隙を形成することができ、検出層の表面に凹凸が形成されるようにするために特別な工程を追加する必要はない。 According to the above configuration, by appropriately selecting the conditions for forming the detection layer, cracks and voids can be formed inside the detection layer, and irregularities are formed on the surface of the detection layer. Therefore, it is not necessary to add a special process.
 好ましくは、前記特定の対象物がガスである。前記検出層が、前記ガスについて発熱を伴う化学反応の反応速度を増大させる触媒を含む反応用触媒層である。 Preferably, the specific object is a gas. The detection layer is a reaction catalyst layer including a catalyst that increases a reaction rate of a chemical reaction accompanied by heat generation with respect to the gas.
 この場合、センサ装置は、ガスセンサである。ガスセンサは、検出層の表面積の増加により、感度が向上する。 In this case, the sensor device is a gas sensor. The sensitivity of the gas sensor is improved by increasing the surface area of the detection layer.
 また、本発明は、以下のように構成したセンサ装置の製造方法を提供する。 The present invention also provides a method of manufacturing a sensor device configured as follows.
 センサ装置の製造方法は、特定の対象物を検出する検出層と、その上に前記検出層が配置され、前記検出層の温度変化を検知する温度検出部とを備えた少なくとも一つの反応検知素子を有するセンサ装置の製造方法である。前記検出層を蒸着により形成する蒸着工程を含み、該蒸着工程において、雰囲気ガスを導入して蒸着する。 The sensor device manufacturing method includes at least one reaction detection element including a detection layer for detecting a specific target object, and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer. The manufacturing method of the sensor apparatus which has this. It includes a vapor deposition step of forming the detection layer by vapor deposition, and vapor deposition is performed by introducing an atmospheric gas in the vapor deposition step.
 上記方法において、温度検出部の全部又は一部を形成した後、それに接する検出層を形成しても、検出層を形成した後に、検出層に接する温度検出部の全部又は一部を形成してもよい。 In the above method, after forming all or part of the temperature detection unit and forming the detection layer in contact with it, after forming the detection layer, forming all or part of the temperature detection unit in contact with the detection layer. Also good.
 上記方法によれば、検出層を形成する蒸着工程において雰囲気ガスを導入して蒸着を行うことにより、検出層の内部に亀裂や空隙を形成することができ、検出層の表面に凹凸が形成されるようにするために特別な工程を追加する必要はない。 According to the above method, cracks and voids can be formed inside the detection layer by introducing atmospheric gas in the vapor deposition process for forming the detection layer, and irregularities are formed on the surface of the detection layer. There is no need to add a special process in order to achieve this.
 好ましくは、前記雰囲気ガスが不活性ガスである。 Preferably, the atmospheric gas is an inert gas.
 不活性ガスを導入して蒸着すると、導入したガスによって検出層に悪影響が及ばないようにすることができる。 When an inert gas is introduced and evaporated, the introduced gas can be prevented from adversely affecting the detection layer.
 本発明によれば、センサ装置の製造工程が煩雑にならずに、検出層の表面に凹凸を形成することができる。 According to the present invention, it is possible to form irregularities on the surface of the detection layer without complicating the manufacturing process of the sensor device.
ガスセンサの断面である。(実施例1)It is a cross section of a gas sensor. (Example 1) ガスセンサの製造工程を示す断面である。(実施例1)It is a cross section which shows the manufacturing process of a gas sensor. (Example 1) ガスセンサの製造工程を示す断面である。(実施例1)It is a cross section which shows the manufacturing process of a gas sensor. (Example 1) 反応用触媒層の表面のSEM像の写真である。(比較例、実施例1)It is a photograph of the SEM image of the surface of the catalyst layer for reaction. (Comparative example, Example 1) 反応用触媒層の表面のAFM像の写真である。(比較例、実施例1)It is a photograph of the AFM image of the surface of the catalyst layer for reaction. (Comparative example, Example 1) 反応用触媒層の断面のSIM像の写真である。(比較例、実施例1)It is a photograph of the SIM image of the cross section of the catalyst layer for reaction. (Comparative example, Example 1)
 以下、本発明の実施の形態について、図1~図6を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 <実施例> 本発明の実施例のガスセンサ10について、図1の断面図を参照しながら説明する。 <Example> A gas sensor 10 according to an example of the present invention will be described with reference to a cross-sectional view of FIG.
 図1に示すように、ガスセンサ10は、支持基板22上に、支持部20を介して2つのサーミスタ基板12a,12bが接合され、支持基板22とサーミスタ基板12a,12bとの間に空隙24が形成されるようになっている。 As shown in FIG. 1, in the gas sensor 10, two thermistor substrates 12 a and 12 b are joined to a support substrate 22 via a support unit 20, and a gap 24 is formed between the support substrate 22 and the thermistor substrates 12 a and 12 b. It is supposed to be formed.
 支持部20は、枠状など任意の形状に形成することができるが、サーミスタ基板12a,12bから支持基板22への熱伝達ができるだけ少なくなるように、柱状に形成することが好ましい。例えば、矩形のサーミスタ基板12a,12bの四隅に、円柱状の支持部20を、樹脂やはんだ等で形成する。 The support portion 20 can be formed in an arbitrary shape such as a frame shape, but is preferably formed in a column shape so that heat transfer from the thermistor substrates 12a and 12b to the support substrate 22 is minimized. For example, columnar support portions 20 are formed of resin, solder, or the like at the four corners of the rectangular thermistor substrates 12a and 12b.
 サーミスタ基板12a,12bは、Ni、Co、Fe、Al、Cu等を添加したMn系のNTCサーミスタ材や、BaTiO系のPTCサーミスタ材などのバルク材を薄化したものである。バルク材を薄化したサーミスタ基板12a,12bは、薄膜プロセスにより形成されたサーミスタと比べると、組成がばらつかない。その結果、バルク材を薄化したサーミスタ基板12a,12bを用いると、薄膜プロセスにより形成されたサーミスタを用いる場合と比べ、センサ特性が安定する。 The thermistor substrates 12a and 12b are thinned bulk materials such as a Mn 3 O 4 -based NTC thermistor material to which Ni, Co, Fe, Al, Cu or the like is added, or a BaTiO 3 -based PTC thermistor material. The thermistor substrates 12a and 12b having a thin bulk material do not vary in composition as compared to the thermistors formed by the thin film process. As a result, when the thermistor substrates 12a and 12b in which the bulk material is thinned are used, the sensor characteristics are stabilized as compared with the case where the thermistor formed by the thin film process is used.
 また、サーミスタ基板12a,12bのバルク材に、薄膜では作製困難な組成の材料を使用することができるため、バルクセラミックや薄膜では実現が困難なセンサ特性を引き出すことができる。 Also, since the material of the composition that is difficult to produce with a thin film can be used for the bulk material of the thermistor substrates 12a and 12b, sensor characteristics that are difficult to realize with a bulk ceramic or a thin film can be extracted.
 さらに、バルク材を薄化したサーミスタ基板12a,12bを用いると、薄膜プロセスを減らすことができ、製造コストの低減を図ることができる。 Furthermore, if the thermistor substrates 12a and 12b having a thin bulk material are used, the thin film process can be reduced, and the manufacturing cost can be reduced.
 サーミスタ基板12a,12bの上面12xには、検出電極14と、取り出し電極13と、両電極13,14間を接続する不図示の配線パターンとが、導電材料を用いて形成されている。検出電極14は、検出電極14間の部分のサーミスタ基板12の電気抵抗を測定するために用いる。検出電極14は、任意の形状に形成できる。 On the upper surface 12x of the thermistor substrates 12a and 12b, a detection electrode 14, an extraction electrode 13, and a wiring pattern (not shown) for connecting the electrodes 13 and 14 are formed using a conductive material. The detection electrode 14 is used to measure the electric resistance of the thermistor substrate 12 between the detection electrodes 14. The detection electrode 14 can be formed in an arbitrary shape.
 例えば、検出電極14は、一対の櫛歯形状の電極が、互いに他方の櫛歯の部分の隙間に入り込むように形成する。このような櫛歯電極の場合、櫛歯の部分の長さや、一方の電極の櫛歯の部分と他方の電極の櫛歯の部分との間の間隔(ギャップ)の大きさを変えることにより、電極間の抵抗値を調整できるため、周辺回路系との整合が取りやすくなる。 For example, the detection electrode 14 is formed so that a pair of comb-shaped electrodes enter a gap between the other comb-teeth portions. In the case of such a comb-teeth electrode, by changing the length of the comb-teeth portion and the size of the gap (gap) between the comb-teeth portion of one electrode and the comb-teeth portion of the other electrode, Since the resistance value between the electrodes can be adjusted, matching with the peripheral circuit system can be easily achieved.
 サーミスタ基板12a,12bの上面12xには、検出電極14を覆うように絶縁膜16が形成されている。絶縁膜16のない構成も可能ではあるが、絶縁膜16を設けると、検出電極14の表面が保護され、検出電極14の劣化が防止されるため、特性が安定した高精度なガスセンサ10を提供できる。 An insulating film 16 is formed on the top surfaces 12x of the thermistor substrates 12a and 12b so as to cover the detection electrodes. Although a configuration without the insulating film 16 is possible, when the insulating film 16 is provided, the surface of the detection electrode 14 is protected and the deterioration of the detection electrode 14 is prevented, so that the highly accurate gas sensor 10 with stable characteristics is provided. it can.
 一方のサーミスタ基板12a側の絶縁膜16上には、ガス検知部となる検出電極14間の部分の真上に、反応用触媒層18が形成されている。反応用触媒層18は、特定のガスについて発熱を伴う化学反応の反応速度を増大させる触媒を含む。反応用触媒層18に含まれる触媒は、検出対象のガスに応じて選択する。 On the insulating film 16 on the one thermistor substrate 12a side, a reaction catalyst layer 18 is formed immediately above a portion between the detection electrodes 14 serving as a gas detection portion. The reaction catalyst layer 18 includes a catalyst that increases the reaction rate of a chemical reaction accompanied by heat generation for a specific gas. The catalyst contained in the reaction catalyst layer 18 is selected according to the gas to be detected.
 例えば、水素ガスを検出する場合には、Pt触媒を用いる。この場合、Pt触媒上で水素分子はプロトンに乖離し、空気中の酸素と反応して水が生成され、このときに熱が発生する。この熱が、反応用触媒層18、絶縁膜16を介してサーミスタ基板12aに伝わり、検出電極14間のサーミスタ基板12aの電気抵抗が変化する。この電気抵抗の変化を、取り出し電極13を介して読み出すことにより、水素ガスを検出することができる。例えば、取り出し電極13の出力電圧の変化によって、水素ガスを検出する。 For example, when detecting hydrogen gas, a Pt catalyst is used. In this case, hydrogen molecules dissociate into protons on the Pt catalyst, react with oxygen in the air to generate water, and heat is generated at this time. This heat is transmitted to the thermistor substrate 12a through the reaction catalyst layer 18 and the insulating film 16, and the electrical resistance of the thermistor substrate 12a between the detection electrodes 14 changes. By reading out the change in electrical resistance through the extraction electrode 13, hydrogen gas can be detected. For example, hydrogen gas is detected by a change in the output voltage of the extraction electrode 13.
 サーミスタ基板12aと検出電極14とで構成される温度検出部は、支持基板22上に支持部20を介してメンブレン構造をなし、サーミスタ基板12aと支持基板22との間の空隙24に空気層が存在するため、温度検出部は熱的に支持基板22から分離されている。そのため、反応用触媒層18から温度検出部に伝達された熱のうち、さらに支持基板22側に伝達される熱量の割合が小さくなり、サーミスタ基板12aの温度変化に寄与する熱量の割合が大きくなる。その結果、ガス検出感度が向上し、良好なセンサ特性を備えたガスセンサ10を提供できる。 The temperature detection unit composed of the thermistor substrate 12 a and the detection electrode 14 has a membrane structure on the support substrate 22 via the support unit 20, and an air layer is formed in the gap 24 between the thermistor substrate 12 a and the support substrate 22. Due to the presence, the temperature detection unit is thermally separated from the support substrate 22. Therefore, the ratio of the amount of heat transmitted from the reaction catalyst layer 18 to the temperature detection unit further to the support substrate 22 side is reduced, and the ratio of the amount of heat contributing to the temperature change of the thermistor substrate 12a is increased. . As a result, the gas detection sensitivity is improved, and the gas sensor 10 having good sensor characteristics can be provided.
 他方のサーミスタ基板12bについても同様に、サーミスタ基板12bと検出電極14とで構成される温度検出部は、支持基板22上に支持部20を介してメンブレン構造をなし、サーミスタ基板12bと支持基板22との間の空隙24に空気層が存在するため、温度検出部は熱的に支持基板22から分離されている。しかし、他方のサーミスタ基板12b側の絶縁膜16の上には反応用触媒層18が形成されていないため、サーミスタ基板12bは、周りの環境による温度変化のみによって電気抵抗が変化する。 Similarly, with respect to the other thermistor substrate 12b, the temperature detection unit constituted by the thermistor substrate 12b and the detection electrode 14 forms a membrane structure on the support substrate 22 via the support unit 20, and the thermistor substrate 12b and the support substrate 22 are provided. Therefore, the temperature detection unit is thermally separated from the support substrate 22. However, since the reaction catalyst layer 18 is not formed on the insulating film 16 on the other thermistor substrate 12b side, the electrical resistance of the thermistor substrate 12b changes only due to a temperature change due to the surrounding environment.
 つまり、一方のサーミスタ基板12a側の第1部分11aは、反応用触媒層18と温度検出部とを備える反応検知素子を含む。他方のサーミスタ基板12b側の第2部分11bは、反応用触媒層18を備えず、温度検出部のみを備える環境温度検知素子を含む。 That is, the first portion 11a on the one thermistor substrate 12a side includes a reaction detection element including a reaction catalyst layer 18 and a temperature detection unit. The second portion 11b on the other thermistor substrate 12b side does not include the reaction catalyst layer 18 but includes an environmental temperature detection element including only the temperature detection unit.
 ガスセンサ10は、第2部分11bの環境温度検知素子により周りの環境による温度変化を検出し、それにより、第1部分11aの反応検知素子について周りの環境による温度変化による抵抗値の変化を補償することができる。したがって、周りの環境による温度変化の影響を受けない高精度なガスセンサ10を提供できる。 The gas sensor 10 detects the temperature change due to the surrounding environment by the environmental temperature detection element of the second portion 11b, and thereby compensates the change of the resistance value due to the temperature change due to the surrounding environment for the reaction detection element of the first portion 11a. be able to. Therefore, it is possible to provide a highly accurate gas sensor 10 that is not affected by temperature changes due to the surrounding environment.
 なお、高精度が要求されない場合には、環境温度検知素子11bがない構成とし、反応検知素子11aのみでガスセンサを構成すればよい。 If high accuracy is not required, the environment temperature detecting element 11b may be omitted, and the gas sensor may be configured only by the reaction detecting element 11a.
 ガスセンサ10の特性は、反応用触媒層18の触媒の能力、センサの熱容量等によって決まる。特に、反応用触媒層18の触媒の能力によって、センサ感度は大きく変わる。反応用触媒層18の触媒の能力は、触媒の表面積、温度により変化し、表面積が大きいほど、触媒能力は向上する。そこで、反応用触媒層18の内部に亀裂や空隙が形成され、反応用触媒層18の表面に凹凸が形成されるようにする。 The characteristics of the gas sensor 10 are determined by the catalyst capacity of the reaction catalyst layer 18, the heat capacity of the sensor, and the like. In particular, the sensor sensitivity varies greatly depending on the catalyst capability of the reaction catalyst layer 18. The ability of the catalyst in the reaction catalyst layer 18 varies depending on the surface area and temperature of the catalyst. The larger the surface area, the better the catalyst ability. Therefore, cracks and voids are formed inside the reaction catalyst layer 18 and irregularities are formed on the surface of the reaction catalyst layer 18.
 例えば、反応用触媒層18を蒸着により形成する際に、真空状態ではなく、雰囲気ガスを導入して蒸着を行う。雰囲気ガスを導入して蒸着を行うと、蒸着膜された反応用触媒層18の内部に、雰囲気ガスの影響で亀裂や空隙が形成され、亀裂や空隙が表面につながり、反応用触媒層18の表面に凹凸が形成される。表面に凹凸が形成されると、ガスと反応する反応用触媒層18の表面積が増加するため、ガスセンサ10の感度が向上する。 For example, when the reaction catalyst layer 18 is formed by vapor deposition, vapor deposition is performed by introducing an atmospheric gas instead of a vacuum state. When vapor deposition is performed by introducing the atmospheric gas, cracks and voids are formed inside the reaction catalyst layer 18 that has been vapor-deposited under the influence of the atmospheric gas, and the cracks and voids are connected to the surface. Unevenness is formed on the surface. When irregularities are formed on the surface, the surface area of the reaction catalyst layer 18 that reacts with the gas increases, so that the sensitivity of the gas sensor 10 is improved.
 次に、ガスセンサ10の製造方法について、図2及び図3を参照しながら説明する。図2及び図3は、ガスセンサ10のプロセスフローを示す断面図である。ガスセンサ10は、複数個分が集合基板の状態で製造されるが、図2及び図3には、集合基板の一部を模式的に示している。 Next, a method for manufacturing the gas sensor 10 will be described with reference to FIGS. 2 and 3 are cross-sectional views showing a process flow of the gas sensor 10. A plurality of gas sensors 10 are manufactured in a state of a collective substrate. FIG. 2 and FIG. 3 schematically show a part of the collective substrate.
 まず、図2(1)に示すように、Mn系又はBaTiO系のバルク材のサーミスタ基板12kの上面12xに、フォトリソグラフィ技術、蒸着、スパッタリングなどの方法を用いて、櫛歯電極14、取り出し電極13、両電極13,14間を接続する不図示の配線パターンを形成する。櫛歯電極14としては、サーミスタ材料とのオーミック接触が得られる材料構成、例えばAl/NiCr(/サーミスタ)を用いる。すなわち、サーミスタ基板12k上にNiCr膜を形成し、その上にAl膜を形成する。次いで、櫛歯電極14上にSiO、Al等の絶縁材料で絶縁膜16を形成する。次いで、絶縁膜16上のガス検知部の真上の部分に、水素センサならPt,Pd、COセンサならAuを用いて、反応用触媒層18を形成する。これによって、高感度な水素センサやCOセンサを実現できる。 First, as shown in FIG. 2 (1), a comb-like electrode is formed on the upper surface 12x of a thermistor substrate 12k of a bulk material of Mn 3 O 4 system or BaTiO 3 system using a method such as photolithography, vapor deposition, or sputtering. 14, an extraction electrode 13 and a wiring pattern (not shown) for connecting the electrodes 13 and 14 are formed. As the comb electrode 14, a material configuration capable of obtaining ohmic contact with the thermistor material, for example, Al / NiCr (/ thermistor) is used. That is, a NiCr film is formed on the thermistor substrate 12k, and an Al film is formed thereon. Next, an insulating film 16 is formed on the comb-teeth electrode 14 with an insulating material such as SiO 2 or Al 2 O 3 . Next, a reaction catalyst layer 18 is formed on the insulating film 16 directly above the gas detection unit using Pt and Pd for a hydrogen sensor and Au for a CO sensor. Thereby, a highly sensitive hydrogen sensor or CO sensor can be realized.
 反応用触媒層18は、雰囲気ガスを導入して蒸着を行うことにより形成する。 The reaction catalyst layer 18 is formed by introducing an atmospheric gas and performing vapor deposition.
 真空状態で蒸着を行う場合に、蒸発した分子・原子は一定方向を飛行し、一方向から入射して付着し均一な膜を形成する。これに対し、雰囲気ガスを導入して蒸着を行うと、雰囲気ガスの分子・原子の影響で、内部に空隙や亀裂を含む膜が形成される。すなわち、雰囲気ガスを導入して蒸着を行うと、蒸発した分子・原子が雰囲気ガスの分子・原子に衝突して散乱され、多方向から入射し、乱れた状態で膜が形成され、また、膜の中に雰囲気ガスの分子・原子が入り込むなど、雰囲気ガスの影響で、空隙や亀裂を含む膜が形成される。 When vapor deposition is performed in a vacuum state, the evaporated molecules and atoms fly in a certain direction and enter from one direction and adhere to form a uniform film. On the other hand, when vapor deposition is performed by introducing atmospheric gas, a film containing voids and cracks is formed inside due to the influence of molecules and atoms of the atmospheric gas. That is, when vapor deposition is performed by introducing atmospheric gas, the evaporated molecules / atoms collide with the molecules / atoms of the atmospheric gas and are scattered, enter from multiple directions, and form a film in a disordered state. A film containing voids and cracks is formed under the influence of the atmospheric gas, such as molecules and atoms of the atmospheric gas entering the inside.
 雰囲気ガスの圧力は、例えば、0.1~1.0Pa程度が好ましい。雰囲気ガスの圧力が高すぎると蒸着そのものができなくなる。一方、雰囲気ガスの圧力が低すぎると、空隙や亀裂が形成されず、真空状態での蒸着と変わらなくなる。 The pressure of the atmospheric gas is preferably about 0.1 to 1.0 Pa, for example. If the pressure of the atmospheric gas is too high, vapor deposition itself cannot be performed. On the other hand, when the pressure of the atmospheric gas is too low, voids and cracks are not formed, which is the same as vapor deposition in a vacuum state.
 例えばNi膜を成膜する場合、NOやCOのガスを導入して蒸着を行うと、蒸着膜に空隙や亀裂は形成されるが、酸化も起こり、Nのガスを導入して蒸着を行った場合とは膜質が異なる。したがって、導入する雰囲気ガスは、蒸着膜に悪影響を及ぼさないように、蒸着膜を構成する材料と化学反応しないN、Ar等の不活性ガスが好ましい。 For example, in the case of forming a Ni film, when vapor deposition is performed by introducing N 2 O or CO 2 gas, voids and cracks are formed in the vapor deposition film, but oxidation also occurs, and N 2 gas is introduced. The film quality is different from the case of vapor deposition. Therefore, the introduced atmospheric gas is preferably an inert gas such as N 2 or Ar that does not chemically react with the material constituting the deposited film so as not to adversely affect the deposited film.
 反応用触媒層18の膜厚は、膜内部の空隙や亀裂が表面につながる程度でよい。例えば、膜厚以外を同じ条件にして、膜厚が50nm、100nm,200nmの反応用触媒層18を形成したところ、センサ感度に影響がなかった。このことから、50nm以上の深い部分の空隙や亀裂は、表面につながっていないため、センサ感度に影響がないと考えられる。 The film thickness of the reaction catalyst layer 18 may be such that voids and cracks inside the film are connected to the surface. For example, when the reaction catalyst layer 18 having a film thickness of 50 nm, 100 nm, or 200 nm was formed under the same conditions except for the film thickness, the sensor sensitivity was not affected. From this, it is considered that the voids and cracks in the deep part of 50 nm or more are not connected to the surface, and therefore the sensor sensitivity is not affected.
 次いで、図2(2)に示すように、サーミスタ基板12kの上面12x全体に樹脂80を塗付し、サポート基板82を貼り付けた後、サーミスタ基板12kの下面12y側について、図2(3)に示すように所定の厚みのサーミスタ基板12になるまで、薄化処理を行う。サーミスタ基板12kの薄化処理は、例えば、研磨、研削、ミリング、RIE(反応性イオンエッチング)などの工法を用いて、50μm以下に薄化する。低コスト化には、研磨、研削が適している。サポート基板82に貼り付けた状態で薄化処理を行っているので、サーミスタ基板12kを破壊することなく、薄化することが可能である。 Next, as shown in FIG. 2 (2), after the resin 80 is applied to the entire upper surface 12x of the thermistor substrate 12k and the support substrate 82 is adhered, the lower surface 12y side of the thermistor substrate 12k is shown in FIG. The thinning process is performed until the thermistor substrate 12 having a predetermined thickness is obtained. The thermistor substrate 12k is thinned to 50 μm or less using a method such as polishing, grinding, milling, or RIE (reactive ion etching). Polishing and grinding are suitable for cost reduction. Since the thinning process is performed in a state of being attached to the support substrate 82, the thermistor substrate 12k can be thinned without being destroyed.
 次いで、図3(4)に示すように、サーミスタ基板12の薄化処理された面12yと、支持基板22上とに、接合かつ熱分離用に用いるポスト20a,20bを形成する。ポスト20a,20bの材料としては、例えばCu-Sn系はんだ材料を用いる。 Next, as shown in FIG. 3 (4), posts 20 a and 20 b used for bonding and heat separation are formed on the thinned surface 12 y of the thermistor substrate 12 and the support substrate 22. As a material of the posts 20a and 20b, for example, a Cu—Sn solder material is used.
 次いで、図3(5)に示すように、ポスト20a,20b同士を対向させて接合する。これにより、支持基板22とサーミスタ基板12とは、ポスト20a,20bを介して接合される。接合には,少なくとも加圧プロセスを用いる。 Next, as shown in FIG. 3 (5), the posts 20a and 20b are joined to face each other. Thereby, the support substrate 22 and the thermistor substrate 12 are joined via the posts 20a and 20b. At least a pressure process is used for bonding.
 次いで、図3(6)に示すように、サポート基板82及び樹脂80を、サーミスタ基板12から剥離する。 Next, as shown in FIG. 3 (6), the support substrate 82 and the resin 80 are peeled from the thermistor substrate 12.
 次いで、図3(7)に示すように、ブレード84を用いるダイシング等の方法で、サーミスタ基板12及び支持基板22をガスセンサ10の境界線に沿って分割し、個片化する。 Next, as shown in FIG. 3 (7), the thermistor substrate 12 and the support substrate 22 are divided along the boundary line of the gas sensor 10 by a method such as dicing using a blade 84 and separated into individual pieces.
 以上に説明した製造方法によれば、反応用触媒層18を形成する蒸着工程において雰囲気ガスを導入して蒸着を行うことにより、反応用触媒層18の内部に亀裂や空隙を形成することができ、反応用触媒層18の表面に凹凸が形成されるようにするために特別な工程を追加する必要はない。 According to the manufacturing method described above, cracks and voids can be formed in the reaction catalyst layer 18 by introducing the atmospheric gas in the vapor deposition step for forming the reaction catalyst layer 18 and performing the vapor deposition. It is not necessary to add a special process in order to form irregularities on the surface of the reaction catalyst layer 18.
 <作製例> 反応用触媒層18として、EB(電子ビーム)蒸着によりPt膜を成膜した。このとき、雰囲気ガスとしてNを導入した。比較例として、真空状態でEB蒸着により、Pt膜を成膜した。 <Production Example> A Pt film was formed as the reaction catalyst layer 18 by EB (electron beam) deposition. At this time, N 2 was introduced as an atmospheric gas. As a comparative example, a Pt film was formed by EB vapor deposition in a vacuum state.
 成膜条件を、次の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、通常蒸着は比較例であり、N導入蒸着は作製例である。
The film forming conditions are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
In Table 1, normal vapor deposition is a comparative example, and N 2 introduction vapor deposition is a production example.
 図4は、反応用触媒層18として形成したPt膜の表面のSEM像の写真である。図4(a)の比較例と、図4(b)の作製例とから、作製例のようにNを導入して蒸着すると、表面に凹凸が形成されていることが分かる。 FIG. 4 is a photograph of an SEM image of the surface of the Pt film formed as the reaction catalyst layer 18. From the comparative example of FIG. 4A and the production example of FIG. 4B, it can be seen that when N 2 is introduced and evaporated as in the production example, irregularities are formed on the surface.
 図5は、反応用触媒層18として形成したPt膜の表面のAFM像の写真である。図5(a)の比較例のRa(算術平均粗さ)は0.64nm、図(6b)の作製例のRaは6.4nmであった。すなわち、作製例の表面粗さは、比較例の約10倍であった。 FIG. 5 is a photograph of an AFM image of the surface of the Pt film formed as the reaction catalyst layer 18. Ra (arithmetic mean roughness) of the comparative example of FIG. 5A was 0.64 nm, and Ra of the preparation example of FIG. 6B was 6.4 nm. That is, the surface roughness of the production example was about 10 times that of the comparative example.
 図6は、反応用触媒層18として形成したPt膜の表面のSIM像の写真である。図6(a)の比較例では、膜中に亀裂や空隙がなく、一様であるのに対し、図6(b)の作製例では、膜中に亀裂・空隙が生じていることが分かる。 FIG. 6 is a photograph of a SIM image of the surface of the Pt film formed as the reaction catalyst layer 18. In the comparative example of FIG. 6 (a), there are no cracks or voids in the film and is uniform, whereas in the example of production in FIG. 6 (b), it is understood that cracks / voids are generated in the film. .
 また、比表面分析を行ったところ、作製例の表面積は、比較例の表面積の約3倍であった。 Further, when a specific surface analysis was performed, the surface area of the production example was about three times the surface area of the comparative example.
 作製例と比較例の反応用触媒層18以外は同じ構成のガスセンサ10を作製し、水素ガスの検出感度を調べたところ、作製例の反応用触媒層18を用いたガスセンサ10は、比較例の反応用触媒層を用いたガスセンサよりも、感度が30%向上していた。 When the gas sensor 10 having the same configuration except for the reaction catalyst layer 18 of the production example and the comparative example was produced and the detection sensitivity of hydrogen gas was examined, the gas sensor 10 using the reaction catalyst layer 18 of the production example was the same as that of the comparative example. The sensitivity was improved by 30% compared with the gas sensor using the reaction catalyst layer.
 <まとめ> 以上のように、雰囲気ガスを導入して蒸着することにより、反応用触媒層18を形成する際に反応用触媒層18の内部に空隙や亀裂を形成すると、製造工程が煩雑にならずに、反応用触媒層の表面に凹凸を形成することができ、センサ感度を向上することができる。 <Summary> As described above, if a void or a crack is formed inside the reaction catalyst layer 18 when the reaction catalyst layer 18 is formed by introducing and vaporizing the atmospheric gas, the manufacturing process becomes complicated. In addition, irregularities can be formed on the surface of the reaction catalyst layer, and the sensor sensitivity can be improved.
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 例えば、本発明は、ガスセンサ以外の種々のセンサ装置にも適用することができる。 For example, the present invention can be applied to various sensor devices other than the gas sensor.
 10 ガスセンサ(センサ装置)
 12a,12b サーミスタ基板(温度検出部)
 14 検出電極(温度検出部)
 16 絶縁膜
 18 反応用触媒層(検出層)
 20 支持部
 22 支持基板
10 Gas sensor (sensor device)
12a, 12b Thermistor substrate (temperature detector)
14 Detection electrode (temperature detector)
16 Insulating film 18 Catalyst layer for reaction (detection layer)
20 support part 22 support substrate

Claims (4)

  1.  特定の対象物を検出する検出層と、その上に前記検出層が配置され、前記検出層の温度変化を検知する温度検出部とを備えた少なくとも一つの反応検知素子を有する、センサ装置であって、
     前記検出層は、
     その内部に亀裂及び空隙の少なくとも一方が形成され、その表面に凹凸が形成され、
     前記温度検出部は、
     薄化されたバルク材からなるサーミスタ基板と、
     前記サーミスタ基板上に形成され、前記検出層の温度変化による前記サーミスタ基板の電気抵抗の変化を検出するための電極とを備えたことを特徴とするセンサ装置。
    A sensor device having at least one reaction detection element including a detection layer for detecting a specific object and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer. And
    The detection layer is
    At least one of cracks and voids is formed in the interior, irregularities are formed on the surface,
    The temperature detector is
    A thermistor substrate made of a thinned bulk material;
    A sensor device comprising: an electrode formed on the thermistor substrate for detecting a change in electrical resistance of the thermistor substrate due to a temperature change of the detection layer.
  2.  前記特定の対象物がガスであり、
     前記検出層が、前記ガスについて発熱を伴う化学反応の反応速度を増大させる触媒を含む反応用触媒層であることを特徴とする、請求項1に記載のセンサ装置。
    The specific object is a gas;
    The sensor device according to claim 1, wherein the detection layer is a reaction catalyst layer including a catalyst that increases a reaction rate of a chemical reaction that generates heat with respect to the gas.
  3.  特定の対象物を検出する検出層と、その上に前記検出層が配置され、前記検出層の温度変化を検知する温度検出部とを備えた少なくとも一つの反応検知素子を有するセンサ装置の製造方法であって、
     前記検出層を蒸着により形成する蒸着工程を含み、該蒸着工程において、雰囲気ガスを導入して蒸着することを特徴とする、センサ装置の製造方法。
    A method for manufacturing a sensor device having at least one reaction detection element comprising: a detection layer for detecting a specific object; and a temperature detection unit on which the detection layer is disposed and detects a temperature change of the detection layer. Because
    A method for manufacturing a sensor device, comprising: a vapor deposition step of forming the detection layer by vapor deposition, wherein vapor deposition is performed by introducing an atmospheric gas in the vapor deposition step.
  4.  前記雰囲気ガスが不活性ガスであることを特徴とする、請求項3に記載のセンサ装置の製造方法。 The method for manufacturing a sensor device according to claim 3, wherein the atmospheric gas is an inert gas.
PCT/JP2009/001935 2008-06-26 2009-04-28 Sensor device and method for manufacturing the same WO2009157123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-167971 2008-06-26
JP2008167971 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157123A1 true WO2009157123A1 (en) 2009-12-30

Family

ID=41444196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001935 WO2009157123A1 (en) 2008-06-26 2009-04-28 Sensor device and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2009157123A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036174A (en) * 2016-09-01 2018-03-08 Tdk株式会社 Gas sensor
JP2020106348A (en) * 2018-12-27 2020-07-09 Tdk株式会社 Thermistor and gas sensor equipped with the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228420B2 (en) * 1982-02-01 1987-06-19 Shinei Kk
JPS63313047A (en) * 1987-06-15 1988-12-21 Figaro Eng Inc Gas sensor and its production
JPH08304320A (en) * 1994-09-23 1996-11-22 Ford Motor Co Contact gas sensor
JPH116810A (en) * 1997-06-18 1999-01-12 Yazaki Corp Gas sensor and contact combustion gas sensor as well as manufacture
JPH1173643A (en) * 1997-08-29 1999-03-16 Kao Corp Production of magnetic recording medium
JP2005098846A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor
JP2005098844A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor and its manufacturing method
JP2005264254A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Metal evaporated film and metal evaporated member provided with the metal evaporated film and method for manufacturing the same
WO2009008258A1 (en) * 2007-07-09 2009-01-15 Murata Manufacturing Co., Ltd. Sensor device and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228420B2 (en) * 1982-02-01 1987-06-19 Shinei Kk
JPS63313047A (en) * 1987-06-15 1988-12-21 Figaro Eng Inc Gas sensor and its production
JPH08304320A (en) * 1994-09-23 1996-11-22 Ford Motor Co Contact gas sensor
JPH116810A (en) * 1997-06-18 1999-01-12 Yazaki Corp Gas sensor and contact combustion gas sensor as well as manufacture
JPH1173643A (en) * 1997-08-29 1999-03-16 Kao Corp Production of magnetic recording medium
JP2005098846A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor
JP2005098844A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor and its manufacturing method
JP2005264254A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Metal evaporated film and metal evaporated member provided with the metal evaporated film and method for manufacturing the same
WO2009008258A1 (en) * 2007-07-09 2009-01-15 Murata Manufacturing Co., Ltd. Sensor device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036174A (en) * 2016-09-01 2018-03-08 Tdk株式会社 Gas sensor
JP2020106348A (en) * 2018-12-27 2020-07-09 Tdk株式会社 Thermistor and gas sensor equipped with the same
JP7156014B2 (en) 2018-12-27 2022-10-19 Tdk株式会社 Thermistor and gas sensor provided with the same

Similar Documents

Publication Publication Date Title
JP5425214B2 (en) Capacitive humidity sensor and manufacturing method thereof
US9466498B2 (en) CMOS gas sensor and method for manufacturing the same
JP4452244B2 (en) Gas sensor element and method of manufacturing gas sensor element
EP1693667B1 (en) Gas sensor
KR20090064693A (en) Micro gas sensor and manufacturing method thereof
Barborini et al. Batch fabrication of metal oxide sensors on micro-hotplates
JP6730280B2 (en) Limiting current type gas sensor
KR102237782B1 (en) How to manufacture sensors, how to use sensors and sensors
JP2000348903A (en) Thin-film thermistor element and manufacture of the same
WO2009157123A1 (en) Sensor device and method for manufacturing the same
JP2014182086A (en) Temperature sensor
JP6451395B2 (en) Sensor element
JP2005030907A (en) Gas sensor
JPH08261979A (en) Electrode for sensor
JP5144563B2 (en) Hydrogen sensor and manufacturing method thereof
US20230408434A1 (en) Sensor
JPWO2008149972A1 (en) Hydrogen sensor and manufacturing method thereof
CN113511626A (en) Multi-parameter gas sensing microchip and preparation method thereof, and gas sensor
JP2024002478A (en) Semiconductor gas sensor
Filipovic et al. CMOS-compatible gas sensors
WO2023210265A1 (en) Gas sensor and method for producing gas sensor
RU2797145C1 (en) Microheater for semiconductor chemical gas sensor
JP2017049252A (en) Physical quantity sensor and manufacturing method thereof
US20050023138A1 (en) Gas sensor with sensing particle receptacles
Iken et al. Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP