WO2009156547A1 - Procedimiento de desalinización y eliminación de boro del agua y equipo para llevar a cabo dicho procedimiento - Google Patents

Procedimiento de desalinización y eliminación de boro del agua y equipo para llevar a cabo dicho procedimiento Download PDF

Info

Publication number
WO2009156547A1
WO2009156547A1 PCT/ES2009/070256 ES2009070256W WO2009156547A1 WO 2009156547 A1 WO2009156547 A1 WO 2009156547A1 ES 2009070256 W ES2009070256 W ES 2009070256W WO 2009156547 A1 WO2009156547 A1 WO 2009156547A1
Authority
WO
WIPO (PCT)
Prior art keywords
membranes
water
stage
permeate
desalination
Prior art date
Application number
PCT/ES2009/070256
Other languages
English (en)
French (fr)
Inventor
Enric PALACIOS DOÑAQUE
Manuel FARIÑAS IGLESIAS
Alejandro ZARZUELA LÓPEZ
Original Assignee
Acciona Agua, S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200801910A external-priority patent/ES2350141B1/es
Priority claimed from ES200802978A external-priority patent/ES2377068B1/es
Application filed by Acciona Agua, S.A.U. filed Critical Acciona Agua, S.A.U.
Priority to AU2009264129A priority Critical patent/AU2009264129B2/en
Publication of WO2009156547A1 publication Critical patent/WO2009156547A1/es
Priority to US12/977,118 priority patent/US20110147309A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/02Elements in series
    • B01D2319/022Reject series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention falls within the desalination and elimination processes of sea and brackish water boron and the equipment for carrying out said procedures.
  • the present invention has application in the water desalination industry, more precisely applicable in the purification and desalination of seawater.
  • ppm 3.5 and 7 parts per million
  • the most commonly used technique for the elimination of water boron for human and agricultural consumption based on seawater, consists of the use of plants equipped with two reverse osmosis passages with membranes, where a first step is carried out with membranes of Seawater and a second step is done with brackish water membranes.
  • seawater is treated by the first passage of reverse osmosis membranes at high pressure, where most of the salts are removed and also a bit of boron.
  • a boron concentration of treated water (hereinafter permeated water) is usually obtained, which varies, depending on the temperature of the water, between 0.7 and 1.5 ppm of this element.
  • permeated water a boron concentration of treated water
  • the reverse osmosis membranes lose, over time and with the successive cleanings to which they are subjected, their ability to remove salts and boron.
  • the content of boron in permeated water can exceed the current limit of 1 ppm.
  • the regulations in this regard will be modified to reduce the permitted boron content in drinking water to 0.5 ppm.
  • plants are designed with a second step of inverse osmosis membranes of brackish water of low pressure and high workflow.
  • This solution consists in taking part of the permeated water, obtained from the first passage of reverse osmosis membranes at high pressure, increasing the pH to 10-11 values by adding sodium hydroxide or another strong base and adding an antifouling agent and subsequently pump it to a second step.
  • the pernealed waters obtained in the first step and the second step are mixed in suitable proportions, to minimize the boron content in the water resulting from the treatment.
  • This system is detailed in Figure 1.
  • the seawater is fed by one of the faces of the pressure container, collecting the water concentrated in salts by the rear face of the container and collecting the water with low salt content and low boron content through the center of the container and coming from all the membranes, which are interconnected in series by their central tube.
  • the total boron content corresponds to the mixture of the contents of this element of the independent flows of permeated water of each membrane located in the pressure container.
  • the concentration of boron in permeated water is increasing from the first to the last membrane.
  • part of the permeated water of the first step is pumped into the current systems, which is a mixture of the permeate of all the membranes of said step, to the second step.
  • This pumping implies an important energy cost and it is because in these conventional systems the pump that drives the permeated water from the first step to the second step must be sized to overcome the osmotic pressure of the permeated water from the first step, in addition to the specific resistance that they offer the membranes of the second step container, to give the desired permeate flow rate.
  • the pressure containers or reverse osmosis membrane containers arranged in each step have inside them the inverse osmosis membranes connected in series, collecting the permeated water from one of the ends of the container, this implies that the salt content of the permeated water obtained by the set of membranes installed in each container is a progressive mixture of all the salts that cross the membranes. Since the membranes of the last positions are the ones that allow more salts to pass through, the lost waters therefore have an osmotic pressure.
  • the present invention therefore, is intended to avoid the use of a pump in the second step feed, particularly a booster pump or booster pump, seeking high energy efficiency or minimum energy cost. That is, the present invention manages to carry out a process for desalination and elimination of seawater boron through a reverse osmosis system, which avoids the use of a pump in the supply of the second step.
  • These systems work by taking a percentage of total permeate flow rate from the first step, which is treated in a second step of brackish water membranes, instead of one hundred percent of the permeate flow rate of the first step.
  • a blind interconnector also called “blind split”
  • blind split is placed inside the pressure container of the first step, which is placed in the permeate tube and in different positions between two of the membranes within each container of pressure, so as to separate permeate flows.
  • the pressure container works as if it were in two stages, thus obtaining two streams of water permeated by both ends of the pressure container with different boron contents.
  • having a blind interconnector allows the permeate flow rates to be separated from the first step to subsequently treat any of them in a second step of reverse osmosis membranes.
  • the permeate flows can be considered to be divided as if they were two stages.
  • the position of the blind interconnector for separation of the membranes will depend on the flow rate that is desired for each group of membranes, the pressure of the permeate required and the boron content required in said permeate. Additionally, the workflow of the permeate flow rate of each membrane section can be regulated, if required, by exerting a back pressure that can be of different value, by means of valves installed in each part of the permeate conduit.
  • the second passage of membranes is fed, thus, with the own pressure offered by the permeate current of the first stage, of the first step.
  • This second step constitutes the second step of the first stage of the first step.
  • the blind interconnector is placed between the membranes that occupy positions 3 and 4 and the part or stage of the membrane tube that yields a lower boron content is that between the membranes of positions preferably 1 to 3 of the first He passed.
  • the blind interconnector is placed between the membranes that occupy positions 4 and 5 and the part or stage of the membrane tube that yields a lower boron content is that between the membranes of positions preferably 1 to 4 of the first step.
  • the flow of this stage is the one that will be used to feed the second step of the first stage of the first step of reverse osmosis without the need for an intermediate feeding pump of the said second step, that is, without the need for a pump to increase the pressure or booster pump .
  • sodium hydroxide, or a strong base can be dosed in the feedwater of the mentioned second step, to raise its pH to values, preferably 10 and 11, since the boron of the permeated water is in the form of boric acid.
  • Alkalinization is convenient to convert boric acid into borate ion, which is best rejected by brackish water membranes. In this way, a better elimination of boron is obtained.
  • an antifouling-dispersant compound can be dosed to avoid possible scale formation.
  • the present invention relates, first, to a process of desalination and elimination of water boron, preferably of sea water characterized in that it comprises: - performing a first step of reverse osmosis by means of feeding seawater or brackish water to reverse osmosis membranes housed in a membrane container comprising a plurality of membranes interconnected in series to work at high or low pressures, depending on the application for sea or brackish water, and between two of said membranes, a blind interconnector is previously placed that separates the permeate flow rates into two sections of membranes, those that are before the blind interconnector and those that are after the blind interconnector, defining two stages respectively;
  • brackish water or seawater is fed to the first step by conventional pumping means such as a high pressure pump.
  • 6, 7, 8 or more membranes can be placed inside the membrane container of the first step and the blind interconnector can be placed between any two membranes, preferably between 3-4,
  • up to 8 membranes are disposed within a pressure container and the blind interconnector is placed between the membranes occupying positions 3-4 or 4-5.
  • the membranes that remain before the blind interconnector are the ones that give the highest flow of treated water, very low salinity with respect to the mixture that would be obtained if the blind interconnector was not installed between two membranes. For this reason, it is possible to feed the second step of the first stage of the first step without the need for an intermediate pump that increases the pressure. Additionally, the workflow of the permeate flow in the first membrane passage can be regulated by the use of permeate flow regulation valves of both sections separated by the blind interconnector. Said valves are installed on each side of the permeate conduit to effect a back pressure in the permeate conduction of the membranes of both the first and the second stage of the first step.
  • the sodium hydroxide process, or a strong alkalizing agent, or a strong alkalizing agent and an antifouling is dosed into a feed stream of the second step, said stream being from the membranes of the first stage of the first stage.
  • step ie the permeate current from the membranes that are before the blind interconnector. This is done to increase the pH preferably between 10 and 11, to obtain a better elimination of the boron and avoid the possible formation of encrustations in the membranes of the second step.
  • This second variant involves an additional stage of transfer of the pressure in the rejection water of the first step to the feeding of said first step.
  • This pressure transfer is carried out by means of a hydraulic exchanger device pressures that are sandwiched before feeding the second step taking advantage of the brine rejection pressure of the first step.
  • the feed pressure of the water from the second stage of the first step to a second step is reinforced, which we will call the second step of the second stage of the first step of reverse osmosis , by means of a pump of very low energy consumption, installed in bypass or bypass.
  • the water that is sent by a pump or by the pressure of the permeate to the second step of the second stage of the first step is that produced by the second stage of the first step.
  • a process consisting of a first two-stage reverse osmosis step is contemplated, as described above and two second reverse osmosis steps that are applied as described below.
  • two second steps of reverse osmosis we will call them second step of the first stage of the first step and second step of the second stage of the first step of reverse osmosis.
  • the procedure contemplates that the permeated water of the first stage of the first step, that is to say that corresponding to the group of membranes that is before the blind interconnector, feed the first of the second steps, that is, what has been called the second step of the first stage of the first step.
  • Said second step contemplates the passage of the liquid through two or three stages of membranes, the membrane containers being formed by membranes of high flow and low pressure or of medium and medium pressure flow so that no pumping means are required.
  • the total rejection of the second step of the first stage of the first step is mixed with the permeate of the second stage of the first step.
  • the resulting mixture feeds the second step of the second stage of the first step, which also consists of two or three stages of membrane containers, high flow and low pressure or medium and medium pressure flow.
  • a Booster or low pressure pump installed in bypass can be inserted for the supply of the second step of the second stage of the first step.
  • the overall permeate of the process of the invention in this fourth variant turns out to be the mixture of the global permeate obtained at the exit of the second step of the first stage of the first step and of the second step of the second stage of the first step.
  • the overall rejection flow rate of the second step of the second stage of the first step is sent to the suction of the seawater pump that feeds the entire reverse osmosis system.
  • the sea water undergoes a dilution and therefore decreases its osmotic pressure and as a consequence so does the total supply pressure to the membranes of the first step, thus obtaining significant energy savings.
  • an energy recuperator can be installed that feeds on the rejection of the first step, taking advantage of the amount of movement of this rejection to drive another flow.
  • the flow driven by the energy recuperator comes from the aspiration of brackish water or seawater.
  • the energy recovery device is expected to feed a low pressure Booster pump which will again drive the water from the energy recovery to the first step.
  • the procedure described above in its four variants, can be used in all types of water that requires desalination and elimination of boron, but has been preferably designed to treat seawater or brackish water and will preferably be used to desalinate seawater.
  • each of these stages can be made up of the amount of membrane containers that are necessary depending on the installation to be built.
  • no concrete variants of the number of membrane containers have been represented in the second steps because they are schematic representations. The quantity of membrane containers of each stage responds to the specific need of each installation.
  • the present invention also relates to equipment for carrying out a desalination process and elimination of boron from water as defined above, characterized in that it comprises at least: a container of reverse osmosis membranes comprising a plurality of membranes interconnected in series, the membranes being low pressure (low energy consumption) and high flow to work with low pressures, or medium and medium pressure membranes; a blind interconnector that is disposed between two membranes of each membrane container where the first step will be carried out, such that said interconnector separates the permeate flow rates of two membrane sections or stages; and at least two flow regulation valves installed on each side of the permeate conduit of the first step, to produce counterpressures in the permeate conduits of each section of membranes separated by the blind interconnector.
  • each membrane container where the first step will be carried out and the blind interconnector is disposed between the membranes occupying positions 3-4 or 4-5.
  • the equipment described above further comprises a hydraulic pressure transfer device interspersed in the supply of the second step, just before the start thereof.
  • the equipment described above comprises, in addition to the hydraulic device mentioned in the first variant, a low energy consumption pump, installed bypass or bypass, a continuation of said hydraulic pressure transfer device and before the start of the second step.
  • the equipment described above also incorporates a low energy consumption pump, installed bypass or bypass following the hydraulic pressure transfer device and before the second step is fed. This pump is used to reinforce the supply pressure of the second step.
  • the equipment described above also incorporates an additional container or group of membrane containers, corresponding to the second step of the second stage of the first step.
  • the equipment can incorporate an energy recuperator in the rejection of the first step and a Booster pump that drives the water from the energy recuperator to the first step.
  • FIG. 1 shows a flow chart of a conventional two-step system, existing in the prior art
  • Figure 2 shows a flow chart of the first step of a conventional flow distribution system in a membrane tube
  • Figure 3 shows a diagram of the inside of a membrane container of the first step comprising a plurality of interconnected membranes in series for the boron desalination and elimination system of the present invention with blind interconnector (2)
  • Figure 4 shows a Scheme of the boron desalination and elimination system of the present invention in its first variant
  • Figure 5 shows a schematic of the boron desalination and elimination system of the present invention in its second variant, which includes a hydraulic pressure transfer device (12)
  • Figure 6 shows a diagram of the boron desalination and elimination system of the present invention in its third variant, which includes a hydraulic pressure transfer device (12) and a pump (13)
  • Figure 1 shows a flow chart of a conventional two-step system (10 'and 4'), existing in the prior art, in which the aspiration (12 ') of the system from brackish water or seawater (H'), the high pressure pump (13 ') and the feeding / entering the container of the first step (10 ').
  • FIG. 3 shows a diagram of a configuration of a membrane container (9) with blind interconnect or blind split (2), according to the present invention.
  • membranes Al, A2, A3, A4, A5, A6 and A7 housed in the containers (9) are thus separated into two groups or stages (a and b).
  • the number of membranes is preferably 7 or 8, and can be connected the container in any position between two membranes, preferably between the A3-A4 or A4-A5 positions.
  • the membrane container (9) with blind interconnect (2) allows obtaining two permeate flow rates: a permeate flow rate (1) of the first stage (a) and a permeate flow rate (4) of the second step (b), the container (9) evacuating a rejection flow (3).
  • Figure 4 shows a scheme of the boron desalination and elimination system described by the present invention, in which the path taken by the permeate (1) obtained in the first stage (a) of the first step (I) can be observed, the position of the plurality of membranes (Al, A2, A3, A4, A5, A6 and A7) arranged in the pressure container or membrane container (9) and the blind interconnector (2) located in the preferred position, between the A3 position membranes and A4.
  • the current of the membranes on the other side of the blind interconnector (2) results in the permeate (4) of the second stage (b) and the rejection (3) of the first step (I).
  • Said rejection (3) of the first step (I) may either be partially recycled at the entrance of the first step, or evacuated as brine to the sea, as appropriate.
  • This flow (1) is the one that will be used to feed a second step (II, lia) of reverse osmosis without an intermediate pressure booster pump (booster pump), in which one works with low pressure and high flow membranes or membranes medium flow and low pressure. Part or all of the rejection of the second step will be sent to the head of the reverse osmosis plant.
  • boost pump intermediate pressure booster pump
  • the appropriate mixtures of each permeate stream of both the first step and the second step can be carried out to obtain a low overall concentration of boron in the use water.
  • An additional advantage of working with membranes of low pressure and high flow or medium flow and medium pressure both in the first step (I) and in the second step (II, lia), is that the adequate back pressure in the permeate stream is obtained of the first stage (a) of the first step (I) and of the membranes of positions preferably Al to A3, that is to say those that are located before the blind interconnector (2) in one of the particular embodiments described.
  • the permeated water (1) in the first stage (a) of the first step (I) is of very low salinity, that is to say of low osmotic pressure, so that the working pressure in the second step (II, lia) of the first stage (a) of the first step (I) described in this procedure is also very low.
  • a process of desalination and elimination of boron by reverse osmosis of low energy cost is achieved.
  • Figure 7 shows the fourth variant proposed for the present invention where the procedure consists of a first step (I), a second step (lia) of the first stage (a) of the first step (I) and a second step ( Hb) of the second stage (b) of the first step (I).
  • the first step (I) comprises a container (9) with blind interconnector (not shown in Figure 7, if represented in Figure 3) that is fed with the flow rate (8) which is the mixture of the flow rate (8a) coming from the brackish water or seawater (H ') driven by a high pressure pump (13') and a flow rate (23 ') from an energy recovery device (26) which is driven by a Booster or low pressure pump (17).
  • the flow rate (8) which is the mixture of the flow rate (8a) coming from the brackish water or seawater (H ') driven by a high pressure pump (13') and a flow rate (23 ') from an energy recovery device (26) which is driven by a Booster or low pressure pump (17).
  • the permeated water (1) of the first stage (a) of the membrane container (9) of the first step (I) directly feeds, without using any additional pumping means, a container of membranes (22) of reverse osmosis corresponding to a First stage of the second step (lia) of the first stage (a) of the first step (I).
  • the rejection (7a) of the first stage of the second step (Ha) of the first stage (a) of the first step (I) feeds the membrane container (23) corresponding to a second stage of the second step (lia) of the first step (a) of the first step (I).
  • the mixture of bolts (6 and 7b) of the first and second stage of the second step (lia) of the first stage (a) of the first step (I) constitutes the global permeate (14b) of the second step (lia) of the first step (a) of the first step (I).
  • the permeate (4) of the second stage (b) of the first step (I) is mixed with the rejection (9a) of the second stage (second container 23) of the second step (lia) of the first stage ( a) of the first step (I) resulting in a flow that is driven by a Booster or low pressure pump (16) and feeds (13a) to the reverse osmosis membrane container (24) corresponding to the first stage of the second step ( Hb) of the second stage (b) of the first step (I).
  • the rejection (14a) of the first stage of the second step (Hb) of the second stage (b) of the first step (I) feeds the reverse osmosis membrane container (25) corresponding to the second stage of the second step (Hb) of the second stage (b) of the first step (I).
  • the mixture of the bolts (15a and 17a) of the first and second stage of the second step (Hb) of the second stage (b) of the first step (I) constitutes the global permeate (18a) of the second step (Hb) of the second stage (b) of the first step (I).
  • the mixture of the global bolts (14b and 18a) of the second steps (Ha and Hb) constitutes the global permeate (19a) of the process described in this fourth variant of the invention.
  • the membrane containers (22, 23, 24 and 25) of the second steps (Ha and Hb) consist of high flow and low pressure membranes or medium and medium pressure flow.
  • the rejection (16a) of the second stage of the second step (Hb) of the second stage (b) of the first step (I) is sent to the suction flow (8a) of the first step (I), so that it occurs a dilution of brackish water or seawater aspirated thus reducing the osmotic pressure as there is a lower concentration of salts and, therefore, a lower pumping pressure is necessary, achieving the consequent energy savings.
  • an energy recovery device (26) is installed. Said energy recuperator (26) feeds on the global rejection (3) of the first step (I). This is because the global rejection (3) of the first step (I) has a high convertible energy.
  • the energy recuperator (26) transforms the kinetic energy of rejection (3) into energy that is contributed to the suction of a pump (17).
  • the energy recuperator (26) is fed, in turn, with a flow (20a) of water from sea or brackish water, from the suction (8a) of the high pressure pump (13 ').
  • the flow rate (23 ') is the flow rate that leaves the energy recuperator (26) and is driven by the Booster or low pressure pump (17) towards the entrance of the membrane container (9) of the first step (I).
  • this fourth embodiment contemplates the possibility of dosing antifouling to prevent the pre-typing of salts, as well as the dosing of an alkalinizer to increase the pH value of the water mixture of the stream (1) permeate from the first stage (a) of the first step (I) and the permeate stream (13a) from the permeate flow rate (4) of the second stage (b) of the first step (I) and the rejection (9a) of the second step (lia) of the first stage (a) of the first step (I). In this way it is possible to transform boron into borate, which is much better rejected by reverse osmosis membranes of high flow and low pressure or medium and medium pressure flow.
  • the process and equipment described in the present invention offer a high quality of permeated water in terms of salinity and elimination of Boron at low energy cost. It has been proven experimentally that the fourth variant of the process of the present invention allows obtaining overall conversions of 46-48%, with partial conversions of 40-50% in the first step (I) and 90% in the second steps (Ha and Hb).
  • the configuration of the reverse osmosis equipment to desalinate and eliminate boron from the seawater or brackish water of the present invention offers the advantage of having a minimum discharge rate of rejection brine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La presente invención se refiere a un procedimiento de desalinización y eliminación de boro del agua que comprende realizar un primer paso de ósmosis inversa mediante la alimentación de agua salobre dentro un contenedor de membranas de ósmosis inversa que comprende una pluralidad de membranas interconectadas en serie, y entre dos de dichas membranas se coloca un interconector ciego que separa los caudales de permeado en dos secciones de membranas, las que están antes del interconector ciego y las que están después del interconector ciego, definiendo respectivamente dos etapas y realizar al menos un segundo paso de ósmosis inversa que comprende membranas de baja presión y alto flujo o flujo medio y presión media y que se alimenta con una parte o con la totalidad del agua procedente del permeado de las membranas del primer paso que están antes del interconector ciego, es decir la primera etapa del primer paso.

Description

TÍTULO DE LA INVENCIÓN
PROCEDIMIENTO DE DESALINIZACIÓN Y ELIMINACIÓN DE BORO DEL AGUA Y EQUIPO PARA LLEVAR A CABO DICHO PROCEDIMIENTO
OBJETO DE LA INVENCIÓN
La presente invención se encuadra dentro de los procedimientos de desalinización y eliminación del boro del agua de mar y salobre y los equipos para llevar a cabo dichos procedimientos. Asi, constituye también objeto de la presente invención mejorar el rendimiento energético de los equipos para llevar a cabo procedimientos de desalinización y eliminación de boro del agua de mar y salobre, minimizando el caudal de vertido de salmuera de rechazo y minimizando el consumo de energía.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención tiene aplicación en la industria de desalinización de agua, más precisamente aplicable en la purificación y desalinización del agua de mar .
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
En la actualidad los procedimientos de eliminación del boro del agua de mar se realizan mediante la utilización de membranas de osmosis inversa y sistemas combinados de membranas y resinas poliméricas de intercambio iónico.
El contenido de boro en el agua de mar oscila entre
3,5 y 7 partes por millón (en adelante ppm) . Por regla general, las membranas de agua de mar tienen un bajo rechazo del boro y por ello el contenido de dicho elemento en el agua permeada no cumple con la normativa vigente de 1 ppm para el agua de consumo humano y para algunas aplicaciones agrícolas. Por otra parte, la Organización Mundial de la Salud (en adelante OMS) recomienda que el contenido de boro en el agua no sobrepase los 1 ppm y en el futuro se prevé que este nivel baje a 0,5 ppm de boro para algunos usos.
Por lo tanto, se desarrollaron técnicas muy especializadas para eliminar el boro del agua de mar y llegar a los contenidos establecidos por la normativa en aguas tratadas mediante membranas de osmosis inversa.
Así, la técnica más empleada para la eliminación del boro del agua para consumo humano y agrícola, partiendo de agua de mar, consiste en la utilización de plantas equipadas con dos pasos de osmosis inversa con membranas, donde un primer paso se realiza con membranas de agua de mar y un segundo paso se realiza con membranas de agua salobre .
Así, el agua de mar es tratada por el primer paso de membranas de osmosis inversa a alta presión, donde se eliminan la mayor parte de sales y también un tanto por ciento del boro. Por regla general, se suele obtener una concentración del boro del agua tratada (en adelante agua permeada) que oscila, en función a la temperatura del agua, entre los 0,7 y 1,5 ppm de este elemento. Cabe destacar, además, que las membranas de osmosis inversa pierden, con el tiempo y con las sucesivas limpiezas a las que son sometidas, su capacidad de eliminación de sales y de boro. La experiencia demuestra que el contenido de boro en el agua permeada puede sobrepasar el límite actual de 1 ppm. Además, como ya se ha mencionado, cabe esperarse que se modifique la normativa al respecto, para rebajar el contenido permitido de boro en aguas potables a 0,5 ppm.
Asi, se consigue obtener un procedimiento de eliminación del boro que permita garantizar desde un principio que el contenido de boro en el agua permeada no sobrepase nunca el limite actual de 1 ppm y que permita obtener concentraciones de este elemento por debajo de 0,5 ppm. Dicho procedimiento asegura que el contenido obtenido no varié con el tiempo de funcionamiento, ni con las sucesivas limpiezas químicas de las plantas desaladoras .
Para ello, se diseñan plantas con un segundo paso de membranas de osmosis inversa de agua salobre de baja presión y alto flujo de trabajo. Esta solución consiste en tomar parte del agua permeada, obtenida del primer paso de membranas de osmosis inversa a alta presión, aumentarle el pH hasta valores de 10-11 mediante añadido de hidróxido sódico u otra base fuerte y la adición de un agente antiincrustante y posteriormente bombearla a un segundo paso. Las aguas perneadas obtenidas en el primer paso y el segundo paso son mezcladas en proporciones adecuadas, para minimizar el contenido de boro en el agua resultante del tratamiento. Este sistema se detalla en la figura 1.
Mediante estos sistemas, toda o parte del agua procedente del primer paso de membranas de osmosis inversa es tratada por el segundo paso de membranas de osmosis inversa, tras ser previamente bombeadas del primer al segundo paso.
Adicionalmente, hay que tener en cuenta que en las plantas de osmosis inversa, existen multitud de contenedores de presión que sirven para alojamiento de las membranas, que son conectadas en serie mediante interconectores . Dichos contenedores de presión pueden tener alojadas 6, 7, 8 o más membranas conectadas en serie. Además, en una planta de osmosis inversa existen multitud de contenedores montados en paralelo y que conforman lo que se denomina bastidor de membranas.
El agua de mar es alimentada por una de las caras del contenedor de presión recogiéndose el agua concentrada en sales por la cara posterior del contenedor y recogiéndose el agua con bajo contenido de sales y bajo contenido en boro por el centro del contenedor y procedente de todas las membranas, que están interconectadas en serie por su tubo central. Asi, el contenido total de boro corresponde a la mezcla de los contenidos de éste elemento de los caudales independientes de agua permeada de cada membrana ubicada en el contenedor de presión. Y la concentración de boro en el agua permeada va aumentando desde la primera a la última membrana. En la figura 2 se muestra un esquema convencional de un contenedor de presión de un primer paso en un sistema convencional como el arriba descrito.
En definitiva, en los sistemas actuales se bombea parte del agua permeada del primer paso, que es una mezcla de los perneados de todas las membranas de dicho paso, al segundo paso. Este bombeo implica un coste energético importante y se debe a que en estos sistemas convencionales la bomba que impulsa el agua permeada del primer paso al segundo paso debe dimensionarse para poder vencer la presión osmótica del agua permeada procedente del primer paso, además de la resistencia especifica que ofrecen las membranas del contenedor del segundo paso, para dar el caudal deseado de permeado.
Así, los contenedores de presión o contenedores de membranas de osmosis inversa dispuestos en cada paso tienen alojados en su interior las membranas de osmosis inversa conectadas en serie, recogiéndose el agua permeada por uno de los extremos del contenedor, ello implica que el contenido de sales del agua permeada obtenida por el conjunto de membranas instaladas en cada contenedor sea una mezcla progresiva de todas las sales que atraviesan las membranas. Al ser las membranas de las últimas posiciones las que dejan pasar más sales, las aguas perneadas tienen por tanto una presión osmótica.
Además, en toda osmosis inversa, las salinidades de los permeados de las membranas aumentan conforme se incrementa su posición en el tubo o contenedor de presión. Ello hace que el agua permeada del primer paso tenga una presión osmótica y haya que aplicar una presión de trabajo en el segundo paso para vencer dicha presión osmótica y la resistencia específica de las membranas.
Era deseable, pues, obtener un procedimiento de desalinización y eliminación del boro del agua de mar que evitara la utilización de una bomba en la alimentación del segundo paso, particularmente de una bomba booster o bomba elevadora de presión.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención, por lo tanto, pretende evitar la utilización de una bomba en la alimentación del segundo paso, particularmente de una bomba elevadora de presión o bomba booster, buscando un alto rendimiento energético o coste energético mínimo. Es decir que, la presente invención consigue llevar a cabo un proceso para desalinización y eliminación del boro del agua de mar mediante un sistema de osmosis inversa, que permita evitar la utilización de una bomba en la alimentación del segundo paso. Estos sistemas funcionan tomando un porcentaje de caudal total de permeado del primer paso, que es tratado en un segundo paso de membranas de agua salobre, en lugar del cien por cien del caudal de permeado del primer paso.
Para tal fin, se dispone, dentro del contenedor de presión del primer paso, de un interconector ciego, también llamado "split ciego", que se coloca en el tubo de permeado y en diferentes posiciones entre dos de las membranas existentes dentro de cada contenedor de presión, de manera de separar los flujos de permeado. De esta forma, el contenedor de presión trabaja como si fuera en dos etapas, obteniéndose, asi, dos corrientes de agua permeada por ambos extremos del contenedor de presión con diferentes contenidos de boro.
Por lo tanto, el disponer de un interconector ciego, permite separar los caudales de permeado del primer paso para tratar, posteriormente, cualquiera de ellos, en un segundo paso de membranas de osmosis inversa.
Una vez determinada la posición del interconector ciego dentro del conducto de permeado del primer paso, se podrá considerar que los flujos de permeado quedan divididos como si se tratara de dos etapas.
La posición del interconector ciego para separación de las membranas, dependerá del caudal que se quiera obtener para cada grupo de membranas, de la presión del permeado requerida y del contenido de boro requerido en dicho permeado. Adicionalmente, el flujo de trabajo del caudal de permeado de cada sección de membranas puede regularse, si se lo requiere, ejerciendo una contrapresión que puede ser de distinto valor, mediante válvulas instaladas en cada parte del conducto de permeado.
El segundo paso de membranas, se alimenta, asi, con la propia presión que ofrece la corriente de permeado de la primera etapa, del primer paso. Este segundo paso constituye el segundo paso de la primera etapa del primer paso.
En dicho segundo paso se utilizan membranas de baja presión y alto flujo.
En una realización particular, el interconector ciego se coloca entre las membranas que ocupan las posiciones 3 y 4 y la parte o etapa del tubo de membranas que arroja un menor contenido de boro es la comprendida entre las membranas de posiciones preferentemente 1 a 3 del primer paso.
En una segunda realización particular, el interconector ciego se coloca entre las membranas que ocupan las posiciones 4 y 5 y la parte o etapa del tubo de membranas que arroja un menor contenido de boro es la comprendida entre las membranas de posiciones preferentemente 1 a 4 del primer paso. El caudal de esta etapa es el que se aprovechará para alimentar al segundo paso de la primera etapa del primer paso de osmosis inversa sin necesidad de bomba intermedia de alimentación del mencionado segundo paso, es decir sin necesidad de bomba para incrementar la presión o bomba booster.
Opcionalmente, se puede dosificar hidróxido sódico, o una base fuerte, en el agua de alimentación del mencionado segundo paso, para elevar su pH hasta valores, preferiblemente de 10 y 11, dado que el boro del agua permeada se encuentra en la forma de ácido bórico. La alcalinización es conveniente para convertir el ácido bórico en ion borato, que es el mejor rechazado por las membranas de agua salobre. Se obtiene, de esta manera, una mejor eliminación del boro. Asimismo, se puede dosificar un compuesto antiincrustante-dispersante para evitar la posible formación de incrustaciones. Asi, según lo expuesto anteriormente, la presente invención se refiere, en primer lugar, a un procedimiento de desalinización y eliminación de boro del agua, preferentemente de agua del mar que se caracteriza porque comprende : - realizar un primer paso de osmosis inversa mediante la alimentación de agua de mar o agua salobre a membranas de osmosis inversas alojadas en un contenedor de membranas que comprende una pluralidad de membranas interconectadas en serie para trabajar a presiones altas o bajas, según sea la aplicación para agua de mar o salobre, y entre dos de dichas membranas se coloca, previamente, un interconector ciego que separa los caudales de permeado en dos secciones de membranas, las que están antes del interconector ciego y las que están después del interconector ciego, definiendo respectivamente dos etapas;
- realizar al menos un segundo paso de osmosis inversa que comprende membranas de baja presión y alto flujo o media presión y flujo medio y que se alimenta con una parte del agua procedente del permeado de las membranas del primer paso que están antes del interconector ciego, es decir la primera etapa del primer paso. Además, el agua salobre o agua del mar se alimenta al primer paso mediante medios de bombeo convencionales como una bomba de alta presión.
Además, dentro del contenedor de membranas del primer paso se pueden colocar 6, 7, 8 o más membranas y el interconector ciego puede estar colocado entre cualesquiera dos membranas, preferentemente entre la 3-4,
4-5 o la que se requiera.
En una realización particular, se disponen hasta 8 membranas dentro de un contenedor de presión y el interconector ciego está colocado entre las membranas que ocupan las posiciones 3-4 ó 4-5.
Las membranas que quedan antes del interconector ciego son las que dan mayor caudal de agua tratada, muy baja salinidad con respecto a la mezcla que se obtendría si no estuviera instalado el interconector ciego entre dos membranas. Por esta razón, es posible alimentar el segundo paso de la primera etapa del primer paso sin necesidad de bomba intermedia que incremente la presión. Adicionalmente, se puede regular el flujo de trabajo del caudal de permeado en el primer paso de membranas mediante la utilización de válvulas de regulación del caudal permeado de ambas secciones separadas por el interconector ciego. Dichas válvulas se instalan en cada lado del conducto de permeado para efectuar una contrapresión en la conducción de permeado de las membranas tanto de la primera, como de la segunda etapa del primer paso. De esta manera se consiguen dos efectos: actuar sobre la conversión (cociente entre el caudal de agua permeada y agua a tratar en la alimentación del contenedor de presión de membranas) del primer paso y controlar el flujo de trabajo de las primeras membranas del primer paso, es decir las que quedan antes y después del interconector ciego.
Asi, gracias a esta regulación del flujo de trabajo mediante válvulas, se regula el caudal de permeado de las membranas que quedan antes y después del interconector ciego y, al mismo tiempo, se regula la conversión de trabajo de ambas etapas del primer paso.
Como ya se indicó anteriormente, cuando sea conveniente se dosifica al proceso hidróxido sódico, o un alcalinizante fuerte, o un alcalinizante fuerte y un antiincrustante a una corriente de alimentación del segundo paso, siendo dicha corriente procedente de las membranas de la primera etapa del primer paso, es decir la corriente de permeado procedente de las membranas que están antes del interconector ciego. Esto se realiza para aumentar el pH preferiblemente entre 10 y 11, para obtener una mejor eliminación del boro y evitar la posible formación de incrustaciones en las membranas del segundo paso. En una segunda variante del procedimiento de eliminación de boro del agua descrito anteriormente, al realizar el al menos un segundo paso de osmosis inversa éste se alimenta, además, con la parte del agua procedente del permeado de las membranas del primer paso que están después del interconector ciego, es decir que existe un segundo paso también para el agua de la segunda etapa del primer paso.
Esta segunda variante conlleva una etapa adicional de transferencia de la presión existente en el agua de rechazo del primer paso a la alimentación de dicho primer paso. Esta transferencia de presiones se realiza por medio de un dispositivo hidráulico intercambiador de presiones que se intercala antes de la alimentación del segundo paso aprovechando la presión de rechazo de salmuera del primer paso.
En una tercera variante del procedimiento de eliminación de boro del agua descrito anteriormente, se refuerza la presión de alimentación del agua procedente de la segunda etapa del primer paso a un segundo paso, que llamaremos segundo paso de la segunda etapa del primer paso de osmosis inversa, por medio de una bomba de muy bajo consumo energético, instalada en derivación o by pass .
Adicionalmente, se contempla la siguiente solución alternativa al procedimiento descrito anteriormente, para garantizar una concentración de boro inferior a 0,5 ppm en el agua permeada.
En la segunda realización, el agua que se envía mediante una bomba o por la presión del permeado al segundo paso de la segunda etapa del primer paso es aquella producida por la segunda etapa del primer paso. En una cuarta realización o variante de la invención, se contempla un procedimiento que consta de un primer paso de osmosis inversa en dos etapas, como el descrito anteriormente y dos segundos pasos de osmosis inversa que se aplican según se describe a continuación. Para simplificar la nomenclatura a los dos segundos pasos de osmosis inversa los llamaremos segundo paso de la primera etapa del primer paso y segundo paso de la segunda etapa del primer paso de osmosis inversa.
Así, en esta cuarta variante, el procedimiento contempla que el agua permeada de la primera etapa del primer paso, es decir la correspondiente al grupo de membranas que está antes del interconector ciego, alimente al primero de los segundos pasos, es decir al que se ha denominado segundo paso de la primera etapa del primer paso. Dicho segundo paso contempla el paso del liquido por dos o tres etapas de membranas, estando los contendores de membranas formados por membranas de alto flujo y baja presión o de flujo medio y media presión de manera que no se requieren medios de bombeo.
El rechazo total del segundo paso de la primera etapa del primer paso se mezcla con el permeado de la segunda etapa del primer paso. La mezcla resultante alimenta al segundo paso de la segunda etapa del primer paso, que también consiste en dos o tres etapas de contenedores de membranas, de alto flujo y baja presión o flujo medio y media presión. Alternativamente se puede intercalar una bomba Booster o de baja presión instalada en by pass para la alimentación del segundo paso de la segunda etapa del primer paso.
Asi, el permeado global del procedimiento de la invención en esta cuarta variante resulta ser la mezcla de los permeados globales obtenidos a la salida del segundo paso de la primera etapa del primer paso y del segundo paso de la segunda etapa del primer paso.
Por otra parte, el caudal de rechazo global del segundo paso de la segunda etapa del primer paso es enviado a la aspiración de la bomba de agua de mar que alimenta a todo el sistema de osmosis inversa. De esta manera, el agua de mar sufre una dilución y por tanto disminuye su presión osmótica y como consecuencia también lo hace la presión total de alimentación a las membranas del primer paso, obteniéndose asi importantes ahorros energéticos . Alternativamente, para mejorar aún más el rendimiento energético se puede instalar un recuperador de energía que se alimenta del rechazo del primer paso, aprovechando la cantidad de movimiento de este rechazo para impulsar otro caudal. El caudal impulsado por el recuperador de energía procede de la aspiración de agua salobre o agua de mar. Además, se prevé que el dispositivo recuperador de energía alimente una bomba Booster de baja presión la cual impulsará nuevamente el agua procedente del recuperador de energía al primer paso .
El procedimiento descrito anteriormente, en sus cuatro variantes, se puede utilizar en todo tipo de agua que requiera desalinización y eliminación de boro, pero ha sido concebido preferentemente para tratar agua de mar o agua salobre y preferentemente se utilizará para desalinizar agua de mar.
En todo momento, a lo largo de la presente memoria cuando se habla de un segundo paso, es importante considerar que él mismo puede ser en dos, tres o cuatro etapas, aunque solo se haya descrito en detalle el caso de dos etapas. Asimismo, cada una de estas etapas puede estar conformada por la cantidad de contenedores de membranas que sea necesaria en función de la instalación que se quiere construir. En las distintas variantes representadas no se han representado variantes concretas de cantidad de contenedores de membranas en los segundos pasos porque se trata de representaciones esquemáticas. La cantidad de contenedores de membranas de cada etapa responde a la necesidad concreta de cada instalación.
La presente invención se refiere también a un equipo para llevar a cabo un procedimiento de desalinización y eliminación de boro del agua tal como el definido anteriormente, caracterizado porque comprende al menos: un contenedor de membranas de osmosis inversa que comprende una pluralidad de membranas interconectadas en serie, siendo las membranas de baja presión (bajo consumo energético) y alto flujo para trabajar con presiones bajas, o bien membranas de flujo medio y media presión; un interconector ciego que se dispone entre dos membranas de cada contenedor de membranas donde se llevará a cabo el primer paso, de manera tal que dicho interconector separe los caudales de permeado de dos secciones de membranas o etapas; y al menos dos válvulas de regulación del caudal instaladas en cada lado del conducto de permeado del primer paso, para producir contrapresiones en los conductos de permeado de cada sección de membranas separadas por el interconector ciego.
En una realización particular del equipo, se disponen hasta 8 membranas dentro de cada contenedor de membranas donde se llevará a cabo el primer paso y el interconector ciego está dispuesto entre las membranas que ocupan las posiciones 3-4 ó 4-5.
En una primera variante, el equipo arriba descrito comprende además un dispositivo hidráulico de transferencia de presiones intercalado en la alimentación del segundo paso, justo antes del inicio del mismo.
En una segunda variante, el equipo arriba descrito comprende, además del dispositivo hidráulico mencionado en la primera variante, una bomba de bajo consumo energético, instalada en derivación o by pass, a continuación de dicho dispositivo hidráulico de transferencia de presiones y antes del inicio del segundo paso .
En una tercera variante, el equipo arriba descrito incorpora, además una bomba de bajo consumo energético, instalada en derivación o by pass a continuación del dispositivo hidráulico de transferencia de presiones y antes de la alimentación del segundo paso. Esta bomba se utiliza para reforzar la presión de alimentación del segundo paso.
En una cuarta variante, el equipo arriba descrito incorpora, además, un contenedor o grupo de contenedores de membranas adicional, el correspondiente al segundo paso de la segunda etapa del primer paso. En esta cuarta variante, el equipo puede incorporar un recuperador de energía en el rechazo del primer paso y una bomba Booster que impulsa el agua procedente del recuperador de energía al primer paso.
Con la utilización del equipo para llevar a cabo el procedimiento de desalinización y eliminación de boro del agua descrito anteriormente se consigue un ahorro energético debido a que se recupera energía del primer paso del sistema. El hecho de alimentar un segundo paso mediante agua permeada de la primera etapa del primer paso, sin ninguna bomba, ofrece un ahorro energético sustancial ya que permite el aprovechamiento de la presión del caudal de permeado de la primera etapa del primer paso. Además, el rechazo global del segundo paso de la segunda etapa del primer paso se mezcla con el agua de mar a la aspiración de la bomba de alta presión que alimenta el primer paso de membranas, conlleva una disminución de la concentración de sales del agua bombeada al primer paso de membranas con una presión menor de bombeo y con el consecuente ahorro energético. BREVE DESCRIPCIÓN DE LAS FIGURAS
La presente invención será completamente comprendida sobre la base de la breve descripción que figura a continuación y de los dibujos acompañantes que se presentan, solamente a modo de ejemplo y, de esta manera, no son restrictivos dentro de la presente invención en donde: la figura 1 muestra un diagrama de flujo de un sistema convencional en dos pasos, existente en la técnica anterior, la figura 2 muestra un diagrama de flujo del primer paso de un sistema convencional de distribución de flujos en un tubo de membranas, existente en la técnica anterior la figura 3 muestra un esquema del interior de un contenedor de membranas del primer paso que comprende una pluralidad de membranas interconectadas en serie para el sistema de desalinización y eliminación de boro de la presente invención con interconector ciego (2), la figura 4 muestra un esquema del sistema de desalinización y eliminación de boro de la presente invención en su primera variante, la figura 5 muestra un esquema del sistema de desalinización y eliminación de boro de la presente invención en su segunda variante, que incluye un dispositivo hidráulico (12) de transferencia de presiones, la figura 6 muestra un esquema del sistema de desalinización y eliminación de boro de la presente invención en su tercera variante, que incluye un dispositivo hidráulico (12) de transferencia de presiones y una bomba (13), y la figura 7 muestra un esquema del sistema de desalinización y eliminación de boro de la presente invención en su cuarta variante, que incluye dos segundos pasos (Ha y Hb) de osmosis inversa en dos etapas y un recuperador de energía (26).
FORMA DE REALIZACIÓN DE LA INVENCIÓN Con el objeto de llegar a una mejor comprensión del objeto y funcionalidad de esta patente, y sin que se entienda como soluciones restrictivas, así la figura 1 muestra un diagrama de flujo de un sistema convencional en dos pasos (10' y 4'), existente en la técnica anterior, en la que se puede observar la aspiración (12') del sistema procedente del agua salobre o agua de mar (H'), la bomba de alta presión (13') y la alimentación/entrada al contenedor del primer paso (10') . También se ve el recorrido que hace el permeado obtenido en la primera etapa del primer paso (1'), la bomba de alimentación (2') al segundo paso y la dosificación opcional de hidróxido sódico (3'), u otra base fuerte y antiincrustante (9'), antes del inicio del segundo paso (4') . También se muestra la obtención final del rechazo del segundo paso (5') que se une al rechazo del primer paso (6') y que se redirige a la alimentación del primer paso (7'). Por otro lado, y simultáneamente, se obtiene, al final del segundo paso, el permeado (8') al que se une el permeado procedente del primer paso (1'), formando el permeado total (8") del sistema. la figura 2 muestra un diagrama de flujo y distribución de membranas del primer paso de un sistema convencional en dos pasos, existente en la técnica anterior en la que se observa la posición de la pluralidad de membranas (Al', A2 ' , A3 ' , A4 ' , A5 ' , A6 ' y Al') dispuestas en el contenedor de presión (10'). Se observa, igualmente, el lugar de la alimentación del agua (7') y el sentido de las corrientes producidas, de las cuales la corriente que atraviesa las primeras membranas da lugar al permeado del primer paso (1") que pasa a alimentar el segundo paso del procedimiento y el agua de rechazo del primer paso (6'). La figura 3 muestra un esquema de una configuración de un contenedor de membranas (9) con interconector ciego o split ciego (2), según la presente invención. Las membranas (Al, A2, A3, A4, A5, A6 y A7) alojadas en los contenedores (9) quedan de este modo separadas en dos grupos o etapas (a y b) . El número de membranas es preferentemente 7 u 8, pudiendo estar conectado el contenedor en cualquier posición entre dos membranas, preferentemente entre las posiciones A3-A4 o A4-A5. El contenedor de membranas (9) con interconector ciego (2) permite la obtención de dos caudales de permeado: un caudal de permeado (1) de la primera etapa (a) y un caudal de permeado (4) de la segunda etapa (b) , evacuando el contenedor (9) un caudal de rechazo (3) .
La figura 4 muestra un esquema del sistema de desalinización y eliminación de boro descrito por la presente invención, en el que se puede observar el recorrido que hace el permeado (1) obtenido en la primera etapa (a) del primer paso (I), la posición de la pluralidad de membranas (Al, A2, A3, A4, A5, A6 y A7) dispuestas en el contenedor de presión o contenedor de membranas (9) y el interconector ciego (2) ubicado en la posición preferente, entre las membranas de posición A3 y A4. Así, la corriente de las membranas al otro lado del interconector ciego (2) da lugar al permeado (4) de la segunda etapa (b) y al rechazo (3) del primer paso (I) . Dicho rechazo (3) del primer paso (I) podrá o bien reciclarse parcialmente a la entrada del primer paso, o bien evacuarse como salmuera al mar, según convenga.
Se puede ver, por tanto, el reparto de caudales de permeado del primer paso de osmosis inversa de agua de mar con interconector ciego (2) . La parte del contenedor de membranas (9) que arroja un mayor caudal es, en esta realización particular donde el interconector ciego (2) está ubicado entre las membranas de posición A3 y A4, la comprendida entre las membranas de posiciones Al a A3. Este caudal (1) es el que se aprovechará para alimentar a un segundo paso (II, lia) de osmosis inversa sin bomba elevadora de presión (bomba booster) intermedia, en el que se trabaja con membranas de baja presión y alto flujo o membranas de flujo medio y baja presión. Parte del rechazo o la totalidad del mismo del segundo paso se enviará a cabecera de la planta de osmosis inversa.
Como ventajas del procedimiento de la invención se señalan las siguientes:
- la no utilización de una bomba booster para alimentar el agua permeada (1) de la primera etapa (a) del primer paso (I) a un segundo paso (II, lia) y su consiguiente ahorro energético;
- la obtención de valores de contenido de boro del permeado total inferiores a 1 ppm, partiendo de una concentración inicial de boro en el agua de mar de entre 3,5 y 7 ppm, y a cualquier temperatura del agua de mar; - la contrapresión, necesaria para obtener un buen rendimiento de las membranas, se efectúa mediante válvulas de rechazo (5) ubicadas a ambos lados del primer paso (I), de esta manera se consigue: actuar sobre la conversión del segundo paso y controlar el flujo de trabajo de las membranas de posiciones por ejemplo Al a A3 ó Al a A4 de las distintas realizaciones particulares sugeridas del primer paso; y
- el agua permeada (4) de la segunda etapa (b) primer paso (I) y de las dos etapas del segundo paso (6 y
7) , son mezcladas adecuadamente hasta obtener concentraciones de boro siempre inferiores a 1 ppm.
Mediante el procedimiento descrito por la presente invención se pueden efectuar las mezclas oportunas de cada corriente de permeado tanto del primer paso como del segundo paso, para obtener una baja concentración global de boro en el agua de utilización.
Además, al trabajar con membranas de baja presión y alto flujo o flujo medio y presión media en el segundo paso, se puede trabajar con presiones muy bajas en dicho paso lo cual evita el instalar una bomba booster en la alimentación, con el consiguiente ahorro energético.
Una ventaja adicional de trabajar con membranas de baja presión y alto flujo o flujo medio y presión media tanto en el primer paso (I) como en el segundo paso (II, lia) , es que se obtiene la contrapresión adecuada en la corriente de permeado de la primera etapa (a) del primer paso (I) y de las membranas de posiciones preferentemente Al a A3, es decir las que quedan situadas antes del interconector ciego (2) en una de las realizaciones particulares descritas. Al trabajar con un interconector ciego (2) o "split ciego" entre las membranas de posiciones A3-A4 ó A4-A5, del primer paso (I) y tratar el agua permeada procedente de estas membranas, el agua permeada (1) en la primera etapa (a) del primer paso (I) es de muy baja salinidad, es decir de baja presión osmótica con lo que la presión de trabajo en el segundo paso (II, lia) de la primera etapa (a) del primer paso (I) que se describe en este procedimiento es igualmente muy baja. Al trabajar sin bomba booster en la alimentación del segundo paso, se consigue un proceso de desalinización y eliminación de boro por osmosis inversa de bajo costo energético .
También contribuye a ello el hecho de que todos los caudales de agua de rechazo del segundo paso se envían y mezclan con el caudal de alimentación de agua de mar al primer paso, disminuyendo la presión osmótica de alimentación al sistema y por lo tanto la presión de trabajo, con el consiguiente ahorro energético. En la figura 7 se muestra la cuarta variante propuesta para la presente invención donde el procedimiento consta de un primer paso (I), un segundo paso (lia) de la primera etapa (a) del primer paso (I) y un segundo paso (Hb) de la segunda etapa (b) del primer paso (I).
El primer paso (I) comprende un contenedor (9) con interconector ciego (no representado en la figura 7, si representado en la figura 3) que se alimenta con el caudal (8) que es la mezcla del caudal (8a) proveniente del agua salobre o agua del mar (H') impulsada mediante una bomba de alta presión (13') y de un caudal (23') procedente de un dispositivo recuperador de energía (26) que se impulsa mediante una bomba Booster o de baja presión ( 17) .
El agua permeada (1) de la primera etapa (a) del contenedor de membranas (9) del primer paso (I) alimenta directamente, sin emplear ningún medio de bombeo adicional, un contenedor de membranas (22) de osmosis inversa correspondiente a una primera etapa del segundo paso (lia) de la primera etapa (a) del primer paso (I) .
El rechazo (7a) de la primera etapa del segundo paso (Ha) de la primera etapa (a) del primer paso (I) alimenta al contenedor de membranas (23) correspondiente a una segunda etapa del segundo paso (lia) de la primera etapa (a) del primer paso (I) .
La mezcla de perneados (6 y 7b) de la primera y segunda etapa del segundo paso (lia) de la primera etapa (a) del primer paso (I) constituye el permeado global (14b) del segundo paso (lia) de la primera etapa (a) del primer paso (I).
Por otro lado, el permeado (4) de la segunda etapa (b) del primer paso (I) se mezcla con el rechazo (9a) de la segunda etapa (segundo contenedor 23) del segundo paso (lia) de la primera etapa (a) del primer paso (I) resultando en un caudal que se impulsa mediante una bomba Booster o de baja presión (16) y alimenta (13a) al contenedor de membranas (24) de osmosis inversa correspondiente a la primera etapa del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) .
El rechazo (14a) de la primera etapa del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) alimenta al contenedor de membranas (25) de osmosis inversa correspondiente a la segunda etapa del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) . La mezcla de los perneados (15a y 17a) de las primera y segunda etapa del segundo paso (Hb) de la segunda etapa (b) del primer paso (I), constituye el permeado global (18a) del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) .
La mezcla de los perneados globales (14b y 18a) de los segundos pasos (Ha y Hb) constituye el permeado global (19a) del procedimiento descrito en esta cuarta variante de la invención. Los contenedores de membranas (22, 23, 24 y 25) de los segundos pasos (Ha y Hb) están constituidos por membranas de alto flujo y baja presión o flujo medio y media presión.
El rechazo (16a) de la segunda etapa del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) es enviado al caudal de aspiración (8a) del primer paso (I), de modo tal que se produce una dilución del agua salobre o agua de mar aspirada consiguiendo asi reducir la presión osmótica al haber una menor concentración de sales y siendo, por tanto, necesaria una menor presión de bombeo, logrando el consecuente ahorro energético.
Asimismo y con el fin de obtener una alta eficiencia en esta cuarta variante de la invención, se instala un dispositivo recuperador de energía (26). Dicho recuperador de energía (26) se alimenta del rechazo global (3) del primer paso (I) . Esto es así debido a que el rechazo global (3) del primer paso (I) posee una alta energía convertible.
Así, el recuperador de energía (26) transforma la energía cinética del rechazo (3) en energía que se aporta a la succión de una bomba (17) . El recuperador de energía (26) se alimenta, a su vez, de un caudal (20a) de agua de mar o agua salobre, procedente de la aspiración (8a) de la bomba de alta presión (13') .
El caudal (23') es el caudal que sale del recuperador de energía (26) y es impulsado mediante la bomba Booster o de baja presión (17) hacia la entrada del contenedor de membranas (9) del primer paso (I) . La mezcla de dicho caudal (23'), junto con el caudal (8a) de impulsión de la bomba (13'), conforman el caudal (8) de alimentación del contenedor de membranas (9) con interconector ciego (2, no representado en la figura 7) del primer paso (I) .
Por último, existe un caudal de rechazo (22a) que ha atravesado el recuperador de energía (26) y que constituye el caudal de vertido de salmuera de rechazo. Adicionalmente, como ya se ha mencionado para otras realizaciones, en esta cuarta realización se contempla la posibilidad de dosificar antiincrustante para evitar la precitipación de sales, así como la dosificación de un alcalinizante para aumentar el valor del pH de la mezcla de agua de la corriente (1) de permeado procedente de la primera etapa (a) del primer paso (I) y a la corriente de permeado (13a) procedente del caudal (4) de permeado de la segunda etapa (b) del primer paso (I) y del rechazo (9a) del segundo paso (lia) de la primera etapa (a) del primer paso (I) . De este modo se logra transformar el boro en borato, que es mucho mejor rechazado por las membranas de osmosis inversa de alto flujo y baja presión o flujo medio y media presión.
Así, el procedimiento y equipo descritos en la presente invención ofrecen una alta calidad de agua permeada en cuanto a salinidad y eliminación de Boro a bajo coste energético. Se ha comprobado experimentalmente que la cuarta variante del procedimiento de la presente invención permite obtener conversiones globales de 46-48%, con conversiones parciales de 40-50% en el primer paso (I) y del 90% en los segundos pasos (Ha y Hb) .
Además, la configuración del equipo de osmosis inversa para desalinizar y eliminar boro del agua de mar o agua salobre de la presente invención ofrece la ventaja de tener un caudal mínimo de vertido de salmuera de rechazo.

Claims

REIVINDICACIONES
1. Procedimiento de desalinización y eliminación de boro del agua caracterizado porque comprende: - realizar un primer paso (I) de osmosis inversa mediante la alimentación de agua salobre (8) dentro un contenedor de membranas (9) de osmosis inversa que comprende una pluralidad de membranas (Al, A2, A3, A4, A5, A6 y A7) interconectadas en serie, y entre dos de dichas membranas se coloca un interconector ciego (2) que separa los caudales de permeado en dos secciones de membranas, las que están antes (a) del interconector ciego (2) y las que están después (b) del interconector ciego (2), definiendo respectivamente dos etapas (a y b) ; - realizar al menos un segundo paso (II, lia) de osmosis inversa dentro de al menos dos contenedores de membranas (22 y 23) que comprenden membranas de baja presión y alto flujo o flujo medio y presión media y que se alimenta con una parte o con la totalidad del agua procedente del permeado (1) de las membranas del primer paso (I) que están antes (a) del interconector ciego (2), es decir la primera etapa (a) del primer paso (I) .
2. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque en el primer paso (I) se colocan 6, 7 u 8 membranas en el contenedor de membranas (9).
3. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque en el primer paso (I), dentro del contenedor de membranas (9), se disponen 7 membranas (Al, A2, A3, A4, A5, A6 y A7) y el interconector ciego (2) está colocado entre las membranas que ocupan las posiciones A3-A4 o A4-A5.
4. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque en el primer paso (I) se regula el flujo de trabajo del caudal permeado mediante válvulas (5) de regulación del caudal, instaladas en cada lado del contenedor de membranas ( 9 ) .
5. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque en el segundo paso (II) se adiciona hidróxido sódico (10), o un alcalinizante fuerte, o un alcalinizante fuerte y antiincrustante (11) a una corriente de alimentación (1) de dicho paso, siendo dicha corriente (1) procedente de las membranas de la primera (a) etapa primer paso (I), para aumentar el pH .
6. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque el agua a tratar (8) es agua de mar o agua salobre.
7. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque al realizar el segundo paso (II) de osmosis inversa éste se alimenta, además, con la parte del agua procedente del permeado (4) de las membranas del primer paso (I) que están después del interconector ciego (2), es decir el agua permeada de la segunda etapa (b) del primer paso
(I) .
8. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 7, caracterizado porque se transfiere la presión residual existente en el agua de permeado (1) de la primera etapa (a) del primer paso (I) al permeado (4) de la segunda etapa (b) del primer paso
(I) por medio de un dispositivo hidráulico de transferencia de presiones (12) que se intercala antes de la alimentación del segundo paso (II).
9. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 8, caracterizado porque se refuerza la presión de alimentación del segundo paso
(II) por medio de una bomba (13) de bajo consumo energético que se instala a continuación del dispositivo hidráulico (12) de transferencia de presiones y antes de la alimentación del segundo paso (II).
10. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 1, caracterizado porque - en el primer paso (I) el contenedor de membranas (9) es alimentado por un caudal de alimentación (8) que proviene de la mezcla de un caudal de aspiración (8a) de agua salobre o agua de mar (H') impulsada a través de una bomba de alta presión (13') y de un caudal (23') procedente de un dispositivo recuperador de energía (26); - en el segundo paso (Ha) se disponen al menos dos contenedores de membranas (22 y 23) de osmosis inversa, definiendo una primera y una segunda etapa respectivamente, siendo alimentada la primera etapa con el permeado (1) de la primera etapa (a) del primer paso (I) y porque - comprende además otro segundo paso (Hb) correspondiente a la segunda etapa (b) del primer paso (I) de osmosis inversa en el que se disponen al menos dos contenedores de membranas (24 y 25) de osmosis inversa, definiendo una primera y una segunda etapa respectivamente, siendo alimentada su primera etapa con un caudal (13a) que es la mezcla del permeado (4) de la segunda etapa (b) del primer paso (I) y un rechazo (9a) de la segunda etapa del segundo paso (lia); - siendo, a su vez, un permeado global (19a), la mezcla resultante de un permeado global (14b) del segundo paso (Ha) de la primera etapa (a) del primer paso (I) con un permeado (18a) del segundo paso (Hb) de la segunda etapa (b) del primer paso (I); - siendo, un rechazo (16a) del segundo paso (Hb) de la segunda etapa (b) del primer paso (I) introducido en la aspiración (8a) del primer paso (I); y
- siendo un rechazo global (3) del primer paso (I) empleado en el recuperador de energía (26), para aprovechar la energía de dicho rechazo (3) .
11. Procedimiento de desalinización y eliminación de boro del agua según la reivindicación 10, caracterizado porque en los segundos pasos (Ha, Hb) se adiciona hidróxido sódico (10), o un alcalinizante fuerte, o un alcalinizante fuerte y antiincrustante (11) a unas corrientes de alimentación (1, 13a) de dichos pasos, siendo dichas corrientes, la corriente (1) procedente de las membranas de la primera (a) del primer paso (I) y la corriente (13a) mezcla del rechazo (9a) de la segunda etapa del segundo paso (lia) y el permeado (4) de la segunda (b) etapa primer paso (I) .
12. Equipo para llevar a cabo un procedimiento de desalinización y eliminación de boro del agua tal como el definido en la reivindicación 1, caracterizado porque comprende al menos: un contenedor de membranas (9) de osmosis inversa que comprende una pluralidad de membranas (Al, A2, A3, A4, A5, A6 y A7) interconectadas en serie, siendo las membranas de agua de mar o de agua salobre de baja presión y alto flujo o presión media y flujo medio; un interconector ciego (2) que se dispone entre dos membranas de dicho contenedor de membranas (9), de manera tal que dicho interconector (2) separe los caudales de permeado de dos secciones de membranas o etapas (a y b) ; y al menos dos válvulas (5) de regulación del caudal instaladas en cada lado del contenedor de membranas (9) del primer paso (I) .
13. Equipo para llevar a cabo un procedimiento de desalinización y eliminación de boro del agua según la reivindicación 12, caracterizado porque el contenedor de membranas dispone de 6, 7 ú 8 membranas.
14. Equipo para llevar a cabo un procedimiento de desalinización y eliminación de boro según la reivindicación 12, caracterizado porque se disponen 7 u 8 membranas en el contenedor de membranas (9) y el interconector ciego (2) está dispuesto entre las membranas que ocupan las posiciones A3-A4 ó A4-A5.
15. Equipo según la reivindicación 12, para llevar a cabo un procedimiento de desalinización y eliminación de boro del agua tal como el definido en la reivindicación 8, caracterizado porque comprende además: un dispositivo hidráulico (12) de transferencia de presiones intercalado en la alimentación del segundo paso (II) .
16. Equipo según la reivindicación 15, para llevar a cabo un procedimiento de desalinización y eliminación de boro tal como el definido en la reivindicación 9, caracterizado porque comprende además una bomba (13) de bajo consumo energético instalada en derivación o by pass, a continuación del dispositivo hidráulico (12) de transferencia de presiones y antes del inicio del segundo paso ( II ) .
17. Equipo según la reivindicación 12, para llevar a cabo un procedimiento de desalinización y eliminación de boro del agua tal como el definido en la reivindicación 10, caracterizado porque comprende además: - al menos cuatro contenedores de membranas (22, 23, 24 y 25) de osmosis inversa, constituidos por membranas agua salobre de alto flujo y baja presión o presión media y flujo medio; una bomba Booster (16) o de baja presión intercalada en la alimentación (13a) al segundo paso (Hb) de la segunda etapa (b) del primer paso (I); un recuperador de energía (26) intercalado a continuación del rechazo (3) del primer paso (I), de manera que se aproveche la energía de dicho rechazo (3) en impulsar un caudal (20a) procedente de la aspiración (8a) a la alimentación (8) del contenedor (9) de membranas del primer paso (I) y una segunda bomba Booster (17) o de baja presión que se intercala en el caudal (23') impulsado por el recuperador de energía (26).
PCT/ES2009/070256 2008-06-26 2009-06-26 Procedimiento de desalinización y eliminación de boro del agua y equipo para llevar a cabo dicho procedimiento WO2009156547A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2009264129A AU2009264129B2 (en) 2008-06-26 2009-06-26 Process for the desalination and elimination of boron from water and equipment to carry out said process
US12/977,118 US20110147309A1 (en) 2008-06-26 2010-12-23 Process for the desalination and elimination of boron from water and equipment to carry out said process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200801910A ES2350141B1 (es) 2008-06-26 2008-06-26 Procedimiento de eliminacion de boro del agua y equipo para llevar a cabo dicho procedimiento
ESP200801910 2008-06-26
ESP200802978 2008-10-22
ES200802978A ES2377068B1 (es) 2008-10-22 2008-10-22 MEJORAS INTRODUCIDAS EN LA PATENTE DE INVENCIÓN Nº 200801910, POR: SISTEMA DE DESALACIÓN Y ELIMINACIÓN DE BORO DE AGUA DEL MAR CON ALTO RENDIMIENTO ENERGÉTICO.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/977,118 Continuation US20110147309A1 (en) 2008-06-26 2010-12-23 Process for the desalination and elimination of boron from water and equipment to carry out said process

Publications (1)

Publication Number Publication Date
WO2009156547A1 true WO2009156547A1 (es) 2009-12-30

Family

ID=41444066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070256 WO2009156547A1 (es) 2008-06-26 2009-06-26 Procedimiento de desalinización y eliminación de boro del agua y equipo para llevar a cabo dicho procedimiento

Country Status (3)

Country Link
US (1) US20110147309A1 (es)
AU (1) AU2009264129B2 (es)
WO (1) WO2009156547A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394964A1 (en) * 2009-02-06 2011-12-14 Mitsubishi Heavy Industries, Ltd. Spiral-type seawater desalination system
WO2012078975A1 (en) * 2010-12-10 2012-06-14 Water Intellectual Properties, Inc. High efficiency water purification system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067820A1 (en) * 2010-09-21 2012-03-22 Water Standard Company Llc Method and apparatus for dynamic, variable-pressure, customizable, membrane-based water treatment for use in improved hydrocarbon recovery operations
US10343118B2 (en) 2011-12-22 2019-07-09 Water Standard Company (Mi) Method and control devices for production of consistent water quality from membrane-based water treatment for use in improved hydrocarbon recovery operations
US10329171B2 (en) 2011-12-22 2019-06-25 Water Standard Company (Mi) Method and control devices for production of consistent water quality from membrane-based water treatment for use in improved hydrocarbon recovery operations
JP6049498B2 (ja) * 2013-02-25 2016-12-21 三菱重工業株式会社 逆浸透膜装置及びその運転方法
CN203877944U (zh) * 2014-06-06 2014-10-15 深圳市优美环境治理有限公司 一种应用于海水淡化的多级反渗透膜装置
AU2015350166B2 (en) * 2014-11-17 2021-04-01 Massachusetts Institute Of Technology Concentration control in filtration systems, and associated methods
CN107068223B (zh) * 2017-03-22 2019-05-28 岭东核电有限公司 一种降低剂量率的cpr1000核电厂硼回收系统
FR3089674B1 (fr) * 2018-12-05 2021-06-25 Electricite De France Procédé et installation de traitement d’effluents aqueux issus du circuit primaire d’une centrale nucléaire comprenant de l’acide borique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046685A (en) * 1973-07-26 1977-09-06 Desalination Systems, Inc. Simultaneous production of multiple grades of purified water by reverse osmosis
US6120689A (en) * 1997-08-22 2000-09-19 Zenon Environmental, Inc. High purity water using triple pass reverse osmosis (TPRO)
US20050029192A1 (en) * 2001-11-06 2005-02-10 Arnold John W. Branched flow filtraction and system
ES2269658T3 (es) * 2001-02-26 2007-04-01 I.D.E. Technologies Ltd. Procedimiento de eliminacion de boro en presencia de iones de magnesi o.
WO2008020444A1 (en) * 2006-08-15 2008-02-21 Mekorot Israel National Water Company, Ltd. Multiple stage reverse osmosis method for removing boron from a salinated fluid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144511B2 (en) * 2002-05-02 2006-12-05 City Of Long Beach Two stage nanofiltration seawater desalination system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046685A (en) * 1973-07-26 1977-09-06 Desalination Systems, Inc. Simultaneous production of multiple grades of purified water by reverse osmosis
US6120689A (en) * 1997-08-22 2000-09-19 Zenon Environmental, Inc. High purity water using triple pass reverse osmosis (TPRO)
ES2269658T3 (es) * 2001-02-26 2007-04-01 I.D.E. Technologies Ltd. Procedimiento de eliminacion de boro en presencia de iones de magnesi o.
US20050029192A1 (en) * 2001-11-06 2005-02-10 Arnold John W. Branched flow filtraction and system
WO2008020444A1 (en) * 2006-08-15 2008-02-21 Mekorot Israel National Water Company, Ltd. Multiple stage reverse osmosis method for removing boron from a salinated fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394964A1 (en) * 2009-02-06 2011-12-14 Mitsubishi Heavy Industries, Ltd. Spiral-type seawater desalination system
EP2394964A4 (en) * 2009-02-06 2013-03-20 Mitsubishi Heavy Ind Ltd SYSTEM FOR DESALINATION OF SEA WATER OF SPIRAL TYPE
WO2012078975A1 (en) * 2010-12-10 2012-06-14 Water Intellectual Properties, Inc. High efficiency water purification system
CN103459326A (zh) * 2010-12-10 2013-12-18 沃特知识产权公司 高效净水系统

Also Published As

Publication number Publication date
US20110147309A1 (en) 2011-06-23
AU2009264129A1 (en) 2009-12-30
AU2009264129B2 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2009156547A1 (es) Procedimiento de desalinización y eliminación de boro del agua y equipo para llevar a cabo dicho procedimiento
US12065370B2 (en) Cross current staged reverse osmosis
ES2792373T3 (es) Método de desalinización
Shaffer et al. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy
ES2747304T3 (es) Purificación de líquidos mediante ósmosis forzada, intercambio iónico y reconcentración
US11406940B2 (en) Method for reducing monovalent ions in concentrate of nanofiltration system and the nanofiltration system
US11629072B2 (en) Liquid solution concentration system comprising isolated subsystem and related methods
US9126149B2 (en) Method for treating water in order to desalinate said water, including treating concentrates
JP2008161797A (ja) 淡水製造装置の運転方法および淡水製造装置
US20120067808A1 (en) Filtration apparatus and process with reduced flux imbalance
TW201204640A (en) Method for purifying water by cyclic ionic exchange
CN103508596A (zh) 一种己二酸铵清洗废水的处理系统及其回收方法
ES2972904T3 (es) Proceso para purificar una solución ácida que contiene fosfato que comprende impurezas y aparato para aplicar la misma
JP2012192364A (ja) 水処理方法及び水処理システム
KR101933063B1 (ko) 정삼투막 여과 장치
BR112019020028A2 (pt) processo e sistema para fornecer água de injeção de baixa salinidade
ES2350141B1 (es) Procedimiento de eliminacion de boro del agua y equipo para llevar a cabo dicho procedimiento
ES2708126B2 (es) Metodo para el tratamiento de agua salobre o de mar mediante osmosis inversa
ES2377068A1 (es) MEJORAS INTRODUCIDAS EN LA PATENTE DE INVENCIÓN Nº 200801910, POR: SISTEMA DE DESALACIÓN Y ELIMINACIÓN DE BORO DE AGUA DEL MAR CON ALTO RENDIMIENTO ENERGÉTICO.
Elarde et al. Conversion from membrane softening to brackish-water reverse osmosis
EA039982B1 (ru) Способ и система для получения слабоминерализованной нагнетаемой воды

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009264129

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009264129

Country of ref document: AU

Date of ref document: 20090626

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09769393

Country of ref document: EP

Kind code of ref document: A1