WO2009154378A2 - Method for preparing oxides using germs in corynebacterium - Google Patents

Method for preparing oxides using germs in corynebacterium Download PDF

Info

Publication number
WO2009154378A2
WO2009154378A2 PCT/KR2009/003181 KR2009003181W WO2009154378A2 WO 2009154378 A2 WO2009154378 A2 WO 2009154378A2 KR 2009003181 W KR2009003181 W KR 2009003181W WO 2009154378 A2 WO2009154378 A2 WO 2009154378A2
Authority
WO
WIPO (PCT)
Prior art keywords
corynebacterium
oxide
substrate
oxidase
producing
Prior art date
Application number
PCT/KR2009/003181
Other languages
French (fr)
Korean (ko)
Other versions
WO2009154378A3 (en
Inventor
박진병
두은희
서진호
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2009154378A2 publication Critical patent/WO2009154378A2/en
Publication of WO2009154378A3 publication Critical patent/WO2009154378A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein

Definitions

  • the present invention relates to a method of preparing an oxide by inducing an oxidation reaction of adding oxygen to a substrate, and to a method of preparing an oxide using a strain of Corynebacterium genus transformed with a gene encoding an oxidase. .
  • Oxidized compounds can be prepared by chemical methods using chemical catalysts and biological methods using biocatalysts such as enzymes or microorganisms. Usually, chemical methods are performed under high temperature and high pressure and are highly toxic organic solvents or heavy metals. Although ions are required, biological methods are carried out at room temperature and atmospheric pressure using oxidase or microorganisms producing oxidase as catalysts. In addition, it does not require organic solvents or heavy metal ions other than the substrate during the reaction, it is excellent in reaction selectivity and low amount of by-products generated.
  • a coenzyme such as NAD (P) H is usually required. Therefore, microbial catalysts having high coenzyme regeneration efficiency are widely used in comparison with enzyme catalysts, and are widely used as microbial catalysts, such as recombinant E. coli or Pseudomonas genus that produce oxidase.
  • Recombinant Escherichia coli is easy to genetically engineer, analyze and control metabolism, and mass cultivation, but it does not have high regeneration efficiency of coenzyme, which is essential for oxidation reaction, low resistance to organic compounds, and rapidly decreases metabolic activity by producing acetic acid during reaction. There is this.
  • Bacteria in the recombinant Pseudomonas are highly resistant to the toxicity of organic compounds and do not produce acetic acid during the reaction, but are less productive than recombinant E. coli due to difficult metabolic analysis and control (J. Microbiol. Biotechnol. (2007) 17: 379-392).
  • an object of the present invention is to develop and provide a method for producing an oxide using microorganisms having high resistance to the toxicity of organic compounds and producing less metabolic inhibitors such as acetic acid as biocatalysts.
  • the present invention provides a method for producing an oxide by inducing an oxidation reaction of adding oxygen to a substrate, the corynebacte transformed with a gene encoding an oxidase that can add oxygen to the substrate It provides a method for producing an oxide, characterized in that using the strain of the genus Leeum.
  • the method of preparing an oxide by inducing an oxidation reaction in which oxygen is added to a substrate may generate a material having a higher value than that of the added substrate.
  • the present invention does not directly prepare an oxide by directly reacting an oxidase to the substrate. It is characterized by producing an oxide using a strain of the genus Corynebacterium transformed with a gene encoding an oxidase that can add oxygen to.
  • the method for producing an oxide using microorganisms has the advantage of having a small amount of by-products due to excellent reaction selectivity without the need for organic solvents or heavy metal ions other than a substrate during the reaction, and cost-effective compared to using purified enzymes. Excellent at
  • Oxygenases also called oxygenated enzymes, are oxidoreductases that undergo oxidation by activating molecular oxygen. Two oxygen atoms are included in the product at the same time, only one atom of molecular oxygen enters the product, and the other produces hydrogen by obtaining hydrogen from NAPH (DPNH) or NADPH (TPNH).
  • DPNH DPNH
  • TPNH NADPH
  • the present invention transforms Corynebacterium strains to express or overexpress oxidase, and by using the strains of Corynebacterium from Example 1, Example 2, Example 3 and Comparative Example 1 than E. coli
  • the production rate was high, and specific product formation rate, volumetric productivity, and production yield were higher than those using E. coli in the production of oxide using Corynebacterium spp.
  • Corynebacterium strains can be deduced about three reasons for the faster oxidation rate than E. coli.
  • Corynebacterium spp. Has higher regeneration rate of NADPH, so the oxidation rate is higher than that of Escherichia coli.
  • NADPH is regenerated by the pentose phosphate pathway and the isocitrate dehydrogenase and malic enzymes of the TCA cycle.
  • glucose used as the carbon source
  • about 25% of glucose in E. coli is metabolized via the pentose phosphate pathway (J. Bacteriol. (1999) 181 (21): 6679-6688)
  • Coryne In Bacterium spp. About 44% of glucose is metabolized via the pentose phosphate pathway (J. Microbiol. Biotechnol. (2006) 16 (8): 1174-1179).
  • the Corynebacterium spp. Has a higher production rate of toxic metabolite, which may lower the activity of the biocatalyst during the oxidation reaction.
  • E. coli when oxidizing cyclohexanone, E. coli produces acetic acid at a rate of 0.05 g / g dry cells / h (Appl. Microbiol. Biotechnol. (2007) 76: 329-338) Corynebacte Leeum is produced at a rate of 0.03 g / g dry cells / h (Example 2).
  • Corynebacterium spp. Maintains high oxidation reaction rate because it is more resistant to the toxicity of organic compounds than Escherichia coli.
  • Corynebacterium spp. Has a very low cell wall permeability to organic compounds compared to Escherichia coli, which has a cell wall composed of mycomembrane and S-layer (J. Biotechnol. (2003) 104: 55-67). For example, E.
  • Corynebacterium spp. Bacteria used in the present invention are not limited to a specific kind, but are preferably Corynebacterium glutamicum and Corynebacterium ammoniagenes . It is good.
  • the oxidase is not limited to a specific enzyme, but is preferably a Bayer-Villiger oxidase, but the oxidation reaction using the Bayer-Villiger oxidase is ketones. It is an oxidation reaction of ketone, which converts ketones and ketone derivatives, which are known to be relatively stable unlike aldehyde, to their oxides ester and lactone.
  • the Bayer-Villiger oxidase may be, for example, cyclohexanone monooxygenase, wherein the substrate is cyclohexanone.
  • the method for producing an oxide of the present invention is preferably cultured strains of Corynebacterium strain transformed with a gene encoding an oxidase that can add oxygen to the substrate in a glucose-limited fed-batch culture, most preferably The substrate is preferably supplied after all the glucose has been consumed, because the substrate can inhibit the growth of cells.
  • the present invention exhibits an effect of significantly increasing oxide productivity compared to the method using the E. coli by using a strain of Corynebacterium genus transformed to produce oxidase as a biocatalyst.
  • Figure 1 shows the production of ⁇ -caprolactone ( ⁇ -Caprolactone) from cyclohexanone (cyclohexanone).
  • Figure 2 shows the growth curve of recombinant Corynebacterium glutamicum and the production curve of acetic acid and ⁇ -caprolactone.
  • Recombinant Corynebacterium glutamicum was incubated in Riesenberg medium supplemented with biotin, and fed on a fed-batch diet using glucose when the carbon source was depleted.
  • IPTG was added to 1.0 mM when g dry cells / l was reached to induce cyclohexanone monooxygenase production, and when the cell concentration reached 8.0 g dry cells / l, cyclohexanone was added.
  • the lactone production reaction was initiated by addition at 6.0 g / l.
  • the culture temperature was 30 °C
  • the air supply rate was 1.0 vvm
  • the stirring rate was 600rpm
  • pH was adjusted to 6.8.
  • Figure 3 is a diagram showing the growth curve and acetic acid and ⁇ -caprolactone production curve of the recombinant Corynebacterium glutamicum ( Corynebacterium glutamicum ).
  • Recombinant Corynebacterium glutamicum was incubated in Riesenberg medium with biotin and fed with a fed-batch diet using glucose when the carbon source was depleted. The cell concentration was 15.0 g dry cells. When / l was reached, IPTG was added to 1.0 mM to induce the expression of cyclohexanone monooxygenase, and when the cell concentration reached 20.0 g dry cells / l, cyclohexanone was added.
  • the oxidation reaction was initiated by addition at 6.0 g / l. Cyclohexanone was further added when the substrate concentration dropped below 3.0 g / l.
  • the culture temperature was 30 °C
  • the air supply rate was 1.0 vvm
  • the stirring rate was 1000rpm
  • pH was adjusted to 6.8.
  • Example 1 is a cyclohexanone derived from Acinetobacter to produce ⁇ -caprolactone in an oxide prepared by inducing an oxidation reaction of adding oxygen to a substrate.
  • Corynebacterium glutamicum was transformed using a monooxygenase gene, and cyclohexanone was used as a substrate.
  • the reaction for producing ⁇ -caprolactone ( ⁇ -Caprolactone) from the substrate cyclohexanone is shown in FIG. 1.
  • Recombinant plasmid was constructed so that the wild strain Corynebacterium glutamicum ATCC13032 produced cyclohexanone monooxygenase from Acinetobacter .
  • Recombinant plasmid was derived from Acinetobacter (cyclohexanone monooxygenase) gene (Biotechnol. Prog. (2002) in the corynebacterium expression vector pEKEX-2 (Gene (1991) 102: 9398). 18: 262-268).
  • the bacteria transformed with the recombinant plasmid were named Corynebacterium glutamicum pEKEx2- chnB .
  • Cyclohexanone was further added when the substrate concentration fell below 3.0 g / l during the reaction. After the initiation of the oxidation reaction, ⁇ -caprolactone was produced at 16.0 g / l after 7 hours (FIG. 3). The specific product rate during the reaction was 0.12 g / g dry cells / h, the volumetric productivity was 2.3 g / l / h, and the yield was over 94%.
  • E. coli was transformed into a cyclohexanone monooxygenase gene derived from Acinetobacter in the same manner as in Example 1, and a substrate was used as cyclohexanone (cyclohexanone).
  • the present invention using the strain of Corynebacterium genus as a biocatalyst was able to confirm that the productivity of the oxide can be significantly increased than the conventional method using E. coli.
  • the present embodiment 3 is hydroxy and daidzein (3'-hydroxydaidzein) a Bacillus (Bacillus) cytochrome P450 mono Oxygen derived to produce the oxide to be produced to induce the oxidation reaction of addition of oxygen to the substrate kinase (cytochrome monooxygenase Corynebacterium glutamicum was transformed using the gene (J. Mol. Cat. B: Enz. (2009) 59: 248-253 ), and the substrate was made of diaidzein. Was used. The reaction in which hydroxy dyzein is produced from the substrate dyedzein is shown in FIG. 4.
  • Ferredoxin Lee (CYP107H1 cytochrome monooxygenase) and Pseudomonas (Pseudomonas) derived reductase kinase (ferredoxin reductase wild strain of Corynebacterium glutamicum (Corynebacterium glutamicum) ATCC13032 is Bacillus (Bacillus) P450 cytochrome mono Oxygen dehydratase derived; PdR), ferredoxin (Pdx), to construct a recombinant plasmid.
  • Bacteria transformed with the recombinant plasmid were identified as Corynebacterium glutamicum ( Corynebacterium glutamicum ) pCYPPdRPdx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)

Abstract

The present invention relates to a method for preparing oxides characterized in that strains in corynebacterium transformed with genes that code an oxygenase capable of adding oxygen to a substrate are employed in a method for preparing an oxide by inducing an oxidation wherein oxygen is added to a substrate, thus remarkably increasing the yield rate of oxides as compared to conventional methods which use existing coliform bacilli.

Description

코리네박테리움 속의 균을 이용한 산화물의 제조방법Method for preparing oxide using bacteria of Corynebacterium
본 발명은 기질에 산소를 첨가하는 산화 반응을 유도하여 산화물을 제조하는 방법에 관한 것으로, 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 이용하여 산화물을 제조하는 방법에 관한 것이다. The present invention relates to a method of preparing an oxide by inducing an oxidation reaction of adding oxygen to a substrate, and to a method of preparing an oxide using a strain of Corynebacterium genus transformed with a gene encoding an oxidase. .
산화화합물은 화학촉매를 사용하는 화학적인 방법과 효소나 미생물과 같은 생물촉매를 사용하는 생물학적인 방법에 의해 제조될 수 있는데, 보통 화학적인 방법은 고온, 고압 하에서 이루어지고 독성이 강한 유기용매나 중금속 이온들이 요구되지만, 생물학적인 방법은 산화효소(oxygenase)나 산화효소를 생산하는 미생물을 촉매로 이용하여 상온, 상압 하에서 이루어진다. 또한, 반응 중 기질을 제외한 유기용매나 중금속 이온들을 필요로 하지 않으면서도, 반응선택성이 우수하여 부산물의 생성량이 적다. Oxidized compounds can be prepared by chemical methods using chemical catalysts and biological methods using biocatalysts such as enzymes or microorganisms. Usually, chemical methods are performed under high temperature and high pressure and are highly toxic organic solvents or heavy metals. Although ions are required, biological methods are carried out at room temperature and atmospheric pressure using oxidase or microorganisms producing oxidase as catalysts. In addition, it does not require organic solvents or heavy metal ions other than the substrate during the reaction, it is excellent in reaction selectivity and low amount of by-products generated.
한편, 생물촉매를 이용하여 산화화합물을 제조할 때, 보통 NAD(P)H와 같은 보효소가 요구된다. 따라서 보효소 재생효율이 높은 미생물 촉매가 효소 촉매에 비해 널리 이용되고 있는데, 미생물 촉매로 널리 이용되는 것으로 산화효소를 생산하는 재조합 대장균이나 슈도모나스 속 균이 있다.  On the other hand, when preparing an oxidizing compound using a biocatalyst, a coenzyme such as NAD (P) H is usually required. Therefore, microbial catalysts having high coenzyme regeneration efficiency are widely used in comparison with enzyme catalysts, and are widely used as microbial catalysts, such as recombinant E. coli or Pseudomonas genus that produce oxidase.
재조합 대장균은 유전자 조작과 대사 분석 및 조절, 대량배양이 용이하나, 산화반응에 필수적인 보효소의 재생 효율이 높지 않고 유기화합물에 대한 내성이 낮으며, 반응 중 초산을 생산하여 대사활성이 빠르게 저하되는 경향이 있다. Recombinant Escherichia coli is easy to genetically engineer, analyze and control metabolism, and mass cultivation, but it does not have high regeneration efficiency of coenzyme, which is essential for oxidation reaction, low resistance to organic compounds, and rapidly decreases metabolic activity by producing acetic acid during reaction. There is this.
재조합 슈도모나스 속의 균은 유기화합물의 독성에 대한 내성이 높고 반응 중 초산을 생산하지 않으나 대사 분석과 조절이 어려워 재조합 대장균에 비해 생산성이 낮은 수준에 머물러 있다 (J. Microbiol. Biotechnol. (2007) 17:379-392). Bacteria in the recombinant Pseudomonas are highly resistant to the toxicity of organic compounds and do not produce acetic acid during the reaction, but are less productive than recombinant E. coli due to difficult metabolic analysis and control (J. Microbiol. Biotechnol. (2007) 17: 379-392).
따라서, 유전자 조작과 대사 조절이 용이하고 유기화합물의 독성에 내성이 높으며 초산과 같은 대사활성 저해 물질을 적게 생산하는 미생물을 생촉매로 개발하여 산화물 제조에 사용하려는 연구가 많이 요구되고 있다.  Therefore, there is a great demand for researches to develop microorganisms that are easy to genetically manipulate and control metabolism, have high resistance to the toxicity of organic compounds, and produce less metabolic inhibitors such as acetic acid as biocatalysts for use in the production of oxides.
이에 본 발명은 유기화합물의 독성에 내성이 높으며 초산과 같은 대사활성 저해 물질을 적게 생산하는 미생물을 생촉매로 사용한 산화물의 제조방법을 개발하여 제공하는 데 그 목적이 있다. Accordingly, an object of the present invention is to develop and provide a method for producing an oxide using microorganisms having high resistance to the toxicity of organic compounds and producing less metabolic inhibitors such as acetic acid as biocatalysts.
상기의 목적을 달성하기 위하여 본 발명은 기질에 산소를 첨가하는 산화 반응을 유도하여 산화물을 제조하는 방법에 있어서, 기질에 산소를 첨가할 수 있는 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 이용하는 것을 특징으로 하는 산화물의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for producing an oxide by inducing an oxidation reaction of adding oxygen to a substrate, the corynebacte transformed with a gene encoding an oxidase that can add oxygen to the substrate It provides a method for producing an oxide, characterized in that using the strain of the genus Leeum.
이하, 본 발명의 과제 해결 수단에 대해 상세히 설명하고자 한다.Hereinafter, the problem solving means of the present invention will be described in detail.
기질에 산소를 첨가하는 산화 반응을 유도하여 산화물을 제조하는 방법은 첨가된 기질보다 부가가치가 높은 물질을 생성할 수 있는데, 본 발명은 기질에 산화 효소를 직접 반응시켜 산화물을 제조하는 것이 아니라, 기질에 산소를 첨가할 수 있는 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 사용하여 산화물을 제조함에 특징이 있다. The method of preparing an oxide by inducing an oxidation reaction in which oxygen is added to a substrate may generate a material having a higher value than that of the added substrate. The present invention does not directly prepare an oxide by directly reacting an oxidase to the substrate. It is characterized by producing an oxide using a strain of the genus Corynebacterium transformed with a gene encoding an oxidase that can add oxygen to.
미생물을 사용하는 산화물의 제조 방법은 반응 중 기질을 제외한 유기 용매나 중금속 이온들이 필요하지 않으면서도, 반응 선택성이 우수하여 부산물의 생성량이 적은 장점이 있으며, 정제 효소를 사용하는 것에 비해서는 비용적인 면에서 우수하다. The method for producing an oxide using microorganisms has the advantage of having a small amount of by-products due to excellent reaction selectivity without the need for organic solvents or heavy metal ions other than a substrate during the reaction, and cost-effective compared to using purified enzymes. Excellent at
산화효소(oxygenase)는 산소첨가효소라고도 불리우며, 분자상 산소를 활성화함으로써 산화를 진행하는 산화환원효소이다. 2개의 산소원자가 동시에 생산물 속에 포함되는데, 분자상 산소의 1원자 만이 생산물에 들어가고 다른 하나는 NAPH(DPNH) 또는 NADPH(TPNH)로부터 수소를 얻어 물을 생성한다.Oxygenases, also called oxygenated enzymes, are oxidoreductases that undergo oxidation by activating molecular oxygen. Two oxygen atoms are included in the product at the same time, only one atom of molecular oxygen enters the product, and the other produces hydrogen by obtaining hydrogen from NAPH (DPNH) or NADPH (TPNH).
본 발명은 코리네박테리움 속 균주가 산화효소를 발현 또는 과발현하도록 형질전환시키는데, 실시예 1, 실시예 2, 실시예 3 및 비교예 1로부터 코리네박테리움 속 균주를 사용함으로써 대장균보다 산화 반응속도가 높게 나타났고, 코리네박테리움 속 균주를 이용한 산화물 제조시 비생산속도(specific product formation rate)와 부피생산성(volumetric productivity) 및 생산 수율이 대장균을 이용한 것보다 높게 나타났다. The present invention transforms Corynebacterium strains to express or overexpress oxidase, and by using the strains of Corynebacterium from Example 1, Example 2, Example 3 and Comparative Example 1 than E. coli The production rate was high, and specific product formation rate, volumetric productivity, and production yield were higher than those using E. coli in the production of oxide using Corynebacterium spp.
코리네박테리움 속 균주가 대장균보다 산화 반응속도가 빠른 이유로는 3가지 정도를 추론할 수 있다. Corynebacterium strains can be deduced about three reasons for the faster oxidation rate than E. coli.
첫째, 코리네박테리움 속 균은 NADPH의 재생속도가 높기 때문에 산화 반응속도가 대장균보다 높다. 미생물에서는 NADPH가 펜토스 포스페이트 경로(pentose phosphate pathway)와 TCA 회로의 이소사이트레이트 탈수소효소(isocitrate dehydrogenase) 및 말릭효소(malic enzyme)에 의해 재생된다. 포도당이 탄소원으로 이용될 때, 대장균의 경우 약 25%의 포도당이 펜토스 포스페이트 경로(pentose phosphate pathway)를 통해 대사 되나(J. Bacteriol. (1999) 181 (21):6679-6688), 코리네박테리움 속 균에서는 약 44%의 포도당이 펜토스 포스페이트 경로를 통해 대사 되어(J. Microbiol. Biotechnol. (2006) 16(8): 1174-1179) NADPH 재생속도가 높다.First, Corynebacterium spp. Has higher regeneration rate of NADPH, so the oxidation rate is higher than that of Escherichia coli. In microorganisms, NADPH is regenerated by the pentose phosphate pathway and the isocitrate dehydrogenase and malic enzymes of the TCA cycle. When glucose is used as the carbon source, about 25% of glucose in E. coli is metabolized via the pentose phosphate pathway (J. Bacteriol. (1999) 181 (21): 6679-6688), Coryne In Bacterium spp., About 44% of glucose is metabolized via the pentose phosphate pathway (J. Microbiol. Biotechnol. (2006) 16 (8): 1174-1179).
둘째, 코리네박테리움 속 균은 산화반응 중 생물 촉매의 활성을 저하시킬 수 있는 독성 대사산물(toxic metabolite)의 생산량이 낮기 때문에 산화 반응속도가 대장균 보다 높다. 예를 들어 시클로헥사논(Cyclohexanone)을 산화시킬 경우, 대장균은 초산을 0.05g/g dry cells/h의 속도로 생산하지만(Appl. Microbiol. Biotechnol. (2007) 76:329-338) 코리네박테리움은 0.03g/g dry cells/h의 속도로 생산한다(실시예 2). Second, the Corynebacterium spp. Has a higher production rate of toxic metabolite, which may lower the activity of the biocatalyst during the oxidation reaction. For example, when oxidizing cyclohexanone, E. coli produces acetic acid at a rate of 0.05 g / g dry cells / h (Appl. Microbiol. Biotechnol. (2007) 76: 329-338) Corynebacte Leeum is produced at a rate of 0.03 g / g dry cells / h (Example 2).
셋째, 코리네박테리움 속 균은 대장균에 비해 유기화합물의 독성에 대한 내성이 높기 때문에 산화 반응속도가 높게 유지된다. 코리네박테리움 속 균은 세포벽이 mycomembrane과 S-layer로 구성되어 있어 세포벽이 lipopolysaccharide로 구성된 대장균에 비해 유기화합물에 대한 세포벽 투과성(permeability)이 매우 낮기 때문이다 (J. Biotechnol. (2003) 104:55-67). 일 예로, 대장균 촉매는 시클로헥사논 농도가 25g/l 이상으로 높아지면 시클로헥사논의 독성작용에 의해 시클로헥사논에 대한 산화활성을 모두 잃지만 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 촉매는 시클로헥사논 농도가 30g/l 되어도 높은 산화활성을 유지 하였다는 보고도 있다 (J. Biotechnol. (2009) 142:164-169). Third, Corynebacterium spp. Maintains high oxidation reaction rate because it is more resistant to the toxicity of organic compounds than Escherichia coli. Corynebacterium spp. Has a very low cell wall permeability to organic compounds compared to Escherichia coli, which has a cell wall composed of mycomembrane and S-layer (J. Biotechnol. (2003) 104: 55-67). For example, E. coli catalyst cycloalkyl becomes higher as cyclohexanone concentration of 25g / l or more of cyclohexanone by a toxic effect only both losing the oxidation activity of the cyclohexanone Corynebacterium glutamicum (Corynebacterium glutamicum) catalyst cycloalkyl It has been reported that high oxidative activity was maintained even when the concentration of hexanone was 30 g / l (J. Biotechnol. (2009) 142: 164-169).
한편, 본 발명에서 사용한 코리네박테리움 속 균은, 특정의 종류에 한정되는 것은 아니나, 바람직하게는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)인 것이 좋다.Meanwhile, the Corynebacterium spp. Bacteria used in the present invention are not limited to a specific kind, but are preferably Corynebacterium glutamicum and Corynebacterium ammoniagenes . It is good.
한편, 산화 효소는 특정의 효소에 한정되는 것은 아니나, 바람직하게는 베이어-빌리걸(Baeyer-Villiger)산화효소인 것이 좋은데, 베이어-빌리걸(Baeyer-Villiger)산화효소를 이용한 산화반응은, 케톤류(ketone)의 산화반응으로서 알데하이드(aldehyde)와 달리 비교적 안정하다고 알려진 케톤 및 케톤 유도체들을 그 산화물인 에스터(ester) 및 락톤(lactone)으로 변환시키는 반응이다.  On the other hand, the oxidase is not limited to a specific enzyme, but is preferably a Bayer-Villiger oxidase, but the oxidation reaction using the Bayer-Villiger oxidase is ketones. It is an oxidation reaction of ketone, which converts ketones and ketone derivatives, which are known to be relatively stable unlike aldehyde, to their oxides ester and lactone.
상기 베이어-빌리걸(Baeyer-Villiger)산화효소는 일 예로 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase)일 수 있으며, 이때 기질은 시클로헥사논(cyclohexanone)이다.  The Bayer-Villiger oxidase may be, for example, cyclohexanone monooxygenase, wherein the substrate is cyclohexanone.
한편, 본 발명의 산화물 제조방법은 바람직하게 기질에 산소를 첨가할 수 있는 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 포도당 제한 유가식 배양으로 배양하는 것이 좋으며, 가장 바람직하게 기질은 포도당이 전부 소모되고 난 후, 공급되는 것이 좋은데, 기질이 세포의 생장을 억제할 수 있기 때문이다. On the other hand, the method for producing an oxide of the present invention is preferably cultured strains of Corynebacterium strain transformed with a gene encoding an oxidase that can add oxygen to the substrate in a glucose-limited fed-batch culture, most preferably The substrate is preferably supplied after all the glucose has been consumed, because the substrate can inhibit the growth of cells.
상기에서 살펴본 바와 같이 본 발명은 산화효소를 생성하도록 형질전환된 코리네박테리움 속 균주를 생물 촉매로 사용함으로써 기존의 대장균을 이용하는 방법에 비해 산화물의 생산성이 월등히 증대되는 효과를 발휘한다.  As described above, the present invention exhibits an effect of significantly increasing oxide productivity compared to the method using the E. coli by using a strain of Corynebacterium genus transformed to produce oxidase as a biocatalyst.
도 1은 시클로헥사논(cyclohexanone)으로부터 ε-카프로락톤(ε-Caprolactone)의 생산 과정을 나타낸다.  Figure 1 shows the production of ε-caprolactone (ε-Caprolactone) from cyclohexanone (cyclohexanone).
도 2는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 성장 곡선과 초산 및 ε-카프로락톤(ε-caprolactone)의 생산 곡선을 나타낸다. 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 비오틴(biotin)이 첨가된 리젠버그 배지(Riesenberg medium)에 배양한 후 탄소원이 고갈되었을 때 포도당을 이용한 유가식 배양을 시작하였고, 균체 농도가 5.8 g dry cells/l에 도달했을 때 IPTG를 1.0 mM로 첨가하여 시클로헥산 모노옥시게나제(cyclohexanone monooxygenase) 생산을 유도하였으며, 균체 농도가 8.0 g dry cells/l에 도달했을 때 시클로헥산(cyclohexanone)을 6.0 g/l로 첨가하여 락톤 생산 반응을 개시하였다. 배양 온도는 30℃, 공기공급속도는 1.0 vvm, 교반속도는 600rpm, pH는 6.8로 조절되었다.Figure 2 shows the growth curve of recombinant Corynebacterium glutamicum and the production curve of acetic acid and ε-caprolactone. Recombinant Corynebacterium glutamicum was incubated in Riesenberg medium supplemented with biotin, and fed on a fed-batch diet using glucose when the carbon source was depleted. IPTG was added to 1.0 mM when g dry cells / l was reached to induce cyclohexanone monooxygenase production, and when the cell concentration reached 8.0 g dry cells / l, cyclohexanone was added. The lactone production reaction was initiated by addition at 6.0 g / l. The culture temperature was 30 ℃, the air supply rate was 1.0 vvm, the stirring rate was 600rpm, pH was adjusted to 6.8.
도 3은 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 성장 곡선과 초산 및 ε-카프로락톤(ε-caprolactone) 생산 곡선을 나타낸 도이다. 재조합 코리네박테리움 글루타미쿰을 비오틴(biotin)이 첨가된 리젠버그 배지(Riesenberg medium)에 배양한 후 탄소원이 고갈되었을 때 포도당을 이용한 유가식 배양을 시작하였고, 균체) 농도가 15.0 g dry cells/l에 도달했을 때 IPTG를 1.0 mM로 첨가하여 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase)의 발현을 유도하였으며, 균체 농도가 20.0 g dry cells/l에 도달했을 때 시클로헥사논(cyclohexanone)을 6.0 g/l로 첨가하여 산화반응을 개시하였다. 반응 중 기질 농도가 3.0 g/l 이하로 떨어졌을 때 시클로헥사논(cyclohexanone)을 추가로 첨가하였다. 배양 온도는 30℃, 공기공급속도는 1.0 vvm, 교반속도는 1000rpm, pH는 6.8로 조절되었다. Figure 3 is a diagram showing the growth curve and acetic acid and ε-caprolactone production curve of the recombinant Corynebacterium glutamicum ( Corynebacterium glutamicum ). Recombinant Corynebacterium glutamicum was incubated in Riesenberg medium with biotin and fed with a fed-batch diet using glucose when the carbon source was depleted. The cell concentration was 15.0 g dry cells. When / l was reached, IPTG was added to 1.0 mM to induce the expression of cyclohexanone monooxygenase, and when the cell concentration reached 20.0 g dry cells / l, cyclohexanone was added. The oxidation reaction was initiated by addition at 6.0 g / l. Cyclohexanone was further added when the substrate concentration dropped below 3.0 g / l. The culture temperature was 30 ℃, the air supply rate was 1.0 vvm, the stirring rate was 1000rpm, pH was adjusted to 6.8.
도 4는 기질인 다이드제인으로부터 하이드록시 다이드제인이 생산되는 반응을 나타낸다.4 shows a reaction in which hydroxy dyzein is produced from the substrate dyedzein.
이하, 본 발명의 구성 및 작용에 대해 하기 실시예에서 더욱 상세히 설명하지만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 이와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples, and includes modifications of equivalent technical spirit.
실시예 1: ε-카프로락톤(ε-Caprolactone)의 제조Example 1 Preparation of ε-Caprolactone
본 실시예 1은 기질에 산소를 첨가하는 산화 반응을 유도하여 제조되는 산화물 중 ε-카프로락톤(ε-Caprolactone)을 생산하기 위해 아시네토박터(Acinetobacter) 유래의 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase) 유전자를 이용하여 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 형질전환을 시켰으며, 기질은 시클로헥사논(cyclohexanone)을 사용하였다. 기질인 시클로헥사논(cyclohexanone)으로부터 ε-카프로락톤(ε-Caprolactone)이 생산되는 반응은 도 1과 같다. Example 1 is a cyclohexanone derived from Acinetobacter to produce ε-caprolactone in an oxide prepared by inducing an oxidation reaction of adding oxygen to a substrate. Corynebacterium glutamicum was transformed using a monooxygenase gene, and cyclohexanone was used as a substrate. The reaction for producing ε-caprolactone (ε-Caprolactone) from the substrate cyclohexanone is shown in FIG. 1.
1. 재조합 코리네박테리움 글루타미쿰(1. Recombinant Corynebacterium glutamicum ( Corynebacterium glutamicumCorynebacterium glutamicum ) 제조) Produce
야생균주인 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032가 아시네토박터(Acinetobacter) 유래의 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase)를 생산하도록 재조합 플라스미드를 구축하였다. 재조합 플라스미드는 코리네박테리움 발현 벡터인 pEKEX-2(Gene (1991) 102:9398)에 아시네토박터(Acinetobacter) 유래의 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase) 유전자(Biotechnol. Prog. (2002) 18:262-268)를 삽입하여 만들었다. Recombinant plasmid was constructed so that the wild strain Corynebacterium glutamicum ATCC13032 produced cyclohexanone monooxygenase from Acinetobacter . Recombinant plasmid was derived from Acinetobacter (cyclohexanone monooxygenase) gene (Biotechnol. Prog. (2002) in the corynebacterium expression vector pEKEX-2 (Gene (1991) 102: 9398). 18: 262-268).
재조합 플라스미드로 형질전환된 균을 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) pEKEx2-chnB로 명명하였다. The bacteria transformed with the recombinant plasmid were named Corynebacterium glutamicum pEKEx2- chnB .
2. 상기에 제조한 재조합 코리네박테리움 글루타미쿰( Corynebacterium glutamicum)을 이용한 ε-카프로락톤 생산 2. The recombinant Corynebacterium glutamicum prepared above ( Corynebacterium ε-caprolactone production using glutamicum)
(1) 종균 배양(1) spawn culture
카나마이신(Kanamycin)을 함유한 'Brain heart infusion (BHI)' 한천배지에서 자란 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 콜로니를 카나마이신(kanamycin)을 함유한 BHI 배지에서 적당시간 동안 배양을 한 후, 종균으로 사용하였다. 배양 조건은 온도는 30℃, 교반속도는 200rpm 이었다.Recombinant Corynebacterium glutamicum colonies grown on 'Brain heart infusion (BHI)' agar medium containing kanamycin were cultured in BHI medium containing kanamycin for a reasonable time. And used as a spawn. The culture conditions, the temperature was 30 ℃, the stirring speed was 200rpm.
(2) ε-카프로락톤 생산 (2) ε-caprolactone production
재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 배양액 100 ml를 900 ml의 비오틴(biotin)이 첨가된 리젠버그 배지(Riesenberg medium)에 접종한 후 30℃에서 600rpm으로 교반하면서 배양하였다. 초기에 넣어 준 탄소원 포도당이 고갈되었을 때 포도당을 주입하는 유가식 배양을 시작하였고, 균체 농도가 5.8 g dry cells/l에 도달했을 때 'Isopropyl β-D-1-thiogalactopyranoside(IPTG)'를 1.0 mM로 배양액에 첨가하여 시클로헥사논 모노옥시게타제(cyclhexanone monooxygenase)의 발현을 유도하였다. 이 후, 균체 농도가 7.0 g dry cells/l에 도달했을 때, 시클로헥사논(cyclohexanone)을 6.0 g/l로 첨가하여 산화반응을 시작하였다.100 ml of the recombinant Corynebacterium glutamicum culture medium was inoculated into Reesenberg medium to which 900 ml of biotin was added and then incubated with stirring at 30 ° C. at 600 rpm. Fed-fed cultivation was started when glucose was initially depleted, and when the cell concentration reached 5.8 g dry cells / l, Isopropyl β-D-1-thiogalactopyranoside (IPTG) was 1.0 mM. It was added to the culture broth to induce the expression of cyclohexanone monooxygenase (cyclhexanone monooxygenase). After that, when the cell concentration reached 7.0 g dry cells / l, cyclohexanone was added at 6.0 g / l to start the oxidation reaction.
산화반응을 개시한 후, 5시간이 지났을 때, ε-카프로락톤(ε-caprolactone)이 5.9 g/l로 생산되었다(도 2). 산화반응 중 반응 산물의 비생산속도는 0.15 g/g dry cells/h이었고 부피생산성은 1.2 g/l/h이었으며, 생산수율은 94% 이상이었다. 5 hours after the start of the oxidation reaction, ε-caprolactone was produced at 5.9 g / l (FIG. 2). The specific product rate during the oxidation reaction was 0.15 g / g dry cells / h, the volumetric productivity was 1.2 g / l / h, and the yield was over 94%.
실시예 2: ε-카프로락톤(ε-Caprolactone)의 제조Example 2: Preparation of [epsilon] -Caprolactone
상기 실시예 1과 같은 방법으로 제조된 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 종균배양액 100 ml를 900 ml의 비오틴(biotin)이 첨가된 리젠버그 배지(Riesenberg medium)에 접종한 후, 30℃에서 1000rpm으로 교반하며 배양하였다. After inoculating 100 ml of the recombinant Corynebacterium glutamicum spawn culture medium prepared in the same manner as in Example 1 in a Riesenberg medium added with 900 ml of biotin, 30 Incubate with stirring at 1000 rpm at ℃.
탄소원이 고갈되었을 때 포도당을 이용한 유가식 배양을 시작하였고, 균체 농도가 15.0 g dry cells/l에 도달했을 때 IPTG를 1.0 mM로 배양액에 첨가하여 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase)의 발현을 유도하였으며, 균체 농도가 20.0 g dry cells/l에 도달했을 때 시클로헥사논(cyclohexanone)을 6.0 g/l로 첨가하여 산화반응을 시작하였다. When the carbon source was depleted, the fed-batch cultivation using glucose was started. When the cell concentration reached 15.0 g dry cells / l, the expression of cyclohexanone monooxygenase was added by adding IPTG to the culture medium at 1.0 mM. When the cell concentration reached 20.0 g dry cells / l, cyclohexanone was added at 6.0 g / l to start the oxidation reaction.
반응 중 기질 농도가 3.0 g/l 이하로 떨어지면 시클로헥사논을 추가로 첨가하였다. 산화반응 개시한 후, 7시간이 지났을 때 ε-카프로락톤(ε-caprolactone)이 16.0 g/l로 생산되었다(도 3). 반응 중 반응산물의 비생산속도는 0.12 g/g dry cells/h 었고 부피생산성은 2.3 g/l/h였으며 생산수율은 94% 이상이었다. Cyclohexanone was further added when the substrate concentration fell below 3.0 g / l during the reaction. After the initiation of the oxidation reaction, ε-caprolactone was produced at 16.0 g / l after 7 hours (FIG. 3). The specific product rate during the reaction was 0.12 g / g dry cells / h, the volumetric productivity was 2.3 g / l / h, and the yield was over 94%.
비교예 1: 대장균을 이용한 ε-카프로락톤의 제조Comparative Example 1: Preparation of ε-caprolactone using E. coli
상기 실시예 1과 같은 방법으로 아시네토박터(Acinetobacter) 유래의 시클로헥사논 모노옥시게나제(cyclohexanone monooxygenase) 유전자로 대장균을 형질전환을 시켰으며, 기질도 시클로헥사논(cyclohexanone)을 사용하였다. E. coli was transformed into a cyclohexanone monooxygenase gene derived from Acinetobacter in the same manner as in Example 1, and a substrate was used as cyclohexanone (cyclohexanone).
실시예 2와 유사한 반응조건에서 실험한 결과, 반응물의 비생산 속도가 0.02 g/g dry cells/h이었고 부피생산성은 0.82 g/l/h로 나타났다(Appl. Microbiol. Biotechnol. (2007) 76:329-338).Experiments under reaction conditions similar to Example 2 showed that the specific production rate of the reactants was 0.02 g / g dry cells / h and the volumetric productivity was 0.82 g / l / h (Appl. Microbiol. Biotechnol. (2007) 76: 329-338).
이상의 실시예 1, 2 및 비교예 1을 종합하면, 상기 실시예 1 및 실시예 2의 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 이용한 ε-카프로락톤의 제조가 비교예 1의 대장균을 이용하여 ε-카프로락톤의 제조하는 것에 비해 비생산 속도(specific productivity)는 5배 이상, 부피생산성(volumetric productivity)은 2.7배 이상 높으며, 최종 반응 산물 농도는 45% 이상 높게 나타났다. The production of the first and second embodiments of the Corynebacterium glutamicum ε- caprolactone with (Corynebacterium glutamicum) using the E. coli of the comparative example 1 than in Example 1, 2 and Comparative Example 1 In summary, Compared with the preparation of ε-caprolactone, the specific productivity was 5 times or more, the volumetric productivity was 2.7 times or more, and the final reaction product concentration was 45% or more.
상기의 결과로부터 코리네박테리움 속 균주를 생물 촉매로 이용한 본 발명은 기존의 대장균을 이용하는 방법보다 산화물의 생산성을 월등히 증대시킬 수 있다는 사실을 확인할 수 있었다.From the above results, the present invention using the strain of Corynebacterium genus as a biocatalyst was able to confirm that the productivity of the oxide can be significantly increased than the conventional method using E. coli.
실시예 3: 하이드록시 다이드제인(3'-hydroxydaidzein (7,3',4'-trihydroxyisoflavone))의 제조Example 3 Preparation of 3'-hydroxydaidzein (7,3 ', 4'-trihydroxyisoflavone)
본 실시예 3은 기질에 산소를 첨가하는 산화 반응을 유도하여 제조되는 산화물 중 하이드록시 다이드제인(3'-hydroxydaidzein)을 생산하기 위해 바실러스(Bacillus) 유래의 P450 시토크롬 모노옥시전아제(cytochrome monooxygenase) 유전자(J. Mol. Cat. B: Enz. (2009) 59:248~253)를 이용하여 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 형질전환 시켰으며, 기질은 다이드제인(daidzein)을 사용하였다. 기질인 다이드제인으로부터 하이드록시 다이드제인이 생산되는 반응은 도 4와 같다. The present embodiment 3 is hydroxy and daidzein (3'-hydroxydaidzein) a Bacillus (Bacillus) cytochrome P450 mono Oxygen derived to produce the oxide to be produced to induce the oxidation reaction of addition of oxygen to the substrate kinase (cytochrome monooxygenase Corynebacterium glutamicum was transformed using the gene (J. Mol. Cat. B: Enz. (2009) 59: 248-253 ), and the substrate was made of diaidzein. Was used. The reaction in which hydroxy dyzein is produced from the substrate dyedzein is shown in FIG. 4.
1. 재조합 코리네박테리움 글루타미쿰(1. Recombinant Corynebacterium glutamicum ( Corynebacterium glutamicumCorynebacterium glutamicum ) 제조) Produce
야생균주인 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032가 바실러스(Bacillus) 유래의 P450 시토크롬 모노옥시전아제(cytochrome monooxygenase; CYP107H1)와 슈도모나스(Pseudomonas) 유래의 페레독신 리덕타아제(ferredoxin reductase; PdR), 페레독신(ferredoxin; Pdx)을 생산하도록 재조합 플라스미드를 구축하였다. 재조합 플라스미드는 코리네박테리움 발현 벡터인 pEKEX-2에 바실러스(Bacillus) 유래의 P450 시토크롬 모노옥시전아제(cytochrome monooxygenase; CYP107H1) 유전자를 삽입하고, 코리네박테리움 발현 벡터인 pVWEX2에 슈도모나스(Pseudomonas) 유래의 페레독신 리덕타아제(ferredoxin reductase; PdR), 페레독신(ferredoxin; Pdx) 유전자들을 삽입하여 만들었다. Ferredoxin Lee; (CYP107H1 cytochrome monooxygenase) and Pseudomonas (Pseudomonas) derived reductase kinase (ferredoxin reductase wild strain of Corynebacterium glutamicum (Corynebacterium glutamicum) ATCC13032 is Bacillus (Bacillus) P450 cytochrome mono Oxygen dehydratase derived; PdR), ferredoxin (Pdx), to construct a recombinant plasmid. Recombinant plasmids of Corynebacterium, Bacillus (Bacillus) P450 cytochrome mono Oxygen dehydratase derived from the expression vector pEKEX-2; insert (cytochrome monooxygenase CYP107H1) gene, and Corey four Pseudomonas (Pseudomonas) in tumefaciens expression vector pVWEX2 Derived ferredoxin reductase (ferredoxin reductase (PdR), ferredoxin (Pdx) genes were made by inserting.
재조합 플라스미드로 형질전환된 균을 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) pCYPPdRPdx로 명명하였다. Bacteria transformed with the recombinant plasmid were identified as Corynebacterium glutamicum (Corynebacterium glutamicum) pCYPPdRPdx.
2. 상기에 제조한 재조합 코리네박테리움 글루타미쿰(2. The recombinant Corynebacterium glutamicum prepared above ( Corynebacterium glutamicumCorynebacterium glutamicum )을 이용한 하이드록시 다이드제인 생산 Hydroxy Dyzedine Production Using
(1) 종균 배양(1) spawn culture
카나마이신(Kanamycin)을 함유한 'Brain heart infusion (BHI)' 한천배지에서 자란 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 콜로니를 카나마이신(kanamycin)을 함유한 BHI 배지에서 적당시간 동안 배양을 한 후, 종균으로 사용하였다. 배양 조건은 온도는 30℃, 교반속도는 200rpm 이었다.Recombinant Corynebacterium glutamicum colonies grown on 'Brain heart infusion (BHI)' agar medium containing kanamycin were cultured in BHI medium containing kanamycin for a reasonable time. And used as a spawn. The culture conditions, the temperature was 30 ℃, the stirring speed was 200rpm.
(2) 하이드록시 다이드제인 생산 (2) Hydroxy Dyzedine Production
재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 배양액 5 ml를 95 ml의 비오틴(biotin)이 첨가된 리젠버그 배지(Riesenberg medium)에 접종한 후 30℃에서 200rpm으로 교반하면서 배양하였다. 균체 농도가 1.0 g dry cells/l에 도달했을 때 IPTG를 1.0 mM로 배양액에 첨가하여 P450 시토크롬 모노옥시전아제(cytochrome monooxygenase; CYP107H1), 페레독신 리덕타아제(ferredoxin reductase; PdR), 페레독신(ferredoxin; Pdx)의 발현을 유도하였다. 이 후, 균체 농도가 2.0 g dry cells/l에 도달했을 때, 다이드제인을 50μM로 첨가하여 산화반응을 시작하였다.5 ml of recombinant Corynebacterium glutamicum culture medium was inoculated into Reesenberg medium to which 95 ml of biotin was added and then incubated with stirring at 30 ° C. at 200 rpm. When the cell concentration reached 1.0 g dry cells / l, IPTG was added to the culture medium at 1.0 mM to give P450 cytochrome monooxygenase (CYP107H1), ferredoxin reductase (PdR), and ferredoxin ( ferredoxin; Pdx). After that, when the cell concentration reached 2.0 g dry cells / l, the oxidation reaction was started by adding Dyzein at 50 μM.
산화반응을 개시한 후, 6시간이 지났을 때, 하이드록시 다이드제인이 2μM로 생산되었다. 이는 같은 유전자로 형질전환 된 재조합 대장균(J. Mol. Cat. B: Enz. (2009) 59:248~253)에 비해 생산수율과 반응산물 농도가 6배 이상 높은 것이다. Six hours after the initiation of the oxidation reaction, hydroxydydzein was produced at 2 μM. This is more than six times higher in production yield and reaction product concentration than recombinant E. coli (J. Mol. Cat. B: Enz. (2009) 59: 248-253) transformed with the same gene.

Claims (4)

  1. 기질에 산소를 첨가하는 산화 반응을 유도하여 산화물을 제조하는 방법에 있어서,In the method for producing an oxide by inducing an oxidation reaction of adding oxygen to the substrate,
    기질에 산소를 첨가할 수 있는 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 이용하는 것을 특징으로 하는 산화물의 제조방법 Method for producing an oxide, characterized in that using the strain Corynebacterium strain transformed with a gene encoding an oxidase that can add oxygen to the substrate
  2. 제1항에 있어서,The method of claim 1,
    코리네박테리움속 균은,Corynebacterium bacteria,
    코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)인 것을 특징으로 하는 산화물의 제조방법 Corynebacterium glutamicum ( Coynebacterium glutamicum ), Corynebacterium ammonia genes ( Coynebacterium ammoniagenes ) characterized in that the manufacturing method of the oxide
  3. 제1항에 있어서,The method of claim 1,
    산화 효소는, Oxidase,
    베이어-빌리걸 산화효소인 것을 특징으로 하는 산화물의 제조방법Method for producing an oxide, characterized in that the Bayer-billigirl oxidase
  4. 제1항에 있어서,The method of claim 1,
    상기 산화물의 제조방법은,The method for producing the oxide,
    기질에 산소를 첨가할 수 있는 산화 효소를 암호화하는 유전자로 형질전환된 코리네박테리움 속 균주를 포도당 제한 유가식 배양으로 배양하는 것을 특징으로 하는 산화물의 제조방법Method for producing an oxide, characterized in that cultured strains of Corynebacterium transformed with a gene encoding an oxidase that can add oxygen to the substrate in a glucose-limited fed-batch culture
PCT/KR2009/003181 2008-06-17 2009-06-15 Method for preparing oxides using germs in corynebacterium WO2009154378A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080056856A KR20090131073A (en) 2008-06-17 2008-06-17 Method for the production of oxygen compounds using corynebacterium sp
KR10-2008-0056856 2008-06-17

Publications (2)

Publication Number Publication Date
WO2009154378A2 true WO2009154378A2 (en) 2009-12-23
WO2009154378A3 WO2009154378A3 (en) 2010-04-01

Family

ID=41434539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003181 WO2009154378A2 (en) 2008-06-17 2009-06-15 Method for preparing oxides using germs in corynebacterium

Country Status (2)

Country Link
KR (1) KR20090131073A (en)
WO (1) WO2009154378A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365376B1 (en) * 1999-02-19 2002-04-02 E. I. Du Pont De Nemours And Company Genes and enzymes for the production of adipic acid intermediates
WO2007101867A1 (en) * 2006-03-09 2007-09-13 Basf Se PROCESS FOR THE PRODUCTION OF β-LYSINE
WO2008013966A2 (en) * 2006-07-28 2008-01-31 Johns Hopkins University Use of 8-quinolinol and its analogs to target cancer stem cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365376B1 (en) * 1999-02-19 2002-04-02 E. I. Du Pont De Nemours And Company Genes and enzymes for the production of adipic acid intermediates
US20030113886A1 (en) * 1999-02-19 2003-06-19 Brzostowicz Patricia C. Oxidation of a cyclohexanone derivative using a brevibacterium cyclohexanone monooxygenase
WO2007101867A1 (en) * 2006-03-09 2007-09-13 Basf Se PROCESS FOR THE PRODUCTION OF β-LYSINE
WO2008013966A2 (en) * 2006-07-28 2008-01-31 Johns Hopkins University Use of 8-quinolinol and its analogs to target cancer stem cells

Also Published As

Publication number Publication date
WO2009154378A3 (en) 2010-04-01
KR20090131073A (en) 2009-12-28

Similar Documents

Publication Publication Date Title
US8080397B2 (en) Biocatalystic synthesis of quinic acid and conversion to hydroquinone by recombinant microbes
KR102321136B1 (en) genetically engineered bacteria
Krajewski et al. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation
US5032514A (en) Metabolic pathway engineering to increase production of ascorbic acid intermediates
KR102569806B1 (en) Microorganism transformed by a gene encoding adenosyltransferase and uses thereof
Goel et al. Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site
US20220411837A1 (en) Recombinant methanotrophic bacteria for indigo biosynthesis and methods thereof
US10711291B2 (en) Recombinant engineered bacterium co-expressing trans-anethole oxygenase and formate dehydrogenase and application thereof in production of piperonal
CN108949647B (en) Engineering bacterium and application thereof in production of L-tyrosine
CN108949650B (en) A kind of production method and engineering bacteria of danshensu
WO2009154378A2 (en) Method for preparing oxides using germs in corynebacterium
CN108949648B (en) A kind of engineering bacteria and its with the application of cheap substrates production danshensu
EP1487974A4 (en) Nad phosphite oxidoreductase a novel catalyst from bacteria for regeneration of nad(p)h
CN108949649A (en) A kind of engineering bacteria and its application in production levodopa
CA2294648A1 (en) Improved enterobacteriaceae fermentation strains
CN108949654B (en) Engineering bacterium and application thereof in production of alpha-ketoglutaric acid
WO2014171635A1 (en) Novel d-sorbitol dehydrogenase and method for producing l-sorbose using same
Grimm et al. Biocatalytic applications of autotrophic organisms
KR101533290B1 (en) Escherichia coli for high production of d―galactonate and use thereof
WO2004013332A1 (en) Substrate conversion
KR20230035372A (en) Method for producing 2,6-bis(hydroxymethyl)pyridine through enzyme catalyst
WO2023126510A1 (en) Monooxygenase mutants for biosynthesis of 2,6-bis(hydroxymethyl)pyridine and a method for preparation of 2,6-bis(hydroxymethyl)pyridine using the said monooxygenase mutants
CN114045300A (en) Construct, vector and cyanobacterium for synthesizing olivinic acid and method for producing olivinic acid in cyanobacterium
KR100828625B1 (en) Recombinant microorganism to produce alpha-keto-glutarate and manitol simultaneously and the method for production of alpha-keto-glutarate and manitol thereof
WO2023224153A1 (en) Mutant microorganisms for producing 1,3-propanediol, and method for producing 1,3-propanediol using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766803

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766803

Country of ref document: EP

Kind code of ref document: A2