WO2009154223A1 - Method for diagnosing fuel injection and fuel injection controller - Google Patents

Method for diagnosing fuel injection and fuel injection controller Download PDF

Info

Publication number
WO2009154223A1
WO2009154223A1 PCT/JP2009/061015 JP2009061015W WO2009154223A1 WO 2009154223 A1 WO2009154223 A1 WO 2009154223A1 JP 2009061015 W JP2009061015 W JP 2009061015W WO 2009154223 A1 WO2009154223 A1 WO 2009154223A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
amount
estimated
injection amount
internal combustion
Prior art date
Application number
PCT/JP2009/061015
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 新口
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Publication of WO2009154223A1 publication Critical patent/WO2009154223A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection

Definitions

  • the present invention relates to a fuel injection control device for an internal combustion engine, and more particularly, to a device that simplifies the configuration, improves reliability, etc. in abnormality diagnosis of fuel injection.
  • FIG. 4 shows a diagnostic process for detecting an abnormality in fuel injection executed by an electronic control unit (ECU) constituting a fuel injection control device of an automobile engine.
  • ECU electronice control unit
  • the contents are represented by functional blocks.
  • This fuel injection abnormality diagnosis process is performed as a logic part that calculates and calculates engine torque (driver required torque) and fuel injection amount (indicated fuel injection amount) determined according to the driver's driving situation, in other words, software. It is characterized by the fact that the portion to be provided is doubled.
  • the parts labeled “LEVEL 1” and “LEVEL 2” are basically software having the same processing contents, and the amount of accelerator depression and engine rotation based on the output of the accelerator sensor input from the outside. Based on the number, etc., the magnitude of torque required for the engine according to the driver's operating status, that is, the driver's required torque, the indicated fuel injection amount that is the amount of fuel that should be injected according to the engine operating status, etc. It has a function to calculate and calculate.
  • the LEVEL 1 is actually used for fuel injection control, and the calculation result is supplied to a fuel injection amount control process for controlling the operation of an actuator (not shown) used for the fuel injection valve. (Not shown) is energized.
  • the same arithmetic processing as LEVEL1 is executed based on the same input data as LEVEL1.
  • LEVEL 2 also performs reverse calculation of the amount of fuel that would have been injected into the engine (not shown) based on the energization time of the actuator described above, and this reverse calculation result is similar to LEVEL 1.
  • the presence or absence of an abnormality in the fuel injection is diagnosed by comparing with the calculated fuel injection amount calculated in this way. If an abnormality is diagnosed, an injection stop command is output to the fuel injection amount control process, and the above-mentioned An energization stop of an actuator (not shown), that is, an injection stop is performed.
  • the present invention has been made in view of the above circumstances, and provides a fuel injection diagnosis method and a fuel injection control device having a simpler software configuration than conventional ones.
  • a fuel injection diagnostic method in a fuel injection control device configured to control a fuel injection amount to the internal combustion engine by a fuel injection valve in accordance with an operating state of the internal combustion engine.
  • a fuel injection amount estimated to have been injected by the fuel injection valve is calculated, the estimated fuel injection amount,
  • a comparison is made between the driver-requested fuel injection amount, which is the amount of fuel to be injected by the fuel injection valve determined according to the operating state of the internal combustion engine, and the fuel injection is abnormal when the estimated fuel injection amount is large.
  • a fuel injection diagnostic method configured to determine that is provided.
  • the fuel is configured such that the fuel injection amount from the fuel injection valve to the internal combustion engine is controlled by the electronic control unit in accordance with the operating state of the internal combustion engine.
  • An injection control device The electronic control unit inputs an intake air amount to the internal combustion engine and an oxygen concentration of exhaust gas of the internal combustion engine, and an estimated fuel injection amount estimated to be injected by the fuel injection valve based on the input While calculating Calculating and calculating a driver-requested fuel injection amount that is an amount of fuel to be injected by the fuel injection valve in accordance with an operating state of the internal combustion engine;
  • a fuel injection control device configured to compare the estimated fuel injection amount with the driver-requested fuel injection amount and determine that the fuel injection is abnormal when the estimated fuel injection amount is determined to be large. Is provided.
  • the logic (software) part for the calculation calculation processing of the injection amount is doubled with the completely same configuration, one for the actual control and the other for the estimated injection amount. Since it is not necessary to adopt a configuration for determining the presence or absence of injection abnormality by comparing the injection amount calculated in both, it can be a simpler configuration than conventional, Conventionally, when a change in the logic for the calculation calculation processing of the injection amount occurs, it is necessary to do a double correction work of the logic reflecting the change, resulting in an increase in cost. Cost increase associated with such work can be reduced.
  • the oxygen concentration of the intake air and exhaust gas which is a physical quantity that changes according to the actual injection result, is used to calculate the estimated value of the fuel injection amount, and whether or not there is an abnormality in the fuel injection.
  • FIGS. 1 to 3 a configuration example of a fuel injection control apparatus to which a fuel injection diagnosis method according to an embodiment of the present invention is applied will be described with reference to FIG.
  • the engine 1 as an internal combustion engine
  • intake air necessary for fuel combustion is secured via an intake system device 3.
  • the amount of air introduced into the engine 1 via the intake system device 3 is detected by an air mass sensor (indicated as “SA” in FIG. 1) 2 provided on the upstream side of the intake system device 3. It is input to an electronic control unit (indicated as “ECU” in FIG. 1) 8 for fuel injection control.
  • SA air mass sensor
  • ECU electronice control unit
  • the intake system device 3 is a known or well-known device such as a turbo, an intercooler, a throttle valve, etc., although not shown.
  • the exhaust gas after combustion is exhausted to the outside from the engine 1 through the exhaust system devices 4 and 6, but a lambda sensor (O 2 sensor) 5 is provided in the middle of the exhaust path. It is provided so that the oxygen concentration in the exhaust gas is detected, and its output signal is input to the electronic control unit 8 and used for fuel injection control.
  • the notation “S ⁇ ” means the lambda sensor 5.
  • the exhaust system devices 4 and 6 are known and well-known devices such as a turbo, an oxidation catalyst, a NOx catalyst, and a DPF, although not specifically shown.
  • the fuel injection control device 7 means a hardware part such as a fuel injection valve (not shown) except for an electronic control unit 8 which will be described later, and an electromagnetic actuator or the like provided on the fuel injection valve.
  • the operation control is executed by the electronic control unit 8, and the electronic control unit 8 also functions as the fuel injection control device 7.
  • the electronic control unit 8 has, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and is provided in an injector (not shown).
  • a drive circuit (not shown) or the like for driving the electromagnetic actuator is used as a main component.
  • the electronic control unit 8 receives the detection signals of the air mass sensor 2 and the lambda sensor 5 as well as various detection signals such as an accelerator sensor (not shown) and an engine speed. It is input to be used for the operation control and fuel injection control.
  • FIG. 2 shows a subroutine flowchart showing the procedure of the fuel injection diagnosis process executed in the electronic control unit 8 in the embodiment of the present invention.
  • the fuel injection diagnosis process will be described with reference to FIG. .
  • the driver required fuel injection amount Q1 is calculated (see step S100 in FIG. 2).
  • the driver-requested fuel injection amount Q1 (denoted as “driver request Q1” in step S100 in FIG. 2) is a calculated (theoretical) fuel injection amount determined by the operation of the vehicle by the driver of the vehicle, that is, the driver. .
  • the driver-requested fuel injection amount Q1 is calculated by a predetermined arithmetic expression based on various signals corresponding to the operating state of the engine 1 such as an accelerator opening degree and an engine speed detected by an accelerator sensor (not shown).
  • This calculation calculation process is not specific to the fuel injection diagnosis process in the embodiment of the present invention, and is conventionally performed in the fuel injection control. Therefore, in the embodiment of the present invention, the driver required fuel injection amount calculated in the fuel injection control process (not shown) is not calculated and calculated again for the fuel injection diagnosis process. It is sufficient to read Q1 and use it.
  • the function of the electronic control unit 8 when viewed mainly with respect to the fuel injection diagnosis process in the embodiment of the present invention will be described with reference to the functional block diagram shown in FIG.
  • the electronic control unit 8 in the embodiment of the present invention includes a logic part that is actually used for fuel injection control and a logic part that calculates and calculates an estimated injection amount as described below. In this respect, it is configured to be in line with the conventional device.
  • the electronic control unit 8 has a logic part for calculating and calculating a so-called driver-requested fuel injection amount, in other words, a part executed as software (“LEVEL 1” in FIG. 3), as in the conventional apparatus shown in FIG. And a logic portion (indicated as “LEVEL 2” in FIG. 3) for calculating and calculating the estimated fuel injection amount based on the detection outputs of the air mass sensor 2 and the lambda sensor 5.
  • LEVEL 1 is an arithmetic processing part similar to the conventional one, and the magnitude of torque requested by the driver from the engine based on the accelerator opening, the engine speed, and the like based on the output of an accelerator sensor (not shown) input from the outside. That is, it has a function of calculating and calculating a driver request torque, a driver request fuel injection amount (indicated fuel injection amount) that is an amount of fuel that should be injected according to the operating state of the engine, and the like.
  • LEVLE1 is actually used for fuel injection control, and the calculation result is used for fuel injection amount control processing for controlling the operation of an electromagnetic actuator (not shown) used for fuel injection operation.
  • energization of an electromagnetic actuator (not shown) is performed.
  • LEVEL 2 in the embodiment of the present invention unlike LEVEL 1, at least an estimation to be described later is performed based on output signals of air mass sensor 2 and lambda sensor 5 instead of an input of an accelerator sensor (not shown) or the like. What is necessary is just to have a calculation calculation function of the fuel injection amount, and unlike the conventional case, it is not necessary to have the same processing function as LEVEL1.
  • the fuel injection amount calculated and calculated by LEVEL1 and LEVEL2 is used for diagnosis of the presence or absence of abnormality in fuel injection (details will be described later), and when it is determined as abnormal as a result of diagnosis, fuel injection amount control An injection stop command is output for the process, and the energization stop of the above-described electromagnetic actuator (not shown), that is, the injection stop is performed.
  • the estimated fuel injection amount Q2 is obtained (see step S102 in FIG. 2).
  • This estimated fuel injection amount Q2 is a fuel injection amount calculated in the processing of LEVEL 2 described in FIG. 3 based on the outputs of the air mass sensor 2 and the lambda sensor 5 and the theoretical air-fuel ratio. It has a meaning as a fuel injection amount that is estimated to have been actually injected under the actual measurement value of the sensor 5.
  • the estimated fuel injection amount Q2 is obtained as intake air amount detected by the air mass sensor 2 / (oxygen concentration of exhaust gas detected by the lambda sensor 5 ⁇ theoretical air-fuel ratio).
  • step S104 it is determined whether or not the estimated fuel injection amount Q2 obtained as described above exceeds an amount obtained by adding a predetermined margin (error deviation amount) ⁇ to the driver required fuel injection amount Q1 (FIG. 2). Step S104). If it is determined in step S104 that Q2> (Q1 + ⁇ ) (in the case of YES), the process proceeds to step S106 described later. On the other hand, if it is determined that Q2> (Q1 + ⁇ ) is not satisfied (in the case of NO), it is determined that the fuel injection is not in an abnormal state, and the count value (Counter) of the abnormality diagnosis counter is set to zero. Returning to the routine once (see step S112 in FIG. 2).
  • the margin ⁇ has an appropriate value that varies depending on the scale of the fuel injection control device, and is preferably determined based on the specific conditions of each device. A value that can clearly be determined to be abnormal fuel injection beyond the changing fuel injection amount should be selected.
  • step S106 it is determined that there is a possibility of abnormality in the fuel injection, and the count value of the counter for abnormality diagnosis is incremented by one, and it is determined whether or not this count value is equal to or greater than a predetermined threshold (FIG. 2). (See step S108).
  • step S108 if it is determined that the count value is not equal to or greater than the predetermined threshold value (in the case of NO), the routine returns to a main routine (not shown) that the fuel injection is not abnormal.
  • the count value of the abnormality diagnosis counter is equal to or greater than the predetermined threshold value (in the case of YES)
  • processing is executed (see step S110 in FIG. 2).
  • the abnormal state of the fuel injection means a state in which an unintended fuel injection exceeding the driver-requested fuel injection amount Q1 is performed for some reason.
  • the cause is not only a so-called hardware failure represented by a failure of a fuel injection valve (not shown), but also various control constants in a fuel injection control process executed in the electronic control unit 8, for example. This may include a so-called software failure caused by an abnormal value suddenly due to some cause.
  • the abnormality handling process is specifically, for example, an output of an injection stop command first, whereby an injector (not shown) is stopped and fuel injection is stopped. Become. As the fuel injection is stopped, the fuel pressure instruction value in the fuel injection control process is forcibly set to the minimum value, the fuel pump (not shown) is stopped, and the throttle valve (not shown) is fully closed. Is preferably executed. Needless to say, the specific content of the abnormality handling process is not limited to the above-described content.

Abstract

Provided is a method for diagnosing fuel injection wherein the software configuration is simpler as compared with prior art.  An electronic control unit (8) calculates a driver request fuel injection, i.e. a quantity of fuel to be injected from a fuel injection valve depending on the operational state of an engine (1) determined, for example, by an accelerator opening detected by an acceleration sensor(S100), operates a fuel injection estimated to be injected from the fuel injection valve based on an intake air detected by an air mass sensor (2) and the oxygen concentration of exhaust gas detected by a lambda sensor (5) (S102), compares the driver request fuel injection with the estimated fuel injection (S104), and when a judgment is made a predetermined number of times or more that the estimated fuel injection is larger (S108), judges that fuel injection is abnormal and performs a processing for solving abnormality such as injection stop is performed (S110).

Description

燃料噴射診断方法及び燃料噴射制御装置Fuel injection diagnostic method and fuel injection control device
 本発明は、内燃機関の燃料噴射制御装置に係り、特に、燃料噴射の異常診断における構成の簡素化、信頼性の向上等を図ったものに関する。 The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly, to a device that simplifies the configuration, improves reliability, etc. in abnormality diagnosis of fuel injection.
 従来から、内燃機関の燃料噴射制御装置においては、内燃機関の円滑な動作確保等の観点から様々な診断処理方法が提案され、また、実用に供されていることは良く知られているところである。
 例えば、内燃機関の動作において、燃料噴射動作は重要な動作であり、内燃機関の円滑な動作確保のため、その異常の有無を検出するための種々の診断処理が提案されている(例えば、特許文献1等参照)。
Conventionally, in a fuel injection control device for an internal combustion engine, various diagnostic processing methods have been proposed from the viewpoint of ensuring a smooth operation of the internal combustion engine, and it is well known that it has been put into practical use. .
For example, in the operation of an internal combustion engine, the fuel injection operation is an important operation, and various diagnostic processes have been proposed for detecting the presence or absence of abnormality in order to ensure a smooth operation of the internal combustion engine (for example, patents). Reference 1 etc.).
 この他に燃料噴射の異常の有無を診断する方策としては、例えば、本願出願人により既に実用に供されているものとして図4に示されたような手順を用いたものがある。
 以下、図4を参照しつつ説明すれば、まず、同図は、自動車エンジンの燃料噴射制御装置を構成する電子制御ユニット(ECU)によって実行される燃料噴射の異常を検出するための診断処理の内容を機能ブロックによって表したものである。
 この燃料噴射異常診断処理は、特に、ドライバーの運転状況に応じて定まるエンジントルク(ドライバー要求トルク)や燃料噴射量(指示燃料噴射量)を演算、算出するロジック部分、換言すれば、ソフトウェアとして実行される部分が二重に設けられている点に特徴を有するものとなっている。
In addition to this, as a measure for diagnosing the presence or absence of abnormality in fuel injection, for example, there is a method using a procedure as shown in FIG.
In the following, referring to FIG. 4, first, FIG. 4 shows a diagnostic process for detecting an abnormality in fuel injection executed by an electronic control unit (ECU) constituting a fuel injection control device of an automobile engine. The contents are represented by functional blocks.
This fuel injection abnormality diagnosis process is performed as a logic part that calculates and calculates engine torque (driver required torque) and fuel injection amount (indicated fuel injection amount) determined according to the driver's driving situation, in other words, software. It is characterized by the fact that the portion to be provided is doubled.
 すなわち、図4において、”LEVEL1”、”LEVEL2”と表記された部分は、基本的に同一の処理内容を有するソフトウェアであり、外部入力されるアクセルセンサの出力に基づくアクセルの踏み込み量やエンジン回転数等に基づいて、ドライバーの運転状況によってエンジンに要求されるトルクの大きさ、すなわち、ドライバー要求トルクや、エンジンの運転状況に応じた本来噴射されるべき燃料の量である指示燃料噴射量などを演算、算出する機能を有するものである。 That is, in FIG. 4, the parts labeled “LEVEL 1” and “LEVEL 2” are basically software having the same processing contents, and the amount of accelerator depression and engine rotation based on the output of the accelerator sensor input from the outside. Based on the number, etc., the magnitude of torque required for the engine according to the driver's operating status, that is, the driver's required torque, the indicated fuel injection amount that is the amount of fuel that should be injected according to the engine operating status, etc. It has a function to calculate and calculate.
 LEVEL1は、実際に燃料噴射制御に用いられるものとなっており、その演算結果は、燃料噴射弁に用いられるアクチュエータ(図示せず)の動作制御を行う燃料噴射量制御処理に供されて、アクチュエータ(図示せず)の通電が行われるようになっている。
 一方、LEVEL2では、LEVEL1と同一の入力データに基づいてLEVEL1と同一の演算処理が実行される。また、LEVEL2は、上述のアクチュエータの通電時間を基に、エンジン(図示せず)へ噴射されたであろう燃料量の逆算も行われるようになっており、この逆算結果と、LEVEL1と同様にして演算算出された指示燃料噴射量との比較による燃料噴射異常の有無が診断され、異常有りと診断された場合には、燃料噴射量制御処理に対して噴射停止命令が出力されて、上述のアクチュエータ(図示せず)の通電停止、すなわち、噴射停止が行われるものとなっている。
The LEVEL 1 is actually used for fuel injection control, and the calculation result is supplied to a fuel injection amount control process for controlling the operation of an actuator (not shown) used for the fuel injection valve. (Not shown) is energized.
On the other hand, in LEVEL2, the same arithmetic processing as LEVEL1 is executed based on the same input data as LEVEL1. In addition, LEVEL 2 also performs reverse calculation of the amount of fuel that would have been injected into the engine (not shown) based on the energization time of the actuator described above, and this reverse calculation result is similar to LEVEL 1. The presence or absence of an abnormality in the fuel injection is diagnosed by comparing with the calculated fuel injection amount calculated in this way. If an abnormality is diagnosed, an injection stop command is output to the fuel injection amount control process, and the above-mentioned An energization stop of an actuator (not shown), that is, an injection stop is performed.
 しかしながら、上述のような装置にあっては、同一の機能を有するソフトウェアを二重に備える必要があるため、単に、記憶領域が増えるに留まらず、ソフトエアの改良作業が必要となった場合には、二重の作業が必要となり、その分コスト高となるという問題がある。
 また、上述の例にあっては、燃料噴射動作に関連する要素として、燃料噴射弁に用いられるアクチュエータへ対して指示された通電時間だけしか診断処理に用いていないので、ECU以外のハードウェア的な故障を確実に検出することができないという問題がある。
特開2000-310146号公報
However, in the above-mentioned apparatus, since it is necessary to provide software having the same function twice, it is not only the case that the storage area is increased, but when the improvement work of software is necessary. However, there is a problem that double work is required and the cost is increased accordingly.
In the above example, only the energization time instructed to the actuator used for the fuel injection valve is used for the diagnostic process as an element related to the fuel injection operation. There is a problem that it is impossible to reliably detect a fault.
JP 2000-310146 A
 本発明は、上記実状に鑑みてなされたもので、従来に比してソフトウェアの構成がより簡易な燃料噴射診断方法及び燃料噴射制御装置を提供するものである。 The present invention has been made in view of the above circumstances, and provides a fuel injection diagnosis method and a fuel injection control device having a simpler software configuration than conventional ones.
 本発明の第1の形態によれば、内燃機関の運転状態に応じて燃料噴射弁による前記内燃機関への燃料噴射量が制御されるよう構成されてなる燃料噴射制御装置における燃料噴射診断方法であって、
 前記内燃機関への吸入空気量と前記内燃機関の排気ガスの酸素濃度とを基に、前記燃料噴射弁により噴射されたと推定される推定燃料噴射量を算出し、当該推定燃料噴射量と、前記内燃機関の運転状態に応じて定まる前記燃料噴射弁により噴射されるべき燃料の量であるドライバー要求燃料噴射量の大小比較を行い、前記推定燃料噴射量が大きい場合に、燃料噴射の異常であると判定するよう構成されてなる燃料噴射診断方法が提供される。
 また、本発明の第2の形態によれば、内燃機関の運転状態に応じて電子制御ユニットによる制御により燃料噴射弁からの前記内燃機関への燃料噴射量が制御されるよう構成されてなる燃料噴射制御装置であって、
 前記電子制御ユニットは、前記内燃機関への吸入空気量と前記内燃機関の排気ガスの酸素濃度とを入力し、当該入力に基づいて、前記燃料噴射弁により噴射されたと推定される推定燃料噴射量を演算算出する一方、
 前記内燃機関の運転状況に応じて前記燃料噴射弁により噴射されるべき燃料の量であるドライバー要求燃料噴射量を演算算出し、
 前記推定燃料噴射量と前記ドライバー要求燃料噴射量の大小比較を行い、前記推定燃料噴射量が大きいと判定された場合に、燃料噴射の異常であると判定するよう構成されてなる燃料噴射制御装置が提供される。
According to a first aspect of the present invention, there is provided a fuel injection diagnostic method in a fuel injection control device configured to control a fuel injection amount to the internal combustion engine by a fuel injection valve in accordance with an operating state of the internal combustion engine. There,
Based on the intake air amount to the internal combustion engine and the oxygen concentration of the exhaust gas of the internal combustion engine, an estimated fuel injection amount estimated to have been injected by the fuel injection valve is calculated, the estimated fuel injection amount, A comparison is made between the driver-requested fuel injection amount, which is the amount of fuel to be injected by the fuel injection valve determined according to the operating state of the internal combustion engine, and the fuel injection is abnormal when the estimated fuel injection amount is large. A fuel injection diagnostic method configured to determine that is provided.
According to the second aspect of the present invention, the fuel is configured such that the fuel injection amount from the fuel injection valve to the internal combustion engine is controlled by the electronic control unit in accordance with the operating state of the internal combustion engine. An injection control device,
The electronic control unit inputs an intake air amount to the internal combustion engine and an oxygen concentration of exhaust gas of the internal combustion engine, and an estimated fuel injection amount estimated to be injected by the fuel injection valve based on the input While calculating
Calculating and calculating a driver-requested fuel injection amount that is an amount of fuel to be injected by the fuel injection valve in accordance with an operating state of the internal combustion engine;
A fuel injection control device configured to compare the estimated fuel injection amount with the driver-requested fuel injection amount and determine that the fuel injection is abnormal when the estimated fuel injection amount is determined to be large. Is provided.
 本発明によれば、従来と異なり、噴射量の演算算出処理のためのロジック(ソフトウェア)部分を、完全同一の構成で二重に設け、一方は実際の制御に、他方は、推定の噴射量の演算算出に用い、双方において算出された噴射量の比較によって噴射異常の有無を判定するような構成を採る必要がないので、従来に比してより簡易な構成とすることができ、しかも、従来は、噴射量の演算算出処理のためのロジックの変更を生じた際に、その変更を反映するロジックの修正作業を二重に行う必要があり、それによるコストの増大を招いていたが、そのような作業に伴うコスト増加が低減できる。
 また、従来と異なり、実際の噴射結果に応じて変化する物理量である内燃機関への吸入空気、排気ガスの酸素濃度を、燃料噴射量の推定値算出に用いて、燃料噴射の異常の有無を判定するような構成とすることで、従来は不可能だった電子制御ユニット以外のハードウェアの故障を確実に検知することができ、より信頼性のある装置を提供することができるという効果を奏するものである。
According to the present invention, unlike the conventional case, the logic (software) part for the calculation calculation processing of the injection amount is doubled with the completely same configuration, one for the actual control and the other for the estimated injection amount. Since it is not necessary to adopt a configuration for determining the presence or absence of injection abnormality by comparing the injection amount calculated in both, it can be a simpler configuration than conventional, Conventionally, when a change in the logic for the calculation calculation processing of the injection amount occurs, it is necessary to do a double correction work of the logic reflecting the change, resulting in an increase in cost. Cost increase associated with such work can be reduced.
Also, unlike the conventional case, the oxygen concentration of the intake air and exhaust gas, which is a physical quantity that changes according to the actual injection result, is used to calculate the estimated value of the fuel injection amount, and whether or not there is an abnormality in the fuel injection. By adopting such a configuration, it is possible to reliably detect a failure of hardware other than the electronic control unit, which has been impossible in the past, and to provide a more reliable device. Is.
本発明の実施の形態における燃料噴射診断方法が適用される燃料噴射制御装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the fuel-injection control apparatus with which the fuel-injection diagnostic method in embodiment of this invention is applied. 本発明の実施の形態における電子制御ユニットにより実行される燃料噴射診断処理の手順を示すサブルーチンフローチャートである。It is a subroutine flowchart which shows the procedure of the fuel-injection diagnostic process performed by the electronic control unit in embodiment of this invention. 本発明の実施の形態における電子制御ユニットの燃料噴射診断処理を中心とした機能ブロック図である。It is a functional block diagram centering on the fuel-injection diagnostic process of the electronic control unit in embodiment of this invention. 従来の電子制御ユニットの燃料噴射診断処理を中心とした機能ブロック図である。It is a functional block diagram centering on the fuel-injection diagnostic process of the conventional electronic control unit.
1…エンジン
2…エアマスセンサ
3…吸気系デバイス
4,6…排気系デバイス
5…ラムダセンサ
7…燃料噴射制御装置
8…電子制御ユニット
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Air mass sensor 3 ... Intake system device 4, 6 ... Exhaust system device 5 ... Lambda sensor 7 ... Fuel injection control apparatus 8 ... Electronic control unit
 以下、本発明の実施の形態について、図1乃至図3を参照しつつ説明する。
 なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 最初に、本発明の実施の形態における燃料噴射診断方法が適用される燃料噴射制御装置の構成例について、図1を参照しつつ説明する。
 内燃機関としてのエンジン1には、吸気系デバイス3を介して燃料の燃焼に必要な吸気が確保されるようになっている。なお、吸気系デバイス3を介してエンジン1へ導入される空気の量は、吸気系デバイス3よりも上流側に設けられたエアマスセンサ(図1においては「SA」と表記)2により検出され、電子制御ユニット(図1にいおいては「ECU」と表記)8へ入力されて、燃料噴射制御に供されるようになっている。
 ここで、吸気系デバイス3とは、具体的には、図示は省略するがターボ、インタークーラ、スロットルバルブなどの公知・周知のものである。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
First, a configuration example of a fuel injection control apparatus to which a fuel injection diagnosis method according to an embodiment of the present invention is applied will be described with reference to FIG.
In the engine 1 as an internal combustion engine, intake air necessary for fuel combustion is secured via an intake system device 3. The amount of air introduced into the engine 1 via the intake system device 3 is detected by an air mass sensor (indicated as “SA” in FIG. 1) 2 provided on the upstream side of the intake system device 3. It is input to an electronic control unit (indicated as “ECU” in FIG. 1) 8 for fuel injection control.
Here, specifically, the intake system device 3 is a known or well-known device such as a turbo, an intercooler, a throttle valve, etc., although not shown.
 一方、エンジン1からは、燃焼後の排気ガスが排気系デバイス4,6を介して外部へ排気されるようになっているが、排気経路の途中には、ラムダセンサ(Oセンサ)5が設けられ、排気ガス中の酸素濃度が検出されるようになっており、その出力信号は、電子制御ユニット8へ入力されて、燃料噴射制御に供されるようになっている。なお、図1において、「Sλ」の表記は、ラムダセンサ5の意味である。
 なお、ここで、排気系デバイス4,6とは、具体的には、図示は省略するがターボ、酸化触媒、NOX触媒、DPFなどの公知・周知のものである。
On the other hand, the exhaust gas after combustion is exhausted to the outside from the engine 1 through the exhaust system devices 4 and 6, but a lambda sensor (O 2 sensor) 5 is provided in the middle of the exhaust path. It is provided so that the oxygen concentration in the exhaust gas is detected, and its output signal is input to the electronic control unit 8 and used for fuel injection control. In FIG. 1, the notation “Sλ” means the lambda sensor 5.
Here, the exhaust system devices 4 and 6 are known and well-known devices such as a turbo, an oxidation catalyst, a NOx catalyst, and a DPF, although not specifically shown.
 図1において、燃料噴射制御装置7は、特に、後述する電子制御ユニット8を除き、燃料噴射弁(図示せず)等のハードウェア部分を意味し、燃料噴射弁に設けられた電磁式アクチュエータ等の動作制御は、電子制御ユニット8によって実行されるものとなっており、電子制御ユニット8も燃料噴射制御装置7の機能を果たすものとなっている。 In FIG. 1, the fuel injection control device 7 means a hardware part such as a fuel injection valve (not shown) except for an electronic control unit 8 which will be described later, and an electromagnetic actuator or the like provided on the fuel injection valve. The operation control is executed by the electronic control unit 8, and the electronic control unit 8 also functions as the fuel injection control device 7.
 電子制御ユニット8は、例えば、公知・周知の構成を有してなるマイクロコンピュータ(図示せず)を中心に、RAMやROM等の記憶素子(図示せず)を有すると共に、図示されないインジェクタに設けられた電磁式アクチュエータを駆動するための駆動回路(図示せず)等を主たる構成要素として構成されたものとなっている。
 かかる電子制御ユニット8には、先に述べたようにエアマスセンサ2やラムダセンサ5の検出信号が入力される他、アクセルセンサ(図示せず)やエンジン回転数などの各種の検出信号が、エンジンの動作制御や燃料噴射制御に供するために入力されるようになっている。
The electronic control unit 8 has, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and is provided in an injector (not shown). A drive circuit (not shown) or the like for driving the electromagnetic actuator is used as a main component.
As described above, the electronic control unit 8 receives the detection signals of the air mass sensor 2 and the lambda sensor 5 as well as various detection signals such as an accelerator sensor (not shown) and an engine speed. It is input to be used for the operation control and fuel injection control.
 図2には、電子制御ユニット8において実行される本発明の実施の形態における燃料噴射診断処理の手順がサブルーチンフローチャートに示されており、以下、同図を参照しつつ燃料噴射診断処理について説明する。
 処理が開始されると、ドライバー要求燃料噴射量Q1の算出が行われる(図2のステップS100参照)。
 ドライバー要求燃料噴射量Q1(図2のステップS100においては「ドライバー要求Q1」と表記)は、車両のドライバー、すなわち、運転者による車両の操作によって定まる計算上(理論上)の燃料噴射量である。かかるドライバー要求燃料噴射量Q1は、アクセルセンサ(図示せず)によって検出されたアクセル開度やエンジン回転数などのエンジン1の運転状態に応じた各種の信号を基に所定の演算式によって演算、算出されるもので、この演算算出処理は、本発明の実施の形態における燃料噴射診断処理特有のものではなく、従来から燃料噴射制御において行われているものである。
 したがって、本発明の実施の形態においては、燃料噴射診断処理のために改めてドライバー要求燃料噴射量Q1を演算、算出するのではなく、図示されない燃料噴射制御処理において算出されているドライバー要求燃料噴射量Q1を読み込んで、流用することで足りるものである。
FIG. 2 shows a subroutine flowchart showing the procedure of the fuel injection diagnosis process executed in the electronic control unit 8 in the embodiment of the present invention. Hereinafter, the fuel injection diagnosis process will be described with reference to FIG. .
When the process is started, the driver required fuel injection amount Q1 is calculated (see step S100 in FIG. 2).
The driver-requested fuel injection amount Q1 (denoted as “driver request Q1” in step S100 in FIG. 2) is a calculated (theoretical) fuel injection amount determined by the operation of the vehicle by the driver of the vehicle, that is, the driver. . The driver-requested fuel injection amount Q1 is calculated by a predetermined arithmetic expression based on various signals corresponding to the operating state of the engine 1 such as an accelerator opening degree and an engine speed detected by an accelerator sensor (not shown). This calculation calculation process is not specific to the fuel injection diagnosis process in the embodiment of the present invention, and is conventionally performed in the fuel injection control.
Therefore, in the embodiment of the present invention, the driver required fuel injection amount calculated in the fuel injection control process (not shown) is not calculated and calculated again for the fuel injection diagnosis process. It is sufficient to read Q1 and use it.
 ここで、本発明の実施の形態における燃料噴射診断処理を中心に見た場合の電子制御ユニット8の機能について図3に示された機能ブロック図を参照しつつ説明することとする。
 本発明の実施の形態における電子制御ユニット8は、詳細は次述するが、実際に燃料噴射制御に用いられるロジック部分と、後述のような推定噴射量を演算算出するロジック部分を備えており、この点では、従来装置と軌を一にする構成となっている。
Here, the function of the electronic control unit 8 when viewed mainly with respect to the fuel injection diagnosis process in the embodiment of the present invention will be described with reference to the functional block diagram shown in FIG.
As will be described in detail below, the electronic control unit 8 in the embodiment of the present invention includes a logic part that is actually used for fuel injection control and a logic part that calculates and calculates an estimated injection amount as described below. In this respect, it is configured to be in line with the conventional device.
 すなわち、電子制御ユニット8には、図4に示された従来装置同様、いわゆるドライバー要求燃料噴射量などを演算算出するロジック部分、換言すれば、ソフトウェアとして実行される部分(図3において「LEVEL1」と表記)と、エアマスセンサ2及びラムダセンサ5の検出出力を基に推定燃料噴射量を演算算出するロジック部分(図3においては「LEVEL2」と表記)とを備えている。 That is, the electronic control unit 8 has a logic part for calculating and calculating a so-called driver-requested fuel injection amount, in other words, a part executed as software (“LEVEL 1” in FIG. 3), as in the conventional apparatus shown in FIG. And a logic portion (indicated as “LEVEL 2” in FIG. 3) for calculating and calculating the estimated fuel injection amount based on the detection outputs of the air mass sensor 2 and the lambda sensor 5.
 LEVEL1は、従来同様の演算処理部分であり、外部入力されるアクセルセンサ(図示せず)の出力に基づくアクセル開度やエンジン回転数等に基づいて、ドライバーがエンジンに要求しているトルクの大きさ、すなわち、ドライバー要求トルクや、エンジンの運転状況に応じた本来噴射されるべき燃料の量であるドライバー要求燃料噴射量(指示燃料噴射量)などを演算、算出する機能を有するものである。 LEVEL 1 is an arithmetic processing part similar to the conventional one, and the magnitude of torque requested by the driver from the engine based on the accelerator opening, the engine speed, and the like based on the output of an accelerator sensor (not shown) input from the outside. That is, it has a function of calculating and calculating a driver request torque, a driver request fuel injection amount (indicated fuel injection amount) that is an amount of fuel that should be injected according to the operating state of the engine, and the like.
 そして、LEVLE1は、実際に燃料噴射制御に用いられるものとなっており、その演算結果は、燃料噴射動作に用いられる電磁式アクチュエータ(図示せず)の動作制御を行う燃料噴射量制御処理に供されて、電磁式アクチュエータ(図示せず)の通電が行われるようになっている。
 一方、本発明の実施の形態におけるLEVEL2においては、LEVEL1と異なり、アクセルセンサ(図示せず)などの入力に代えて、エアマスセンサ2及びラムダセンサ5の出力信号を基に、少なくとも、後述する推定燃料噴射量の演算算出機能を有してなるものであれば良く、従来と異なり、LEVEL1と同一の処理機能を有する必要は無いものである。
LEVLE1 is actually used for fuel injection control, and the calculation result is used for fuel injection amount control processing for controlling the operation of an electromagnetic actuator (not shown) used for fuel injection operation. Thus, energization of an electromagnetic actuator (not shown) is performed.
On the other hand, in LEVEL 2 in the embodiment of the present invention, unlike LEVEL 1, at least an estimation to be described later is performed based on output signals of air mass sensor 2 and lambda sensor 5 instead of an input of an accelerator sensor (not shown) or the like. What is necessary is just to have a calculation calculation function of the fuel injection amount, and unlike the conventional case, it is not necessary to have the same processing function as LEVEL1.
 燃料噴射の異常の有無の診断には、LEVEL1、LEVEL2で演算、算出された燃料噴射量が用いられ(詳細は後述)、診断の結果、異常であると判定された場合に、燃料噴射量制御処理に対して噴射停止命令が出力されて、上述の電磁式アクチュエータ(図示せず)の通電停止、すなわち、噴射停止が行われるものとなっている。 The fuel injection amount calculated and calculated by LEVEL1 and LEVEL2 is used for diagnosis of the presence or absence of abnormality in fuel injection (details will be described later), and when it is determined as abnormal as a result of diagnosis, fuel injection amount control An injection stop command is output for the process, and the energization stop of the above-described electromagnetic actuator (not shown), that is, the injection stop is performed.
 ここで、再び、図2の説明に戻ることとする。
 上述のようにドライバー要求燃料噴射量Q1が求められた後は、推定燃料噴射量Q2が求められる(図2のステップS102参照)。この推定燃料噴射量Q2は、エアマスセンサ2及びラムダセンサ5の出力、並びに、理論空燃比を基に、図3において説明したLEVEL2の処理におい算出される燃料噴射量であり、エアマスセンサ2及びラムダセンサ5の実測値の下、実際に噴射されたであろうと推定される燃料噴射量としての意味を有するものである。
 かかる推定燃料噴射量Q2は、具体的には、エアマスセンサ2により検出された吸入空気量÷(ラムダセンサ5により検出された排気ガスの酸素濃度×理論空燃比)として求められる。
Here, let us return to the description of FIG.
After the driver required fuel injection amount Q1 is obtained as described above, the estimated fuel injection amount Q2 is obtained (see step S102 in FIG. 2). This estimated fuel injection amount Q2 is a fuel injection amount calculated in the processing of LEVEL 2 described in FIG. 3 based on the outputs of the air mass sensor 2 and the lambda sensor 5 and the theoretical air-fuel ratio. It has a meaning as a fuel injection amount that is estimated to have been actually injected under the actual measurement value of the sensor 5.
Specifically, the estimated fuel injection amount Q2 is obtained as intake air amount detected by the air mass sensor 2 / (oxygen concentration of exhaust gas detected by the lambda sensor 5 × theoretical air-fuel ratio).
 次いで、上述のようにして得られた推定燃料噴射量Q2が、ドライバー要求燃料噴射量Q1に所定のマージン(誤差偏差量)αを加算した量を超えているか否かが判定される(図2のステップS104参照)。
 そして、ステップS104において、Q2>(Q1+α)であると判定された場合(YESの場合)には、後述するステップS106の処理へ進むこととなる。一方、Q2>(Q1+α)ではないと判定された場合(NOの場合)には、燃料噴射の異常状態ではないとして、異常診断用カウンタの計数値(Counter)が零とされて、図示されないメインルーチンへ一旦戻ることとなる(図2のステップS112参照)。
 なお、マージンαは、燃料噴射制御装置の規模などに応じて適切な値が異なるものであり、個々の装置の具体的な条件等に基づいて定められるのが好適であるが、経年変化等によって変化する燃料噴射量を超えて、明らかに燃料噴射の異常であると判定できる値が選定されるべきものである。
Next, it is determined whether or not the estimated fuel injection amount Q2 obtained as described above exceeds an amount obtained by adding a predetermined margin (error deviation amount) α to the driver required fuel injection amount Q1 (FIG. 2). Step S104).
If it is determined in step S104 that Q2> (Q1 + α) (in the case of YES), the process proceeds to step S106 described later. On the other hand, if it is determined that Q2> (Q1 + α) is not satisfied (in the case of NO), it is determined that the fuel injection is not in an abnormal state, and the count value (Counter) of the abnormality diagnosis counter is set to zero. Returning to the routine once (see step S112 in FIG. 2).
The margin α has an appropriate value that varies depending on the scale of the fuel injection control device, and is preferably determined based on the specific conditions of each device. A value that can clearly be determined to be abnormal fuel injection beyond the changing fuel injection amount should be selected.
 ステップS106においては、燃料噴射の異常の可能性有りとして、異常診断用のカウンタの計数値が1つ繰り上げられ、この計数値が所定の閾値以上であるか否かが判定される(図2のステップS108参照)。
 そして、ステップS108において、計数値は所定の閾値以上ではないと判定された場合(NOの場合)には、燃料噴射の異常には至っていないとして図示されないメインルーチンへ一旦戻ることとなる。
 一方、ステップS108において、異常診断用のカウンタの計数値は所定の閾値以上であると判定された場合(YESの場合)には、燃料噴射の異常状態であるとして、予め設定されている異常対応処理が実行されることとなる(図2のステップS110参照)。
In step S106, it is determined that there is a possibility of abnormality in the fuel injection, and the count value of the counter for abnormality diagnosis is incremented by one, and it is determined whether or not this count value is equal to or greater than a predetermined threshold (FIG. 2). (See step S108).
In step S108, if it is determined that the count value is not equal to or greater than the predetermined threshold value (in the case of NO), the routine returns to a main routine (not shown) that the fuel injection is not abnormal.
On the other hand, if it is determined in step S108 that the count value of the abnormality diagnosis counter is equal to or greater than the predetermined threshold value (in the case of YES), it is determined that the fuel injection is abnormal, and a predetermined abnormality response is set. Processing is executed (see step S110 in FIG. 2).
 ここで、燃料噴射の異常状態とは、何らかの原因により、ドライバー要求燃料噴射量Q1を超える意図しない燃料噴射が行われている状態を意味する。そして、その原因としては、燃料噴射弁(図示せず)の故障に代表されるいわゆるハードウェアの故障のみならず、例えば、電子制御ユニット8において実行される燃料噴射制御処理における各種の制御定数が何らかの原因により突異的に異常値となることに起因するようないわゆるソフトウェア的な故障をも含み得るものである。 Here, the abnormal state of the fuel injection means a state in which an unintended fuel injection exceeding the driver-requested fuel injection amount Q1 is performed for some reason. The cause is not only a so-called hardware failure represented by a failure of a fuel injection valve (not shown), but also various control constants in a fuel injection control process executed in the electronic control unit 8, for example. This may include a so-called software failure caused by an abnormal value suddenly due to some cause.
 このように、Q2>(Q1+α)であると判定された際に、即座に燃料噴射が異常状態であるとするのではなく、Q2>(Q1+α)が連続して所定回数繰り返された場合に異常であるとすることで、何らかの原因によってQ2>(Q1+α)の状態が突発的に生じた場合などにおける燃料噴射制御装置の動作の安定性を確保しつつ、しかも、より確実に異常を検出することが可能となっている。 As described above, when it is determined that Q2> (Q1 + α), the fuel injection is not immediately in an abnormal state, but an abnormality occurs when Q2> (Q1 + α) is continuously repeated a predetermined number of times. By ensuring that the stability of the operation of the fuel injection control device is ensured in the event that a state of Q2> (Q1 + α) suddenly occurs for some reason, the abnormality can be detected more reliably. Is possible.
 また、ここで、異常対応処理は、具体的には、例えば、まず、噴射停止命令の出力であり、これによってインジェクタ(図示せず)が動作停止状態とされ、燃料噴射が停止されることとなる。
 この燃料噴射停止に伴い、燃料噴射制御処理における燃圧の指示値を強制的に最小値とすると共に、燃料ポンプ(図示せず)の停止、また、スロットルバルブ(図示せず)の全閉指示などが実行されるようにすると好適である。
 なお、異常対応処理の具体的な内容は、上述の内容に限定されるものではないことは勿論である。
Further, here, the abnormality handling process is specifically, for example, an output of an injection stop command first, whereby an injector (not shown) is stopped and fuel injection is stopped. Become.
As the fuel injection is stopped, the fuel pressure instruction value in the fuel injection control process is forcibly set to the minimum value, the fuel pump (not shown) is stopped, and the throttle valve (not shown) is fully closed. Is preferably executed.
Needless to say, the specific content of the abnormality handling process is not limited to the above-described content.
 従来と異なり、噴射制御に関するロジック部分を二重に設けることなく、より簡易なソフトウェアの構成により、噴射異常の有無を検出可能としたので、特に、簡易な構成で信頼性の高い燃料噴射制御が要請される燃料噴射制御装置に適用できる。 Unlike the conventional case, it is possible to detect the presence or absence of injection abnormality with a simpler software configuration without providing a double logic part related to injection control. It can be applied to the required fuel injection control device.

Claims (6)

  1. 内燃機関の運転状態に応じて燃料噴射弁による前記内燃機関への燃料噴射量が制御されるよう構成されてなる燃料噴射制御装置における燃料噴射診断方法であって、
     前記内燃機関への吸入空気量と前記内燃機関の排気ガスの酸素濃度とを基に、前記燃料噴射弁により噴射されたと推定される推定燃料噴射量を算出し、当該推定燃料噴射量と、前記内燃機関の運転状態に応じて定まる前記燃料噴射弁により噴射されるべき燃料の量であるドライバー要求燃料噴射量の大小比較を行い、前記推定燃料噴射量が大きい場合に、燃料噴射の異常であると判定することを特徴とする燃料噴射診断方法。
    A fuel injection diagnostic method in a fuel injection control device configured to control a fuel injection amount to the internal combustion engine by a fuel injection valve according to an operating state of the internal combustion engine,
    Based on the intake air amount to the internal combustion engine and the oxygen concentration of the exhaust gas of the internal combustion engine, an estimated fuel injection amount estimated to have been injected by the fuel injection valve is calculated, the estimated fuel injection amount, A comparison is made between the driver-requested fuel injection amount, which is the amount of fuel to be injected by the fuel injection valve determined according to the operating state of the internal combustion engine, and the fuel injection is abnormal when the estimated fuel injection amount is large. The fuel injection diagnostic method characterized by determining.
  2. 推定燃料噴射量がドライバー要求燃料噴射量より大きいと判定されることが所定回数連続した場合に、燃料噴射の異常であると判定することを特徴とする請求項1記載の燃料噴射診断方法。 2. The fuel injection diagnosis method according to claim 1, wherein when it is determined that the estimated fuel injection amount is larger than the driver-requested fuel injection amount for a predetermined number of times, it is determined that the fuel injection is abnormal.
  3. 推定燃料噴射量は、吸入空気量を、排気ガスの酸素濃度に理論空燃比を乗じた乗算結果で除した除算結果として算出されたものであることを特徴とする請求項1又は請求項2記載の燃料噴射診断方法。 3. The estimated fuel injection amount is calculated as a division result obtained by dividing the intake air amount by a multiplication result obtained by multiplying the oxygen concentration of the exhaust gas by the stoichiometric air-fuel ratio. Fuel injection diagnostic method.
  4. 内燃機関の運転状態に応じて電子制御ユニットによる制御により燃料噴射弁からの前記内燃機関への燃料噴射量が制御されるよう構成されてなる燃料噴射制御装置であって、
     前記電子制御ユニットは、前記内燃機関への吸入空気量と前記内燃機関の排気ガスの酸素濃度とを入力し、当該入力に基づいて、前記燃料噴射弁により噴射されたと推定される推定燃料噴射量を演算算出する一方、
     前記内燃機関の運転状況に応じて前記燃料噴射弁により噴射されるべき燃料の量であるドライバー要求燃料噴射量を演算算出し、
     前記推定燃料噴射量と前記ドライバー要求燃料噴射量の大小比較を行い、前記推定燃料噴射量が大きいと判定された場合に、燃料噴射の異常であると判定するよう構成されてなることを特徴とする燃料噴射制御装置。
    A fuel injection control device configured to control a fuel injection amount from a fuel injection valve to the internal combustion engine by control by an electronic control unit according to an operating state of the internal combustion engine,
    The electronic control unit inputs an intake air amount to the internal combustion engine and an oxygen concentration of exhaust gas of the internal combustion engine, and an estimated fuel injection amount estimated to be injected by the fuel injection valve based on the input While calculating
    Calculating and calculating a driver-requested fuel injection amount that is an amount of fuel to be injected by the fuel injection valve in accordance with an operating state of the internal combustion engine;
    The estimated fuel injection amount is compared with the driver-requested fuel injection amount, and when it is determined that the estimated fuel injection amount is large, it is determined that the fuel injection is abnormal. A fuel injection control device.
  5. 電子制御ユニットは、推定燃料噴射量がドライバー要求燃料噴射量より大きいと、所定回数連続して判定された場合に、燃料噴射の異常であると判定するよう構成されてなることを特徴とする請求項4記載の燃料噴射制御装置。 The electronic control unit is configured to determine that the fuel injection is abnormal when it is continuously determined a predetermined number of times when the estimated fuel injection amount is larger than the driver-requested fuel injection amount. Item 5. The fuel injection control device according to Item 4.
  6. 推定燃料噴射量は、吸入空気量を、排気ガスの酸素濃度に理論空燃比を乗じた乗算結果で除した除算結果として算出されたものであることを特徴とする請求項4又は請求項5記載の燃料噴射制御装置。 6. The estimated fuel injection amount is calculated as a division result obtained by dividing the intake air amount by a multiplication result obtained by multiplying the oxygen concentration of the exhaust gas by the stoichiometric air-fuel ratio. Fuel injection control device.
PCT/JP2009/061015 2008-06-21 2009-06-17 Method for diagnosing fuel injection and fuel injection controller WO2009154223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008162623A JP2011163118A (en) 2008-06-21 2008-06-21 Method for diagnosing fuel injection and fuel injection controller
JP2008-162623 2008-06-21

Publications (1)

Publication Number Publication Date
WO2009154223A1 true WO2009154223A1 (en) 2009-12-23

Family

ID=41434140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061015 WO2009154223A1 (en) 2008-06-21 2009-06-17 Method for diagnosing fuel injection and fuel injection controller

Country Status (2)

Country Link
JP (1) JP2011163118A (en)
WO (1) WO2009154223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144763A (en) * 2010-01-15 2011-07-28 Denso Corp Control device for internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016257B2 (en) * 2011-12-27 2016-10-26 ボッシュ株式会社 Vehicle engine control device
JP2013209951A (en) * 2012-03-30 2013-10-10 Panasonic Corp Prime mover and gas heat pump air-conditioner
JP6699960B2 (en) * 2015-12-24 2020-05-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Fuel injection valve control device and fuel injection valve control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154741A (en) * 2005-12-05 2007-06-21 Honda Motor Co Ltd Fuel supply control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154741A (en) * 2005-12-05 2007-06-21 Honda Motor Co Ltd Fuel supply control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144763A (en) * 2010-01-15 2011-07-28 Denso Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2011163118A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4924905B2 (en) Vehicle control device
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
US5950606A (en) System for diagnosing fuel supply system of internal combustion engine
US8302378B2 (en) Degradation diagnosis device for catalyst
US20040148926A1 (en) Secondary air supply abnormality detection system
JP5035140B2 (en) Air-fuel ratio sensor abnormality diagnosis device
KR100538375B1 (en) Apparatus detect trouble of internal combustion engine
US6836722B2 (en) Method and system for diagnosing a failure of a rear oxygen sensor of a vehicle
US8639452B2 (en) Burned-gas passage amount computing method and system used in exhaust gas recirculation system
WO2009154223A1 (en) Method for diagnosing fuel injection and fuel injection controller
JP4775321B2 (en) Control device for internal combustion engine
CN109415992B (en) Engine control method and control device
JP5310574B2 (en) Control device for internal combustion engine
JP4693896B2 (en) Internal combustion engine control device
JP2011007119A (en) Throttle abnormality diagnosing device
JPH09329061A (en) Abnormality judging device for exhaust gas recirculating device
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2845198B2 (en) Abnormality determination device for exhaust gas recirculation device
JP4190430B2 (en) Oxygen sensor abnormality diagnosis device
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP5509628B2 (en) Catalyst deterioration diagnosis device and catalyst deterioration diagnosis method
JPS63143362A (en) Anomaly detecting device for introduction of secondary air
JP4831336B2 (en) Control device for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09766671

Country of ref document: EP

Kind code of ref document: A1