WO2009154043A1 - Head gimbal assembly with optical guide structure, and information recording/reproducing device - Google Patents

Head gimbal assembly with optical guide structure, and information recording/reproducing device Download PDF

Info

Publication number
WO2009154043A1
WO2009154043A1 PCT/JP2009/058118 JP2009058118W WO2009154043A1 WO 2009154043 A1 WO2009154043 A1 WO 2009154043A1 JP 2009058118 W JP2009058118 W JP 2009058118W WO 2009154043 A1 WO2009154043 A1 WO 2009154043A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
slider
recording medium
gimbal assembly
head gimbal
Prior art date
Application number
PCT/JP2009/058118
Other languages
French (fr)
Japanese (ja)
Inventor
雅一 平田
学 大海
徳男 千葉
馬中 朴
廣光 後藤
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2009154043A1 publication Critical patent/WO2009154043A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4826Mounting, aligning or attachment of the transducer head relative to the arm assembly, e.g. slider holding members, gimbals, adhesive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4833Structure of the arm assembly, e.g. load beams, flexures, parts of the arm adapted for controlling vertical force on the head

Definitions

  • the present invention relates to a head gimbal assembly with a light guide structure and an information recording / reproducing apparatus for recording and reproducing various kinds of information on a magnetic recording medium by using spot light obtained by collecting light.
  • the recording density of information within a single recording surface has increased with the increase in the capacity of hard disks and the like in computer equipment.
  • the recording capacity per unit area of the magnetic disk it is necessary to increase the surface recording density.
  • the recording area occupied by one bit on the recording medium decreases. When this bit size is reduced, the energy of 1-bit information is close to that of room temperature, and the recorded information is reversed or lost due to thermal fluctuation, etc. Will occur.
  • the magnetism is recorded so that the direction of magnetization is in the in-plane direction of the recording medium.
  • the recorded information is lost due to the thermal demagnetization described above. Is likely to occur. Therefore, in order to solve such a problem, a shift is being made to a perpendicular recording method in which a magnetization signal is recorded in a direction perpendicular to the recording medium.
  • This method is a method for recording magnetic information on the principle of bringing a single magnetic pole closer to a recording medium. According to this method, the recording magnetic field is directed substantially perpendicular to the recording film.
  • recording media in recent years are required to have higher density in response to needs such as recording and reproduction of a larger amount and higher density information. For this reason, in order to minimize the influence of adjacent magnetic domains and thermal fluctuations, those having a strong coercive force have begun to be adopted as recording media. For this reason, it is difficult to record information on a recording medium even in the above-described perpendicular recording system.
  • the magnetic domain is locally heated using spot light that collects light or near-field light that collects light to temporarily reduce the coercive force
  • a hybrid magnetic recording system that performs writing on the disk.
  • near-field light it is possible to handle optical information in a region that is less than or equal to the wavelength of light, which is a limit in conventional optical systems. Therefore, it is possible to achieve a higher recording bit density than conventional optical information recording / reproducing apparatuses.
  • the configuration of the recording / reproducing apparatus using near-field light is substantially the same as that of the magnetic disk device, and a near-field light using head is used instead of the magnetic head.
  • the near-field light using head has a near-field light generating element composed of an optical minute aperture, a nanometer-size protrusion, or the like.
  • the near-field light generating element is mounted on a slider using an air levitation technique.
  • the slider is attached to the tip of the suspension and floats at a certain height with respect to the recording medium by dynamic pressure. Thereby, the near-field light generating element accesses an arbitrary data mark existing on the recording medium.
  • the near-field light utilizing head In order to make the slider follow the recording medium that rotates at high speed, the near-field light utilizing head has a flexure function that stabilizes the posture in response to the undulation of the recording medium.
  • the near-field light using head having such a configuration requires a light introducing portion including an optical waveguide in order to supply light to the head.
  • the optical waveguide here also includes an optical fiber. How to efficiently guide light to a near-field light generating element and a recording medium using an optical waveguide with a lower degree of freedom of wiring than electrical wiring is an important point of recording / reproducing technology using near-field light .
  • a light reflecting surface is used in which the optical waveguide is connected to the slider and the light from the optical waveguide propagating in the direction horizontal to the media surface is reflected to direct the propagation direction to the opening direction.
  • a method of making a minute beam spot incident on the near-field light generating element is considered (for example, see Patent Document 1).
  • FIG. 17 shows an outline of an information recording / reproducing apparatus using a near-field light utilizing head assembly (head gimbal assembly) 100.
  • the near-field light using head assembly 100 includes an optical fiber 103, a suspension arm 104, a flexure 105, a slider 106, and a near-field light generating element (not shown).
  • the slider 106 on which the near-field light generating element is mounted is rotated at a high speed while the slider 106 is close to the surface of the recording medium 107 from about several nanometers to several tens of nanometers.
  • a flexure 105 is formed at the tip of the suspension arm 104 in order to float in the arrangement.
  • the suspension arm 104 is fixed to a voice coil motor (not shown) through a fixing hole 104a, and can be moved in the radial direction of the recording medium 107 by the voice coil motor.
  • the slider 106 is disposed so that the near-field light emitting element faces the recording medium 107.
  • the light propagation part that guides the light beam from the laser 101 to the slider 106 includes an optical fiber 103 fixed to the lens 102 and the suspension arm 104. If necessary, the laser 101 can be intensity-modulated by the circuit system 108.
  • the force pressing the slider 106 toward the recording medium 107 from the suspension arm 104 via the flexure 105 is balanced with the force that causes the slider 106 to float by the wind pressure accompanying the rotation of the recording medium 107.
  • the slider 106 floats stably with respect to the recording medium 107 with a gap of several nm to several tens of nm.
  • the suspension arm 104 is bent in the direction of the slider 106 in advance, and a pressing force against the slider 106 is generated by the spring force.
  • the curvature of the suspension arm 104 is relaxed due to the reaction force of the pressing force against the slider 106.
  • the above-described conventional head gimbal assembly has an optical waveguide having a relatively large rigidity, and the optical waveguide is fixed to the slider and the suspension arm. There was a problem that the state when ascending) became unstable.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a head gimbal assembly with a light guide structure and an information recording / reproducing apparatus capable of stably flying the head during operation. It is.
  • the present invention provides the following means in order to solve the above problems.
  • a head gimbal assembly with a light guide structure includes a rod-shaped rotating member formed to be rotatable around a pivot shaft disposed outside a magnetic recording medium rotating in a fixed direction, and the rotating member.
  • a slider attached to the tip of the magnetic recording medium so as to face the surface of the magnetic recording medium, and supported so as to be rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other.
  • a head gimbal assembly with a light guide structure comprising: an optical waveguide for introducing light for heating the magnetic recording medium into the slider; and a support member for supporting the optical waveguide on the rotating member. The support member supports the optical waveguide so as to be movable along the longitudinal direction.
  • the optical waveguide can also move along the longitudinal direction as the posture of the slider and the rotating member changes during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated.
  • a head gimbal assembly with a light guide structure includes a base plate supported on the distal end side of an arm portion formed to be rotatable around a pivot shaft disposed outside a magnetic recording medium rotating in a predetermined direction.
  • a hinge plate coupled to the base plate and having an extending portion extending toward the tip of the base plate, a load beam coupled to the extending portion of the hinge plate, and a flexure coupled to the load beam
  • a suspension that is attached to the flexure at the tip of the suspension so as to face the surface of the magnetic recording medium, and is parallel to the surface of the magnetic recording medium and around two axes orthogonal to each other
  • a slider supported so as to be rotatable and light for heating the magnetic recording medium are introduced into the slider.
  • An optical waveguide for supporting the optical waveguide on at least one of the suspension and the arm portion, and the support member supports the optical waveguide so as to be movable along a longitudinal direction. It is characterized by that.
  • the optical waveguide can also move along the longitudinal direction as the slider and load beam change in posture during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated.
  • the support member includes an introduction portion into which the optical waveguide is introduced, and the introduction portion is deformed and closed after the introduction of the optical waveguide. It is characterized by supporting the optical waveguide.
  • the optical waveguide in the introduction portion of the support member and to deform the support member, so that the production efficiency can be improved.
  • the head gimbal assembly with a light guide structure according to the present invention is characterized in that the support member is formed by processing a part of at least one of the suspension and the arm portion.
  • the supporting member is shared by at least one of the suspension and the arm, the material cost can be reduced and the number of parts can be reduced. be able to.
  • a wiring support that supports the electrical wiring connected to the slider extends from the flexure, and the optical waveguide extends along the wiring support. It is arranged, and the support member is formed by bending a tongue formed in a direction orthogonal to the longitudinal direction of the wiring support.
  • the optical waveguide can be supported simply by forming the tongue on the wiring support and bending the tongue, so that the optical waveguide is reliably supported with a simple configuration. can do.
  • the support member includes a covering member that covers the optical waveguide and an adhesive that supports the covering member on the suspension. It is said.
  • the interface between the optical fiber and the coating is slightly shifted with the change in the posture of the slider during operation, so that the force from the optical waveguide does not act on the slider. ,
  • the slider can be stably levitated.
  • the head gimbal assembly with a light guide structure according to the present invention is characterized in that the optical waveguide is supported by the suspension by a plurality of the support members.
  • the optical waveguide can be reliably supported by the suspension, and the optical waveguide can be moved along the longitudinal direction in accordance with the posture change of the slider during operation. it can.
  • the head gimbal assembly with a light guide structure is characterized in that the support member is disposed in a curved portion of the optical waveguide.
  • the optical waveguide can be moved along the longitudinal direction in accordance with the change in the posture of the slider during operation, and the optical waveguide is reliably moved to a desired direction at the curved portion. Can be guided.
  • An information recording / reproducing apparatus includes the above-described head gimbal assembly with a light guide structure, a light source that makes a light beam incident on an optical waveguide, a magnetic recording medium that rotates in a certain direction, A pivot shaft arranged outside, an arm portion formed to be rotatable around the pivot shaft, and a base end side of the arm portion are supported, and the arm portion is parallel to the surface of the magnetic recording medium. And an actuator that moves the magnetic recording medium in a certain direction, and a control unit that controls the operation of the slider and the light source.
  • the slider can be stably levitated.
  • the optical waveguide can also move along the longitudinal direction as the posture of the slider and the rotating member changes during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated. That is, light can be reliably introduced into the slider without hindering the operation of the rotating member by the optical waveguide.
  • FIG. 4 is a cross-sectional view taken along line EE in FIG. 3. It is a side view of the base in the embodiment of the present invention.
  • FIG. 3 is a schematic sectional view (corresponding to line AA in FIG. 2) of the support member in the first embodiment of the present invention.
  • FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing another aspect of the support member in the first embodiment of the present invention.
  • FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing still another aspect of the support member in the first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a support member according to a second embodiment of the present invention (corresponding to line AA in FIG. 2).
  • FIG. 6 is a schematic sectional view (corresponding to line AA in FIG. 2) of a support member in a third embodiment of the present invention.
  • FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing another aspect of the support member in the third embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a support member according to a fourth embodiment of the present invention (corresponding to line AA in FIG. 2).
  • FIG. 16 is a cross-sectional view taken along line BB in FIG. 15. It is a schematic block diagram of the conventional head gimbal assembly.
  • FIG. 1 is a schematic configuration diagram of an information recording / reproducing apparatus 1 according to the present invention.
  • the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer by a perpendicular recording method.
  • the information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11 through an optical waveguide 32, and a head supported on the distal end side of the carriage 11.
  • a gimbal assembly (HGA) 12 an actuator 6 that scans and moves the head gimbal assembly 12 in the XY plane parallel to the disk surface D1 (the surface of the disk D), and a spindle motor that rotates the disk D about the rotation axis L 7, a control unit 5 that supplies a current modulated according to information to the slider 2 of the head gimbal assembly 12, and a housing 9 that accommodates these components therein.
  • the housing 9 has a box-like shape having a top opening made of a metal material such as aluminum, and has a rectangular bottom portion 9a as viewed from above, and a peripheral wall erected in the vertical direction with respect to the bottom portion 9a at the periphery of the bottom portion 9a. (Not shown). And the recessed part which accommodates each component mentioned above is formed in the inner side enclosed by the surrounding wall. In FIG. 1, the peripheral wall surrounding the housing 9 is omitted for easy understanding.
  • a lid (not shown) is detachably fixed to the housing 9 so as to close the opening of the housing 9. Further, the spindle motor 7 is attached to a substantially central portion of the bottom portion 9a in a plan view, and the disc D is detachably fixed by fitting a center hole into the spindle motor 7.
  • the actuator 6 described above is attached to one corner of the bottom 9a outside the disk D.
  • a carriage 11 is attached to the actuator 6 so as to be rotatable about the pivot shaft 10 in the XY plane direction.
  • the carriage 11 includes an arm portion 14 extending from the base end portion toward the tip portion (in the direction of the disk D), and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. However, they are integrally formed by machining or the like.
  • the base portion 15 is formed in a substantially rectangular parallelepiped shape, and is supported so as to be rotatable about the pivot shaft 10. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
  • the arm portion 14 extends in parallel to the surface direction (XY direction) of the upper surface of the base portion 15 on the side surface 15b opposite to the side surface 15a to which the actuator 6 is attached in the base portion 15 (side surface on the opposite side of the corner portion). 3 pieces extending along the height direction (Z direction) of the base portion 15 at substantially equal intervals.
  • the arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14 and 14. That is, the arm portions 14 and the disks D are alternately arranged, and the arm portions 14 can be moved in a direction parallel to the surface of the disk D (XY in-plane direction) by driving the actuator 6.
  • the carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
  • the head gimbal assembly 12 guides a light beam from the laser light source 20 to the slider 2 having a near-field light generating element (not shown) to generate near-field light (spot light), and uses the near-field light to generate a disk D.
  • a near-field light generating element includes, for example, an optical minute aperture, a protrusion formed in a nanometer size, and the like.
  • FIG. 2 is a perspective view of the suspension 3 as seen from the slider 2 side with the slider 2 facing upward.
  • FIG. 3 is a plan view of the gimbal 17 with the slider 2 facing upward.
  • 4 is a cross-sectional view taken along line EE of FIG. 3, and is a cross-sectional view of the tip of the suspension 3 with the slider 2 facing upward.
  • the head gimbal assembly 12 functions as a suspension for floating the slider 2 from the disk D.
  • the head gimbal assembly 12 is formed in a thin plate shape by the slider 2 and a metallic material.
  • the suspension 3 is movable in the X and Y directions parallel to D1, and the optical waveguide 32 guides the light beam emitted from each laser light source 20 to the condenser lens of the slider 2.
  • the suspension 3 is capable of twisting the slider 2 around two axes (X axis, Y axis) parallel to the disk surface D1 and perpendicular to each other, that is, about the two axes.
  • Gimbal means 16 for fixing to the lower surface of the suspension 3 is provided.
  • the slider 2 is supported between a disk D and the suspension 3 with a gimbal 17 (described later) sandwiched between the lower surface of the suspension 3.
  • the slider 2 includes a reproducing element (not shown) fixed to the leading end side and a recording element (not shown) fixed adjacent to the reproducing element.
  • the slider 2 has a condensing lens (optical system) (not shown) that condenses the light beam emitted from the laser light source 20 on the opposite side of the reproducing element with the recording element interposed therebetween, and is condensed by the condensing lens.
  • the near-field light generating element for generating near-field light from the emitted light flux. That is, the slider 2 is arranged with a reproducing element, a recording element, and a near-field light generating element arranged at the tip.
  • the lower surface of the slider 2 is a floating surface 2a that faces the disk surface D1.
  • the air bearing surface 2a is a surface that generates a pressure for ascending from the viscosity of the air flow generated by the rotating disk D, and is called ABS (Air Bearing Surface).
  • the slider 2 is designed to float in an optimum state by adjusting the positive pressure for separating the slider 2 from the disk surface D1 and the negative pressure for attracting the slider 2 to the disk surface D1. Has been.
  • the slider 2 receives a force that rises from the disk surface D1 by the air bearing surface 2a, and also receives a force that is pressed against the disk D by the suspension 3.
  • the slider 2 floats from the disk surface D1 due to the balance of both forces.
  • the suspension 3 includes a base plate 22 that is formed in a substantially square shape in plan view, a hinge plate 23 that is attached to the back surface (lower surface) of the base plate 22, and has a tip portion extending from the base plate 22, and a hinge plate And a load beam 24 having a substantially triangular shape in a plan view connected to the extending portion 23.
  • the base plate 22 is made of a thin metal material such as stainless steel, and an opening 22a penetrating in the thickness direction is formed on the base end side.
  • the base plate 22 is fixed to the tip of the arm portion 14 through the opening 22a.
  • a sheet-like hinge plate 23 made of a metal material such as stainless steel is disposed on the lower surface of the base plate 22.
  • the hinge plate 23 is a flat plate formed over the entire lower surface of the base plate 22, and an end portion of the hinge plate 23 extends from the front end of the base plate 22 along the longitudinal direction of the base plate 22. Is formed.
  • Two extending portions 23a extend from both end portions in the width direction of the hinge plate 23, and an enlarged portion 23b whose width increases in the width direction inner side, that is, in a direction toward the extending portions 23a, is formed at the tip portion. Is formed.
  • a load beam 24 is connected to the upper surface of the enlarged portion 23b.
  • the load beam 24 is made of a thin metal material such as stainless steel like the base plate 22, and the base end thereof is connected to the hinge plate 23 with a gap between the base plate 22 and the tip end of the base plate 22. .
  • the hinge plate 23 is bent between the base plate 22 and the load beam 24 and is easily bent in the Z direction perpendicular to the disk surface D1. That is, the extending portion 23a of the hinge plate 23 is configured to be curved.
  • the base plate 22 and the load beam 24 (including the hinge plate 23) connected to the arm unit 14 rotate around the pivot shaft 10 so that the arm unit 14, the base plate 22 and the load beam 24 are connected. Constitutes a rotating member.
  • the rotating member may be composed only of the suspension 3.
  • a flexure 25 is provided on the tip side of the load beam 24.
  • the flexure 25 is a sheet-shaped member made of a metal material such as stainless steel, and is configured to be able to bend and deform in the thickness direction by being formed in a sheet shape.
  • the flexure 25 has a gimbal 17 that is fixed to the distal end side of the load beam 24 and has an outer shape that is substantially hexagonal when viewed from above.
  • the gimbal 17 is formed to slightly warp in the thickness direction from the vicinity of the middle to the tip toward the disk surface D1. Then, the warped end is fixed to the load beam 24 from the base end to substantially the middle so that the front end does not come into contact with the load beam 24.
  • a cutout portion 26 is formed on the front end side of the floating gimbal 17 so that the periphery thereof is wound in a U shape.
  • the portion surrounded by the cutout portion 26 is cantilevered by a connecting portion 17a.
  • the pad part (tongue piece part) 17b supported in the shape is formed. That is, the pad portion 17b is formed to project from the distal end side to the proximal end side of the gimbal 17 by the connecting portion 17a, and is provided with a notch 26 around the periphery. Accordingly, the pad portion 17 b is easily bent in the thickness direction of the gimbal 17, and the angle is adjusted so that only the pad portion 17 b is parallel to the lower surface of the suspension 3.
  • the slider 2 is placed and fixed on the pad portion 17b. That is, the slider 2 is in a state of hanging from the load beam 24 via the pad portion 17b.
  • a protrusion 19 that protrudes toward the approximate center of the pad portion 17b and the slider 2 is formed at the tip of the load beam 24.
  • the tip of the projection 19 is rounded.
  • the protrusion 19 comes into point contact with the surface (upper surface) of the pad portion 17b when the slider 2 floats to the load beam 24 side by the wind pressure received from the disk D. This rising force is transmitted from the protrusion 19 to the load beam 24 and acts to bend the load beam 24.
  • wind pressure in the XY direction is applied to the slider 2 due to the undulation of the disk D, the slider 2 and the pad portion 17b are twisted around the two axes of the X axis and the Y axis with the protrusion 19 as the center. It has become.
  • FIG. 5 is a side view of the base portion 15 of the carriage 11.
  • a terminal board 30 is disposed on a side surface 15 c of the base portion 15 of the carriage 11.
  • the terminal board 30 serves as a relay point when the control unit 5 provided in the housing 9 and the slider 2 are electrically connected, and various control circuits (not shown) are formed on the surface thereof. ing.
  • the control unit 5 and the terminal board 30 are electrically connected by a flexible flat cable 4, while the terminal board 30 and the slider 2 are connected by an electric wiring 31.
  • Three sets of electrical wirings 31 are provided corresponding to the number of sliders 2 provided for each carriage 11, and signals output from the control unit 5 via the flat cable 4 are transmitted via the electrical wiring 31 to the sliders. 2 is output.
  • the laser light source 20 for supplying a light beam toward the condenser lens of the slider 2 is disposed on the terminal board 30.
  • the laser light source 20 receives a signal output from the control unit 5 via the flat cable 4 and emits a light beam based on this signal, and corresponds to the number of sliders 2 provided in each arm unit 14. Then, three are arranged at substantially equal intervals along the height direction (Z direction) of the base portion 15.
  • An optical waveguide 32 that guides the light beam emitted from each laser light source 20 to the condenser lens of the slider 2 is connected to the emission side of each laser light source 20.
  • an optical fiber having a core and a cladding is used as the optical waveguide 32.
  • a combination in which a core is formed from quartz (SiO 2 ) and a cladding is formed from quartz doped with fluorine can be considered.
  • the refractive index of the core is 1.47
  • the refractive index of the cladding is less than 1.47, which is preferable.
  • a combination in which the core is formed of quartz doped with germanium and the cladding is formed of quartz is also conceivable.
  • the refractive index of the core is larger than 1.47 and the refractive index of the cladding is 1.47, which is preferable.
  • tantalum oxide Ti 2 O 5 : refractive index is 2.16 when the wavelength is 550 nm
  • the difference in refractive index between the two is increased by using quartz or the like for the cladding.
  • Si refractive index is about 4.0
  • the optical waveguide 32 is supported by the support member 40 on the lower surface of the hinge plate 23 between the laser light source 20 and the slider 2.
  • the optical waveguide 32 is moved in the longitudinal direction with respect to the movement of the slider 2 so that the force from the optical waveguide 32 does not act on the slider 2 during operation of the apparatus. It is configured to be movable.
  • the support member 40 is a member provided on the hinge plate 23 and having a through hole 41 formed therein.
  • the through hole 41 is formed in a size that allows the optical waveguide 32 to be inserted, and the optical waveguide 32 can move along the through hole 41.
  • the slider 2 is attached to the load beam 24, and the load beam 24 and the base plate 22 are connected via the hinge plate 23.
  • a support member 40 is attached to the hinge plate 23 in advance with an adhesive or the like.
  • the assembly of the head gimbal assembly 12 is completed by connecting the optical waveguide 32 to the slider 2.
  • the spindle motor 7 is driven to rotate the disk D in a predetermined direction.
  • the actuator 6 is operated to rotate the carriage 11 about the pivot shaft 10 as a rotation center, and the head gimbal assembly 12 is scanned in the XY directions via the carriage 11. As a result, the slider 2 can be positioned at a desired position on the disk D.
  • the base portion 15 of the carriage 11 is configured to be rotatable around the pivot shaft 10, the arm portion 14 moves in a direction parallel to the disk surface D1 with the pivot shaft 10 as a rotation center.
  • the terminal board 30 serves as a relay point when the control unit 5 and the slider 2 are electrically connected.
  • the electric wiring 31 is routed around the slider 2 with the terminal board 30 as a base point.
  • a light beam is incident on the optical waveguide 32 from the laser light source 20, and the light beam is guided to the slider 2.
  • a laser light source 20 that supplies a light beam to the condenser lens of the slider 2 is provided on the terminal substrate 30 in the base portion 15 of the slider 2.
  • the light beam emitted from the laser light source 20 is propagated from the optical waveguide 32 toward the slider 2.
  • the light beam propagating through the optical waveguide 32 is condensed by the condenser lens in the slider 2, and the spot size is gradually narrowed down.
  • near-field light is generated around the near-field light generating element so as to ooze out.
  • the disk D on which the near-field light is incident is locally heated by the near-field light, and the coercive force is temporarily reduced.
  • a current is supplied to the recording element of the slider 2 by the control unit 5
  • a recording magnetic field perpendicular to the disk D can be generated by the principle of an electromagnet.
  • information can be recorded by a hybrid magnetic recording method in which near-field light and a recording magnetic field generated by a recording element cooperate.
  • the reproducing element fixed adjacent to the recording element receives the magnetic field leaking from the disk D and depends on its magnitude.
  • the electrical resistance changes. Therefore, the voltage of the reproducing element changes.
  • the control unit 5 can detect a change in the magnetic field leaking from the disk D as a change in voltage. And the control part 5 can reproduce
  • the slider 2 is supported by the suspension 3 and pressed against the disk D side with a predetermined force. At the same time, since the air bearing surface 2a faces the disk D, the slider 2 receives a force that rises under the influence of wind pressure generated by the rotating disk D. Due to the balance between the two forces, the slider 2 is in a floating state at a position separated from the disk D.
  • the slider 2 since the slider 2 receives the wind pressure and is pushed toward the suspension 3, the pad portion 17 b of the gimbal 17 that fixes the slider 2 and the protrusion 19 formed on the suspension 3 are in point contact.
  • the floating force is transmitted to the suspension 3 through the protrusions 19 and acts to bend the suspension 3 in the Z direction perpendicular to the disk surface D1.
  • the slider 2 floats as described above. Since the base plate 22 and the load beam 24 are connected to the suspension 3 via the hinge plate 23, the suspension 3 is easily bent between the base plate 22 and the load beam 24.
  • the support member 40 is attached to the hinge plate 23 and disposed so that the optical waveguide 32 is inserted into the through hole 41 of the support member 40, and the optical waveguide 32 is moved in the longitudinal direction in accordance with the change in the posture of the slider 2. I was able to move.
  • the optical waveguide 32 can also move along the longitudinal direction in accordance with the posture change of the slider 2 and the load beam 24 during the operation of the information recording / reproducing apparatus 1. Therefore, the force from the optical waveguide 32 does not act on the slider 2 when flying (during operation), and the slider 2 can be stably floated. Further, even when a force acts in the twisting direction about the axial direction of the optical waveguide 32, the optical waveguide 32 is restrained only in the direction perpendicular to the axis by the support member 40, so that the force from the optical waveguide 32 is applied to the slider 2. Does not work.
  • an optical fiber provided with a coating 51 may be used as the optical waveguide 32.
  • an optical waveguide 32 manufactured by a semiconductor process may be used.
  • the core 35 is formed with a thickness of 3 to 10 ⁇ m by PMMA (methyl methacrylate resin), and the fluorine-containing polymer is used.
  • PMMA methyl methacrylate resin
  • a combination that forms the clad 34 with a thickness of several tens of ⁇ m is conceivable.
  • both the core 35 and the clad 34 are made of epoxy resin (for example, core refractive index 1.522 to 1.523, clad refractive index 1.518 to 1.519), or made of fluorinated polyimide. Is also possible.
  • the refractive index difference between the core 35 and the clad 34 is larger, the force for confining the light beam in the core 35 becomes larger. Therefore, by adjusting the composition of the resin material constituting the core 35 and the clad 34, It is preferable to increase the refractive index difference.
  • the refractive index can be controlled by adjusting the fluorine content or irradiating energy such as radiated light.
  • the support member 140 is a member provided on the hinge plate 23 and having a notch (introduction portion) 142 formed at the top.
  • the support member 140 is made of a resin material, and can move slightly in a direction in which both ends of the notch 142 are separated from each other. That is, by pressing the optical waveguide 32 against the notch 142, the gap of the notch 142 is increased, and the optical waveguide 32 can be disposed in the internal space 141 of the support member 140. By doing so, the optical waveguide 32 can be supported so as to be movable in the longitudinal direction.
  • the production efficiency can be improved.
  • the support member 140 is formed of resin.
  • the support member 140 may be formed of metal such as stainless steel.
  • the optical waveguide 32 may be held by caulking the notch 142 after the optical waveguide 32 is disposed in the internal space 141.
  • the support member 240 is formed by raising notch pieces (introducing portions) 242 and 242 in which a part of the hinge plate 23 is cut out in directions close to each other.
  • the support member 240 forms the internal space 241 by raising the notch pieces 242 and 242 so that the ends thereof are in contact with each other, and the optical waveguide 32 is disposed in the internal space 241 of the support member 240. can do. By doing so, the optical waveguide 32 can be supported so as to be movable in the longitudinal direction.
  • the optical waveguide 32 it is only necessary to dispose the optical waveguide 32 on the support member 240 and deform the support member 240, so that the production efficiency can be improved.
  • the support member 240 is formed by processing a part of the hinge plate 23, the material cost can be reduced.
  • the support member 240 is formed by processing a part of the hinge plate 23.
  • the support member 240 may be formed by processing a part of the flexure 25.
  • the support members 240 are formed by raising the notches 242 and 242 from both sides of the optical waveguide 32. However, as shown in FIG. 11, the notches raised from one side of the optical waveguide 32 are formed.
  • the support member 240 ⁇ / b> A may be formed so as to surround the periphery of the optical waveguide 32 with the piece (introduction portion) 245. (Fourth embodiment)
  • a fourth embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the support member, and the other configurations are substantially the same. Therefore, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the support member 340 is provided on the hinge plate 23 and supports the optical waveguide 32.
  • the support member 340 includes, for example, a resin adhesive 341 and a coating 51 that covers the periphery of the optical waveguide 32. That is, the covering 51 is bonded and fixed on the hinge plate 23. By doing so, the interface between the coating 51 covering the optical waveguide 32 and the clad 35 slightly moves with respect to the posture variation of the slider 2, and the optical waveguide 32 is supported so as to be movable in the longitudinal direction. Can do.
  • the interface between the clad 35 and the coating 51 of the optical fiber is slightly shifted with the change in the posture of the slider 2 during operation, so that the force from the optical waveguide 32 does not act on the slider 2.
  • the slider 2 can be stably levitated.
  • a plurality of support members 40 are appropriately provided on the hinge plate 23, the load beam 24, and the flexure 25. That is, the optical waveguide 32 is supported by the plurality of support members 40.
  • the optical waveguide 32 can be reliably supported by the suspension 3, and the optical waveguide 32 can be moved along the longitudinal direction in accordance with the posture change of the slider 2 during operation.
  • a sixth embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the optical waveguide and the support member, and the other configurations are substantially the same. Omitted.
  • a plurality of support members 40 are appropriately provided on the hinge plate 23, the load beam 24, and the flexure 25. That is, the optical waveguide 32 is supported by the plurality of support members 40.
  • the optical waveguide 32 is linearly arranged from the slider 2 toward the base portion 15, the light guide 32 passes through the opening 22 a formed in the base plate 22, which causes trouble when the base plate 22 and the arm portion 14 are joined. It is possible to become. Therefore, in the present embodiment, the optical waveguide 32 is partially curved so as not to pass over the opening 22a.
  • the support member 40 is appropriately disposed on the curved portion 530 of the optical waveguide 32 so that the optical waveguide 32 is guided in a desired direction.
  • the optical waveguide 32 can be moved along the longitudinal direction in accordance with a change in the posture of the slider 2 during operation, and the optical waveguide 32 is reliably guided in a desired direction at the bending portion 530. be able to.
  • a seventh embodiment according to the present invention will be described with reference to FIGS. Note that this embodiment is different from the first embodiment only in the configuration of the flexure and the support member, and the other configurations are substantially the same, so the same portions are denoted by the same reference numerals and detailed description thereof is omitted. To do.
  • the flexure 625 is formed with a support 618 extending toward the base 15. That is, the support body 618 is a sheet-like member integrally formed with the gimbal 17 and extends toward the base portion 15 along the suspension 3.
  • the support body 618 is configured to follow the deformation of the suspension 3 when the suspension 3 is deformed.
  • the support body 618 extends from the top of the arm portion 14 to the side surface and is drawn to reach the base portion 15 of the arm portion 14. Further, the support 618 extends in the direction of the base 15 while being partially bent so as not to pass over the opening 22 a of the base plate 22.
  • the electrical wiring 31 is supported on the support body 618.
  • the support member 640 is formed by bending a tongue 650 formed in a direction perpendicular to the direction along the longitudinal direction of the support 618 so as to surround the periphery of the optical waveguide 32.
  • the optical waveguide 32 can be supported simply by forming the tongue 650 in the flexure 625 and bending the tongue 650, so that the optical waveguide 32 can be reliably supported with a simple configuration.
  • the present invention is not limited to the above-described embodiment, and includes those in which various modifications are made to the above-described embodiment without departing from the spirit of the present invention. That is, the configuration, shape, and the like given in the above-described embodiment are merely examples, and can be changed as appropriate.
  • the configuration in which the head gimbal assembly is provided only on one side of the arm part has been described.
  • the heads are respectively provided on both sides of the arm part inserted between the disks so as to face each disk.
  • a configuration in which a gimbal assembly is provided is also possible.
  • information on the disk surface facing each slider can be recorded and reproduced by each slider of the head gimbal assembly provided on both sides of the arm portion. That is, since information on two discs can be recorded and reproduced by one arm portion, the recording capacity of the information recording / reproducing apparatus can be increased and the apparatus can be downsized.
  • the air floating type information recording / reproducing apparatus in which the slider is levitated has been described as an example.
  • the present invention is not limited to this case. You may be in contact. That is, the slider of the present invention may be a contact slider type slider. Even in this case, the same effects can be achieved.
  • the case of the information recording / reproducing apparatus using near-field light has been described.
  • the information recording / reproducing apparatus using spot light may be adopted.
  • the support member may be attached to the arm portion and the optical waveguide may be supported by the support member.

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

Provided is a head gimbal assembly (12) with an optical guide structure, comprising a rod-shaped turning member made turnable on a pivot pin arranged on the outer side of a magnetic recording medium for rotating in a predetermined direction, a slider (2) so attached to the leading end of the turning member as to face the surface of the magnetic recording medium and supported to freely turn on two axes parallel to the surface of the magnetic recording medium and perpendicular to each other, an optical waveguide (32) for introducing a beam for heating the magnetic recording medium, into the slider, and a support member (40) for supporting the optical waveguide on the turning member. The support member supports the optical waveguide movably along the longitudinal direction.

Description

導光構造付きヘッドジンバルアセンブリおよび情報記録再生装置Head gimbal assembly with light guide structure and information recording / reproducing apparatus
 本発明は、光を集光したスポット光を利用して磁気記録媒体に各種の情報を記録再生する導光構造付きヘッドジンバルアセンブリおよび情報記録再生装置に関するものである。 The present invention relates to a head gimbal assembly with a light guide structure and an information recording / reproducing apparatus for recording and reproducing various kinds of information on a magnetic recording medium by using spot light obtained by collecting light.
 近年、コンピュータ機器におけるハードディスク等の容量増加に伴い、単一記録面内における情報の記録密度が増加している。例えば、磁気ディスクの単位面積当たりの記録容量を多くするためには、面記録密度を高くする必要がある。ところが、記録密度が高くなるにつれて、記録媒体上で1ビット当たりの占める記録面積が小さくなっている。このビットサイズが小さくなると、1ビットの情報が持つエネルギーが、室温の熱エネルギーに近くなり、記録した情報が熱揺らぎ等のために反転したり、消えてしまったりする等の熱減磁の問題が生じてしまう。 In recent years, the recording density of information within a single recording surface has increased with the increase in the capacity of hard disks and the like in computer equipment. For example, in order to increase the recording capacity per unit area of the magnetic disk, it is necessary to increase the surface recording density. However, as the recording density increases, the recording area occupied by one bit on the recording medium decreases. When this bit size is reduced, the energy of 1-bit information is close to that of room temperature, and the recorded information is reversed or lost due to thermal fluctuation, etc. Will occur.
 一般的に用いられてきた面内記録方式では、磁化の方向が記録媒体の面内方向に向くように磁気を記録する方式であるが、この方式では上述した熱減磁による記録情報の消失等が起こり易い。そこで、このような不具合を解消するために、記録媒体に対して垂直な方向に磁化信号を記録する垂直記録方式に移行しつつある。この方式は、記録媒体に対して、単磁極を近づける原理で磁気情報を記録する方式である。この方式によれば、記録磁界が記録膜に対してほぼ垂直な方向を向く。垂直な磁界で記録された情報は、記録膜面内においてN極とS極とがループを作り難いため、エネルギー的に安定を保ち易い。そのため、この垂直記録方式は、面内記録方式に対して熱減磁に強くなっている。 In the in-plane recording method that has been generally used, the magnetism is recorded so that the direction of magnetization is in the in-plane direction of the recording medium. In this method, the recorded information is lost due to the thermal demagnetization described above. Is likely to occur. Therefore, in order to solve such a problem, a shift is being made to a perpendicular recording method in which a magnetization signal is recorded in a direction perpendicular to the recording medium. This method is a method for recording magnetic information on the principle of bringing a single magnetic pole closer to a recording medium. According to this method, the recording magnetic field is directed substantially perpendicular to the recording film. Information recorded with a perpendicular magnetic field is likely to be stable in terms of energy because it is difficult for the N and S poles to form a loop in the recording film surface. Therefore, this perpendicular recording method is more resistant to thermal demagnetization than the in-plane recording method.
 しかしながら、近年の記録媒体は、より大量且つ高密度情報の記録再生を行いたい等のニーズを受けて、さらなる高密度化が求められている。そのため、隣り合う磁区同士の影響や、熱揺らぎを最小限に抑えるために、保磁力の強いものが記録媒体として採用され始めている。そのため、上述した垂直記録方式であっても、記録媒体に情報を記録することが困難になっていた。 However, recording media in recent years are required to have higher density in response to needs such as recording and reproduction of a larger amount and higher density information. For this reason, in order to minimize the influence of adjacent magnetic domains and thermal fluctuations, those having a strong coercive force have begun to be adopted as recording media. For this reason, it is difficult to record information on a recording medium even in the above-described perpendicular recording system.
 そこで、この不具合を解消するために、光を集光したスポット光、若しくは、光を集光した近接場光を利用して磁区を局所的に加熱して一時的に保磁力を低下させ、その間に書き込みを行うハイブリッド磁気記録方式が提供されている。特に、近接場光を利用する場合には、従来の光学系において限界とされていた光の波長以下となる領域における光学情報を扱うことが可能となる。よって、従来の光情報記録再生装置等を超える記録ビットの高密度化を図ることができる。 Therefore, in order to solve this problem, the magnetic domain is locally heated using spot light that collects light or near-field light that collects light to temporarily reduce the coercive force, There is provided a hybrid magnetic recording system that performs writing on the disk. In particular, when near-field light is used, it is possible to handle optical information in a region that is less than or equal to the wavelength of light, which is a limit in conventional optical systems. Therefore, it is possible to achieve a higher recording bit density than conventional optical information recording / reproducing apparatuses.
 近接場光を利用した記録再生装置の構成は、磁気ディスク装置と略同一であり、磁気ヘッドに代わり、近接場光利用ヘッドを用いる。近接場光利用ヘッドは、光学的微小開口やナノメートルサイズの突起などからなる近接場光発生素子を持つ。近接場光発生素子は空気浮上技術を用いたスライダに搭載される。スライダはサスペンションの先端に取り付けられ、動圧により記録媒体に対して一定の高さで浮上する。これにより、近接場光発生素子は記録媒体上に存在する任意のデータマークへアクセスする。高速回転する記録媒体にスライダを追従させるため、近接場光利用ヘッドには記録媒体のうねりに対応して姿勢を安定させるフレクシャ機能をもたせている。このような構成の近接場光利用ヘッドは、ヘッドに光を供給するために光導波路などからなる光導入部を必要とする。ここでの光導波路は光ファイバも含む。電気配線に比べて配線の自由度が低い光導波路を用いて、いかに効率よく光を近接場光発生素子および記録媒体に導くかが、近接場光を利用した記録再生技術の重要な点である。 The configuration of the recording / reproducing apparatus using near-field light is substantially the same as that of the magnetic disk device, and a near-field light using head is used instead of the magnetic head. The near-field light using head has a near-field light generating element composed of an optical minute aperture, a nanometer-size protrusion, or the like. The near-field light generating element is mounted on a slider using an air levitation technique. The slider is attached to the tip of the suspension and floats at a certain height with respect to the recording medium by dynamic pressure. Thereby, the near-field light generating element accesses an arbitrary data mark existing on the recording medium. In order to make the slider follow the recording medium that rotates at high speed, the near-field light utilizing head has a flexure function that stabilizes the posture in response to the undulation of the recording medium. The near-field light using head having such a configuration requires a light introducing portion including an optical waveguide in order to supply light to the head. The optical waveguide here also includes an optical fiber. How to efficiently guide light to a near-field light generating element and a recording medium using an optical waveguide with a lower degree of freedom of wiring than electrical wiring is an important point of recording / reproducing technology using near-field light .
 このような近接場光利用ヘッドにおいて、光導波路をスライダに接続し、メディア面に水平な方向に伝播している光導波路からの光を反射させて伝播方向を開口方向に向ける光反射面を用いて、微小なビームスポットを近接場光発生素子に入射させる手法が考慮されている(例えば、特許文献1参照)。 In such a near-field light utilization head, a light reflecting surface is used in which the optical waveguide is connected to the slider and the light from the optical waveguide propagating in the direction horizontal to the media surface is reflected to direct the propagation direction to the opening direction. Thus, a method of making a minute beam spot incident on the near-field light generating element is considered (for example, see Patent Document 1).
 図17に近接場光利用ヘッドアセンブリ(ヘッドジンバルアセンブリ)100を用いた情報記録再生装置の概略を示す。近接場光利用ヘッドアセンブリ100は、光ファイバ103、サスペンションアーム104、フレクシャ105、スライダ106、近接場光発生素子(不図示)から構成される。近接場光発生素子を搭載するスライダ106を、記録媒体107の表面に数nmから数十nm程度まで近接した状態で記録媒体107を高速に回転させ、スライダ106が記録媒体107と常に一定の相対配置で浮上するために、フレクシャ105をサスペンションアーム104の先端部に形成している。 FIG. 17 shows an outline of an information recording / reproducing apparatus using a near-field light utilizing head assembly (head gimbal assembly) 100. The near-field light using head assembly 100 includes an optical fiber 103, a suspension arm 104, a flexure 105, a slider 106, and a near-field light generating element (not shown). The slider 106 on which the near-field light generating element is mounted is rotated at a high speed while the slider 106 is close to the surface of the recording medium 107 from about several nanometers to several tens of nanometers. A flexure 105 is formed at the tip of the suspension arm 104 in order to float in the arrangement.
 サスペンションアーム104は固定穴104aを介してボイスコイルモータ(不図示)に固定されており、ボイスコイルモータによって記録媒体107の半径方向に移動可能である。ここで、スライダ106は、記録媒体107に近接場光発光素子が対面するように配置されている。レーザ101からの光束をスライダ106まで導く光伝播部は、レンズ102とサスペンションアーム104に固定された光ファイバ103から構成されている。必要に応じて、レーザ101は回路系108により強度変調などをかけることもできる。 The suspension arm 104 is fixed to a voice coil motor (not shown) through a fixing hole 104a, and can be moved in the radial direction of the recording medium 107 by the voice coil motor. Here, the slider 106 is disposed so that the near-field light emitting element faces the recording medium 107. The light propagation part that guides the light beam from the laser 101 to the slider 106 includes an optical fiber 103 fixed to the lens 102 and the suspension arm 104. If necessary, the laser 101 can be intensity-modulated by the circuit system 108.
 上述した近接場光利用ヘッドアセンブリでは、サスペンションアーム104からフレクシャ105を介してスライダ106を記録媒体107に向かって押し付ける力と、記録媒体107の回転に伴う風圧によりスライダ106を浮上させる力とが釣り合うことによって、スライダ106は記録媒体107に対して数nmから数十nm程度の間隙をもって安定に浮上している。サスペンションアーム104は、スライダ106方向に予め湾曲させられており、そのバネ力によってスライダ106への押し付け力を発生させている。記録再生装置の動作時は、サスペンションアーム104の湾曲は、スライダ106への押し付け力の反力のために緩和されている。 In the near-field light utilizing head assembly described above, the force pressing the slider 106 toward the recording medium 107 from the suspension arm 104 via the flexure 105 is balanced with the force that causes the slider 106 to float by the wind pressure accompanying the rotation of the recording medium 107. As a result, the slider 106 floats stably with respect to the recording medium 107 with a gap of several nm to several tens of nm. The suspension arm 104 is bent in the direction of the slider 106 in advance, and a pressing force against the slider 106 is generated by the spring force. During the operation of the recording / reproducing apparatus, the curvature of the suspension arm 104 is relaxed due to the reaction force of the pressing force against the slider 106.
国際特許公開第00/28536号パンフレットInternational Patent Publication No. 00/28536 pamphlet
 しかしながら、上述した従来のヘッドジンバルアセンブリにあっては、比較的剛性の大きい光導波路を有し、その光導波路をスライダおよびサスペンションアームに固定していたため、スライダの動きを妨げ、スライダの動作姿勢(浮上時の状態)が不安定になるという問題があった。 However, the above-described conventional head gimbal assembly has an optical waveguide having a relatively large rigidity, and the optical waveguide is fixed to the slider and the suspension arm. There was a problem that the state when ascending) became unstable.
 そこで本発明は、このような事情を考慮してなされたもので、その目的は、動作時に、ヘッドを安定浮上させることが可能な導光構造付きヘッドジンバルアセンブリおよび情報記録再生装置を提供することである。 Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a head gimbal assembly with a light guide structure and an information recording / reproducing apparatus capable of stably flying the head during operation. It is.
 本発明は、前記課題を解決するために以下の手段を提供する。 The present invention provides the following means in order to solve the above problems.
 本発明に係る導光構造付きヘッドジンバルアセンブリは、一定方向に回転する磁気記録媒体の外側に配置されたピボット軸のまわりを回動可能に形成された棒状の回動部材と、該回動部材の先端部に、前記磁気記録媒体の表面と対向するように取り付けられ、前記磁気記録媒体の表面に平行で、かつ、互いに直交する2軸回りに回動自在となるように支持されたスライダと、前記磁気記録媒体を加熱するための光を前記スライダに導入するための光導波路と、該光導波路を前記回動部材に支持する支持部材と、を備えた導光構造付きヘッドジンバルアセンブリにおいて、前記支持部材は、前記光導波路を長手方向に沿って移動可能に支持していることを特徴としている。 A head gimbal assembly with a light guide structure according to the present invention includes a rod-shaped rotating member formed to be rotatable around a pivot shaft disposed outside a magnetic recording medium rotating in a fixed direction, and the rotating member. A slider attached to the tip of the magnetic recording medium so as to face the surface of the magnetic recording medium, and supported so as to be rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other. In a head gimbal assembly with a light guide structure, comprising: an optical waveguide for introducing light for heating the magnetic recording medium into the slider; and a support member for supporting the optical waveguide on the rotating member. The support member supports the optical waveguide so as to be movable along the longitudinal direction.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、動作時のスライダおよび回動部材の姿勢変動に伴って、光導波路も長手方向に沿って移動することができる。したがって、浮上時(動作時)に光導波路からの力がスライダに作用することがなくなり、スライダを安定して浮上させることができる。 In the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can also move along the longitudinal direction as the posture of the slider and the rotating member changes during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated.
 本発明に係る導光構造付きヘッドジンバルアセンブリは、一定方向に回転する磁気記録媒体の外側に配置されたピボット軸のまわりを回動可能に形成されたアーム部の先端側に支持されるベースプレートと、該ベースプレートと連結されるとともに、前記ベースプレートの先端側に延出する延出部を有するヒンジプレートと、該ヒンジプレートの延出部と連結されるロードビームと、該ロードビームに連結されるフレクシャと、を有するサスペンションと、該サスペンションの先端部の前記フレクシャに、前記磁気記録媒体の表面と対向するように取り付けられ、前記磁気記録媒体の表面に平行で、かつ、互いに直交する2軸回りに回動自在となるように支持されたスライダと、前記磁気記録媒体を加熱するための光を前記スライダに導入するための光導波路と、該光導波路を前記サスペンションおよび前記アーム部の少なくともいずれか一方に支持する支持部材と、を備え、前記支持部材は、前記光導波路を長手方向に沿って移動可能に支持していることを特徴としている。 A head gimbal assembly with a light guide structure according to the present invention includes a base plate supported on the distal end side of an arm portion formed to be rotatable around a pivot shaft disposed outside a magnetic recording medium rotating in a predetermined direction. A hinge plate coupled to the base plate and having an extending portion extending toward the tip of the base plate, a load beam coupled to the extending portion of the hinge plate, and a flexure coupled to the load beam And a suspension that is attached to the flexure at the tip of the suspension so as to face the surface of the magnetic recording medium, and is parallel to the surface of the magnetic recording medium and around two axes orthogonal to each other A slider supported so as to be rotatable and light for heating the magnetic recording medium are introduced into the slider. An optical waveguide for supporting the optical waveguide on at least one of the suspension and the arm portion, and the support member supports the optical waveguide so as to be movable along a longitudinal direction. It is characterized by that.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、動作時のスライダおよびロードビームの姿勢変動に伴って、光導波路も長手方向に沿って移動することができる。したがって、浮上時(動作時)に光導波路からの力がスライダに作用することがなくなり、スライダを安定して浮上させることができる。 In the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can also move along the longitudinal direction as the slider and load beam change in posture during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated.
 また、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記支持部材は、前記光導波路が導入される導入部を備え、前記光導波路の導入後に前記導入部を変形させて閉塞することによって前記光導波路を支持していることを特徴としている。 In the head gimbal assembly with a light guide structure according to the present invention, the support member includes an introduction portion into which the optical waveguide is introduced, and the introduction portion is deformed and closed after the introduction of the optical waveguide. It is characterized by supporting the optical waveguide.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、光導波路を支持部材の導入部に配置して支持部材を変形させるだけでよいため、生産効率を向上させることができる。 In the head gimbal assembly with a light guide structure according to the present invention, it is only necessary to dispose the optical waveguide in the introduction portion of the support member and to deform the support member, so that the production efficiency can be improved.
 また、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記支持部材が、前記サスペンションおよび前記アーム部の少なくともいずれか一方の一部を加工することで形成されることを特徴としている。 The head gimbal assembly with a light guide structure according to the present invention is characterized in that the support member is formed by processing a part of at least one of the suspension and the arm portion.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、支持部材をサスペンションおよびアーム部の少なくともいずれか一方の部材で兼用するため、材料費を低減させることが可能となるとともに、部品点数を削減することができる。 In the head gimbal assembly with a light guide structure according to the present invention, since the supporting member is shared by at least one of the suspension and the arm, the material cost can be reduced and the number of parts can be reduced. be able to.
 また、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記スライダに接続された電気配線を支持する配線支持体が、前記フレクシャから延設され、前記光導波路は、前記配線支持体に沿って配置され、前記支持部材が、前記配線支持体の長手方向に直交する方向に形成された舌部を折曲することにより形成されることを特徴としている。 In the head gimbal assembly with a light guide structure according to the present invention, a wiring support that supports the electrical wiring connected to the slider extends from the flexure, and the optical waveguide extends along the wiring support. It is arranged, and the support member is formed by bending a tongue formed in a direction orthogonal to the longitudinal direction of the wiring support.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、配線支持体に舌部を形成し、舌部を折曲するだけで、光導波路を支持できるため、簡易な構成で確実に光導波路を支持することができる。 In the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can be supported simply by forming the tongue on the wiring support and bending the tongue, so that the optical waveguide is reliably supported with a simple configuration. can do.
 また、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記支持部材が、前記光導波路を被覆する被覆部材と、該被覆部材を前記サスペンションに支持する接着剤とで構成されていることを特徴としている。 In the head gimbal assembly with a light guide structure according to the present invention, the support member includes a covering member that covers the optical waveguide and an adhesive that supports the covering member on the suspension. It is said.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、動作時のスライダの姿勢変動に伴って、光ファイバと被覆との界面が若干ずれるため、光導波路からの力がスライダに作用することがなくなり、スライダを安定して浮上させることができる。 In the head gimbal assembly with a light guide structure according to the present invention, the interface between the optical fiber and the coating is slightly shifted with the change in the posture of the slider during operation, so that the force from the optical waveguide does not act on the slider. , The slider can be stably levitated.
 また、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記光導波路が、複数の前記支持部材により前記サスペンションに支持されていることを特徴としている。 The head gimbal assembly with a light guide structure according to the present invention is characterized in that the optical waveguide is supported by the suspension by a plurality of the support members.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、光導波路を確実にサスペンションに支持することができるとともに、動作時のスライダの姿勢変動に伴って光導波路を長手方向に沿って移動させることができる。 In the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can be reliably supported by the suspension, and the optical waveguide can be moved along the longitudinal direction in accordance with the posture change of the slider during operation. it can.
 さらに、本発明に係る導光構造付きヘッドジンバルアセンブリは、前記光導波路の湾曲部分に前記支持部材が配置されていることを特徴としている。 Furthermore, the head gimbal assembly with a light guide structure according to the present invention is characterized in that the support member is disposed in a curved portion of the optical waveguide.
 本発明に係る導光構造付きヘッドジンバルアセンブリにおいては、動作時のスライダの姿勢変動に伴って光導波路を長手方向に沿って移動させることができるとともに、湾曲部分において確実に所望の方向へ光導波路を案内することができる。
そして、本発明に係る情報記録再生装置は、上述した導光構造付きヘッドジンバルアセンブリと、光導波路に対して光束を入射させる光源と、一定方向に回転する磁気記録媒体と、該磁気記録媒体の外側に配置されたピボット軸と、該ピボット軸のまわりを回動可能に形成されたアーム部と、該アーム部の基端側を支持すると共に、該アーム部を前記磁気記録媒体の表面に平行な方向に向けて移動させるアクチュエータと、前記磁気記録媒体を前記一定方向に回転させる回転駆動部と、前記スライダ及び前記光源の作動を制御する制御部と、を備えていることを特徴としている。
In the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can be moved along the longitudinal direction in accordance with the change in the posture of the slider during operation, and the optical waveguide is reliably moved to a desired direction at the curved portion. Can be guided.
An information recording / reproducing apparatus according to the present invention includes the above-described head gimbal assembly with a light guide structure, a light source that makes a light beam incident on an optical waveguide, a magnetic recording medium that rotates in a certain direction, A pivot shaft arranged outside, an arm portion formed to be rotatable around the pivot shaft, and a base end side of the arm portion are supported, and the arm portion is parallel to the surface of the magnetic recording medium. And an actuator that moves the magnetic recording medium in a certain direction, and a control unit that controls the operation of the slider and the light source.
 本発明に係る情報記録再生装置においては、動作時に光導波路からの力がスライダに作用することがないため、スライダを安定して浮上させることができる。 In the information recording / reproducing apparatus according to the present invention, since the force from the optical waveguide does not act on the slider during operation, the slider can be stably levitated.
 本発明に係る導光構造付きヘッドジンバルアセンブリによれば、動作時のスライダおよび回動部材の姿勢変動に伴って、光導波路も長手方向に沿って移動することができる。したがって、浮上時(動作時)に光導波路からの力がスライダに作用することがなくなり、スライダを安定して浮上させることができる。つまり、光導波路により回動部材の動作を妨げることなく、確実にスライダに光を導入することができる。 According to the head gimbal assembly with a light guide structure according to the present invention, the optical waveguide can also move along the longitudinal direction as the posture of the slider and the rotating member changes during operation. Therefore, the force from the optical waveguide does not act on the slider at the time of flying (during operation), and the slider can be stably floated. That is, light can be reliably introduced into the slider without hindering the operation of the rotating member by the optical waveguide.
本発明の実施形態における情報記録再生装置の概略構成図である。It is a schematic block diagram of the information recording / reproducing apparatus in embodiment of this invention. 本発明の実施形態におけるヘッドジンバルアセンブリの斜視図(裏面)である。It is a perspective view (back surface) of the head gimbal assembly in the embodiment of the present invention. 本発明の実施形態におけるジンバルの平面図である。It is a top view of the gimbal in the embodiment of the present invention. 図3のE-E線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line EE in FIG. 3. 本発明の実施形態における基部の側面図である。It is a side view of the base in the embodiment of the present invention. 本発明の第一実施形態における支持部材の概略構成断面図(図2のA-A線に相当)である。FIG. 3 is a schematic sectional view (corresponding to line AA in FIG. 2) of the support member in the first embodiment of the present invention. 本発明の第一実施形態における支持部材の別の態様を示す概略構成断面図(図2のA-A線に相当)である。FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing another aspect of the support member in the first embodiment of the present invention. 本発明の第一実施形態における支持部材のさらに別の態様を示す概略構成断面図(図2のA-A線に相当)である。FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing still another aspect of the support member in the first embodiment of the present invention. 本発明の第二実施形態における支持部材の概略構成断面図(図2のA-A線に相当)である。FIG. 6 is a schematic cross-sectional view of a support member according to a second embodiment of the present invention (corresponding to line AA in FIG. 2). 本発明の第三実施形態における支持部材の概略構成断面図(図2のA-A線に相当)である。FIG. 6 is a schematic sectional view (corresponding to line AA in FIG. 2) of a support member in a third embodiment of the present invention. 本発明の第三実施形態における支持部材の別の態様を示す概略構成断面図(図2のA-A線に相当)である。FIG. 6 is a schematic sectional view (corresponding to the line AA in FIG. 2) showing another aspect of the support member in the third embodiment of the present invention. 本発明の第四実施形態における支持部材の概略構成断面図(図2のA-A線に相当)である。FIG. 9 is a schematic cross-sectional view of a support member according to a fourth embodiment of the present invention (corresponding to line AA in FIG. 2). 本発明の第五実施形態におけるヘッドジンバルアセンブリの斜視図(裏面)である。It is a perspective view (back surface) of the head gimbal assembly in 5th embodiment of this invention. 本発明の第六実施形態におけるヘッドジンバルアセンブリの斜視図(裏面)である。It is a perspective view (back surface) of the head gimbal assembly in 6th embodiment of this invention. 本発明の第七実施形態におけるヘッドジンバルアセンブリの斜視図(裏面)である。It is a perspective view (back surface) of a head gimbal assembly in a seventh embodiment of the present invention. 図15のB-B線に沿う断面図である。FIG. 16 is a cross-sectional view taken along line BB in FIG. 15. 従来のヘッドジンバルアセンブリの概略構成図である。It is a schematic block diagram of the conventional head gimbal assembly.
(第一実施形態)
(情報記録再生装置)
 以下、本発明に係る第一実施形態を、図1~図8を用いて説明する。図1は、本発明に係る情報記録再生装置1の概略構成図である。なお、本実施形態の情報記録再生装置1は、垂直記録層を有するディスク(磁気記録媒体)Dに対して、垂直記録方式で書き込みを行う装置である。
(First embodiment)
(Information recording / reproducing device)
Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of an information recording / reproducing apparatus 1 according to the present invention. Note that the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer by a perpendicular recording method.
 図1に示すように、情報記録再生装置1は、キャリッジ11と、キャリッジ11の基端側から光導波路32を介して光束を供給するレーザ光源20と、キャリッジ11の先端側に支持されたヘッドジンバルアセンブリ(HGA)12と、ヘッドジンバルアセンブリ12をディスク面D1(ディスクDの表面)に平行なXY面内方向にスキャン移動させるアクチュエータ6と、ディスクDを回転軸Lを中心に回転させるスピンドルモータ7と、情報に応じて変調した電流をヘッドジンバルアセンブリ12のスライダ2に対して供給する制御部5と、これら各構成品を内部に収容するハウジング9と、を備えている。 As shown in FIG. 1, the information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11 through an optical waveguide 32, and a head supported on the distal end side of the carriage 11. A gimbal assembly (HGA) 12, an actuator 6 that scans and moves the head gimbal assembly 12 in the XY plane parallel to the disk surface D1 (the surface of the disk D), and a spindle motor that rotates the disk D about the rotation axis L 7, a control unit 5 that supplies a current modulated according to information to the slider 2 of the head gimbal assembly 12, and a housing 9 that accommodates these components therein.
 ハウジング9は、アルミニウム等の金属材料からなる上部開口部を有する箱型形状のものであり、上面視四角形状の底部9aと、底部9aの周縁において底部9aに対して鉛直方向に立設する周壁(不図示)とで構成されている。そして、周壁に囲まれた内側には、上述した各構成品を収容する凹部が形成される。なお、図1においては、説明を分かりやすくするため、ハウジング9の周囲を取り囲む周壁を省略している。 The housing 9 has a box-like shape having a top opening made of a metal material such as aluminum, and has a rectangular bottom portion 9a as viewed from above, and a peripheral wall erected in the vertical direction with respect to the bottom portion 9a at the periphery of the bottom portion 9a. (Not shown). And the recessed part which accommodates each component mentioned above is formed in the inner side enclosed by the surrounding wall. In FIG. 1, the peripheral wall surrounding the housing 9 is omitted for easy understanding.
 このハウジング9には、ハウジング9の開口を塞ぐように図示しない蓋が着脱可能に固定されるようになっている。また、底部9aの平面視略中央部には、上記スピンドルモータ7が取り付けられており、該スピンドルモータ7に中心孔を嵌め込むことでディスクDが着脱自在に固定されている。 A lid (not shown) is detachably fixed to the housing 9 so as to close the opening of the housing 9. Further, the spindle motor 7 is attached to a substantially central portion of the bottom portion 9a in a plan view, and the disc D is detachably fixed by fitting a center hole into the spindle motor 7.
 ディスクDの外側で、底部9aの一つの隅角部には、上述したアクチュエータ6が取り付けられている。このアクチュエータ6には、ピボット軸10を中心にXY面内方向で回動可能なキャリッジ11が取り付けられている。このキャリッジ11は、基端部から先端部に向けて(ディスクD方向に向けて)延設されたアーム部14と、アーム部14を基端部を介して片持ち状に支持する基部15とが、削り出し加工等により一体形成されたものである。基部15は、略直方体形状に形成されたものであり、ピボット軸10を中心に回動可能に支持されている。つまり、基部15はピボット軸10を介してアクチュエータ6に連結されており、このピボット軸10がキャリッジ11の回転中心となっている。 The actuator 6 described above is attached to one corner of the bottom 9a outside the disk D. A carriage 11 is attached to the actuator 6 so as to be rotatable about the pivot shaft 10 in the XY plane direction. The carriage 11 includes an arm portion 14 extending from the base end portion toward the tip portion (in the direction of the disk D), and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. However, they are integrally formed by machining or the like. The base portion 15 is formed in a substantially rectangular parallelepiped shape, and is supported so as to be rotatable about the pivot shaft 10. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
 アーム部14は、基部15におけるアクチュエータ6が取り付けられた側面15aと反対側の側面(隅角部の反対側の側面)15bにおいて、基部15の上面の面方向(XY方向)と平行に延出する平板状のものであり、基部15の高さ方向(Z方向)に沿って略等間隔に3枚延出している。具体的には、アーム部14は、基端部から先端部に向かうにつれ先細るテーパ形状に形成されており、各アーム部14,14間に、ディスクDが挟み込まれるように配置される。つまり、アーム部14とディスクDとが、交互に配置されており、アクチュエータ6の駆動によってアーム部14がディスクDの表面に平行な方向(XY面内方向)に移動可能になっている。なお、キャリッジ11及びヘッドジンバルアセンブリ12は、ディスクDの回転停止時にアクチュエータ6の駆動によって、ディスクD上から退避するようになっている。 The arm portion 14 extends in parallel to the surface direction (XY direction) of the upper surface of the base portion 15 on the side surface 15b opposite to the side surface 15a to which the actuator 6 is attached in the base portion 15 (side surface on the opposite side of the corner portion). 3 pieces extending along the height direction (Z direction) of the base portion 15 at substantially equal intervals. Specifically, the arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14 and 14. That is, the arm portions 14 and the disks D are alternately arranged, and the arm portions 14 can be moved in a direction parallel to the surface of the disk D (XY in-plane direction) by driving the actuator 6. The carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
 ヘッドジンバルアセンブリ12は、図示しない近接場光発生素子を有するスライダ2に、レーザ光源20からの光束を導いて近接場光(スポット光)を発生させ、該近接場光を利用してディスクDに各種情報を記録再生させるものである。なお、近接場光発生素子は、例えば、光学的微小開口や、ナノメートルサイズに形成された突起部等により構成されている。 The head gimbal assembly 12 guides a light beam from the laser light source 20 to the slider 2 having a near-field light generating element (not shown) to generate near-field light (spot light), and uses the near-field light to generate a disk D. Various types of information are recorded and reproduced. Note that the near-field light generating element includes, for example, an optical minute aperture, a protrusion formed in a nanometer size, and the like.
 図2は、スライダ2を上向きにした状態でサスペンション3をスライダ2側から見た斜視図である。図3は、スライダ2を上向きにした状態でジンバル17を見た平面図である。図4は、図3のE-E線に沿う断面図であり、スライダ2を上向きにした状態におけるサスペンション3先端の断面図である。 FIG. 2 is a perspective view of the suspension 3 as seen from the slider 2 side with the slider 2 facing upward. FIG. 3 is a plan view of the gimbal 17 with the slider 2 facing upward. 4 is a cross-sectional view taken along line EE of FIG. 3, and is a cross-sectional view of the tip of the suspension 3 with the slider 2 facing upward.
 図2~図4に示すように、ヘッドジンバルアセンブリ12は、上記スライダ2をディスクDから浮上させるサスペンションとして機能するものであり、スライダ2と、金属性材料により薄い板状に形成され、ディスク面D1に平行なXY方向に移動可能なサスペンション3と、各レーザ光源20から出射された光束をスライダ2の集光レンズまで導く光導波路32と、を備えている。なお、サスペンション3は、スライダ2をディスク面D1に平行で且つ互いに直交する2軸(X軸、Y軸)回りに回動自在な状態、即ち、2軸を中心として捻れることができるようにサスペンション3の下面に固定させるジンバル手段16を備えている。 As shown in FIGS. 2 to 4, the head gimbal assembly 12 functions as a suspension for floating the slider 2 from the disk D. The head gimbal assembly 12 is formed in a thin plate shape by the slider 2 and a metallic material. The suspension 3 is movable in the X and Y directions parallel to D1, and the optical waveguide 32 guides the light beam emitted from each laser light source 20 to the condenser lens of the slider 2. The suspension 3 is capable of twisting the slider 2 around two axes (X axis, Y axis) parallel to the disk surface D1 and perpendicular to each other, that is, about the two axes. Gimbal means 16 for fixing to the lower surface of the suspension 3 is provided.
 まず上記スライダ2は、ディスクDとサスペンション3との間に配置された状態で、サスペンション3の下面に後述するジンバル17を挟んで支持されている。スライダ2は、先端側に固定された再生素子(不図示)と、該再生素子に隣接して固定された記録素子(不図示)とを備えている。また、スライダ2は、記録素子を間に挟んで再生素子の反対側に、レーザ光源20から出射された光束を集光させる図示しない集光レンズ(光学系)と、該集光レンズによって集光された光束から近接場光を発生させる上記近接場光発生素子とを有している。つまり、スライダ2には、先端部に再生素子、記録素子、近接場光発生素子が並んだ状態で配置されている。 First, the slider 2 is supported between a disk D and the suspension 3 with a gimbal 17 (described later) sandwiched between the lower surface of the suspension 3. The slider 2 includes a reproducing element (not shown) fixed to the leading end side and a recording element (not shown) fixed adjacent to the reproducing element. The slider 2 has a condensing lens (optical system) (not shown) that condenses the light beam emitted from the laser light source 20 on the opposite side of the reproducing element with the recording element interposed therebetween, and is condensed by the condensing lens. And the near-field light generating element for generating near-field light from the emitted light flux. That is, the slider 2 is arranged with a reproducing element, a recording element, and a near-field light generating element arranged at the tip.
 また、スライダ2の下面は、ディスク面D1に対向する浮上面2aとなっている。この浮上面2aは、回転するディスクDによって生じた空気流の粘性から、浮上するための圧力を発生させる面であり、ABS(Air Bearing Surface)と呼ばれている。具体的には、スライダ2をディスク面D1から離そうとする正圧とスライダ2をディスク面D1に引き付けようとする負圧とを調整して、スライダ2を最適な状態で浮上させるように設計されている。 The lower surface of the slider 2 is a floating surface 2a that faces the disk surface D1. The air bearing surface 2a is a surface that generates a pressure for ascending from the viscosity of the air flow generated by the rotating disk D, and is called ABS (Air Bearing Surface). Specifically, the slider 2 is designed to float in an optimum state by adjusting the positive pressure for separating the slider 2 from the disk surface D1 and the negative pressure for attracting the slider 2 to the disk surface D1. Has been.
 スライダ2は、この浮上面2aによってディスク面D1から浮上する力を受けているとともに、サスペンション3によってディスクD側に押さえ付けられる力を受けている。そしてスライダ2は、この両者の力のバランスによって、ディスク面D1から浮上するようになっている。 The slider 2 receives a force that rises from the disk surface D1 by the air bearing surface 2a, and also receives a force that is pressed against the disk D by the suspension 3. The slider 2 floats from the disk surface D1 due to the balance of both forces.
 サスペンション3は、平面視略四角状に形成されたベースプレート22と、ベースプレート22の裏面(下面)に取り付けられるとともに、先端部がベースプレート22から延出するように形成されたヒンジプレート23と、ヒンジプレート23の延出部に連結された平面視略三角状のロードビーム24と、で構成されている。 The suspension 3 includes a base plate 22 that is formed in a substantially square shape in plan view, a hinge plate 23 that is attached to the back surface (lower surface) of the base plate 22, and has a tip portion extending from the base plate 22, and a hinge plate And a load beam 24 having a substantially triangular shape in a plan view connected to the extending portion 23.
 ベースプレート22は、ステンレス等の厚みの薄い金属材料によって構成されており、基端側には厚さ方向に貫通する開口22aが形成されている。そして、この開口22aを介してベースプレート22がアーム部14の先端に固定されるようになっている。ベースプレート22の下面には、ステンレス等の金属材料により構成されたシート状のヒンジプレート23が配置されている。このヒンジプレート23は、ベースプレート22の下面の全面に亘って形成された平板状のものであり、その先端部分はベースプレート22の先端からベースプレート22の長手方向に沿って延出する延出部23aが形成されている。延出部23aは、ヒンジプレート23の幅方向両端部から2本延出しており、その先端部分には幅方向内側、つまり互いの延出部23aに向かう方向に幅が拡大する拡大部23bが形成されている。この拡大部23bの上面には、ロードビーム24が連結されている。 The base plate 22 is made of a thin metal material such as stainless steel, and an opening 22a penetrating in the thickness direction is formed on the base end side. The base plate 22 is fixed to the tip of the arm portion 14 through the opening 22a. A sheet-like hinge plate 23 made of a metal material such as stainless steel is disposed on the lower surface of the base plate 22. The hinge plate 23 is a flat plate formed over the entire lower surface of the base plate 22, and an end portion of the hinge plate 23 extends from the front end of the base plate 22 along the longitudinal direction of the base plate 22. Is formed. Two extending portions 23a extend from both end portions in the width direction of the hinge plate 23, and an enlarged portion 23b whose width increases in the width direction inner side, that is, in a direction toward the extending portions 23a, is formed at the tip portion. Is formed. A load beam 24 is connected to the upper surface of the enlarged portion 23b.
 ロードビーム24は、ベースプレート22と同様にステンレス等の厚みの薄い金属材料によって構成されており、その基端がベースプレート22の先端との間に間隙を有した状態でヒンジプレート23に連結されている。これにより、ヒンジプレート23はベースプレート22とロードビーム24との間で屈曲して、ディスク面D1に垂直なZ方向に向けて撓み易くなっている。つまり、ヒンジプレート23の延出部23aが湾曲するように構成されている。なお、アーム部14に連結されるベースプレート22およびロードビーム24(ヒンジ板23を含む)は、アーム部14がピボット軸10を中心に回動するため、このアーム部14、ベースプレート22およびロードビーム24で回動部材を構成している。なお、回動部材は、サスペンション3のみで構成されていてもよい。 The load beam 24 is made of a thin metal material such as stainless steel like the base plate 22, and the base end thereof is connected to the hinge plate 23 with a gap between the base plate 22 and the tip end of the base plate 22. . As a result, the hinge plate 23 is bent between the base plate 22 and the load beam 24 and is easily bent in the Z direction perpendicular to the disk surface D1. That is, the extending portion 23a of the hinge plate 23 is configured to be curved. Note that the base plate 22 and the load beam 24 (including the hinge plate 23) connected to the arm unit 14 rotate around the pivot shaft 10 so that the arm unit 14, the base plate 22 and the load beam 24 are connected. Constitutes a rotating member. Note that the rotating member may be composed only of the suspension 3.
 また、ロードビーム24の先端側には、フレクシャ25が設けられている。フレクシャ25は、ステンレス等の金属材料により構成されたシート状のものであり、シート状に形成されることで厚さ方向に撓み変形可能に構成されている。フレクシャ25は、ロードビーム24の先端側に固定され、外形が上面視略六角形状に形成されたジンバル17を有している。 Further, a flexure 25 is provided on the tip side of the load beam 24. The flexure 25 is a sheet-shaped member made of a metal material such as stainless steel, and is configured to be able to bend and deform in the thickness direction by being formed in a sheet shape. The flexure 25 has a gimbal 17 that is fixed to the distal end side of the load beam 24 and has an outer shape that is substantially hexagonal when viewed from above.
 図3,4に示すように、ジンバル17は、中間付近から先端にかけてディスク面D1に向けて厚さ方向に僅かながら反るように形成されている。そして、この反りが加わった先端側がロードビーム24に接触しないように、基端側から略中間付近にかけてロードビーム24に固定されている。 As shown in FIGS. 3 and 4, the gimbal 17 is formed to slightly warp in the thickness direction from the vicinity of the middle to the tip toward the disk surface D1. Then, the warped end is fixed to the load beam 24 from the base end to substantially the middle so that the front end does not come into contact with the load beam 24.
 また、この浮いた状態のジンバル17の先端側には、周囲がコ形状に刳り貫かれた切欠部26が形成されており、この切欠部26に囲まれた部分には連結部17aによって片持ち状に支持されたパッド部(舌片部)17bが形成されている。つまり、このパッド部17bは、連結部17aによってジンバル17の先端側から基端側に向けて張出し形成されており、その周囲に切欠部26を備えている。これにより、パッド部17bはジンバル17の厚さ方向に撓みやすくなっており、このパッド部17bのみがサスペンション3の下面と平行になるように角度調整されている。そして、このパッド部17bに上記スライダ2が載置固定されている。つまり、スライダ2は、パッド部17bを介してロードビーム24にぶら下がった状態となっている。 Further, a cutout portion 26 is formed on the front end side of the floating gimbal 17 so that the periphery thereof is wound in a U shape. The portion surrounded by the cutout portion 26 is cantilevered by a connecting portion 17a. The pad part (tongue piece part) 17b supported in the shape is formed. That is, the pad portion 17b is formed to project from the distal end side to the proximal end side of the gimbal 17 by the connecting portion 17a, and is provided with a notch 26 around the periphery. Accordingly, the pad portion 17 b is easily bent in the thickness direction of the gimbal 17, and the angle is adjusted so that only the pad portion 17 b is parallel to the lower surface of the suspension 3. The slider 2 is placed and fixed on the pad portion 17b. That is, the slider 2 is in a state of hanging from the load beam 24 via the pad portion 17b.
 また、ロードビーム24の先端には、パッド部17b及びスライダ2の略中心に向かって突出する突起部19が形成されている。この突起部19の先端は、丸みを帯びた状態となっている。そして突起部19は、スライダ2がディスクDから受ける風圧によりロードビーム24側に浮上したときに、パッド部17bの表面(上面)に点接触するようになっている。この浮上する力は、突起部19からロードビーム24に伝わって、該ロードビーム24を撓ませるように作用する。また、ディスクDのうねり等により、スライダ2にXY方向に向かう風圧が加わったときに、スライダ2及びパッド部17bは、突起部19を中心としてX軸及びY軸の2軸回りに捩じれるようになっている。これにより、ディスクDのうねりによるZ方向の変位(ディスク面D1に略直交する方向への変位)を吸収することができ、スライダ2の姿勢が安定するようになっている。なお、これら突起部19とパッド部17bを有するジンバル17とが、ジンバル手段16を構成している。 Further, a protrusion 19 that protrudes toward the approximate center of the pad portion 17b and the slider 2 is formed at the tip of the load beam 24. The tip of the projection 19 is rounded. The protrusion 19 comes into point contact with the surface (upper surface) of the pad portion 17b when the slider 2 floats to the load beam 24 side by the wind pressure received from the disk D. This rising force is transmitted from the protrusion 19 to the load beam 24 and acts to bend the load beam 24. Further, when wind pressure in the XY direction is applied to the slider 2 due to the undulation of the disk D, the slider 2 and the pad portion 17b are twisted around the two axes of the X axis and the Y axis with the protrusion 19 as the center. It has become. As a result, displacement in the Z direction (displacement in a direction substantially perpendicular to the disk surface D1) due to waviness of the disk D can be absorbed, and the posture of the slider 2 is stabilized. The protrusions 19 and the gimbal 17 having the pad portions 17b constitute the gimbal means 16.
 図5は、キャリッジ11の基部15の側面図である。 FIG. 5 is a side view of the base portion 15 of the carriage 11.
 図1,5に示すように、キャリッジ11の基部15における側面15cには、ターミナル基板30が配置されている。このターミナル基板30は、ハウジング9に設けられた制御部5とスライダ2とを電気的に接続する際の中継点となるものであり、その表面には、各種制御回路(不図示)が形成されている。制御部5とターミナル基板30とは可撓性を有するフラットケーブル4により電気的に接続されている一方、ターミナル基板30とスライダ2とは、電気配線31により接続されている。電気配線31は、キャリッジ11毎に設けられたスライダ2の数に対応して3組設けられており、フラットケーブル4を介して制御部5から出力された信号が、電気配線31を介してスライダ2に出力されるようになっている。 As shown in FIGS. 1 and 5, a terminal board 30 is disposed on a side surface 15 c of the base portion 15 of the carriage 11. The terminal board 30 serves as a relay point when the control unit 5 provided in the housing 9 and the slider 2 are electrically connected, and various control circuits (not shown) are formed on the surface thereof. ing. The control unit 5 and the terminal board 30 are electrically connected by a flexible flat cable 4, while the terminal board 30 and the slider 2 are connected by an electric wiring 31. Three sets of electrical wirings 31 are provided corresponding to the number of sliders 2 provided for each carriage 11, and signals output from the control unit 5 via the flat cable 4 are transmitted via the electrical wiring 31 to the sliders. 2 is output.
 また、ターミナル基板30には、スライダ2の集光レンズに向けて光束を供給する上記レーザ光源20が配置されている。レーザ光源20は、フラットケーブル4を介して制御部5から出力された信号を受信し、この信号に基づいて光束を出射するものであり、各アーム部14に設けられたスライダ2の数に対応して基部15の高さ方向(Z方向)に沿って略等間隔に3個配列されている。各レーザ光源20の出射側には、各レーザ光源20から出射された光束をスライダ2の集光レンズまで導く光導波路32が接続されている。 The laser light source 20 for supplying a light beam toward the condenser lens of the slider 2 is disposed on the terminal board 30. The laser light source 20 receives a signal output from the control unit 5 via the flat cable 4 and emits a light beam based on this signal, and corresponds to the number of sliders 2 provided in each arm unit 14. Then, three are arranged at substantially equal intervals along the height direction (Z direction) of the base portion 15. An optical waveguide 32 that guides the light beam emitted from each laser light source 20 to the condenser lens of the slider 2 is connected to the emission side of each laser light source 20.
 ここで、光導波路32としては、コアとクラッドを有する光ファイバなどが用いられる。光導波路32として使用される材料の一例を記載すると、例えば、石英(SiO)でコアを形成し、フッ素をドープした石英でクラッドを形成する組み合わせが考えられる。この場合には、光束の波長が400nmのときに、コアの屈折率が1.47となり、クラッドの屈折率が1.47未満となるため好ましい。また、ゲルマニウムをドープした石英でコアを形成し、石英でクラッドを形成する組み合わせも考えられる。この場合には、光束の波長が400nmのときに、コアの屈折率が1.47より大きくなり、クラッドの屈折率が1.47となるため、好ましい。特に、コアとクラッドとの屈折率差が大きいほど、コア内に光束を閉じ込める力が大きくなるため、コアに酸化タンタル(Ta:波長が550nmのときに屈折率が2.16)を用い、クラッドに石英などを用いて、両者の屈折率差を大きくすることがより好ましい。また、赤外領域の光束を利用する場合には、赤外光に対して透明な材料であるシリコン(Si:屈折率が約4.0)でコアを形成することも有効である。 Here, as the optical waveguide 32, an optical fiber having a core and a cladding is used. To describe an example of a material used as the optical waveguide 32, for example, a combination in which a core is formed from quartz (SiO 2 ) and a cladding is formed from quartz doped with fluorine can be considered. In this case, when the wavelength of the light beam is 400 nm, the refractive index of the core is 1.47, and the refractive index of the cladding is less than 1.47, which is preferable. A combination in which the core is formed of quartz doped with germanium and the cladding is formed of quartz is also conceivable. In this case, when the wavelength of the light beam is 400 nm, the refractive index of the core is larger than 1.47 and the refractive index of the cladding is 1.47, which is preferable. In particular, as the refractive index difference between the core and the clad increases, the force for confining the light beam in the core increases. Therefore, tantalum oxide (Ta 2 O 5 : refractive index is 2.16 when the wavelength is 550 nm) is applied to the core. More preferably, the difference in refractive index between the two is increased by using quartz or the like for the cladding. In addition, when a light beam in the infrared region is used, it is also effective to form the core with silicon (Si: refractive index is about 4.0) which is a material transparent to infrared light.
 図2に戻り、光導波路32は、レーザ光源20とスライダ2との間のヒンジプレート23の下面において、支持部材40により支持されている。本実施形態のヘッドジンバルアセンブリ12(情報記録再生装置1)では、装置の動作時に光導波路32からの力がスライダ2に作用しないように、スライダ2の動きに対して光導波路32が長手方向に移動できるように構成されている。 2, the optical waveguide 32 is supported by the support member 40 on the lower surface of the hinge plate 23 between the laser light source 20 and the slider 2. In the head gimbal assembly 12 (information recording / reproducing apparatus 1) of this embodiment, the optical waveguide 32 is moved in the longitudinal direction with respect to the movement of the slider 2 so that the force from the optical waveguide 32 does not act on the slider 2 during operation of the apparatus. It is configured to be movable.
 つまり、図6に示すように、支持部材40は、ヒンジプレート23上に設けられ、貫通孔41が形成された部材である。貫通孔41は光導波路32を挿通可能な大きさで形成され、貫通孔41に沿って光導波路32が移動できるようになっている。
(ヘッドジンバルアセンブリの組立方法)
 次に、ヘッドジンバルアセンブリ12の組立方法について説明する。
That is, as shown in FIG. 6, the support member 40 is a member provided on the hinge plate 23 and having a through hole 41 formed therein. The through hole 41 is formed in a size that allows the optical waveguide 32 to be inserted, and the optical waveguide 32 can move along the through hole 41.
(Assembly method of head gimbal assembly)
Next, a method for assembling the head gimbal assembly 12 will be described.
 まず、ロードビーム24にスライダ2を取り付け、ロードビーム24とベースプレート22とを、ヒンジプレート23を介して連結する。なお、ヒンジプレート23には予め支持部材40が接着剤などにより取り付けられている。 First, the slider 2 is attached to the load beam 24, and the load beam 24 and the base plate 22 are connected via the hinge plate 23. A support member 40 is attached to the hinge plate 23 in advance with an adhesive or the like.
 そして、光導波路32を支持部材40の貫通孔41に挿通した後、スライダ2に光導波路32を接続することによりヘッドジンバルアセンブリ12の組立が完了する。 Then, after inserting the optical waveguide 32 into the through hole 41 of the support member 40, the assembly of the head gimbal assembly 12 is completed by connecting the optical waveguide 32 to the slider 2.
 次に、このように構成された情報記録再生装置1により、ディスクDに各種の情報を記録再生する手順について以下に説明する。 Next, a procedure for recording and reproducing various types of information on the disc D by the information recording / reproducing apparatus 1 configured as described above will be described below.
 まず、スピンドルモータ7を駆動させてディスクDを所定方向に回転させる。次いで、アクチュエータ6を作動させて、ピボット軸10を回転中心としてキャリッジ11を回動させ、キャリッジ11を介してヘッドジンバルアセンブリ12をXY方向にスキャンさせる。これにより、ディスクD上の所望する位置にスライダ2を位置させることができる。 First, the spindle motor 7 is driven to rotate the disk D in a predetermined direction. Next, the actuator 6 is operated to rotate the carriage 11 about the pivot shaft 10 as a rotation center, and the head gimbal assembly 12 is scanned in the XY directions via the carriage 11. As a result, the slider 2 can be positioned at a desired position on the disk D.
 ここで、キャリッジ11の基部15が、ピボット軸10まわりを回動可能に構成されているため、アーム部14は、ピボット軸10を回転中心としてディスク面D1に平行な方向に移動する。この時、基部15のターミナル基板30上にレーザ光源20を設けることで、スライダ2にレーザ光源20を搭載した場合に比べて、スライダ2の移動時においてキャリッジ11に作用するモーメントが小さい。したがって、トラッキングの精度を維持することができる。また、ターミナル基板30は、制御部5とスライダ2とを電気的に接続する際の中継点となるものであり、電気配線31はターミナル基板30を基点としてスライダ2に引き回される。 Here, since the base portion 15 of the carriage 11 is configured to be rotatable around the pivot shaft 10, the arm portion 14 moves in a direction parallel to the disk surface D1 with the pivot shaft 10 as a rotation center. At this time, by providing the laser light source 20 on the terminal substrate 30 of the base portion 15, the moment acting on the carriage 11 when the slider 2 moves is smaller than when the laser light source 20 is mounted on the slider 2. Therefore, the tracking accuracy can be maintained. The terminal board 30 serves as a relay point when the control unit 5 and the slider 2 are electrically connected. The electric wiring 31 is routed around the slider 2 with the terminal board 30 as a base point.
 次いで、レーザ光源20から光束を光導波路32に入射させて、光束をスライダ2に導く。スライダ2の集光レンズに光束を供給するレーザ光源20が、スライダ2の基部15におけるターミナル基板30上に設けられている。この場合、レーザ光源20から出射された光束は、光導波路32からスライダ2に向かって伝播される。この時、光導波路32の内部を伝播される光束は、スライダ2内で集光レンズによって集光され、スポットサイズが徐々に絞り込まれる。これにより、近接場光発生素子の周囲には、近接場光が滲み出るように発生する。 Next, a light beam is incident on the optical waveguide 32 from the laser light source 20, and the light beam is guided to the slider 2. A laser light source 20 that supplies a light beam to the condenser lens of the slider 2 is provided on the terminal substrate 30 in the base portion 15 of the slider 2. In this case, the light beam emitted from the laser light source 20 is propagated from the optical waveguide 32 toward the slider 2. At this time, the light beam propagating through the optical waveguide 32 is condensed by the condenser lens in the slider 2, and the spot size is gradually narrowed down. As a result, near-field light is generated around the near-field light generating element so as to ooze out.
 そして、近接場光が入射されたディスクDは、この近接場光によって局所的に加熱されて一時的に保磁力が低下する。一方、制御部5によってスライダ2の記録素子に電流が供給されると、電磁石の原理によりディスクDに対して垂直方向の記録磁界を発生させることができる。その結果、近接場光と記録素子で発生した記録磁界とを協働させたハイブリッド磁気記録方式により情報の記録を行うことができる。 The disk D on which the near-field light is incident is locally heated by the near-field light, and the coercive force is temporarily reduced. On the other hand, when a current is supplied to the recording element of the slider 2 by the control unit 5, a recording magnetic field perpendicular to the disk D can be generated by the principle of an electromagnet. As a result, information can be recorded by a hybrid magnetic recording method in which near-field light and a recording magnetic field generated by a recording element cooperate.
 これに対して、ディスクDに記録された情報を再生する場合には、記録素子に隣接して固定されている再生素子が、ディスクDから漏れ出ている磁界を受けて、その大きさに応じて電気抵抗が変化する。よって、再生素子の電圧が変化する。これにより制御部5は、ディスクDから漏れ出た磁界の変化を電圧の変化として検出することができる。そして制御部5は、この電圧の変化から信号の再生を行うことで、情報の再生を行うことができる。 On the other hand, when reproducing the information recorded on the disk D, the reproducing element fixed adjacent to the recording element receives the magnetic field leaking from the disk D and depends on its magnitude. The electrical resistance changes. Therefore, the voltage of the reproducing element changes. Thereby, the control unit 5 can detect a change in the magnetic field leaking from the disk D as a change in voltage. And the control part 5 can reproduce | regenerate information by reproducing | regenerating a signal from the change of this voltage.
 このように、スライダ2を利用してディスクDに対して各種の情報を記録再生することができる。 In this way, various information can be recorded / reproduced with respect to the disk D using the slider 2.
 ここで、スライダ2は、サスペンション3によって支持されているとともに、所定の力でディスクD側に押さえ付けられている。また、これと同時にスライダ2は、浮上面2aがディスクDに対向しているので、回転するディスクDによって生じる風圧の影響を受けて浮上する力を受けている。この両者の力のバランスによって、スライダ2はディスクD上から離間した位置に浮遊している状態となっている。 Here, the slider 2 is supported by the suspension 3 and pressed against the disk D side with a predetermined force. At the same time, since the air bearing surface 2a faces the disk D, the slider 2 receives a force that rises under the influence of wind pressure generated by the rotating disk D. Due to the balance between the two forces, the slider 2 is in a floating state at a position separated from the disk D.
 この際スライダ2は、風圧を受けてサスペンション3側に押されるため、スライダ2を固定するジンバル17のパッド部17bとサスペンション3に形成された突起部19とが、点接触した状態となる。そして、この浮上する力は、突起部19を介してサスペンション3に伝わり、該サスペンション3をディスク面D1に垂直なZ方向に向けて撓ませるように作用する。これにより、上述したようにスライダ2は浮上する。なお、サスペンション3には、ベースプレート22とロードビーム24とがヒンジプレート23を介して連結されているため、ベースプレート22とロードビーム24との間で撓み易くなっている。 At this time, since the slider 2 receives the wind pressure and is pushed toward the suspension 3, the pad portion 17 b of the gimbal 17 that fixes the slider 2 and the protrusion 19 formed on the suspension 3 are in point contact. The floating force is transmitted to the suspension 3 through the protrusions 19 and acts to bend the suspension 3 in the Z direction perpendicular to the disk surface D1. Thereby, the slider 2 floats as described above. Since the base plate 22 and the load beam 24 are connected to the suspension 3 via the hinge plate 23, the suspension 3 is easily bent between the base plate 22 and the load beam 24.
 またスライダ2は、ディスクDのうねりに起因して発生する風圧(XY方向に向かう風圧)を受けたとしても、ジンバル手段16、即ち、突起部19の先端に点接触したパッド部17bを介してXY軸回りに捩じれるようになっている。そのため、うねりによるZ方向への変位を吸収することができ、浮上している際のスライダ2の姿勢を安定にすることができる。 Even if the slider 2 receives wind pressure (wind pressure in the XY direction) generated due to the undulation of the disk D, the slider 2 passes through the gimbal means 16, that is, the pad portion 17 b that is in point contact with the tip of the projection portion 19. It can be twisted around the XY axis. Therefore, the displacement in the Z direction due to the swell can be absorbed, and the posture of the slider 2 when flying can be stabilized.
 さらに、本実施形態においては、情報記録再生装置1の動作時に、光導波路32からの力がスライダ2に作用しないように構成した。具体的には、ヒンジプレート23に支持部材40を取り付け、支持部材40の貫通孔41に光導波路32を挿通させるようにして配置し、スライダ2の姿勢変化に応じて光導波路32が長手方向に移動できるようにした。 Furthermore, in this embodiment, it is configured so that the force from the optical waveguide 32 does not act on the slider 2 during the operation of the information recording / reproducing apparatus 1. Specifically, the support member 40 is attached to the hinge plate 23 and disposed so that the optical waveguide 32 is inserted into the through hole 41 of the support member 40, and the optical waveguide 32 is moved in the longitudinal direction in accordance with the change in the posture of the slider 2. I was able to move.
 本実施形態によれば、情報記録再生装置1の動作時のスライダ2およびロードビーム24の姿勢変動に伴って、光導波路32も長手方向に沿って移動することができる。したがって、浮上時(動作時)に光導波路32からの力がスライダ2に作用することがなくなり、スライダ2を安定して浮上させることができる。また、光導波路32が軸方向を中心に捻れ方向に力が作用した場合にも、光導波路32は支持部材40により軸直角方向のみ拘束されているため、光導波路32からの力がスライダ2に作用することがない。 According to the present embodiment, the optical waveguide 32 can also move along the longitudinal direction in accordance with the posture change of the slider 2 and the load beam 24 during the operation of the information recording / reproducing apparatus 1. Therefore, the force from the optical waveguide 32 does not act on the slider 2 when flying (during operation), and the slider 2 can be stably floated. Further, even when a force acts in the twisting direction about the axial direction of the optical waveguide 32, the optical waveguide 32 is restrained only in the direction perpendicular to the axis by the support member 40, so that the force from the optical waveguide 32 is applied to the slider 2. Does not work.
 なお、本実施形態では、図7に示すように、光導波路32として、被覆51が施された光ファイバを用いてもよい。 In the present embodiment, as shown in FIG. 7, an optical fiber provided with a coating 51 may be used as the optical waveguide 32.
 また、本実施形態では、図8に示すように、光導波路32として半導体プロセスにて製造されたものを用いてもよい。ここで、クラッド34及びコア35として使用される材料の組み合わせの一例を記載すると、例えばPMMA(メタクリル酸メチル樹脂)により、厚さが3~10μmでコア35を形成し、フッ素含有重合体により、厚さが数十μmでクラッド34を形成する組み合わせが考えられる。また、コア35及びクラッド34をともにエポキシ樹脂(例えば、コア屈折率1.522~1.523、クラッド屈折率1.518~1.519)で構成したり、フッ素化ポリイミドで構成したりすることも可能である。また、コア35とクラッド34との屈折率差が大きいほど、コア35内に光束を閉じ込める力が大きくなるので、コア35とクラッド34とを構成する樹脂材料の配合等を調整して、両者の屈折率差を大きくすることが好ましい。例えば、フッ素化ポリイミドの場合、フッ素含有量を調整したり、放射光等のエネルギー照射によって、屈折率を制御することができる。
(第二実施形態)
 次に、本発明に係る第二実施形態を、図9を用いて説明する。なお、本実施形態は、第一実施形態と支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
Further, in the present embodiment, as shown in FIG. 8, an optical waveguide 32 manufactured by a semiconductor process may be used. Here, an example of a combination of materials used as the clad 34 and the core 35 is described. For example, the core 35 is formed with a thickness of 3 to 10 μm by PMMA (methyl methacrylate resin), and the fluorine-containing polymer is used. A combination that forms the clad 34 with a thickness of several tens of μm is conceivable. Further, both the core 35 and the clad 34 are made of epoxy resin (for example, core refractive index 1.522 to 1.523, clad refractive index 1.518 to 1.519), or made of fluorinated polyimide. Is also possible. Further, as the refractive index difference between the core 35 and the clad 34 is larger, the force for confining the light beam in the core 35 becomes larger. Therefore, by adjusting the composition of the resin material constituting the core 35 and the clad 34, It is preferable to increase the refractive index difference. For example, in the case of fluorinated polyimide, the refractive index can be controlled by adjusting the fluorine content or irradiating energy such as radiated light.
(Second embodiment)
Next, a second embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the support member, and the other configurations are substantially the same. Therefore, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9に示すように、支持部材140は、ヒンジプレート23上に設けられ、頂部に切欠部(導入部)142が形成された部材である。支持部材140は、樹脂材料で形成されており、切欠部142の両端が互いに離反する方向に若干移動できるようになっている。つまり、光導波路32を切欠部142に押し付けることで、切欠部142の隙間が大きくなり、光導波路32を支持部材140の内部空間141に配置することができる。このようにすることで、光導波路32を長手方向に移動可能に支持することができる。 As shown in FIG. 9, the support member 140 is a member provided on the hinge plate 23 and having a notch (introduction portion) 142 formed at the top. The support member 140 is made of a resin material, and can move slightly in a direction in which both ends of the notch 142 are separated from each other. That is, by pressing the optical waveguide 32 against the notch 142, the gap of the notch 142 is increased, and the optical waveguide 32 can be disposed in the internal space 141 of the support member 140. By doing so, the optical waveguide 32 can be supported so as to be movable in the longitudinal direction.
 本実施形態によれば、光導波路32を支持部材140の切欠部142に押し付けるだけでよいため、生産効率を向上させることができる。 According to the present embodiment, since it is only necessary to press the optical waveguide 32 against the notch 142 of the support member 140, the production efficiency can be improved.
 なお、本実施形態では支持部材140を樹脂で形成した場合の説明をしたが、ステンレスなどの金属で形成してもよい。金属材料を使用した場合には、光導波路32を内部空間141に配置した後に、切欠部142をかしめることにより光導波路32を保持するようにしてもよい。
(第三実施形態)
 次に、本発明に係る第三実施形態を、図10~図11を用いて説明する。なお、本実施形態は、第一実施形態と支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
In the present embodiment, the case where the support member 140 is formed of resin has been described. However, the support member 140 may be formed of metal such as stainless steel. When a metal material is used, the optical waveguide 32 may be held by caulking the notch 142 after the optical waveguide 32 is disposed in the internal space 141.
(Third embodiment)
Next, a third embodiment according to the present invention will be described with reference to FIGS. Note that this embodiment is different from the first embodiment only in the configuration of the support member, and the other configurations are substantially the same.
 図10に示すように、支持部材240は、ヒンジプレート23の一部を切り欠いた切欠片(導入部)242,242を互いに近接する方向に切起して形成されている。支持部材240は、切欠片242,242を切起して、互いの端部同士が当接するように移動させることにより内部空間241が形成され、光導波路32を支持部材240の内部空間241に配置することができる。このようにすることで、光導波路32を長手方向に移動可能に支持することができる。 As shown in FIG. 10, the support member 240 is formed by raising notch pieces (introducing portions) 242 and 242 in which a part of the hinge plate 23 is cut out in directions close to each other. The support member 240 forms the internal space 241 by raising the notch pieces 242 and 242 so that the ends thereof are in contact with each other, and the optical waveguide 32 is disposed in the internal space 241 of the support member 240. can do. By doing so, the optical waveguide 32 can be supported so as to be movable in the longitudinal direction.
 本実施形態によれば、光導波路32を支持部材240上に配置して支持部材240を変形させるだけでよいため、生産効率を向上させることができる。 According to the present embodiment, it is only necessary to dispose the optical waveguide 32 on the support member 240 and deform the support member 240, so that the production efficiency can be improved.
 また、支持部材240は、ヒンジプレート23の一部を加工することで形成したため、材料費を低減させることが可能となる。 Further, since the support member 240 is formed by processing a part of the hinge plate 23, the material cost can be reduced.
 なお、本実施形態では、ヒンジプレート23の一部を加工して支持部材240を形成したが、フレクシャ25の一部を加工して支持部材240を形成してもよい。 In this embodiment, the support member 240 is formed by processing a part of the hinge plate 23. However, the support member 240 may be formed by processing a part of the flexure 25.
 また、本実施形態では、光導波路32の両側から切欠片242,242を切起して支持部材240を形成したが、図11に示すように、光導波路32の一方の側から切起した切欠片(導入部)245で光導波路32の周囲を囲繞するようにして支持部材240Aを形成するようにしてもよい。
(第四実施形態)
 次に、本発明に係る第四実施形態を、図12を用いて説明する。なお、本実施形態は、第一実施形態と支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
In the present embodiment, the support members 240 are formed by raising the notches 242 and 242 from both sides of the optical waveguide 32. However, as shown in FIG. 11, the notches raised from one side of the optical waveguide 32 are formed. The support member 240 </ b> A may be formed so as to surround the periphery of the optical waveguide 32 with the piece (introduction portion) 245.
(Fourth embodiment)
Next, a fourth embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the support member, and the other configurations are substantially the same. Therefore, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 図12に示すように、支持部材340は、ヒンジプレート23上に設けられ、光導波路32を支持している。支持部材340は、例えば樹脂製の接着剤341と、光導波路32の周囲を被覆した被覆51と、で構成されている。つまり、被覆51はヒンジプレート23上に接着固定されている。このようにすることで、スライダ2の姿勢変動に対して、光導波路32を覆っている被覆51とクラッド35との界面が若干移動して、光導波路32を長手方向に移動可能に支持することができる。 As shown in FIG. 12, the support member 340 is provided on the hinge plate 23 and supports the optical waveguide 32. The support member 340 includes, for example, a resin adhesive 341 and a coating 51 that covers the periphery of the optical waveguide 32. That is, the covering 51 is bonded and fixed on the hinge plate 23. By doing so, the interface between the coating 51 covering the optical waveguide 32 and the clad 35 slightly moves with respect to the posture variation of the slider 2, and the optical waveguide 32 is supported so as to be movable in the longitudinal direction. Can do.
 本実施形態によれば、動作時のスライダ2の姿勢変動に伴って、光ファイバのクラッド35と被覆51との界面が若干ずれるため、光導波路32からの力がスライダ2に作用することがなくなり、スライダ2を安定して浮上させることができる。
(第五実施形態)
 次に、本発明に係る第五実施形態を、図13を用いて説明する。なお、本実施形態は、第一実施形態と支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
According to this embodiment, the interface between the clad 35 and the coating 51 of the optical fiber is slightly shifted with the change in the posture of the slider 2 during operation, so that the force from the optical waveguide 32 does not act on the slider 2. The slider 2 can be stably levitated.
(Fifth embodiment)
Next, a fifth embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the support member, and the other configurations are substantially the same. Therefore, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13に示すように、支持部材40が、ヒンジプレート23上、ロードビーム24上およびフレクシャ25上に適宜複数設けられている。つまり、これら複数の支持部材40により光導波路32を支持している。 As shown in FIG. 13, a plurality of support members 40 are appropriately provided on the hinge plate 23, the load beam 24, and the flexure 25. That is, the optical waveguide 32 is supported by the plurality of support members 40.
 本実施形態によれば、光導波路32を確実にサスペンション3に支持することができるとともに、動作時のスライダ2の姿勢変動に伴って光導波路32を長手方向に沿って移動させることができる。
(第六実施形態)
 次に、本発明に係る第六実施形態を、図14を用いて説明する。なお、本実施形態は、第一実施形態と光導波路および支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
According to the present embodiment, the optical waveguide 32 can be reliably supported by the suspension 3, and the optical waveguide 32 can be moved along the longitudinal direction in accordance with the posture change of the slider 2 during operation.
(Sixth embodiment)
Next, a sixth embodiment according to the present invention will be described with reference to FIG. Note that this embodiment is different from the first embodiment only in the configuration of the optical waveguide and the support member, and the other configurations are substantially the same. Omitted.
 図14に示すように、支持部材40が、ヒンジプレート23上、ロードビーム24上およびフレクシャ25上に適宜複数設けられている。つまり、これら複数の支持部材40により光導波路32を支持している。ここで、光導波路32をスライダ2から基部15に向かって直線的に配設すると、ベースプレート22に形成された開口22a上を通過することになり、ベースプレート22とアーム部14との接合時に支障となることが考えられる。そのため、本実施形態では、光導波路32が開口22a上を通過しないように一部湾曲させて配設している。ここで、支持部材40を光導波路32の湾曲部530に適宜配置し、光導波路32が所望の方向へ案内されるようにした。 As shown in FIG. 14, a plurality of support members 40 are appropriately provided on the hinge plate 23, the load beam 24, and the flexure 25. That is, the optical waveguide 32 is supported by the plurality of support members 40. Here, when the optical waveguide 32 is linearly arranged from the slider 2 toward the base portion 15, the light guide 32 passes through the opening 22 a formed in the base plate 22, which causes trouble when the base plate 22 and the arm portion 14 are joined. It is possible to become. Therefore, in the present embodiment, the optical waveguide 32 is partially curved so as not to pass over the opening 22a. Here, the support member 40 is appropriately disposed on the curved portion 530 of the optical waveguide 32 so that the optical waveguide 32 is guided in a desired direction.
 本実施形態によれば、動作時のスライダ2の姿勢変動に伴って光導波路32を長手方向に沿って移動させることができるとともに、湾曲部530において確実に所望の方向へ光導波路32を案内することができる。
(第七実施形態)
 次に、本発明に係る第七実施形態を、図15、図16を用いて説明する。なお、本実施形態は、第一実施形態とフレクシャおよび支持部材の構成が異なるだけであり、その他の構成については略同一であるため、同一箇所には同一符号を付して詳細な説明は省略する。
According to the present embodiment, the optical waveguide 32 can be moved along the longitudinal direction in accordance with a change in the posture of the slider 2 during operation, and the optical waveguide 32 is reliably guided in a desired direction at the bending portion 530. be able to.
(Seventh embodiment)
Next, a seventh embodiment according to the present invention will be described with reference to FIGS. Note that this embodiment is different from the first embodiment only in the configuration of the flexure and the support member, and the other configurations are substantially the same, so the same portions are denoted by the same reference numerals and detailed description thereof is omitted. To do.
 図15、図16に示すように、フレクシャ625には、基部15に向かって延設された支持体618が形成されている。つまり、支持体618は、ジンバル17に一体形成されたシート状のものであり、サスペンション3に沿って基部15に向かって延設されている。また、支持体618は、サスペンション3が変形した際に、サスペンション3の変形に追従するように構成されている。支持体618は、アーム部14上から側面に回りこんで、アーム部14の基部15に至るまで引き回されている。さらに、支持体618は、ベースプレート22の開口22a上を通過しないように一部屈曲しながら基部15方向へ延設されている。そして、支持体618には電気配線31が支持されている。支持部材640は、支持体618の長手方向に沿う方向と直交する方向に形成された舌部650を光導波路32の周囲を囲繞するように折曲して形成されている。 As shown in FIGS. 15 and 16, the flexure 625 is formed with a support 618 extending toward the base 15. That is, the support body 618 is a sheet-like member integrally formed with the gimbal 17 and extends toward the base portion 15 along the suspension 3. The support body 618 is configured to follow the deformation of the suspension 3 when the suspension 3 is deformed. The support body 618 extends from the top of the arm portion 14 to the side surface and is drawn to reach the base portion 15 of the arm portion 14. Further, the support 618 extends in the direction of the base 15 while being partially bent so as not to pass over the opening 22 a of the base plate 22. The electrical wiring 31 is supported on the support body 618. The support member 640 is formed by bending a tongue 650 formed in a direction perpendicular to the direction along the longitudinal direction of the support 618 so as to surround the periphery of the optical waveguide 32.
 本実施形態では、フレクシャ625に舌部650を形成し、舌部650を折曲するだけで、光導波路32を支持できるため、簡易な構成で確実に光導波路32を支持することができる。 In this embodiment, the optical waveguide 32 can be supported simply by forming the tongue 650 in the flexure 625 and bending the tongue 650, so that the optical waveguide 32 can be reliably supported with a simple configuration.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、上述した実施形態で挙げた構成や形状等はほんの一例に過ぎず、適宜変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and includes those in which various modifications are made to the above-described embodiment without departing from the spirit of the present invention. That is, the configuration, shape, and the like given in the above-described embodiment are merely examples, and can be changed as appropriate.
 例えば、上述の実施形態では、アーム部の片面側のみにヘッドジンバルアセンブリが設けられている構成について説明したが、各ディスク間に差し入れられるアーム部の両面に、各ディスクに対向するようにそれぞれヘッドジンバルアセンブリを設けるような構成も可能である。この場合、アーム部の両面側に設けられたヘッドジンバルアセンブリの各スライダにより、各スライダに対向するディスク面の情報の記録再生を行うことができる。つまり、1つのアーム部により2枚のディスクの情報を記録再生することができるため、情報記録再生装置の記録容量の増加及び装置の小型化を図ることができる。 For example, in the above-described embodiment, the configuration in which the head gimbal assembly is provided only on one side of the arm part has been described. However, the heads are respectively provided on both sides of the arm part inserted between the disks so as to face each disk. A configuration in which a gimbal assembly is provided is also possible. In this case, information on the disk surface facing each slider can be recorded and reproduced by each slider of the head gimbal assembly provided on both sides of the arm portion. That is, since information on two discs can be recorded and reproduced by one arm portion, the recording capacity of the information recording / reproducing apparatus can be increased and the apparatus can be downsized.
 また、上述の実施形態では、スライダを浮上させた空気浮上タイプの情報記録再生装置を例に挙げて説明したが、この場合に限られず、ディスク面に対向配置されていればディスクとスライダとが接触していても構わない。つまり、本発明のスライダは、コンタクトスライダタイプのスライダであっても構わない。この場合であっても、同様の作用効果を奏することができる。 Further, in the above-described embodiment, the air floating type information recording / reproducing apparatus in which the slider is levitated has been described as an example. However, the present invention is not limited to this case. You may be in contact. That is, the slider of the present invention may be a contact slider type slider. Even in this case, the same effects can be achieved.
 さらに、本実施形態では近接場光を利用した情報記録再生装置の場合で説明したが、スポット光を利用した情報記録再生装置に採用してもよい。 Furthermore, in the present embodiment, the case of the information recording / reproducing apparatus using near-field light has been described. However, the information recording / reproducing apparatus using spot light may be adopted.
 そして、本実施形態では、光導波路をサスペンションに取り付けた支持部材により支持した場合の説明をしたが、アーム部に支持部材を取り付け、該支持部材により光導波路を支持するようにしてもよい。 In this embodiment, the case where the optical waveguide is supported by the support member attached to the suspension has been described. However, the support member may be attached to the arm portion and the optical waveguide may be supported by the support member.
 1…情報記録再生装置 2…スライダ 3…サスペンション 5…制御部 6…アクチュエータ 7…スピンドルモータ(回転駆動部) 10…ピボット軸 12…ヘッドジンバルアセンブリ 14…アーム部 20…レーザ光源(光源) 22…ベースプレート 23…ヒンジプレート 23a…延出部 24…ロードビーム 25…フレクシャ 32…光導波路 40,140,240,640…支持部材 51…被覆(被覆部材) 340…支持部材 341…接着剤 530…湾曲部 618…支持体(配線支持体) 650…舌部 D…磁気記録媒体 D1…ディスク面(表面) DESCRIPTION OF SYMBOLS 1 ... Information recording / reproducing apparatus 2 ... Slider 3 ... Suspension 5 ... Control part 6 ... Actuator 7 ... Spindle motor (rotation drive part) 10 ... Pivot shaft 12 ... Head gimbal assembly 14 ... Arm part 20 ... Laser light source (light source) 22 ... Base plate 23 ... Hinge plate 23a ... Extension part 24 ... Load beam 25 ... Flexure 32 ... Optical waveguide 40, 140, 240, 640 ... Support member 51 ... Cover (cover member) 340 ... Support member 341 ... Adhesive 530 ... Curved part 618: support (wiring support) 650: tongue D: magnetic recording medium D1: disk surface (front surface)

Claims (9)

  1.  一定方向に回転する磁気記録媒体の外側に配置されたピボット軸のまわりを回動可能に形成された棒状の回動部材と、
     該回動部材の先端部に、前記磁気記録媒体の表面と対向するように取り付けられ、前記磁気記録媒体の表面に平行で、かつ、互いに直交する2軸回りに回動自在となるように支持されたスライダと、
     前記磁気記録媒体を加熱するための光を前記スライダに導入するための光導波路と、
     該光導波路を前記回動部材に支持する支持部材と、を備えた導光構造付きヘッドジンバルアセンブリにおいて、
     前記支持部材は、前記光導波路を長手方向に沿って移動可能に支持していることを特徴とする導光構造付きヘッドジンバルアセンブリ。
    A rod-shaped rotating member formed to be rotatable around a pivot shaft disposed outside the magnetic recording medium rotating in a certain direction;
    It is attached to the tip of the rotating member so as to face the surface of the magnetic recording medium, and is supported so as to be rotatable around two axes parallel to the surface of the magnetic recording medium and orthogonal to each other. A slider,
    An optical waveguide for introducing light for heating the magnetic recording medium into the slider;
    A head gimbal assembly with a light guide structure, comprising: a support member that supports the optical waveguide on the rotating member;
    The head gimbal assembly with a light guide structure, wherein the support member supports the optical waveguide so as to be movable along a longitudinal direction.
  2.  一定方向に回転する磁気記録媒体の外側に配置されたピボット軸のまわりを回動可能に形成されたアーム部の先端側に支持されるベースプレートと、
     該ベースプレートと連結されるとともに、前記ベースプレートの先端側に延出する延出部を有するヒンジプレートと、
     該ヒンジプレートの延出部と連結されるロードビームと、
     該ロードビームに連結されるフレクシャと、を有するサスペンションと、
     該サスペンションの先端部の前記フレクシャに、前記磁気記録媒体の表面と対向するように取り付けられ、前記磁気記録媒体の表面に平行で、かつ、互いに直交する2軸回りに回動自在となるように支持されたスライダと、
     前記磁気記録媒体を加熱するための光を前記スライダに導入するための光導波路と、
     該光導波路を前記サスペンションおよび前記アーム部の少なくともいずれか一方に支持する支持部材と、を備えた導光構造付きヘッドジンバルアセンブリにおいて、
     前記支持部材は、前記光導波路を長手方向に沿って移動可能に支持していることを特徴とする請求項1に記載の導光構造付きヘッドジンバルアセンブリ。
    A base plate supported on the distal end side of an arm portion formed to be rotatable around a pivot shaft arranged outside a magnetic recording medium rotating in a certain direction;
    A hinge plate coupled to the base plate and having an extending portion extending to a tip side of the base plate;
    A load beam connected to an extension of the hinge plate;
    A suspension having a flexure coupled to the load beam;
    The suspension is attached to the flexure at the tip of the suspension so as to face the surface of the magnetic recording medium, and is rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other. A supported slider;
    An optical waveguide for introducing light for heating the magnetic recording medium into the slider;
    A head gimbal assembly with a light guide structure, comprising: a support member that supports the optical waveguide on at least one of the suspension and the arm portion;
    The head gimbal assembly with a light guide structure according to claim 1, wherein the support member supports the optical waveguide so as to be movable along a longitudinal direction.
  3.  前記支持部材は、前記光導波路が導入される導入部を備え、前記光導波路の導入後に前記導入部を変形させて閉塞することによって前記光導波路を支持していることを特徴とする請求項2に記載の導光構造付きヘッドジンバルアセンブリ。 3. The support member includes an introduction portion into which the optical waveguide is introduced, and supports the optical waveguide by deforming and closing the introduction portion after introduction of the optical waveguide. 2. A head gimbal assembly with a light guide structure as described in 1.
  4.  前記支持部材が、前記サスペンションおよび前記アーム部の少なくともいずれか一方の一部を加工することで形成されることを特徴とする請求項3に記載の導光構造付きヘッドジンバルアセンブリ。 The head gimbal assembly with a light guide structure according to claim 3, wherein the support member is formed by processing a part of at least one of the suspension and the arm portion.
  5.  前記スライダに接続された電気配線を支持する配線支持体が、前記フレクシャから延設され、
     前記光導波路は、前記配線支持体に沿って配置され、
     前記支持部材が、前記配線支持体の長手方向に直交する方向に形成された舌部を折曲することにより形成されることを特徴とする請求項4に記載の導光構造付きヘッドジンバルアセンブリ。
    A wiring support that supports the electrical wiring connected to the slider extends from the flexure,
    The optical waveguide is disposed along the wiring support;
    The head gimbal assembly with a light guide structure according to claim 4, wherein the support member is formed by bending a tongue portion formed in a direction orthogonal to a longitudinal direction of the wiring support body.
  6.  前記支持部材が、前記光導波路を被覆する被覆部材と、該被覆部材を前記サスペンションに支持する接着剤とで構成されていることを特徴とする請求項2に記載の導光構造付きヘッドジンバルアセンブリ。 The head gimbal assembly with a light guide structure according to claim 2, wherein the support member includes a covering member that covers the optical waveguide and an adhesive that supports the covering member on the suspension. .
  7.  前記光導波路が、複数の前記支持部材により前記サスペンションに支持されていることを特徴とする請求項2記載の導光構造付きヘッドジンバルアセンブリ。 3. The head gimbal assembly with a light guide structure according to claim 2, wherein the optical waveguide is supported by the suspension by a plurality of the support members.
  8.  前記光導波路の湾曲部分に前記支持部材が配置されていることを特徴とする請求項2記載の導光構造付きヘッドジンバルアセンブリ。 3. The head gimbal assembly with a light guide structure according to claim 2, wherein the support member is disposed in a curved portion of the optical waveguide.
  9.  請求項2~8のいずれかに記載の導光構造付きヘッドジンバルアセンブリと、
     光導波路に対して光束を入射させる光源と、
     一定方向に回転する磁気記録媒体と、
     該磁気記録媒体の外側に配置されたピボット軸と、
     該ピボット軸のまわりを回動可能に形成されたアーム部と、
     該アーム部の基端側を支持すると共に、該アーム部を前記磁気記録媒体の表面に平行な方向に向けて移動させるアクチュエータと、
     前記磁気記録媒体を前記一定方向に回転させる回転駆動部と、
     前記スライダ及び前記光源の作動を制御する制御部と、を備えていることを特徴とする情報記録再生装置。
    A head gimbal assembly with a light guide structure according to any one of claims 2 to 8,
    A light source that makes a light beam incident on an optical waveguide;
    A magnetic recording medium rotating in a certain direction;
    A pivot shaft disposed outside the magnetic recording medium;
    An arm portion formed to be rotatable around the pivot shaft;
    An actuator for supporting the base end side of the arm portion and moving the arm portion in a direction parallel to the surface of the magnetic recording medium;
    A rotation drive unit for rotating the magnetic recording medium in the fixed direction;
    An information recording / reproducing apparatus comprising: a control unit that controls operation of the slider and the light source.
PCT/JP2009/058118 2008-06-17 2009-04-24 Head gimbal assembly with optical guide structure, and information recording/reproducing device WO2009154043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-158087 2008-06-17
JP2008158087A JP2009301684A (en) 2008-06-17 2008-06-17 Head gimbal assembly with light guide structure and information recording and playback device

Publications (1)

Publication Number Publication Date
WO2009154043A1 true WO2009154043A1 (en) 2009-12-23

Family

ID=41433960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058118 WO2009154043A1 (en) 2008-06-17 2009-04-24 Head gimbal assembly with optical guide structure, and information recording/reproducing device

Country Status (2)

Country Link
JP (1) JP2009301684A (en)
WO (1) WO2009154043A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051309B2 (en) * 2011-01-14 2012-10-17 大日本印刷株式会社 Suspension substrate, suspension, suspension with element, hard disk drive, and manufacturing method of suspension substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160551A (en) * 1997-11-27 1999-06-18 Nec Corp Fixture and fixing method of optical fiber
JP2002182041A (en) * 2000-12-15 2002-06-26 Fujikura Ltd Optical/electric composite harness
JP2006323908A (en) * 2005-05-18 2006-11-30 Seiko Instruments Inc Head module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095623B2 (en) * 2005-04-05 2008-06-04 株式会社日立製作所 Head for magneto-optical fusion recording apparatus and method for manufacturing the same
JP4782660B2 (en) * 2006-11-21 2011-09-28 株式会社日立製作所 Head, head gimbal assembly and information recording apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160551A (en) * 1997-11-27 1999-06-18 Nec Corp Fixture and fixing method of optical fiber
JP2002182041A (en) * 2000-12-15 2002-06-26 Fujikura Ltd Optical/electric composite harness
JP2006323908A (en) * 2005-05-18 2006-11-30 Seiko Instruments Inc Head module

Also Published As

Publication number Publication date
JP2009301684A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US8411391B2 (en) Head gimbal assembly
JP5201571B2 (en) Recording head and information recording / reproducing apparatus
US8537646B2 (en) Thermally-assisted magnetic recording head having photoelectric wiring lines integrally formed on waveguide
JP5441184B2 (en) Head gimbal assembly and information recording / reproducing apparatus including the same
US8467276B2 (en) Thermally-assisted magnetic recording head having photoelectric wiring lines integrally formed on waveguide
JP4565452B2 (en) Head gimbal mechanism and information recording / reproducing apparatus
JP5246688B2 (en) Information recording / reproducing device
JP5039893B2 (en) Recording head and information recording / reproducing apparatus
WO2009154043A1 (en) Head gimbal assembly with optical guide structure, and information recording/reproducing device
JP4443511B2 (en) Suspension and information recording / reproducing apparatus
JP5207302B2 (en) Information recording / reproducing head gimbal assembly and information recording / reproducing apparatus
JP5263879B2 (en) Pivot bearing and information recording / reproducing apparatus
JP5200273B2 (en) Head gimbal assembly and information recording / reproducing apparatus including the same
JP2010086624A (en) Head gimbal assembly with light guide structure, and information recording and reproducing apparatus
JP2009301685A (en) Assembling method of head gimbal assembly, assembling device and head gimbal assembly, and information recording and playback apparatus
JP5597001B2 (en) Near-field light assisted magnetic recording head, head gimbal assembly, and information recording / reproducing apparatus including the same
JP5550049B2 (en) Recording head and information recording / reproducing apparatus
JP5780630B2 (en) Recording head and information recording / reproducing apparatus
WO2008062677A1 (en) Recording head and information recording/reproducing device
JP2010123226A (en) Near field light head and information recording and reproducing device
JP2010218674A (en) Head gimbal assembly
JP2009099212A (en) Recording head and information recording/reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766491

Country of ref document: EP

Kind code of ref document: A1