WO2008062677A1 - Recording head and information recording/reproducing device - Google Patents

Recording head and information recording/reproducing device Download PDF

Info

Publication number
WO2008062677A1
WO2008062677A1 PCT/JP2007/071746 JP2007071746W WO2008062677A1 WO 2008062677 A1 WO2008062677 A1 WO 2008062677A1 JP 2007071746 W JP2007071746 W JP 2007071746W WO 2008062677 A1 WO2008062677 A1 WO 2008062677A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
end side
light
recording head
core
Prior art date
Application number
PCT/JP2007/071746
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Hirata
Manabu Oumi
Majung Park
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007228758A external-priority patent/JP5201571B2/en
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Priority to US12/312,614 priority Critical patent/US8054570B2/en
Priority to CN2007800428328A priority patent/CN101536090B/en
Publication of WO2008062677A1 publication Critical patent/WO2008062677A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • G11B11/10536Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording using thermic beams, e.g. lasers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10552Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
    • G11B11/10554Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to a recording head for recording various information on a magnetic recording medium using spot light obtained by condensing light, and an information recording / reproducing apparatus having the recording head.
  • the recording density of information within a single recording surface has increased with an increase in the capacity of hard disks and the like in computer equipment.
  • the recording area occupied by one bit on the recording medium decreases.
  • the energy power of 1-bit information is close to the thermal energy at room temperature, and the recorded demagnetization problem may be reversed or lost due to thermal fluctuations. It will occur.
  • force is a method for recording magnetism so that the direction of magnetization is in the in-plane direction of the recording medium.
  • the recording information by thermal demagnetization described above is recorded. Disappearance is likely to occur. Therefore, in order to solve such a problem, a shift is being made to a perpendicular recording method in which a magnetization signal is recorded in a direction perpendicular to the recording medium.
  • This method is a method for recording magnetic information on the principle of bringing a single magnetic pole closer to a recording medium. According to this method, the recording magnetic field is directed substantially perpendicular to the recording film.
  • Various types of recording heads are provided as the above-described hybrid magnetic recording system, and one of them is a near-field optical head that performs heating using near-field light. (For example, refer to JP 2004-158067 and JP 2005-4901).
  • This near-field optical head generates near-field light mainly from a main magnetic pole, an auxiliary magnetic pole, a coil winding in which a spiral conductor pattern is formed inside an insulator, and irradiated laser light.
  • a metal scatterer to be irradiated a planar laser light source for irradiating the metal scatterer with laser light, and a lens for focusing the irradiated laser light.
  • Each of these components is attached to the side surface of a slider fixed to the front end of the beam.
  • the main magnetic pole has a surface opposite to the recording medium at one end and is connected to the auxiliary magnetic pole at the other end.
  • the main magnetic pole and the auxiliary magnetic pole constitute a single magnetic pole type vertical head in which one magnetic pole (single magnetic pole) is arranged in the vertical direction.
  • the coil winding is fixed to the auxiliary magnetic pole so that part of the coil winding passes between the magnetic pole and the auxiliary magnetic pole.
  • the metal scatterer made of gold or the like is attached to the tip of the main pole!
  • the planar laser light source is disposed at a position separated from the metal scatterer, and the lens is disposed between the planar laser light source and the metal scatterer.
  • Each component described above is attached in the order of an auxiliary magnetic pole, a coil winding, a main magnetic pole, a metal scatterer, a lens, and a planar laser light source from the side surface side of the slider.
  • laser light is irradiated from a planar laser light source.
  • This laser light is collected by a lens and irradiated onto a metal scatterer.
  • the metal scatterer has free electrons inside. Because it is oscillated uniformly by the electric field of the light, plasmons are excited to generate near-field light at the tip. As a result, the magnetic recording layer of the recording medium is locally heated by near-field light, and the coercive force temporarily decreases.
  • a recording current is locally applied to the magnetic recording layer of the recording medium near the main pole by supplying a driving current to the conductor pattern of the coil winding. To do.
  • the recording force on the recording medium is controlled by the force S.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004_158067
  • Patent Document 2 JP 2005-4901
  • the laser light is irradiated from the planar laser light source to the metal scatterer through the lens while being condensed.
  • a metal scatterer is attached to the tip of the force main pole! /, It was inevitable to irradiate the optical axis of the laser beam obliquely from a flat laser light source. Therefore, even if the lens position is adjusted well, it is difficult to efficiently focus the laser beam on the metal scatterer.
  • the force S using a semicircular lens is also a factor that causes a reduction in light collection efficiency.
  • the present invention has been made in view of such circumstances, and its purpose is to efficiently concentrate the luminous flux to improve the writing reliability, and to reduce the size and power. It is an object to provide a recording head that can be reduced in thickness and an information recording / reproducing apparatus having the recording head.
  • the present invention provides the following means in order to solve the above problems.
  • the recording head heats a magnetic recording medium rotating in a certain direction by spot light generated by condensing a light beam, and applies a perpendicular recording magnetic field to the magnetic recording medium.
  • a recording head that causes magnetization reversal and records information a slider disposed opposite to the surface of the magnetic recording medium, a main magnetic pole that is fixed to the front end surface of the slider and generates the recording magnetic field, and
  • the cross-sectional area to be gradually drawn is reduced, and the reflected light flux is condensed and propagated toward the other end side to generate the spot light, and the spot light is externally transmitted from the other end side.
  • a clad that is made of a material having a light condensing part and a material having a refractive index lower than that of the core, and that tightly adheres to the side surface of the core with the other end of the core exposed to the outside, thereby confining the core inside.
  • a spot light generating element fixed adjacent to the recording element with the other end side facing the magnetic recording medium side, and the slider in a state of being arranged in parallel to the slider
  • a light beam introducing means for introducing the light beam into the core from the one end side, and the light beam condensing unit generates the spot light in the vicinity of the main magnetic pole.
  • a magnetic recording medium that rotates by a hybrid magnetic recording method in which the spot light generated by the spot light generating element cooperates with the recording magnetic field generated by the recording element. Information can be recorded.
  • the slider is arranged in a state of facing the surface of the magnetic recording medium.
  • a recording element having a main magnetic pole and an auxiliary magnetic pole is fixed to the end face of the slider.
  • a spot light generating element is fixed adjacent to the recording element.
  • a recording element and a spot light generating element are arranged in this order from the slider side on the tip of the slider.
  • the spot light generating element is fixed in a state where the other end side where the spot light is generated faces the magnetic recording medium side. Therefore, one end side where the light beam is introduced is arranged at a position separated from the magnetic recording medium.
  • a light beam introducing means fixed to the slider is connected to the one end side.
  • the light beam is introduced from the light beam introducing means into the core of the spot light generating element.
  • the light flux is introduced in a direction parallel to the slider.
  • the introduced light beam is reflected by the reflecting surface and changes its direction in a direction different from the introduction direction. That is, after the direction is bent by approximately 90 degrees by the reflecting surface, the direction is toward the other end located on the magnetic recording medium side.
  • the light beam propagates through the light beam condensing unit toward the other end side.
  • the light beam condensing part is drawn so that the direction force from one end side to the other end side and the cross-sectional area perpendicular to the longitudinal direction gradually decrease. Therefore, when the light beam passes through the light beam condensing portion, it is gradually condensed while repeating reflection on the side surface and propagates inside the core. In particular, since the clad is in close contact with the side surface of the core, light does not leak outside the core. Therefore, the introduced light beam can be propagated to the other end side while being stopped without wasting it.
  • the light beam condensing unit can narrow the spot size of the introduced light beam to a small size. As a result, spot light can be generated and emitted from the other end side.
  • the magnetic recording medium is locally heated by the spot light, and the coercive force temporarily decreases.
  • the light beam condensing unit since the light beam condensing unit generates spot light in the vicinity of the main magnetic pole, the coercive force of the magnetic recording medium can be reduced as close as possible to the main magnetic pole.
  • the recording element is operated to generate a recording magnetic field between the main magnetic pole and the auxiliary magnetic pole.
  • a recording magnetic field can be generated at a pinpoint with respect to a local position of the magnetic recording medium whose coercive force has been reduced by the spot light.
  • the direction of the recording magnetic field changes according to the information to be recorded.
  • the magnetic recording medium receives a recording magnetic field
  • the magnetization direction changes in the vertical direction in accordance with the direction of the recording magnetic field.
  • information can be recorded.
  • the spot light can be generated while being condensed along the substantially straight optical axis from the upper surface side of the slider toward the other end side toward the magnetic recording medium.
  • the optical axis is not inclined and the position adjustment is difficult. Accordingly, it is possible to efficiently collect the luminous flux to generate the spot light, and to heat the magnetic recording medium efficiently. Therefore, the writing reliability can be improved.
  • the peak position of the heating temperature can be set at a position where the recording magnetic field acts locally. Therefore, recording can be performed more reliably and high density recording can be achieved.
  • the light flux is introduced using the light flux introducing means and propagates in the core, the light flux is not propagated in the air as in the prior art. Therefore, the light guide loss can be reduced as much as possible.
  • the spot light generating element can be configured by the core and the clad, the configuration can be facilitated.
  • the recording element and the spot light generating element are arranged in this order on the side surface on the outflow end side of the slider, it is possible to prevent as much as possible that each component other than the light flux introducing means overlaps in the thickness direction of the slider. Therefore, it is possible to reduce the thickness with a compact design.
  • the light beam can be reliably introduced through the light beam introducing means, the light source that generates the light beam can be easily arranged.
  • spot light can be generated by efficiently condensing the luminous flux, and the writing reliability can be improved.
  • it can be made compact and thin.
  • the recording head according to the present invention is formed with the cladding force S and one end side of the core exposed to the outside with respect to the recording head of the present invention. It is a feature.
  • the cladding exposes one end side of the core to the outside. Therefore, the light beam can be directly introduced into the core without using the clad. As a result, the spot light can be generated more efficiently, and the magnetic recording medium can be heated with more power.
  • the recording head according to the present invention is the same as the recording head according to the present invention, and the near-field light is generated from the spot light to the luminous flux collecting section.
  • a near-field light generating element emitting from the other end side to the outside is provided.
  • the near-field light generating element is provided in the light beam condensing part, the light beam is condensed into spot light, and then the spot size is further reduced to approach the light beam.
  • a recording head includes a reproducing element that outputs an electric signal corresponding to the magnitude of a magnetic field leaked from the magnetic recording medium in any of the recording heads of the present invention. Special attention is given to recording.
  • the reproducing element outputs an electrical signal corresponding to the magnitude of the magnetic field leaked from the magnetic recording medium. Therefore, the information recorded on the magnetic recording medium can be reproduced from the electric signal output from the reproducing element.
  • a recording head according to the present invention is characterized in that the reproducing element force is provided between the slider and the recording element in the recording head of the present invention.
  • the reproducing element is provided between the slider and the recording element, the reproducing element, the recording element, and the spot light generating element are arranged in this order from the leading end side of the slider. It becomes a state. For this reason, even if the slider disposed opposite to the surface of the magnetic recording medium is inclined with the front end faced toward the magnetic recording medium, the recording element and the spot light generating element are brought as close to the magnetic recording medium as possible. Can do. Therefore, the spot light and the recording magnetic field can be applied to the magnetic recording medium more efficiently, and higher density recording can be performed.
  • a recording head according to the present invention is characterized in that the recording head according to the present invention is provided in a state embedded in the reproducing element force and the clad. is there [0042]
  • the recording head according to the present invention since the reproducing element is embedded in the clad in which the core is confined, the thickness of the reproducing element can be absorbed by the clad. Therefore, even if the slider arranged opposite to the surface of the magnetic recording medium is inclined with the leading end faced toward the magnetic recording medium, the recording element and the spot light generating element are as close to the magnetic recording medium as possible. be able to. Therefore, the spot light and the recording magnetic field can be more efficiently applied to the magnetic recording medium, and higher density recording can be performed.
  • the information recording / reproducing apparatus is capable of moving in the direction parallel to the surface of the magnetic recording medium, the recording head of! / A beam that supports the recording head on the leading end side in a state of being rotatable around two axes that are parallel to the surface and orthogonal to each other; a light source that causes the light beam to enter the light beam introducing means; and the beam An actuator that supports the base end side of the magnetic recording medium and moves the beam in a direction parallel to the surface of the magnetic recording medium, a rotation drive unit that rotates the magnetic recording medium in the fixed direction, and the recording element And a control unit for controlling the operation of the light source.
  • the recording head is scanned by moving the beam by the actuator. Then, the recording head is disposed at a desired position on the magnetic recording medium. At this time, the recording head is supported by the beam so as to be rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other, that is, twistable about the two axes. . Therefore, even if waviness occurs in the magnetic recording medium, changes in wind pressure due to waviness or waviness directly transmitted can be absorbed by twisting, and the posture of the recording head can be stabilized.
  • the control unit operates the recording element and the light source. Accordingly, the recording head can record information on the magnetic recording medium by causing the spot light and the recording magnetic field to cooperate with each other.
  • the recording head described above since the recording head described above is provided, it is possible to cope with high-density recording with high writing reliability, and high quality can be achieved. At the same time, compact and thin Use the force S to create a mold.
  • FIG. 1 is a block diagram showing a first embodiment of an information recording / reproducing apparatus having a recording head according to the present invention.
  • FIG. 3 is a view of the recording head shown in FIG. 2 as viewed from the disk surface side.
  • FIG. 4 is an enlarged cross-sectional view of the side surface on the outflow end side of the recording head shown in FIG. 2, showing the configuration of the spot light generating element and the recording element, and performing recording! / It is the figure which showed the relationship between and.
  • FIG. 5 is a view of the core of the spot light generating element shown in FIG. 4 as viewed from the direction of arrow A.
  • FIG. 6 is a view of the spot light generating element shown in FIG. 4 as viewed from the end face side.
  • a diagram showing a recording head according to a second embodiment of the present invention showing a configuration of a spot light generating element and a recording element provided with a near-field light generating element for generating near-field light, and It is the figure which showed the relationship between the near field light at the time of recording, and a magnetic field.
  • FIG. 8 is a view of the core of the spot light generating element shown in FIG. 7 as viewed from the direction of arrow B.
  • FIG. 9 is a view of the core shown in FIG. 8 as viewed from the end surface side, and shows the configuration of the near-field light generating element.
  • FIG. 10 is a view showing a modification of the near-field light generating element shown in FIG. 9, and is a view showing a near-field light generating element having a minute aperture formed in a triangular shape.
  • FIG. 11 A diagram showing a modification of the near-field light generating element shown in FIG. 9, wherein a near-field light generating element having a minute opening formed so that triangular protrusions are opposed to each other with a minute gap therebetween.
  • FIG. 11 A diagram showing a modification of the near-field light generating element shown in FIG. 9, wherein a near-field light generating element having a minute opening formed so that triangular protrusions are opposed to each other with a minute gap therebetween.
  • FIG. 10 is a view showing a modification of the near-field light generating element shown in FIG. 9 and showing a near-field light generating element having a minute aperture in which a metal scatterer is formed substantially at the center.
  • FIG. 13 A cross-sectional view showing a third embodiment of a recording head according to the present invention.
  • FIG. 14 is a diagram showing a state where the recording head shown in FIG. 13 is flying over the disk in a tilted state.
  • FIG. 16 is a cross-sectional view showing a fifth embodiment of a recording head according to the invention.
  • FIG. 17 is a sectional view showing a sixth embodiment of a recording head according to the invention.
  • FIG. 18 is a view of the core of the spot light generating element shown in FIG. 17 as viewed from the direction of arrow A.
  • FIG. 19 is a sectional view showing a seventh embodiment of the recording head according to the invention.
  • FIG. 20 is a view of the core of the spot light generating element shown in FIG. 19 as viewed from the direction of arrow A.
  • FIG. 21 is a diagram showing a modification of the recording head shown in FIG. 19, and is a diagram showing a recording head in which a reproducing element is provided between the slider and the recording element.
  • FIG. 22 is a diagram showing a modification of the recording head shown in FIG. 19, and is a diagram showing a recording head having a spot size converter whose core is smoothly curved.
  • FIG. 23 is a sectional view showing an eighth embodiment of a recording head according to the present invention.
  • the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer d 2 by a perpendicular recording method. Further, in the present embodiment, an explanation will be given by taking as an example an air levitation type in which the recording head 2 is floated by utilizing the air flow that the disk D rotates.
  • the information recording / reproducing apparatus 1 of the present embodiment includes a recording head 2 having a spot size converter (spot light generation element) 22 described later, and a disk surface (surface of a magnetic recording medium). ) It is movable in the XY direction parallel to D1, and supports the recording head 2 on the tip side while being rotatable around two axes (X axis, Y axis) parallel to the disk surface D1 and perpendicular to each other.
  • spot size converter spot light generation element
  • the optical signal controller (light source) 5 that makes the light beam L incident on the optical waveguide 4 from the base end side of the optical waveguide (light flux introducing means) 4, and the base end side of the beam 3
  • an actuator 6 that scans and moves the beam 3 in the XY directions parallel to the disk surface D1
  • a spindle motor (rotation drive unit) 7 that rotates the disk D in a fixed direction
  • a recording element 21 and Control that controls the operation of the optical signal controller 5 8
  • a housing 9 that houses the respective components therein.
  • the housing 9 is formed of a metal material such as aluminum in a square shape in a top view.
  • a recess 9a for accommodating each component is formed inside.
  • a lid (not shown) is detachably fixed to the housing 9 so as to close the opening of the recess 9a.
  • the spindle motor 7 is attached to the approximate center of the recess 9a, and the disc D is detachably fixed by fitting the center hole into the spindle motor 7.
  • the above-mentioned actuator 6 is attached to the corner of the recess 9a.
  • a carriage 11 is attached to the actuator 6 via a bearing 10, and a beam 3 is attached to the tip of the carriage 11.
  • the carriage 11 and the beam 3 are both movable in the XY directions by driving the actuator 6.
  • the carriage 11 and the beam 3 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
  • the recording head 2 and the beam 3 constitute a suspension 12.
  • the optical signal controller 5 is mounted in the recess 9a so as to be adjacent to the activator 6. Then, the control unit 8 is attached adjacent to the actuator 6! /.
  • the recording head 2 heats the rotating disk D by the spot light R generated by condensing the light flux L, and generates a magnetization reversal by applying a perpendicular recording magnetic field to the disk D. Information is recorded.
  • the recording head 2 is disposed to face the disk D in a state of floating by a predetermined distance H from the disk surface D1, and has a facing surface 20 that faces the disk surface D1.
  • An optical waveguide 4 for introducing the light beam L from the optical signal controller 5 is provided in a core 40 (to be described later) of the spot size converter 22.
  • the recording head 2 of the present embodiment includes a reproducing element 23 fixed adjacent to the spot size converter 22.
  • the slider 20 is formed in a rectangular parallelepiped shape using a light-transmitting material such as quartz glass or a ceramic such as AlTiC (altic).
  • the slider 20 is supported so as to hang from the tip of the beam 3 via the gimbal portion 24 with the opposing surface 20a facing the disk D.
  • the gimbal portion 24 moves so as to be displaced only around the X axis and around the Y axis. It is a regulated part.
  • the slider 20 can be rotated around two axes (X axis, Y axis) that are parallel to the disk surface D1 and orthogonal to each other as described above.
  • a ridge portion 20b that generates pressure for rising due to the viscosity of the airflow generated by the rotating disk D.
  • a ridge portion 20b that generates pressure for rising due to the viscosity of the airflow generated by the rotating disk D.
  • the slider 20 is not limited to this case.
  • the slider 20 is adjusted to an optimum state by adjusting the positive pressure for separating the slider 20 from the disk surface D1 and the negative pressure for attracting the slider 20 to the disk surface D1. Any irregular shape may be used as long as it is designed to float on the surface.
  • the surface of this ridge portion 20b is a surface called ABS (Air Bearing Surface).
  • the slider 20 receives a force that rises from the disk surface D1 by the two ridges 20b.
  • the beam 3 is steeped in the Z direction perpendicular to the disk surface D1, and absorbs the floating force of the slider 20. That is, the slider 20 receives a force pressed by the beam 3 to the disk surface D1 side when it floats. Therefore, the slider 20 floats in a state of being separated from the disk surface D1 by a predetermined distance H as described above due to the balance between the forces of the two.
  • the slider 20 since the slider 20 is rotated about the X axis and the Y axis by the gimbal portion 24, the slider 20 always floats in a stable posture.
  • the air flow generated by the rotation of the disk D flows from the inflow end side of the slider 20 (base end side of the beam 3), then flows along the ABS, and flows out along the outflow end side of the slider 20 (beam From the front edge side).
  • the recording element 21 is connected to the auxiliary magnetic pole 30 fixed to the side surface on the outflow end side of the slider 20 and the auxiliary magnetic pole 30 via the magnetic circuit 31, and is connected to the disk D.
  • a main magnetic pole 32 that generates a perpendicular recording magnetic field with the auxiliary magnetic pole 30, and a coil 33 that spirally winds around the magnetic circuit 31 around the magnetic circuit 31. That is, the auxiliary magnetic pole 30, the magnetic circuit 31, the coil 33, and the main magnetic pole 32 are arranged in order from the outflow end side of the slider 20.
  • Both magnetic poles 30, 32 and the magnetic circuit 31 are made of a high saturation magnetic flux density (Bs) material having a high magnetic flux density (for example, it is formed of a CoNiFe alloy, a CoFe alloy, or the like.
  • the coil 33 is arranged so that there is a gap between adjacent coil wires, between the magnetic circuit 31 and between the magnetic poles 30 and 32 so as not to be short-circuited. Molded by 34.
  • the coil 33 is supplied with a current modulated in accordance with information from the control unit 8. That is, the magnetic circuit 31 and the coil 33 constitute an electromagnet as a whole.
  • the main magnetic pole 32 and the auxiliary magnetic pole 30 are designed so that the end surfaces facing the disk D are flush with the ABS of the slider 20.
  • the spot size converter 22 is adjacent to the recording element 21 with one end side facing the upper side of the slider 20 and the other end side facing the disk D side. Is fixed. More specifically, it is fixed adjacent to the main pole 32.
  • FIG. 5 is a view of a core 40 described later as seen from the direction of arrow A shown in FIG.
  • FIG. 6 is a view of the spot size converter 22 shown in FIG. 5 as viewed from the end face 40c side.
  • the spot size converter 22 propagates the light beam L introduced to one end side while condensing to the other end side in a direction different from the introduction direction, and generates the spot light R and then emits it to the outside.
  • An element which is composed of a polyhedral core 40 and a clad 41 for confining the core 40 therein, is formed in a substantially plate shape as a whole.
  • the core 40 is integrally formed by the reflecting surface 40a and the light beam condensing part 40b.
  • the reflection surface 40a reflects the light beam L introduced from the one end side by the optical waveguide 4 in a direction different from the introduction direction. In the present embodiment, the light beam L is reflected so that the direction of the light beam L changes by approximately 90 degrees.
  • the light beam condensing unit 40b is a portion formed by drawing so that a cross-sectional area perpendicular to the longitudinal direction (Z direction) from one end side to the other end side is gradually reduced, and is reflected by the reflecting surface 40a.
  • the reflected light beam L is condensed and propagated toward the other end.
  • the light beam condensing unit 4 Ob can reduce the spot size of the introduced light beam L to a small size.
  • the light flux condensing part 40b is formed to have three side surfaces, and one of the side surfaces is arranged to face the main magnetic pole 32. Yes. Therefore, as shown in FIG. 6, the light beam condensing part 40b has an end face 40c exposed to the outside on the other end side. The surface is formed in a triangular shape.
  • the maximum linear length L1 that can be secured on the end face 40c is designed to be about 1 m.
  • the spot size of the light beam L can be reduced to the same size as the maximum linear length L1, that is, the diameter can be reduced to about 1 m, and the spot light R of this size can be emitted from the end face 40c to the outside. Can do.
  • the end face 4 Oc is designed to be flush with the ABS of the slider 20.
  • the light beam condensing part 40b is gradually drawn toward the main magnetic pole 32 as shown in FIG.
  • the end face 40c is positioned on the main magnetic pole 32 side, and the spot light R having the above size can be generated in the vicinity of the main magnetic pole 32.
  • the term “near” in the present invention refers to a region within a range separated from the main magnetic pole 32 by a distance approximately equal to or less than the diameter of the spot light generated from the end face 40c. Therefore, in the case of the present embodiment, the distance force between the main magnetic pole 32 and the end face 40c of the light beam condensing part 40b is approximately the same as the diameter (maximum linear length L1) of the spot light R 1 111 or less. Designed to be a distance.
  • the clad 41 is formed of a material having a refractive index lower than that of the core 40.
  • the clad 41 is in close contact with the side surface of the core 40 to confine the core 40 inside. Yes. Therefore, there is no gap between the core 40 and the clad 41.
  • the clad 41 of the present embodiment is formed so as to expose the end surface 40c on the other end side to the outside as well as the one end side of the core 40.
  • a combination of materials used as the clad 41 and the core 40 is described.
  • a combination in which the core 40 is formed from quartz (SiO 2) and the clad 41 is formed from quartz doped with fluorine. Can be considered.
  • the wavelength of the light beam L is 400 nm
  • the refractive index of the core 40 is 1.47
  • the refractive index of the clad 41 is less than 1.47, which is a preferable combination.
  • a combination in which the core 40 is formed of quartz doped with germanium and the cladding 41 is formed of quartz (SiO 2) is also conceivable.
  • the wavelength of the light beam L is 4 OOnm, it becomes larger than the refractive skew force 1.47 of the core 40 and becomes the refractive skew force 47 of the clad 41.
  • TaO tantalum oxide
  • quartz or the like for the cladding 41 to increase the refractive index difference between the two.
  • the luminous flux L in the infrared region it is also effective to form the core 40 with silicon (Si: refractive index is about 4) which is a material transparent to infrared light.
  • the optical waveguide 4 is a biaxial waveguide composed of a core 4a and a clad 4b, and the light beam L propagates through the core 4a.
  • the optical waveguide 4 is fixed in a state of fitting in a groove portion 41 a formed in the clad 41 and a groove portion (not shown) formed in the upper surface of the slider 20. As a result, the optical waveguide 4 is arranged in parallel to the slider 20.
  • the tip end of the optical waveguide 4 is connected to one end side of the spot size converter 22, and the light flux L is introduced into the core 40. Further, the base end side of the optical waveguide 4 is drawn out to the optical signal controller 5 through the beam 3 and the carriage 11 and then connected to the optical signal controller 5.
  • the positions of the spot size converter 22 and the optical waveguide 4 are arranged so that the light beam L introduced from the optical waveguide 4 into the core 40 enters the approximate center of the reflecting surface 40a. The relationship has been adjusted.
  • the reproducing element 23 is a magnetoresistive film whose electric resistance is converted according to the magnitude of the magnetic field leaking from the perpendicular recording layer d2 of the disk D.
  • a bias current is supplied to the reproducing element 23 from the control unit 8 via a lead film (not shown).
  • the control unit 8 can detect a change in the magnetic field leaked from the disk D as a change in voltage, and can reproduce a signal from the change in voltage.
  • the disk D of the present embodiment is composed of at least two layers of a perpendicular recording layer d2 having an easy axis of magnetization in a direction perpendicular to the disk surface D1 and a soft magnetic layer d3 made of a high permeability material.
  • a soft magnetic layer d3, an intermediate layer d4, a perpendicular recording layer d2, a protective layer d5, and a lubricating layer d6 are sequentially formed on a substrate dl. Use the film.
  • the substrate dl is, for example, an aluminum substrate or a glass substrate.
  • the soft magnetic layer d3 is a high permeability layer.
  • the intermediate layer d4 is a crystal control layer of the perpendicular recording layer d2.
  • the perpendicular recording layer d2 is a perpendicular anisotropic magnetic layer, and for example, a CoCrPt alloy is used.
  • Protective layer d5 Is for protecting the perpendicular recording layer d2, and for example, a DLC (diamond “like” carbon) film is used.
  • lubrication layer d6 for example, a fluorine-based liquid lubricant is used.
  • the spindle motor 7 is driven to rotate the disk D in a certain direction.
  • the actuator 6 is actuated to scan the beam 3 in the XY directions via the carriage 11.
  • the force S for positioning the recording head 2 at a desired position on the disk D can be achieved.
  • the recording head 2 receives a force that rises by the two ridges 20b formed on the opposing surface 20a of the slider 20, and is pressed against the disk D side with a predetermined force by the beam 3 or the like.
  • the recording head 2 floats to a position separated by a predetermined distance H from the disk D as shown in FIG.
  • the recording head 2 can be floated in a stable state.
  • control unit 8 when recording information, the control unit 8 operates the optical signal controller 5 and supplies the coil 33 with a current modulated according to the information to operate the recording element 21.
  • the optical signal controller 5 causes the light beam L to enter from the proximal end side of the optical waveguide 4.
  • the incident light beam L travels toward the front end side in the core 4a of the optical waveguide 4 and is introduced into the core 40 from one end side of the spot size converter 22, as shown in FIG.
  • the light beam L is introduced into the core 40 in a direction parallel to the slider 20.
  • the introduced light beam L is reflected by the reflecting surface 40a and changes its direction by approximately 90 degrees. That is, the direction changes in a direction different from the introduction direction.
  • the light beam L whose direction has changed is directed toward the other end located on the disk D side.
  • the light beam L propagates through the light beam condensing unit 4 Ob toward the other end side.
  • the light beam condensing part 40b is drawn so that the cross-sectional area perpendicular to the longitudinal direction is gradually decreased from one end side to the other end side. Therefore, when the light beam L passes through the light beam condensing part 40 b, it is gradually condensed while repeating reflection on the side surface, and the inside of the core 40 is reflected. Propagate. In particular, since the clad 41 is in close contact with the side surface of the core 40, light does not leak to the outside of the core 40. Therefore, the introduced light beam L can be propagated to the other end side without being wasted.
  • the light beam L is narrowed down when it reaches the other end side of the light beam condensing part 40b, and the spot size is reduced. That is, the light beam condensing unit 40b can narrow the spot size of the introduced light beam L to a small size having a diameter of about 1 ⁇ m. Thereby, the spot light R can be generated and emitted from the end face 40c on the other end side to the outside.
  • the disk D is locally heated by the spot light R, and the coercive force temporarily decreases.
  • the light beam condensing unit 40b generates the spot light R in the vicinity of the main magnetic pole 32, that is, in a range separated from the main magnetic pole 32 by a distance approximately equal to the diameter of the spot light R.
  • the coercive force of disk D can be reduced as close as possible.
  • the magnetic flux reaching the soft magnetic layer d3 returns to the auxiliary magnetic pole 30 via the soft magnetic layer d3.
  • the direction of magnetization is not affected. This is because the area force of the auxiliary magnetic pole 30 facing the disk surface D1 is larger than the main magnetic pole 32, so that the magnetic flux density is large and a force sufficient to reverse the magnetization does not occur. That is, recording can be performed only on the main magnetic pole 32 side.
  • the peak position of the heating temperature can be set at a position where the recording magnetic field acts locally.
  • the reproducing element 23 fixed adjacent to the spot size converter 22 leaks from the perpendicular recording layer d2 of the disc D.
  • the electrical resistance changes according to the magnitude. Therefore, the voltage of the reproducing element 23 changes.
  • the control unit 8 can detect a change in the magnetic field leaking from the disk D as a change in voltage.
  • the control unit 8 can reproduce information by reproducing the signal from the change in voltage.
  • the force is applied to the disk D from the upper surface side of the slider 20, and the light is collected along a substantially straight optical axis toward the end surface 40c on the other end side. Since the spot light R can be generated while shining, a lens that does not tilt the optical axis and is difficult to adjust as in the conventional case is unnecessary. Therefore, the light beam L can be efficiently collected to generate the spot light R, and the disk D can be efficiently heated. Therefore, the writing reliability can be improved.
  • the cladding 41 is formed with one end and the other end of the core 40 exposed to the outside, the light flux L is directly applied to the core 40 without passing through the cladding 41.
  • the power S can be introduced and the spot light R can be emitted to the outside. Therefore, the spot light R can be generated more efficiently and the disk D can be heated.
  • the spot size converter 22 can be configured by the core 40 and the clad 41, the configuration can be facilitated.
  • the recording head 2 can be designed to be compact and thin.
  • the light flux L can be reliably introduced using the optical waveguide 4, a light source that generates the light flux L can be easily arranged. That is, as shown in FIG. 1, the optical signal controller 5 can be disposed in a housing 9 where it is easy to install.
  • the recording head 2 of the present embodiment when manufactured, it can be manufactured using a semiconductor technique such as a photolithography technique and an etching technique. That is, even if the spot size converter 22 is provided, the spot size converter 22 can be simultaneously formed in the flow of the conventional manufacturing process without using a special method.
  • the recording element 21 is formed on the side surface on the outflow end side of the slider 20 using the semiconductor technology.
  • a spot size converter 22 is formed on the recording element 21 in the same manner using semiconductor technology.
  • the reproducing element 23 may be built on the spot size converter 22. In this way, it is possible to easily manufacture the recording head 2 by adding only one manufacturing process of the spot size converter 22 in the process of manufacturing each component in order from the slider 20 side.
  • the cladding 41 is formed on the main magnetic pole 32. At this time, in order to connect the optical waveguide 4 to one end side later, the clad 41 is patterned so that the groove 41a is formed. Next, after the core 40 is formed in a convex shape on the clad 41, etching is appropriately performed to form the reflecting surface 40a and the light beam condensing part 40b, respectively. Next, the clad 41 is formed again so as to confine the core 40 inside. Finally, the outer shape of the clad 41 is processed into a predetermined shape. At this time, a force S for forming the end face 40c can be obtained by cutting the other end side of the spot size converter 22 by dicing or the like. In this manner, the spot size converter 22 can be easily manufactured using semiconductor technology.
  • the information recording / reproducing apparatus 1 of the present embodiment since the recording head 2 described above is provided, it is possible to cope with high-density recording with high writing reliability and high quality.
  • the power S can be achieved.
  • the thickness can be reduced.
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, the light beam L is collected to generate the spot light R, and the force that heats the disk D by the spot light R S, second embodiment
  • the recording head 2 in this state is a point where the near-field light R1 is further generated from the spot light R and the disk D is heated by the near-field light R1.
  • the recording head 50 of the present embodiment has a spot size converter (spot light generating element) in which the near-field light generating element 51 is provided in the light beam condensing unit 40b. ) 52.
  • spot size converter spot light generating element
  • the near-field light generating element 51 is composed of a light shielding film 53 formed on the end face 40c and a minute opening 54 formed substantially at the center of the light shielding film 53.
  • the minute opening 54 is, for example, a circular opening having a diameter of several tens of nm to several hundreds of nm.
  • the spot size converter 52 configured in this way, after the light beam L is condensed into the spot light R, the spot size can be further reduced to obtain the near-field light R1. That is, the light beam L condensed by the light beam condensing unit 40b passes through the minute aperture 54 and then comes out to the outside. At this time, since the spot size is further reduced by passing through the minute opening 54, the near-field light R1 is obtained. Therefore, in this case, near-field light R1 having the same spot size as the minute aperture 54 is generated.
  • the near-field light R1 can heat the disc in a smaller area, and can achieve higher density recording.
  • the distance between the main magnetic pole 32 and the end face 40c of the light flux collecting section 40b may be designed to be a distance of several tens nm to several hundreds nm, which is approximately the same as the diameter of the near-field light R1.
  • the recording magnetic field can be reliably placed within the range heated by the near-field light R1.
  • the force that circularly forms the minute opening 54 is not limited to this shape.
  • a triangular micro opening 54 may be used.
  • the near-field light R1 can be generated.
  • the near-field light R1 can be concentrated in the vicinity of one side of the minute aperture 54 (region S shown in the figure). Therefore, higher density recording can be achieved.
  • the minute opening 54 may be formed so that the triangular protrusions face each other with a minute gap 55 therebetween. By doing this, the near-field light R1 is passed through the minute gap 55. Since it can be localized, it is possible to achieve higher density recording.
  • a minute scatterer 56 that scatters the collected light beam L may be formed in a minute opening 54 formed in a square shape.
  • the minute scatterer 56 may be formed by vapor deposition, film formation, or the like on the end face 40c so that the minute scatterer 56 comes to substantially the center position of the minute opening 54.
  • the near-field light R1 can be centrally localized in the vicinity of the minute scatterer 56, so that further high-density recording can be achieved.
  • the difference between the third embodiment and the first embodiment is that in the first embodiment, the recording element 21, the spot size converter 22, and the reproducing element 23 are arranged in order from the side surface on the outflow end side of the slider 20.
  • the recording head 60 of the third embodiment is that the reproducing element 23, the recording element 21, and the spot size converter 22 are fixed in order from the side surface on the outflow end side of the slider 20. .
  • the reproducing element 23 of the recording head 60 of the present embodiment is provided between the recording element 21 and the side surface on the inflow end side of the slider 20 as shown in FIG. Therefore, the spot size converter 22 and the recording element 21 are moved to the outflow end side of the slider 20 by the thickness of the reproducing element 23 as compared with the case of the first embodiment.
  • the slider 20 is slightly tilted with respect to the disk surface D1. Specifically, with the outflow end side approaching the disk D, the angle ⁇ formed by the disk surface D1 and the ABS of the slider 20 is inclined so as to maintain a very small angle (for example, about 1 ° to 5 °). For this reason, the distance H from the disk surface D1 is gradually separated from the outflow end of the slider 20 toward the inflow end. That is, the outflow end side force of the slider 20 is in the state closest to the disk surface D1.
  • the spot size converter 22 and the recording element 21 are closer to the outflow end side of the slider 20, this is compared with the case of the first embodiment.
  • the spot size converter 22 and the recording element 21 can be brought closer to the disk surface Dl. Therefore, the force S can be applied to the disc D more efficiently by applying the spot light R and the recording magnetic field, and higher density recording can be performed.
  • Other functions and effects are the same as those of the first embodiment.
  • the difference between the fourth embodiment and the first embodiment is that, in the first embodiment, the recording element 21, the spot size converter 22, and the reproducing element 23 are arranged in order from the side surface on the outflow end side of the slider 20.
  • the recording head 70 of the fourth embodiment is that the reproducing element 23 is provided in a state of being embedded in the clad 41 of the spot size converter 22.
  • the reproducing element 23 of the recording head 70 of the present embodiment is embedded in a part of the clad 41 that confines the core 40 therein. Therefore, the thickness of the reproducing element 23 can be absorbed by the clad 41, and the spot size converter 22 and the recording element 21 can be brought closer to the outflow end side of the slider 20 as in the third embodiment. Therefore, when the slider 20 is inclined and floated, the spot size converter 22 and the recording element 21 can be brought closer to the disk surface D1 as compared with the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed. Other functions and effects are the same as in the first embodiment.
  • the difference between the fifth embodiment and the first embodiment is that, in the first embodiment, the force in which the clad 41 is formed with one end side of the core 40 exposed to the outside is different from that of the fifth embodiment.
  • the recording head 80 is that one end side of the core 40 is covered with the clad 41. That is, the recording head 80 of the present embodiment has a spot size converter (spot light generating element) 81 in which one end side of the core 40 is covered with the cladding 41 as shown in FIG. Therefore, the light beam L that has traveled through the core 4 a of the optical waveguide 4 passes through the cladding 41 and is then introduced into the core 40 of the spot size converter 81. Even in the case of the present embodiment, the same effects as those of the first embodiment can be achieved.
  • the spot size converter 81 of the present embodiment unlike the case of the first embodiment, it is not necessary to pattern the clad 41 so that one end side of the core 40 is exposed. Therefore, it has the advantage that it can be manufactured efficiently in a shorter time than it is easy to manufacture.
  • the difference between the sixth embodiment and the first embodiment is that, in the first embodiment, the core 40 of the spot size converter 22 faces the slider 20 when viewed from the outflow end side of the slider 20.
  • the recording head 85 of the sixth embodiment is formed linearly so as to be substantially perpendicular to the surface 20a, the recording head 85 of the sixth embodiment is formed obliquely so that the core 40 is inclined with respect to the facing surface 20a. It is a point.
  • the recording head 85 of this embodiment is inclined obliquely from one end side to the other end side when viewed from the outflow end side of the slider 20.
  • a spot size converter (spot light generating element) 86 having a core 40 force is provided.
  • one end side of the core 40 is shifted in the lateral width direction of the slider 20 from the position of the first embodiment, and is formed obliquely from the position toward the other end side.
  • the position of the optical waveguide 4 may be fixed while being shifted in the lateral width direction of the slider 20 in accordance with the position of the core 40.
  • FIG. 18 is a view of the core 40 as viewed from the direction of arrow A shown in FIG. 17, that is, from the outflow end side of the slider 20. Further, in FIG. 18, only a part of the clad 41 is shown for easy understanding.
  • the recording element 21 and the spot size converter 86 of the present embodiment are the same as those of the first embodiment. As shown in Fig. 17, they are not completely adjacent to each other, but are partially overlapped. That is, the recording element 21 of the present embodiment is formed in an inclined state! /, And is formed so as to be aligned horizontally with respect to the core 40 !.
  • the spot size converter 86 and the recording element 21 can be brought closer to the outflow end side of the slider 20 as compared with the first embodiment. Therefore, when the slider 20 is inclined and floated, the spot size converter 86 and the recording element 21 can be brought closer to the disk surface D1 as compared with the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed.
  • the core 40 is formed obliquely, the overall length (hereinafter referred to as the core length) can be made longer than the height of the slider 20. Therefore, the force S can be reduced as compared with the first embodiment.
  • the core length the overall length
  • the ratio of the light beam L (leakage light) leaking from the core 40 increases, and the light propagation efficiency decreases.
  • the gradual decrease rate of the cross-sectional area can be reduced as described above, so that the light propagation rate of the light flux L is improved compared to the first embodiment. That power S. Therefore, it is possible to generate spot light R with a higher light intensity, and to achieve further high density recording.
  • the recording element 21 may be configured so that the slider 20 side becomes the main magnetic pole 32 and the spot size converter 86 side becomes the auxiliary magnetic pole 30.
  • the difference between the seventh embodiment and the first embodiment is that, in the first embodiment, the core 40 of the spot size converter 22 is formed linearly when viewed from the outflow end side of the slider 20.
  • the 1S recording head 90 of the seventh embodiment is that the core 40 is curved.
  • the recording head 90 of the present embodiment has a slider 20 as shown in FIGS.
  • a spot size converter (spot light generation element) 91 including a core 40 that is curved from one end side to the other end side is provided.
  • one end side and the other end side of the core 40 are located at the same position as in the first embodiment, and the direction from one end side to the other end side is bent, and only the path along the way is bent at several places. Is curved.
  • FIG. 20 is a view of the core 40 as seen from the direction of arrow A shown in FIG. 19, that is, from the outflow end side of the slider 20. In FIG. 20, only a part of the clad 41 is shown for easy viewing.
  • the recording element 21 and the spot size converter 91 of the present embodiment are not completely adjacent to each other as in the first embodiment, but are partially overlapped as shown in FIG. It has become a state. That is, the recording element 21 of the present embodiment is formed so as to enter the region of the core 40 that is curved in the middle. In other words, the core 40 is formed so as to bypass the recording element 21 in order to prevent interference with the recording element 21.
  • the spot size converter 91 and the recording element 21 can be brought closer to the outflow end side of the slider 20. Therefore, when the slider 20 is inclined and floated, the spot size converter 91 and the recording element 21 can be brought closer to the disk surface D1 compared to the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed. Other functions and effects are the same as in the first embodiment.
  • the recording element 21 is configured such that the slider 20 side is the main magnetic pole 32 and the spot size converter 91 side is the auxiliary magnetic pole 30. It ’s fine.
  • a reproducing element 23 may be provided between the side surface of the outflow end of the slider 20 and the recording element 21 as shown in FIG. This is more preferable because the spot size converter 91 and the recording element 21 can be further brought closer to the outflow end side of the slider 20.
  • the force is applied from one end side to the other end side, and the core 40 is bent by bending the intermediate path at several places. As shown in FIG. 22, no bent portion is generated. You may make it curve smoothly.
  • the light beam L can be propagated in a state where the loss is further reduced.
  • the core length can be increased similarly to the sixth embodiment, the same effects can be obtained. That is, the spot light R having a higher light intensity can be generated, and higher density recording can be achieved.
  • the difference between the eighth embodiment and the first embodiment is that, in the first embodiment, the spot size converter 22 from the base end side where the cladding 4b of the optical waveguide 4 is connected to the optical signal controller 5 is used.
  • the recording head 100 according to the eighth embodiment includes the optical waveguide 4 in which the notch T is formed on the front end side of the clad 4b. It is.
  • the clad 4b of the optical waveguide 4 of the present embodiment is obliquely cut over the entire circumference on the tip side connected to the core 40 of the spot size converter 22.
  • the outer diameter is getting smaller.
  • the space created by the cut portion is the cutout portion T.
  • an adhesive (not shown) is applied around the clad 4b.
  • the groove 41a formed in the clad 41 of the spot size converter 22 and the optical waveguide 4 coated with an adhesive are fitted in the groove! Fix firmly.
  • the adhesive is cured to complete the attachment of the optical waveguide 4.
  • the adhesive After fitting the optical waveguide 4 to which the adhesive is applied, the adhesive enters the interface between the core 4a of the optical waveguide 4 and the core 40 of the spot size converter 22 due to a capillary phenomenon or the like. There was a case. If the adhesive enters, the light flux L introduced from the optical waveguide 4 to the core 40 may be adversely affected and light may be lost.
  • the notch T is formed in the optical waveguide 4, so that the optical waveguide 4 is bonded before entering the interface between the core 4a of the optical waveguide 4 and the core 40 of the spot size converter 22.
  • the agent can be stored in the notch T. Therefore, the inconvenience described above occurs. The power to prevent this.
  • the cutout portion T is formed by cutting the entire circumference of the clad 41 obliquely.
  • the present invention is not limited to this, and at least one tip side of the clad 41 is cut. It is possible to form the notch T.
  • the air floating type information recording / reproducing apparatus in which the recording head is levitated has been described as an example.
  • the disk and slider may be in contact. That is, the recording head according to the present invention may be a contact slider type head. Even in this case, the same effect can be obtained.
  • the recording head of the present invention it is possible to generate spot light by efficiently condensing a light beam, and to improve the writing reliability. In addition, it is possible to reduce the size and thickness by using force S.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

A recording head (2) is provided with a slider (20); a recording element (21), which is fixed on a side surface on the flow out end side of the slider, and has a main magnetic pole (32) and an auxiliary magnetic pole (30) for generating a recording magnetic field; and a spot light generating element (22). The spot light generating element is provided with a core (40) having a reflection surface (40a) for reflecting a luminous flux (L), which is introduced from one end side, to the other end side in a direction different from the introducing direction, and a luminous flux collecting section (40b) for generating spot light (R) by propagating the reflected luminous flux toward the other end side while collecting the reflected luminous flux; and a clad (41) for confining the core inside. The spot light generating element is fixed adjacent to the recording element with the other end side facing to the magnetic recoding medium. The recording head is also provided with a luminous flux introducing means (4), which is arranged in parallel to the slider and introduces the luminous flux into the core from the one end side. The luminous flux collecting section generates spot light in the vicinity of the main magnetic pole.

Description

明 細 書  Specification
記録ヘッド及び情報記録再生装置  Recording head and information recording / reproducing apparatus
技術分野  Technical field
[0001] 本発明は、光を集光したスポット光を利用して磁気記録媒体に各種の情報を記録 する記録ヘッド及び該記録ヘッドを有する情報記録再生装置に関するものである。 背景技術  [0001] The present invention relates to a recording head for recording various information on a magnetic recording medium using spot light obtained by condensing light, and an information recording / reproducing apparatus having the recording head. Background art
[0002] 近年、コンピュータ機器におけるハードディスク等の容量増加に伴い、単一記録面 内における情報の記録密度が増加している。例えば、磁気ディスクの単位面積当たり の記録容量を多くするためには、面記録密度を高くする必要がある。ところ力 記録 密度が高くなるにつれて、記録媒体上で 1ビット当たりの占める記録面積が小さくなつ ている。このビットサイズが小さくなると、 1ビットの情報が持つエネルギー力 室温の 熱エネルギーに近くなり、記録した情報が熱揺らぎ等のために反転したり、消えてし まったりする等の熱減磁の問題が生じてしまう。  In recent years, the recording density of information within a single recording surface has increased with an increase in the capacity of hard disks and the like in computer equipment. For example, in order to increase the recording capacity per unit area of the magnetic disk, it is necessary to increase the surface recording density. However, as the force recording density increases, the recording area occupied by one bit on the recording medium decreases. When this bit size is reduced, the energy power of 1-bit information is close to the thermal energy at room temperature, and the recorded demagnetization problem may be reversed or lost due to thermal fluctuations. It will occur.
[0003] 一般的に用いられてきた面内記録方式では、磁化の方向が記録媒体の面内方向 に向くように磁気を記録する方式である力 この方式では上述した熱減磁による記録 情報の消失等が起こり易い。そこで、このような不具合を解消するために、記録媒体 に対して垂直な方向に磁化信号を記録する垂直記録方式に移行しつつある。この方 式は、記録媒体に対して、単磁極を近づける原理で磁気情報を記録する方式である 。この方式によれば、記録磁界が記録膜に対してほぼ垂直な方向を向く。垂直な磁 界で記録された情報は、記録膜面内において N極と S極とがループを作り難いため、 エネルギー的に安定を保ち易い。そのため、この垂直記録方式は、面内記録方式に 対して熱減磁に強くなつて!/、る。  In a generally used in-plane recording method, force is a method for recording magnetism so that the direction of magnetization is in the in-plane direction of the recording medium. In this method, the recording information by thermal demagnetization described above is recorded. Disappearance is likely to occur. Therefore, in order to solve such a problem, a shift is being made to a perpendicular recording method in which a magnetization signal is recorded in a direction perpendicular to the recording medium. This method is a method for recording magnetic information on the principle of bringing a single magnetic pole closer to a recording medium. According to this method, the recording magnetic field is directed substantially perpendicular to the recording film. Information recorded in a perpendicular magnetic field is easy to maintain in energy stability because it is difficult for the N and S poles to form a loop in the recording film plane. Therefore, this perpendicular recording method is more resistant to thermal demagnetization than the in-plane recording method!
[0004] しかしながら、近年の記録媒体は、より大量且つ高密度情報の記録再生を行いた い等のニーズを受けて、さらなる高密度化が求められている。そのため、隣り合う磁区 同士の影響や、熱揺らぎを最小限に抑えるために、保磁力の強いものが記録媒体と して採用され始めている。そのため、上述した垂直記録方式であっても、記録媒体に 情報を記録することが困難になっていた。 [0005] そこで、この不具合を解消するために、光を集光したスポット光、若しくは、近接場 光を利用して磁区を局所的に加熱して一時的に保磁力を低下させ、その間に書き込 みを行うハイブリッド磁気記録方式が提供されている。特に、近接場光を利用する場 合には、従来の光学系において限界とされていた光の波長以下となる領域における 光学情報を扱うことが可能となる。よって、従来の光情報記録再生装置等を超える記 録ビットの高密度化を図ることができる。 [0004] However, recent recording media are required to have higher density in response to the need to record and reproduce a larger amount of high-density information. For this reason, in order to minimize the influence of adjacent magnetic domains and thermal fluctuations, those with strong coercive force have begun to be adopted as recording media. Therefore, it has been difficult to record information on a recording medium even with the above-described perpendicular recording method. [0005] Therefore, in order to solve this problem, the magnetic domain is locally heated by using spot light or near-field light that collects the light to temporarily reduce the coercive force, and writing in the meantime. A hybrid magnetic recording method is available. In particular, when using near-field light, it is possible to handle optical information in a region below the wavelength of light, which is a limit in conventional optical systems. Therefore, it is possible to increase the recording bit density exceeding that of the conventional optical information recording / reproducing apparatus.
[0006] 上述したハイブリッド磁気記録方式による記録ヘッドとしては、各種のものが提供さ れているが、その 1つとして、近接場光を利用して加熱を行う近接場光ヘッドが知られ ている(例えば、特開 2004— 158067号及び特開 2005— 4901号参照)。  [0006] Various types of recording heads are provided as the above-described hybrid magnetic recording system, and one of them is a near-field optical head that performs heating using near-field light. (For example, refer to JP 2004-158067 and JP 2005-4901).
[0007] この近接場光ヘッドは、主に主磁極と、補助磁極と、螺旋状の導体パターンが絶縁 体の内部に形成されたコイル巻線と、照射されたレーザ光から近接場光を発生させ る金属散乱体と、金属散乱体に向けてレーザ光を照射する平面レーザ光源と、照射 されたレーザ光を集束させるレンズとを備えている。これら各構成品は、ビームの先 端に固定されたスライダの側面に取り付けられている。  [0007] This near-field optical head generates near-field light mainly from a main magnetic pole, an auxiliary magnetic pole, a coil winding in which a spiral conductor pattern is formed inside an insulator, and irradiated laser light. A metal scatterer to be irradiated, a planar laser light source for irradiating the metal scatterer with laser light, and a lens for focusing the irradiated laser light. Each of these components is attached to the side surface of a slider fixed to the front end of the beam.
[0008] 主磁極は、一端側が記録媒体に対向した面となっており、他端側が補助磁極に接 続されている。つまり、主磁極及び補助磁極は、 1本の磁極(単磁極)を垂直方向に 配置した単磁極型垂直ヘッドを構成している。また、コイル巻線は、磁極と補助磁極 との間を一部が通過するように補助磁極に固定されている。これら磁極、補助磁極及 びコイル巻線は、全体として電磁石を構成して!/、る。  [0008] The main magnetic pole has a surface opposite to the recording medium at one end and is connected to the auxiliary magnetic pole at the other end. In other words, the main magnetic pole and the auxiliary magnetic pole constitute a single magnetic pole type vertical head in which one magnetic pole (single magnetic pole) is arranged in the vertical direction. The coil winding is fixed to the auxiliary magnetic pole so that part of the coil winding passes between the magnetic pole and the auxiliary magnetic pole. These magnetic poles, auxiliary magnetic poles, and coil windings constitute an electromagnet as a whole!
[0009] 主磁極の先端には、金等からなる上記金属散乱体が取り付けられて!/、る。また、金 属散乱体から離間した位置に上記平面レーザ光源が配置されると共に、該平面レー ザ光源と金属散乱体との間に上記レンズが配置されている。 [0009] The metal scatterer made of gold or the like is attached to the tip of the main pole! The planar laser light source is disposed at a position separated from the metal scatterer, and the lens is disposed between the planar laser light source and the metal scatterer.
[0010] 上述した各構成品は、スライダの側面側から、補助磁極、コイル巻線、主磁極、金 属散乱体、レンズ、平面レーザ光源の順に取り付けられている。 [0010] Each component described above is attached in the order of an auxiliary magnetic pole, a coil winding, a main magnetic pole, a metal scatterer, a lens, and a planar laser light source from the side surface side of the slider.
[0011] このように構成された近接場光ヘッドを利用する場合には、近接場光を発生させる と同時に記録磁界を印加することで、記録媒体に各種の情報を記録して!/、る。  [0011] When the near-field light head configured as described above is used, various information can be recorded on the recording medium by generating a near-field light and simultaneously applying a recording magnetic field! .
[0012] 即ち、平面レーザ光源からレーザ光を照射させる。このレーザ光は、レンズによって 集光され、金属散乱体に照射される。すると金属散乱体は、内部の自由電子がレー ザ光の電場によって一様に振動させられるのでプラズモンが励起されて先端部分に 近接場光を発生させる。その結果、記録媒体の磁気記録層は、近接場光によって局 所的に加熱され、一時的に保磁力が低下する。 That is, laser light is irradiated from a planar laser light source. This laser light is collected by a lens and irradiated onto a metal scatterer. Then, the metal scatterer has free electrons inside. Because it is oscillated uniformly by the electric field of the light, plasmons are excited to generate near-field light at the tip. As a result, the magnetic recording layer of the recording medium is locally heated by near-field light, and the coercive force temporarily decreases.
[0013] また、上記レーザ光の照射と同時に、コイル巻線の導体パターンに駆動電流を供 給することで、主磁極に近接する記録媒体の磁気記録層に対して記録磁界を局所 的に印加する。これにより、保磁力が一時的に低下した磁気記録層に各種の情報を 記録すること力 Sできる。つまり、近接場光と磁場との協働により、記録媒体への記録を fiうこと力 Sでさる。 In addition, simultaneously with the laser light irradiation, a recording current is locally applied to the magnetic recording layer of the recording medium near the main pole by supplying a driving current to the conductor pattern of the coil winding. To do. As a result, it is possible to record various information on the magnetic recording layer whose coercive force is temporarily reduced. In other words, with the cooperation of near-field light and magnetic field, the recording force on the recording medium is controlled by the force S.
特許文献 1:特開 2004 _ 158067号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004_158067
特許文献 2 :特開 2005— 4901号公報  Patent Document 2: JP 2005-4901
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] しかしながら、上述した従来の近接場光ヘッドには、まだ以下の課題が残されてい た。 However, the above-described conventional near-field optical head still has the following problems.
[0015] 即ち、情報の記録に不可欠な近接場光を発生させる際に、平面レーザ光源からレ ンズを介して金属散乱体にレーザ光を集光させながら照射させている。ところ力 主 磁極の先端に金属散乱体が取り付けられて!/、るので、平面レーザ光源からレーザ光 の光軸を斜めにして照射せざるを得なかった。よって、レンズ位置をうまく位置調整し たとしても、レーザ光を金属散乱体に効率良く集光させることが難しいものであった。 特に、記録媒体への干渉を考慮しながらレンズを配置する必要があるので半円形状 のレンズを使用している力 S、このことも集光効率の低下を招く要因であった。  That is, when generating near-field light that is indispensable for recording information, the laser light is irradiated from the planar laser light source to the metal scatterer through the lens while being condensed. However, because a metal scatterer is attached to the tip of the force main pole! /, It was inevitable to irradiate the optical axis of the laser beam obliquely from a flat laser light source. Therefore, even if the lens position is adjusted well, it is difficult to efficiently focus the laser beam on the metal scatterer. In particular, since it is necessary to place the lens in consideration of interference with the recording medium, the force S using a semicircular lens is also a factor that causes a reduction in light collection efficiency.
[0016] その結果、効率良く近接場光を発生させることができず、情報の書き込みを行うこと ができない場合があった。  As a result, near-field light cannot be generated efficiently and information cannot be written.
[0017] また、レンズを金属散乱体から離間した位置に配置する必要があるので、ヘッドの サイズが大きくなつてしまい、コンパクトに構成することができなかった。しかも、レンズ 位置と金属散乱体の位置とを考慮しながら平面レーザ光源を配置する必要があるの で、容易に設置することができるものではなかった。 [0017] Further, since it is necessary to dispose the lens at a position separated from the metal scatterer, the size of the head is increased, and the compact configuration cannot be achieved. In addition, since it is necessary to arrange the planar laser light source while taking into account the lens position and the position of the metal scatterer, it has not been possible to install it easily.
課題を解決するための手段 [0018] 本発明は、このような事情に考慮してなされたもので、その目的は、光束を効率良く 集光させて書き込みの信頼性を向上することができると共に、コンパクトでし力、も薄型 化を図ることができる記録ヘッド、及び該記録ヘッドを有する情報記録再生装置を提 供することである。 Means for solving the problem [0018] The present invention has been made in view of such circumstances, and its purpose is to efficiently concentrate the luminous flux to improve the writing reliability, and to reduce the size and power. It is an object to provide a recording head that can be reduced in thickness and an information recording / reproducing apparatus having the recording head.
[0019] 本発明は、前記課題を解決するために以下の手段を提供する。  The present invention provides the following means in order to solve the above problems.
[0020] 本発明に係る記録ヘッドは、光束を集光して生成したスポット光により一定方向に 回転する磁気記録媒体を加熱すると共に、磁気記録媒体に対して垂直方向の記録 磁界を与えることで磁化反転を生じさせ、情報を記録させる記録ヘッドであって、前 記磁気記録媒体の表面に対向配置されたスライダと、該スライダの先端面に固定さ れ、前記記録磁界を発生させる主磁極及び補助磁極を有する記録素子と、一端側 から導入された前記光束を導入方向とは異なる方向で他端側に反射させる反射面と 、前記一端側から前記他端側に向力、う方向に直交する断面積が漸次減少するように 絞り成形され、反射された前記光束を集光させながら他端側に向けて伝播させて前 記スポット光を生成すると共に、該スポット光を他端側から外部に向けて発する光束 集光部とを有するコアと、該コアよりも屈折率が低い材料で形成され、コアの他端側 を外部に露出させた状態でコアの側面に密着してコアを内部に閉じ込めるクラッドと を有し、前記他端側を前記磁気記録媒体側に向けた状態で前記記録素子に隣接し て固定されたスポット光生成素子と、前記スライダに対して平行に配置された状態で 該スライダに固定され、前記一端側から前記コア内に前記光束を導入させる光束導 入手段とを備え、前記光束集光部が、前記主磁極の近傍に前記スポット光を発生さ せることを特徴とするものである。  The recording head according to the present invention heats a magnetic recording medium rotating in a certain direction by spot light generated by condensing a light beam, and applies a perpendicular recording magnetic field to the magnetic recording medium. A recording head that causes magnetization reversal and records information, a slider disposed opposite to the surface of the magnetic recording medium, a main magnetic pole that is fixed to the front end surface of the slider and generates the recording magnetic field, and A recording element having an auxiliary magnetic pole; a reflecting surface for reflecting the light beam introduced from one end side to the other end side in a direction different from the introduction direction; a direction force from the one end side to the other end side; The cross-sectional area to be gradually drawn is reduced, and the reflected light flux is condensed and propagated toward the other end side to generate the spot light, and the spot light is externally transmitted from the other end side. Towards A clad that is made of a material having a light condensing part and a material having a refractive index lower than that of the core, and that tightly adheres to the side surface of the core with the other end of the core exposed to the outside, thereby confining the core inside. A spot light generating element fixed adjacent to the recording element with the other end side facing the magnetic recording medium side, and the slider in a state of being arranged in parallel to the slider And a light beam introducing means for introducing the light beam into the core from the one end side, and the light beam condensing unit generates the spot light in the vicinity of the main magnetic pole. Is.
[0021] この発明に係る記録ヘッドにおいては、スポット光生成素子で発生したスポット光と 、記録素子で発生した記録磁界とを協働させたハイブリッド磁気記録方式により、回 転する磁気記録媒体に対して情報の記録を行うことができる。  In the recording head according to the present invention, a magnetic recording medium that rotates by a hybrid magnetic recording method in which the spot light generated by the spot light generating element cooperates with the recording magnetic field generated by the recording element. Information can be recorded.
[0022] まず、スライダは、磁気記録媒体の表面に対向した状態で配置されている。そして、 このスライダの先端面に主磁極及び補助磁極を有する記録素子が固定されている。 さらにこの記録素子に隣接してスポット光生成素子が固定されている。つまり、スライ ダの先端面には、スライダ側から順に記録素子、スポット光生成素子が配置されてい る。またスポット光生成素子は、スポット光が発生する他端側が磁気記録媒体側に向 けた状態で固定されている。よって、光束が導入される一端側が、磁気記録媒体から 離間した位置に配置されている。そして、この一端側にスライダに固定された光束導 入手段が接続されている。 [0022] First, the slider is arranged in a state of facing the surface of the magnetic recording medium. A recording element having a main magnetic pole and an auxiliary magnetic pole is fixed to the end face of the slider. Further, a spot light generating element is fixed adjacent to the recording element. In other words, a recording element and a spot light generating element are arranged in this order from the slider side on the tip of the slider. The The spot light generating element is fixed in a state where the other end side where the spot light is generated faces the magnetic recording medium side. Therefore, one end side where the light beam is introduced is arranged at a position separated from the magnetic recording medium. A light beam introducing means fixed to the slider is connected to the one end side.
[0023] ここで記録を行う場合には、光束導入手段から光束をスポット光生成素子のコア内 に導入する。この際、スライダに対して平行な方向に光束を導入する。すると、導入さ れた光束は、反射面で反射されて導入方向とは異なる方向に向きが変化する。即ち 、反射面により向きが略 90度曲げられた後、磁気記録媒体側に位置する他端側に 向かう。そして光束は、他端側に向かって光束集光部を伝播する。  When recording is performed here, the light beam is introduced from the light beam introducing means into the core of the spot light generating element. At this time, the light flux is introduced in a direction parallel to the slider. Then, the introduced light beam is reflected by the reflecting surface and changes its direction in a direction different from the introduction direction. That is, after the direction is bent by approximately 90 degrees by the reflecting surface, the direction is toward the other end located on the magnetic recording medium side. The light beam propagates through the light beam condensing unit toward the other end side.
[0024] この際、光束集光部は、一端側から他端側に向力、う長手方向に直交する断面積が 漸次減少するように絞り成形されている。そのため、光束はこの光束集光部を通過す る際に、側面で反射を繰り返しながら徐々に集光されてコアの内部を伝播していく。 特に、コアの側面にはクラッドが密着しているので、コアの外部に光が漏れることない 。よって、導入された光束を無駄にすることなく絞りながら他端側に伝播させることが できる。  [0024] At this time, the light beam condensing part is drawn so that the direction force from one end side to the other end side and the cross-sectional area perpendicular to the longitudinal direction gradually decrease. Therefore, when the light beam passes through the light beam condensing portion, it is gradually condensed while repeating reflection on the side surface and propagates inside the core. In particular, since the clad is in close contact with the side surface of the core, light does not leak outside the core. Therefore, the introduced light beam can be propagated to the other end side while being stopped without wasting it.
[0025] そのため、光束は光束集光部の他端側に達した時点で、絞りこまれてスポットサイ ズが小さくなる。つまり、光束集光部は、導入された光束のスポットサイズを小さいサイ ズに絞りこむことができる。これにより、スポット光を生成することができ、他端側から外 に発することカでさる。  [0025] Therefore, when the light beam reaches the other end side of the light beam condensing part, the light beam is narrowed down and the spot size is reduced. In other words, the light beam condensing unit can narrow the spot size of the introduced light beam to a small size. As a result, spot light can be generated and emitted from the other end side.
[0026] すると磁気記録媒体は、このスポット光によって局所的に加熱されて一時的に保磁 力が低下する。特に光束集光部は、スポット光を主磁極の近傍に発生させるので、主 磁極にできるだけ近い位置で磁気記録媒体の保磁力を低下させることができる。  Then, the magnetic recording medium is locally heated by the spot light, and the coercive force temporarily decreases. In particular, since the light beam condensing unit generates spot light in the vicinity of the main magnetic pole, the coercive force of the magnetic recording medium can be reduced as close as possible to the main magnetic pole.
[0027] 一方、上述した光束の導入と同時に、記録素子を作動させて主磁極と補助磁極と の間に記録磁界を発生させる。これにより、スポット光によって保磁力が低下した磁気 記録媒体の局所的な位置に対してピンポイントで記録磁界を発生させることができる 。なお、この記録磁界は、記録する情報に応じて向きが変化する。そして、磁気記録 媒体は、記録磁界を受けると該記録磁界の方向に応じて磁化の方向が垂直方向に 変化する。その結果、情報の記録を行うことができる。 [0028] つまり、スポット光と記録磁界とを協働させたハイブリッド磁気記録方式により情報の 記録を行うこと力 Sできる。また、垂直磁気記録方式であるので、熱揺らぎの現象を受 け難く、書き込みの信頼性が高い安定した記録を行うことができる。 On the other hand, simultaneously with the introduction of the light beam described above, the recording element is operated to generate a recording magnetic field between the main magnetic pole and the auxiliary magnetic pole. As a result, a recording magnetic field can be generated at a pinpoint with respect to a local position of the magnetic recording medium whose coercive force has been reduced by the spot light. Note that the direction of the recording magnetic field changes according to the information to be recorded. When the magnetic recording medium receives a recording magnetic field, the magnetization direction changes in the vertical direction in accordance with the direction of the recording magnetic field. As a result, information can be recorded. [0028] That is, it is possible to record information by the hybrid magnetic recording method in which the spot light and the recording magnetic field cooperate. Further, since it is a perpendicular magnetic recording system, it is difficult to receive the phenomenon of thermal fluctuation, and stable recording with high writing reliability can be performed.
[0029] 特に、光束を反射面で反射した後、スライダの上面側から磁気記録媒体に向かう他 端側に向けて略一直線の光軸に沿って集光させながらスポット光を生成できるので、 従来のように光軸が斜めになることがなぐまた位置調整が困難であったレンズが不 要である。従って、光束を効率良く集光してスポット光を生成することができ、磁気記 録媒体を効率良く加熱することができる。よって、書き込みの信頼性を向上することが できる。  [0029] In particular, since the light beam is reflected by the reflecting surface, the spot light can be generated while being condensed along the substantially straight optical axis from the upper surface side of the slider toward the other end side toward the magnetic recording medium. Thus, there is no need for a lens in which the optical axis is not inclined and the position adjustment is difficult. Accordingly, it is possible to efficiently collect the luminous flux to generate the spot light, and to heat the magnetic recording medium efficiently. Therefore, the writing reliability can be improved.
[0030] しかも、主磁極の近傍で磁気記録媒体の保磁力を低下させることができるので、記 録磁界が局所的に作用する位置に加熱温度のピーク位置を入れることができる。従 つて、より確実に記録を行うことができると共に、高密度記録化を可能することができ  [0030] Moreover, since the coercive force of the magnetic recording medium can be reduced in the vicinity of the main magnetic pole, the peak position of the heating temperature can be set at a position where the recording magnetic field acts locally. Therefore, recording can be performed more reliably and high density recording can be achieved.
[0031] また、光束導入手段を利用して光束を導入する上、コア内を伝播させるので、従来 のように光束を空中伝播させることがない。よって、導光損失を極力低下させることが できる。また、コア及びクラッドでスポット光生成素子を構成できるので、構成の容易 化を図ること力 Sできる。更には、スライダの流出端側の側面に、記録素子、スポット光 生成素子を順に配置しているので、光束導入手段以外の各構成品がスライダの厚み 方向に重なることを極力防止している。従って、コンパクトな設計で薄型化を図ること ができる。しかも、光束導入手段を介して確実に光束を導入できるので、光束を発生 させる光源を容易に配置することができる。 [0031] In addition, since the light flux is introduced using the light flux introducing means and propagates in the core, the light flux is not propagated in the air as in the prior art. Therefore, the light guide loss can be reduced as much as possible. In addition, since the spot light generating element can be configured by the core and the clad, the configuration can be facilitated. Furthermore, since the recording element and the spot light generating element are arranged in this order on the side surface on the outflow end side of the slider, it is possible to prevent as much as possible that each component other than the light flux introducing means overlaps in the thickness direction of the slider. Therefore, it is possible to reduce the thickness with a compact design. In addition, since the light beam can be reliably introduced through the light beam introducing means, the light source that generates the light beam can be easily arranged.
[0032] 上述したように、本発明に係る記録ヘッドによれば、光束を効率良く集光させてスポ ット光を生成することができ、書き込みの信頼性を向上することができる。また、コンパ タト化及び薄型化を図ることができる。  As described above, according to the recording head according to the present invention, spot light can be generated by efficiently condensing the luminous flux, and the writing reliability can be improved. In addition, it can be made compact and thin.
[0033] また、本発明に係る記録ヘッドは、上記本発明の記録ヘッドにお!/ヽて、前記クラッド 力 S、前記コアの一端側を外部に露出させた状態で形成されていることを特徴とするも のである。  [0033] Further, the recording head according to the present invention is formed with the cladding force S and one end side of the core exposed to the outside with respect to the recording head of the present invention. It is a feature.
[0034] この発明に係る記録ヘッドにおいては、クラッドがコアの一端側を外部に露出させ た状態で形成されてレ、るので、クラッドを介さずに直接コアに光束を導入することがで きる。そのため、さらに効率良くスポット光を生成することができ、磁気記録媒体をより カロ熱すること力でさる。 In the recording head according to the present invention, the cladding exposes one end side of the core to the outside. Therefore, the light beam can be directly introduced into the core without using the clad. As a result, the spot light can be generated more efficiently, and the magnetic recording medium can be heated with more power.
[0035] また、本発明に係る記録ヘッドは、上記本発明の記録ヘッドにお!/、て、前記光束集 光部には、前記スポット光から近接場光を発生させて該近接場光を前記他端側から 外部に発する近接場光発生素子が設けられていることを特徴とするものである。  [0035] Further, the recording head according to the present invention is the same as the recording head according to the present invention, and the near-field light is generated from the spot light to the luminous flux collecting section. A near-field light generating element emitting from the other end side to the outside is provided.
[0036] この発明に係る記録ヘッドにおいては、光束集光部に近接場光発生素子が設けら れているので、光束を集光してスポット光にした後、さらにスポットサイズを小さくして 近接場光とすること力できる。従って、磁気記録媒体をさらに微小な領域で加熱する ことができ、さらなる高密度記録ィ匕を図ること力 Sできる。  In the recording head according to the present invention, since the near-field light generating element is provided in the light beam condensing part, the light beam is condensed into spot light, and then the spot size is further reduced to approach the light beam. Can be used as field light. Accordingly, it is possible to heat the magnetic recording medium in a further minute area, and to achieve a higher density recording capacity.
[0037] また、本発明に係る記録ヘッドは、上記本発明のいずれかの記録ヘッドにおいて、 前記磁気記録媒体から漏れ出た磁界の大きさに応じた電気信号を出力する再生素 子を備えてレヽることを特 ί毁とするものである。  [0037] In addition, a recording head according to the present invention includes a reproducing element that outputs an electric signal corresponding to the magnitude of a magnetic field leaked from the magnetic recording medium in any of the recording heads of the present invention. Special attention is given to recording.
[0038] この発明に係る記録ヘッドにおいては、再生素子が、磁気記録媒体から漏れ出た 磁界の大きさに応じた電気信号を出力する。そのため、再生素子から出力された電 気信号から、磁気記録媒体に記録されて!/、る情報の再生を行うことができる。  In the recording head according to the present invention, the reproducing element outputs an electrical signal corresponding to the magnitude of the magnetic field leaked from the magnetic recording medium. Therefore, the information recorded on the magnetic recording medium can be reproduced from the electric signal output from the reproducing element.
[0039] また、本発明に係る記録ヘッドは、上記本発明の記録ヘッドにお!/、て、前記再生素 子力 前記スライダと前記記録素子との間に設けられていることを特徴とするものであ  [0039] Further, a recording head according to the present invention is characterized in that the reproducing element force is provided between the slider and the recording element in the recording head of the present invention. Stuff
[0040] この発明に係る記録ヘッドにおいては、スライダと記録素子との間に再生素子が設 けられているので、スライダの先端面側から順に再生素子、記録素子、スポット光生 成素子が並んだ状態になる。そのため、磁気記録媒体の表面に対向配置されるスラ イダが、先端面を磁気記録媒体側に向けた状態で斜めになつたとしても、記録素子 及びスポット光生成素子をできるだけ磁気記録媒体に近づけることができる。従って 、より効率良く磁気記録媒体に対してスポット光及び記録磁界を作用させることがで き、より高密度な記録を行うことができる。 [0040] In the recording head according to the present invention, since the reproducing element is provided between the slider and the recording element, the reproducing element, the recording element, and the spot light generating element are arranged in this order from the leading end side of the slider. It becomes a state. For this reason, even if the slider disposed opposite to the surface of the magnetic recording medium is inclined with the front end faced toward the magnetic recording medium, the recording element and the spot light generating element are brought as close to the magnetic recording medium as possible. Can do. Therefore, the spot light and the recording magnetic field can be applied to the magnetic recording medium more efficiently, and higher density recording can be performed.
[0041] また、本発明に係る記録ヘッドは、上記本発明の記録ヘッドにお!/、て、前記再生素 子力 前記クラッドに埋め込まれた状態で設けられていることを特徴とするものである [0042] この発明に係る記録ヘッドにおいては、再生素子がコアを内部に閉じ込めているク ラッドに埋め込まれているので、再生素子の厚みをクラッドで吸収することができる。 そのため、磁気記録媒体の表面に対向配置されるスライダが、先端面を磁気記録媒 体側に向けた状態で斜めになつたとしても、記録素子及びスポット光生成素子をでき るだけ磁気記録媒体に近づけることができる。従って、より効率良く磁気記録媒体に 対してスポット光及び記録磁界を作用させることができ、より高密度な記録を行うこと ができる。 [0041] In addition, a recording head according to the present invention is characterized in that the recording head according to the present invention is provided in a state embedded in the reproducing element force and the clad. is there [0042] In the recording head according to the present invention, since the reproducing element is embedded in the clad in which the core is confined, the thickness of the reproducing element can be absorbed by the clad. Therefore, even if the slider arranged opposite to the surface of the magnetic recording medium is inclined with the leading end faced toward the magnetic recording medium, the recording element and the spot light generating element are as close to the magnetic recording medium as possible. be able to. Therefore, the spot light and the recording magnetic field can be more efficiently applied to the magnetic recording medium, and higher density recording can be performed.
[0043] また、本発明に係る情報記録再生装置は、上記本発明の!/、ずれかの記録ヘッドと 、前記磁気記録媒体の表面に平行な方向に移動可能とされ、該磁気記録媒体の表 面に平行で且つ互いに直交する 2軸回りに回動自在な状態で、前記記録ヘッドを先 端側で支持するビームと、前記光束導入手段に対して前記光束を入射させる光源と 、前記ビームの基端側を支持すると共に、該ビームを前記磁気記録媒体の表面に平 行な方向に向けて移動させるァクチユエータと、前記磁気記録媒体を前記一定方向 に回転させる回転駆動部と、前記記録素子及び前記光源の作動を制御する制御部 とを備えてレヽることを特 ί毁とするものである。  [0043] In addition, the information recording / reproducing apparatus according to the present invention is capable of moving in the direction parallel to the surface of the magnetic recording medium, the recording head of! / A beam that supports the recording head on the leading end side in a state of being rotatable around two axes that are parallel to the surface and orthogonal to each other; a light source that causes the light beam to enter the light beam introducing means; and the beam An actuator that supports the base end side of the magnetic recording medium and moves the beam in a direction parallel to the surface of the magnetic recording medium, a rotation drive unit that rotates the magnetic recording medium in the fixed direction, and the recording element And a control unit for controlling the operation of the light source.
[0044] この発明に係る情報記録再生装置にお!/、ては、回転駆動部により磁気記録媒体を 一定方向に回転させた後、ァクチユエータによりビームを移動させて記録ヘッドをス キャンさせる。そして、記録ヘッドを磁気記録媒体上の所望する位置に配置させる。こ の際、記録ヘッドは、磁気記録媒体の表面に平行で且つ互いに直交する 2軸回りに 回動自在な状態、即ち、 2軸を中心として捻れることができるようにビームに支持され ている。よって、磁気記録媒体にうねりが生じたとしても、うねりに起因する風圧変化、 又は、直接伝わってくるうねりの変化を捩じりによって吸収でき、記録ヘッドの姿勢を 安定にすることができる。  In the information recording / reproducing apparatus according to the present invention, after rotating the magnetic recording medium in a fixed direction by the rotation drive unit, the recording head is scanned by moving the beam by the actuator. Then, the recording head is disposed at a desired position on the magnetic recording medium. At this time, the recording head is supported by the beam so as to be rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other, that is, twistable about the two axes. . Therefore, even if waviness occurs in the magnetic recording medium, changes in wind pressure due to waviness or waviness directly transmitted can be absorbed by twisting, and the posture of the recording head can be stabilized.
[0045] その後、制御部は記録素子及び光源を作動させる。これにより記録ヘッドは、スポッ ト光と記録磁界とを協働させて、磁気記録媒体に情報を記録することができる。特に 、上述した記録ヘッドを備えているので、書き込みの信頼性が高ぐ高密度記録化に 対応することができ、高品質化を図ることができる。また、同時にコンパクト化及び薄 型ィ匕を図ること力 Sでさる。 Thereafter, the control unit operates the recording element and the light source. Accordingly, the recording head can record information on the magnetic recording medium by causing the spot light and the recording magnetic field to cooperate with each other. In particular, since the recording head described above is provided, it is possible to cope with high-density recording with high writing reliability, and high quality can be achieved. At the same time, compact and thin Use the force S to create a mold.
図面の簡単な説明 Brief Description of Drawings
園 1]本発明に係る記録ヘッドを有する情報記録再生装置の第 1実施形態を示す構 成図である。 FIG. 1 is a block diagram showing a first embodiment of an information recording / reproducing apparatus having a recording head according to the present invention.
園 2]図 1に示す記録ヘッドの拡大断面図である。 2] An enlarged sectional view of the recording head shown in FIG.
園 3]図 2に示す記録ヘッドを、ディスク面側から見た図である。 3] FIG. 3 is a view of the recording head shown in FIG. 2 as viewed from the disk surface side.
園 4]図 2に示す記録ヘッドの流出端側の側面を拡大した断面図であり、スポット光生 成素子及び記録素子の構成を示すと共に、記録を行って!/、る際のスポット光と磁界と の関係を示した図である。 4] is an enlarged cross-sectional view of the side surface on the outflow end side of the recording head shown in FIG. 2, showing the configuration of the spot light generating element and the recording element, and performing recording! / It is the figure which showed the relationship between and.
[図 5]図 4に示すスポット光生成素子のコアを矢印 A方向から見た図である。  FIG. 5 is a view of the core of the spot light generating element shown in FIG. 4 as viewed from the direction of arrow A.
園 6]図 4に示すスポット光生成素子を端面側から見た図である。 6] FIG. 6 is a view of the spot light generating element shown in FIG. 4 as viewed from the end face side.
園 7]本発明に係る記録ヘッドの第 2実施形態を示す図であって、近接場光を発生さ せる近接場光発生素子を備えたスポット光生成素子及び記録素子の構成を示すと 共に、記録を行っている際の近接場光と磁界との関係を示した図である。 7] A diagram showing a recording head according to a second embodiment of the present invention, showing a configuration of a spot light generating element and a recording element provided with a near-field light generating element for generating near-field light, and It is the figure which showed the relationship between the near field light at the time of recording, and a magnetic field.
[図 8]図 7に示すスポット光生成素子のコアを矢印 B方向から見た図である。  FIG. 8 is a view of the core of the spot light generating element shown in FIG. 7 as viewed from the direction of arrow B.
園 9]図 8に示すコアを端面側から見た図であって、近接場光発生素子の構成を示し た図である。 9] FIG. 9 is a view of the core shown in FIG. 8 as viewed from the end surface side, and shows the configuration of the near-field light generating element.
[図 10]図 9に示す近接場光発生素子の変形例を示す図であって、三角形状に形成 された微小開口を有する近接場光発生素子を示す図である。  10 is a view showing a modification of the near-field light generating element shown in FIG. 9, and is a view showing a near-field light generating element having a minute aperture formed in a triangular shape.
園 11]図 9に示す近接場光発生素子の変形例を示す図であって、微小な隙間を空け て三角状の突起が対向するように形成された微小開口を有する近接場光発生素子 を示す図である。 11] A diagram showing a modification of the near-field light generating element shown in FIG. 9, wherein a near-field light generating element having a minute opening formed so that triangular protrusions are opposed to each other with a minute gap therebetween. FIG.
園 12]図 9に示す近接場光発生素子の変形例を示す図であって、金属散乱体が略 中心に形成された微小開口を有する近接場光発生素子を示す図である。 12] FIG. 10 is a view showing a modification of the near-field light generating element shown in FIG. 9 and showing a near-field light generating element having a minute aperture in which a metal scatterer is formed substantially at the center.
園 13]本発明に係る記録ヘッドの第 3実施形態を示す断面図である。 13] A cross-sectional view showing a third embodiment of a recording head according to the present invention.
園 14]図 13に示す記録ヘッドが傾いた状態でディスク上を浮上している状態を示す 図である。 14] FIG. 14 is a diagram showing a state where the recording head shown in FIG. 13 is flying over the disk in a tilted state.
園 15]本発明に係る記録ヘッドの第 4実施形態を示す断面図である。 [図 16]本発明に係る記録ヘッドの第 5実施形態を示す断面図である。 15] A sectional view showing a recording head according to a fourth embodiment of the invention. FIG. 16 is a cross-sectional view showing a fifth embodiment of a recording head according to the invention.
[図 17]本発明に係る記録ヘッドの第 6実施形態を示す断面図である。  FIG. 17 is a sectional view showing a sixth embodiment of a recording head according to the invention.
[図 18]図 17に示すスポット光生成素子のコアを矢印 A方向から見た図である。  FIG. 18 is a view of the core of the spot light generating element shown in FIG. 17 as viewed from the direction of arrow A.
[図 19]本発明に係る記録ヘッドの第 7実施形態を示す断面図である。  FIG. 19 is a sectional view showing a seventh embodiment of the recording head according to the invention.
[図 20]図 19に示すスポット光生成素子のコアを矢印 A方向から見た図である。  20 is a view of the core of the spot light generating element shown in FIG. 19 as viewed from the direction of arrow A.
[図 21]図 19に示す記録ヘッドの変形例を示す図であって、再生素子がスライダと記 録素子との間に設けられて!/、る記録ヘッドを示す図である。  FIG. 21 is a diagram showing a modification of the recording head shown in FIG. 19, and is a diagram showing a recording head in which a reproducing element is provided between the slider and the recording element.
[図 22]図 19に示す記録ヘッドの変形例を示す図であって、コアが滑らかに湾曲して いるスポットサイズ変換器を有する記録ヘッドを示す図である。  FIG. 22 is a diagram showing a modification of the recording head shown in FIG. 19, and is a diagram showing a recording head having a spot size converter whose core is smoothly curved.
[図 23]本発明に係る記録ヘッドの第 8実施形態を示す断面図である。  FIG. 23 is a sectional view showing an eighth embodiment of a recording head according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] (第 1実施形態)  [0047] (First embodiment)
以下、本発明に係る記録ヘッド及び情報記録再生装置の第 1実施形態を、図 1から 図 6を参照して説明する。なお、本実施形態の情報記録再生装置 1は、垂直記録層 d 2を有するディスク (磁気記録媒体) Dに対して、垂直記録方式で書き込みを行う装置 である。また、本実施形態では、ディスク Dが回転する空気の流れを利用して記録へ ッド 2を浮かせた空気浮上タイプを例に挙げて説明する。  Hereinafter, a first embodiment of a recording head and an information recording / reproducing apparatus according to the present invention will be described with reference to FIGS. Note that the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer d 2 by a perpendicular recording method. Further, in the present embodiment, an explanation will be given by taking as an example an air levitation type in which the recording head 2 is floated by utilizing the air flow that the disk D rotates.
[0048] 本実施形態の情報記録再生装置 1は、図 1に示すように、後述するスポットサイズ変 換器 (スポット光生成素子) 22を有する記録ヘッド 2と、ディスク面 (磁気記録媒体の 表面) D1に平行な XY方向に移動可能とされ、ディスク面 D1に平行で且つ互いに直 交する 2軸 (X軸、 Y軸)回りに回動自在な状態で記録ヘッド 2を先端側で支持するビ ーム 3と、光導波路(光束導入手段) 4の基端側から該光導波路 4に対して光束 Lを入 射させる光信号コントローラ(光源) 5と、ビーム 3の基端側を支持すると共に、該ビー ム 3をディスク面 D1に平行な XY方向に向けてスキャン移動させるァクチユエータ 6と 、ディスク Dを一定方向に回転させるスピンドルモータ(回転駆動部) 7と、後述する記 録素子 21及び光信号コントローラ 5の作動を制御する制御部 8と、これら各構成品を 内部に収容するハウジング 9とを備えている。  As shown in FIG. 1, the information recording / reproducing apparatus 1 of the present embodiment includes a recording head 2 having a spot size converter (spot light generation element) 22 described later, and a disk surface (surface of a magnetic recording medium). ) It is movable in the XY direction parallel to D1, and supports the recording head 2 on the tip side while being rotatable around two axes (X axis, Y axis) parallel to the disk surface D1 and perpendicular to each other. Supports the beam 3, the optical signal controller (light source) 5 that makes the light beam L incident on the optical waveguide 4 from the base end side of the optical waveguide (light flux introducing means) 4, and the base end side of the beam 3 In addition, an actuator 6 that scans and moves the beam 3 in the XY directions parallel to the disk surface D1, a spindle motor (rotation drive unit) 7 that rotates the disk D in a fixed direction, a recording element 21 and Control that controls the operation of the optical signal controller 5 8, and a housing 9 that houses the respective components therein.
[0049] ハウジング 9は、アルミニウム等の金属材料により、上面視四角形状に形成されてい ると共に、内側に各構成品を収容する凹部 9aが形成されている。また、このハウジン グ 9には、凹部 9aの開口を塞ぐように図示しない蓋が着脱可能に固定されるようにな つている。 [0049] The housing 9 is formed of a metal material such as aluminum in a square shape in a top view. In addition, a recess 9a for accommodating each component is formed inside. Further, a lid (not shown) is detachably fixed to the housing 9 so as to close the opening of the recess 9a.
[0050] 凹部 9aの略中心には、上記スピンドルモータ 7が取り付けられており、該スピンドル モータ 7に中心孔を嵌め込むことでディスク Dが着脱自在に固定される。凹部 9aの隅 角部には、上記ァクチユエータ 6が取り付けられている。このァクチユエータ 6には、軸 受 10を介してキャリッジ 11が取り付けられており、該キャリッジ 11の先端にビーム 3が 取り付けられている。そして、キャリッジ 11及びビーム 3は、ァクチユエータ 6の駆動に よって共に上記 XY方向に移動可能とされている。  [0050] The spindle motor 7 is attached to the approximate center of the recess 9a, and the disc D is detachably fixed by fitting the center hole into the spindle motor 7. The above-mentioned actuator 6 is attached to the corner of the recess 9a. A carriage 11 is attached to the actuator 6 via a bearing 10, and a beam 3 is attached to the tip of the carriage 11. The carriage 11 and the beam 3 are both movable in the XY directions by driving the actuator 6.
[0051] なお、キャリッジ 11及びビーム 3は、ディスク Dの回転停止時にァクチユエータ 6の 駆動によって、ディスク D上から退避するようになっている。また、記録ヘッド 2とビー ム 3とで、サスペンション 12を構成している。また、光信号コントローラ 5は、ァクチユエ ータ 6に隣接するように凹部 9a内に取り付けられている。そして、このァクチユエータ 6 に隣接して、上記制御部 8が取り付けられて!/、る。  Note that the carriage 11 and the beam 3 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped. The recording head 2 and the beam 3 constitute a suspension 12. The optical signal controller 5 is mounted in the recess 9a so as to be adjacent to the activator 6. Then, the control unit 8 is attached adjacent to the actuator 6! /.
[0052] 上記記録ヘッド 2は、光束 Lを集光して生成したスポット光 Rにより回転するディスク Dを加熱すると共に、ディスク Dに対して垂直方向の記録磁界を与えることで磁化反 転を生じさせ、情報を記録させるものである。  [0052] The recording head 2 heats the rotating disk D by the spot light R generated by condensing the light flux L, and generates a magnetization reversal by applying a perpendicular recording magnetic field to the disk D. Information is recorded.
[0053] この記録ヘッド 2は、図 2及び図 3に示すように、ディスク面 D1から所定距離 Hだけ 浮上した状態でディスク Dに対向配置され、ディスク面 D1に対向する対向面 20を有 するスライダ 20と、該スライダ 20の先端面(以降、流出端側の側面と表現する)に固 定された記録素子 21と、該記録素子 21に隣接して固定されたスポットサイズ変換器 22と、該スポットサイズ変換器 22の後述するコア 40内に光信号コントローラ 5からの 光束 Lを導入する光導波路 4とを備えている。また、本実施形態の記録ヘッド 2は、ス ポットサイズ変換器 22に隣接して固定された再生素子 23を備えている。  [0053] As shown in Figs. 2 and 3, the recording head 2 is disposed to face the disk D in a state of floating by a predetermined distance H from the disk surface D1, and has a facing surface 20 that faces the disk surface D1. A slider 20, a recording element 21 fixed to the tip surface of the slider 20 (hereinafter referred to as a side surface on the outflow end side), a spot size converter 22 fixed adjacent to the recording element 21, An optical waveguide 4 for introducing the light beam L from the optical signal controller 5 is provided in a core 40 (to be described later) of the spot size converter 22. Further, the recording head 2 of the present embodiment includes a reproducing element 23 fixed adjacent to the spot size converter 22.
[0054] 上記スライダ 20は、石英ガラス等の光透過性材料や、 AlTiC (アルチック)等のセラ ミック等によって直方体状に形成されている。このスライダ 20は、対向面 20aをデイス ク D側にした状態で、ジンバル部 24を介してビーム 3の先端にぶら下がるように支持 されている。このジンバル部 24は、 X軸回り及び Y軸回りにのみ変位するように動きが 規制された部品である。これによりスライダ 20は、上述したようにディスク面 D1に平行 で且つ互いに直交する 2軸(X軸、 Y軸)回りに回動自在とされて!/、る。 [0054] The slider 20 is formed in a rectangular parallelepiped shape using a light-transmitting material such as quartz glass or a ceramic such as AlTiC (altic). The slider 20 is supported so as to hang from the tip of the beam 3 via the gimbal portion 24 with the opposing surface 20a facing the disk D. The gimbal portion 24 moves so as to be displaced only around the X axis and around the Y axis. It is a regulated part. As a result, the slider 20 can be rotated around two axes (X axis, Y axis) that are parallel to the disk surface D1 and orthogonal to each other as described above.
[0055] スライダ 20の対向面 20aには、回転するディスク Dによって生じた空気流の粘性か ら、浮上するための圧力を発生させる凸条部 20bが形成されている。本実施形態で は、レール状に並ぶように、長手方向に沿って延びた凸条部 20bを 2つ形成している 場合を例にしている。但し、この場合に限定されるものではなぐスライダ 20をディスク 面 D1から離そうとする正圧とスライダ 20をディスク面 D1に引き付けようとする負圧と を調整して、スライダ 20を最適な状態で浮上させるように設計されていれば、どのよう な凹凸形状でも構わない。なお、この凸条部 20bの表面は ABS (Air Bearing Surface )と呼ばれる面とされている。  [0055] On the facing surface 20a of the slider 20, there is formed a ridge portion 20b that generates pressure for rising due to the viscosity of the airflow generated by the rotating disk D. In the present embodiment, an example is given in which two ridges 20b extending in the longitudinal direction are formed so as to be arranged in a rail shape. However, the slider 20 is not limited to this case. The slider 20 is adjusted to an optimum state by adjusting the positive pressure for separating the slider 20 from the disk surface D1 and the negative pressure for attracting the slider 20 to the disk surface D1. Any irregular shape may be used as long as it is designed to float on the surface. The surface of this ridge portion 20b is a surface called ABS (Air Bearing Surface).
[0056] スライダ 20は、この 2つの凸条部 20bによってディスク面 D1から浮上する力を受け ている。また、ビーム 3は、ディスク面 D1に垂直な Z方向に橈むようになつており、スラ イダ 20の浮上力を吸収している。つまり、スライダ 20は、浮上した際にビーム 3によつ てディスク面 D1側に押さえ付けられる力を受けている。よってスライダ 20は、この両 者の力のバランスによって、上述したようにディスク面 D1から所定距離 H離間した状 態で浮上するようになっている。し力、もスライダ 20は、ジンバル部 24によって X軸回り 及び Y軸回りに回動するようになっているので、常に姿勢が安定した状態で浮上する ようになつている。  [0056] The slider 20 receives a force that rises from the disk surface D1 by the two ridges 20b. In addition, the beam 3 is steeped in the Z direction perpendicular to the disk surface D1, and absorbs the floating force of the slider 20. That is, the slider 20 receives a force pressed by the beam 3 to the disk surface D1 side when it floats. Therefore, the slider 20 floats in a state of being separated from the disk surface D1 by a predetermined distance H as described above due to the balance between the forces of the two. However, since the slider 20 is rotated about the X axis and the Y axis by the gimbal portion 24, the slider 20 always floats in a stable posture.
[0057] なお、ディスク Dの回転に伴って生じる空気流は、スライダ 20の流入端側(ビーム 3 の基端側)から流入した後、 ABSに沿って流れ、スライダ 20の流出端側(ビームの先 端側)から抜けている。  [0057] The air flow generated by the rotation of the disk D flows from the inflow end side of the slider 20 (base end side of the beam 3), then flows along the ABS, and flows out along the outflow end side of the slider 20 (beam From the front edge side).
[0058] 上記記録素子 21は、図 4に示すように、スライダ 20の流出端側の側面に固定され た補助磁極 30と、磁気回路 31を介して補助磁極 30に接続され、ディスク Dに対して 垂直な記録磁界を補助磁極 30との間で発生させる主磁極 32と、磁気回路 31を中心 として該磁気回路 31の周囲を螺旋状に巻回するコイル 33とを備えている。つまり、ス ライダ 20の流出端側から順に、補助磁極 30、磁気回路 31、コイル 33、主磁極 32が 配置されている。  As shown in FIG. 4, the recording element 21 is connected to the auxiliary magnetic pole 30 fixed to the side surface on the outflow end side of the slider 20 and the auxiliary magnetic pole 30 via the magnetic circuit 31, and is connected to the disk D. A main magnetic pole 32 that generates a perpendicular recording magnetic field with the auxiliary magnetic pole 30, and a coil 33 that spirally winds around the magnetic circuit 31 around the magnetic circuit 31. That is, the auxiliary magnetic pole 30, the magnetic circuit 31, the coil 33, and the main magnetic pole 32 are arranged in order from the outflow end side of the slider 20.
[0059] 両磁極 30、 32及び磁気回路 31は、磁束密度が高い高飽和磁束密度(Bs)材料( 例えば、 CoNiFe合金、 CoFe合金等)により形成されている。また、コィノレ 33は、ショ ートしないように、隣り合うコイル線間、磁気回路 31との間、両磁極 30、 32との間に 隙間が空くように配置されており、この状態で絶縁体 34によってモールドされている。 そして、コイル 33は、情報に応じて変調された電流が制御部 8から供給されるように なっている。即ち、磁気回路 31及びコイル 33は、全体として電磁石を構成している。 なお、主磁極 32及び補助磁極 30は、ディスク Dに対向する端面がスライダ 20の AB Sと面一となるように設計されている。 [0059] Both magnetic poles 30, 32 and the magnetic circuit 31 are made of a high saturation magnetic flux density (Bs) material having a high magnetic flux density ( For example, it is formed of a CoNiFe alloy, a CoFe alloy, or the like. In addition, the coil 33 is arranged so that there is a gap between adjacent coil wires, between the magnetic circuit 31 and between the magnetic poles 30 and 32 so as not to be short-circuited. Molded by 34. The coil 33 is supplied with a current modulated in accordance with information from the control unit 8. That is, the magnetic circuit 31 and the coil 33 constitute an electromagnet as a whole. The main magnetic pole 32 and the auxiliary magnetic pole 30 are designed so that the end surfaces facing the disk D are flush with the ABS of the slider 20.
[0060] 上記スポットサイズ変換器 22は、図 4から図 6に示すように、一端側がスライダ 20の 上方側に向くと共に、他端側がディスク D側に向いた状態で、記録素子 21に隣接し て固定されている。より具体的には、主磁極 32に隣接して固定されている。なお、図 5は、後述するコア 40を図 4に示す矢印 A方向から見た図である。また、図 6は、図 5 に示すスポットサイズ変換器 22を端面 40c側から見た図である。  As shown in FIGS. 4 to 6, the spot size converter 22 is adjacent to the recording element 21 with one end side facing the upper side of the slider 20 and the other end side facing the disk D side. Is fixed. More specifically, it is fixed adjacent to the main pole 32. FIG. 5 is a view of a core 40 described later as seen from the direction of arrow A shown in FIG. FIG. 6 is a view of the spot size converter 22 shown in FIG. 5 as viewed from the end face 40c side.
[0061] このスポットサイズ変換器 22は、一端側に導入された光束 Lを導入方向とは異なる 方向で他端側に集光しながら伝播すると共に、スポット光 Rに生成した後に外部に発 する素子であって、多面体のコア 40と、該コア 40を内部に閉じ込めるクラッド 41とか ら構成されており、全体として略板状に形成されている。  [0061] The spot size converter 22 propagates the light beam L introduced to one end side while condensing to the other end side in a direction different from the introduction direction, and generates the spot light R and then emits it to the outside. An element, which is composed of a polyhedral core 40 and a clad 41 for confining the core 40 therein, is formed in a substantially plate shape as a whole.
[0062] 上記コア 40は、反射面 40aと光束集光部 40bとにより一体的に形成されている。反 射面 40aは、一端側から光導波路 4によって導入された光束 Lを導入方向とは異なる 方向に反射させている。本実施形態では、光束 Lの向きが略 90度変わるように反射 させている。  [0062] The core 40 is integrally formed by the reflecting surface 40a and the light beam condensing part 40b. The reflection surface 40a reflects the light beam L introduced from the one end side by the optical waveguide 4 in a direction different from the introduction direction. In the present embodiment, the light beam L is reflected so that the direction of the light beam L changes by approximately 90 degrees.
[0063] また、光束集光部 40bは、一端側から他端側に向かう長手方向(Z方向)に直交す る断面積が漸次減少するように絞り成形された部分であり、反射面 40aによって反射 された光束 Lを集光させながら他端側に向けて伝播させている。つまり光束集光部 4 Obは、導入された光束 Lのスポットサイズを小さいサイズに絞ることができるようになつ ている。  [0063] The light beam condensing unit 40b is a portion formed by drawing so that a cross-sectional area perpendicular to the longitudinal direction (Z direction) from one end side to the other end side is gradually reduced, and is reflected by the reflecting surface 40a. The reflected light beam L is condensed and propagated toward the other end. In other words, the light beam condensing unit 4 Ob can reduce the spot size of the introduced light beam L to a small size.
[0064] なお、本実施形態では、光束集光部 40bが 3つの側面を有するように形成されてお り、そのうちの 1つの側面が主磁極 32に対向するように配置されるようになっている。 よって光束集光部 40bは、図 6に示すように、他端側で外部に露出する端面 40cが 三角形状に形成された面となっている。なお、端面 40c上で確保できる最大直線長さ L1が、約 1 mとなるサイズに設計されている。これにより、光束 Lのスポットサイズを 最大直線長さ L1と同程度の大きさ、即ち、直径を約 1 m程度に絞ることができ、こ のサイズのスポット光 Rとして端面 40cから外部に発することができる。またこの端面 4 Ocは、スライダ 20の ABSと面一となるように設計されている。 [0064] In the present embodiment, the light flux condensing part 40b is formed to have three side surfaces, and one of the side surfaces is arranged to face the main magnetic pole 32. Yes. Therefore, as shown in FIG. 6, the light beam condensing part 40b has an end face 40c exposed to the outside on the other end side. The surface is formed in a triangular shape. The maximum linear length L1 that can be secured on the end face 40c is designed to be about 1 m. As a result, the spot size of the light beam L can be reduced to the same size as the maximum linear length L1, that is, the diameter can be reduced to about 1 m, and the spot light R of this size can be emitted from the end face 40c to the outside. Can do. The end face 4 Oc is designed to be flush with the ABS of the slider 20.
[0065] また、本実施形態では光束集光部 40bが、図 4に示すように、主磁極 32側に向け て漸次絞り成形されている。これにより、主磁極 32側に端面 40cが位置するようにな つており、主磁極 32の近傍に上記サイズのスポット光 Rを発生させることができるよう になっている。なお、本発明でいう「近傍」とは、端面 40cから発生するスポット光 の 直径と同程度の距離、或いは、それ以下の距離だけ、主磁極 32から離間した範囲内 の領域をいう。よって、本実施形態の場合は、主磁極 32と光束集光部 40bの端面 40 cとの距離力 スポット光 Rの直径(最大直線長さ L1)と同程度である 1 111、或いは、 それ以下の距離になるように設計されている。  In the present embodiment, the light beam condensing part 40b is gradually drawn toward the main magnetic pole 32 as shown in FIG. As a result, the end face 40c is positioned on the main magnetic pole 32 side, and the spot light R having the above size can be generated in the vicinity of the main magnetic pole 32. The term “near” in the present invention refers to a region within a range separated from the main magnetic pole 32 by a distance approximately equal to or less than the diameter of the spot light generated from the end face 40c. Therefore, in the case of the present embodiment, the distance force between the main magnetic pole 32 and the end face 40c of the light beam condensing part 40b is approximately the same as the diameter (maximum linear length L1) of the spot light R 1 111 or less. Designed to be a distance.
[0066] 上記クラッド 41は、図 4及び図 5に示すように、コア 40よりも屈折率が低い材料で形 成されており、コア 40の側面に密着して、コア 40を内部に閉じ込めている。よって、コ ァ 40とクラッド 41との間に隙間が生じないようになつている。また、本実施形態のクラ ッド 41は、コア 40の一端側と同様に、他端側の端面 40cについても外部に露出させ るように形成されている。  As shown in FIGS. 4 and 5, the clad 41 is formed of a material having a refractive index lower than that of the core 40. The clad 41 is in close contact with the side surface of the core 40 to confine the core 40 inside. Yes. Therefore, there is no gap between the core 40 and the clad 41. Further, the clad 41 of the present embodiment is formed so as to expose the end surface 40c on the other end side to the outside as well as the one end side of the core 40.
[0067] なお、クラッド 41及びコア 40として使用される材料の組み合わせの一例を記載する と、例えば、石英(SiO )でコア 40を形成し、フッ素をドープした石英でクラッド 41を形 成する組み合わせが考えられる。この場合には、光束 Lの波長が 400nmのときに、コ ァ 40の屈折率が 1. 47となり、クラッド 41の屈折率が 1. 47未満となるので好ましい組 み合わせである。また、ゲルマニウムをドープした石英でコア 40を形成し、石英(SiO )でクラッド 41を形成する組み合わせも考えられる。この場合には、光束 Lの波長が 4 OOnmのときに、コア 40の屈折串力 1. 47より大きくなり、クラッド 41の屈折串力 47 となるのでやはり好まし!/、組み合わせである。  [0067] An example of a combination of materials used as the clad 41 and the core 40 is described. For example, a combination in which the core 40 is formed from quartz (SiO 2) and the clad 41 is formed from quartz doped with fluorine. Can be considered. In this case, when the wavelength of the light beam L is 400 nm, the refractive index of the core 40 is 1.47, and the refractive index of the clad 41 is less than 1.47, which is a preferable combination. A combination in which the core 40 is formed of quartz doped with germanium and the cladding 41 is formed of quartz (SiO 2) is also conceivable. In this case, when the wavelength of the light beam L is 4 OOnm, it becomes larger than the refractive skew force 1.47 of the core 40 and becomes the refractive skew force 47 of the clad 41.
[0068] 特に、コア 40とクラッド 41との屈折率差が大きいほど、コア 40内に光束 Lを閉じ込 める力が大きくなるので、コア 40に酸化タンタル (Ta O:波長が 550nmのときに屈 折率が 2. 16)を用い、クラッド 41に石英等を用いて、両者の屈折率差を大きくするこ とがより好ましい。また、赤外領域の光束 Lを利用する場合には、赤外光に対して透 明な材料であるシリコン(Si:屈折率が約 4)でコア 40を形成することも有効である。 [0068] In particular, the greater the difference in refractive index between the core 40 and the clad 41, the greater the force for confining the light flux L in the core 40. Therefore, when the core 40 has tantalum oxide (TaO: when the wavelength is 550 nm) Succumb to It is more preferable to use a refractive index of 2.16) and use quartz or the like for the cladding 41 to increase the refractive index difference between the two. In addition, when the luminous flux L in the infrared region is used, it is also effective to form the core 40 with silicon (Si: refractive index is about 4) which is a material transparent to infrared light.
[0069] 上記光導波路 4は、コア 4aとクラッド 4bとからなる 2軸の導波路であり、コア 4a内を 光束 Lが伝播するようになっている。この光導波路 4は、クラッド 41に形成された溝部 41a及びスライダ 20の上面に形成された図示しない溝部内に嵌った状態で固定され ている。これにより、光導波路 4は、スライダ 20に対して平行に配置された状態となつ ている。 [0069] The optical waveguide 4 is a biaxial waveguide composed of a core 4a and a clad 4b, and the light beam L propagates through the core 4a. The optical waveguide 4 is fixed in a state of fitting in a groove portion 41 a formed in the clad 41 and a groove portion (not shown) formed in the upper surface of the slider 20. As a result, the optical waveguide 4 is arranged in parallel to the slider 20.
[0070] また、光導波路 4の先端は、スポットサイズ変換器 22の一端側に接続されており、 光束 Lをコア 40内に導入している。また、光導波路 4の基端側は、ビーム 3及びキヤリ ッジ 11等を介して光信号コントローラ 5に引き出された後、該光信号コントローラ 5に 接続されている。  Further, the tip end of the optical waveguide 4 is connected to one end side of the spot size converter 22, and the light flux L is introduced into the core 40. Further, the base end side of the optical waveguide 4 is drawn out to the optical signal controller 5 through the beam 3 and the carriage 11 and then connected to the optical signal controller 5.
[0071] なお、図 5に示すように、光導波路 4からコア 40内に導入された光束 Lが反射面 40 aの略中心に入射するように、スポットサイズ変換器 22及び光導波路 4の位置関係が 調整されている。  As shown in FIG. 5, the positions of the spot size converter 22 and the optical waveguide 4 are arranged so that the light beam L introduced from the optical waveguide 4 into the core 40 enters the approximate center of the reflecting surface 40a. The relationship has been adjusted.
[0072] また、上記再生素子 23は、ディスク Dの垂直記録層 d2から漏れ出ている磁界の大 きさに応じて電気抵抗が変換する磁気抵抗効果膜である。この再生素子 23には、図 示しないリード膜等を介して制御部 8からバイアス電流が供給されている。これにより 制御部 8は、ディスク Dから漏れ出た磁界の変化を電圧の変化として検出することで き、この電圧の変化から信号の再生を行うことができるようになつている。  Further, the reproducing element 23 is a magnetoresistive film whose electric resistance is converted according to the magnitude of the magnetic field leaking from the perpendicular recording layer d2 of the disk D. A bias current is supplied to the reproducing element 23 from the control unit 8 via a lead film (not shown). As a result, the control unit 8 can detect a change in the magnetic field leaked from the disk D as a change in voltage, and can reproduce a signal from the change in voltage.
[0073] なお、本実施形態のディスク Dは、少なくとも、ディスク面 D1に垂直な方向に磁化 容易軸を有する垂直記録層 d2と、高透磁率材料からなる軟磁性層 d3との 2層で構 成される垂直 2層膜ディスクを使用する。このようなディスク Dとしては、例えば、図 2に 示すように、基板 dl上に、軟磁性層 d3と、中間層 d4と、垂直記録層 d2と、保護層 d5 と、潤滑層 d6とを順に成膜したものを使用する。  Note that the disk D of the present embodiment is composed of at least two layers of a perpendicular recording layer d2 having an easy axis of magnetization in a direction perpendicular to the disk surface D1 and a soft magnetic layer d3 made of a high permeability material. Use vertical double-layer discs. As such a disk D, for example, as shown in FIG. 2, a soft magnetic layer d3, an intermediate layer d4, a perpendicular recording layer d2, a protective layer d5, and a lubricating layer d6 are sequentially formed on a substrate dl. Use the film.
[0074] 基板 dlとしては、例えば、アルミ基板やガラス基板等である。軟磁性層 d3は、高透 磁率層である。中間層 d4は、垂直記録層 d2の結晶制御層である。垂直記録層 d2は 、垂直異方性磁性層となっており、例えば CoCrPt系合金が使用される。保護層 d5 は、垂直記録層 d2を保護するためのもので、例えば DLC (ダイヤモンド'ライク'カー ボン)膜が使用される。潤滑層 d6は、例えば、フッ素系の液体潤滑材が使用される。 [0074] The substrate dl is, for example, an aluminum substrate or a glass substrate. The soft magnetic layer d3 is a high permeability layer. The intermediate layer d4 is a crystal control layer of the perpendicular recording layer d2. The perpendicular recording layer d2 is a perpendicular anisotropic magnetic layer, and for example, a CoCrPt alloy is used. Protective layer d5 Is for protecting the perpendicular recording layer d2, and for example, a DLC (diamond “like” carbon) film is used. For the lubrication layer d6, for example, a fluorine-based liquid lubricant is used.
[0075] 次に、このように構成された情報記録再生装置 1により、ディスク Dに各種の情報を 記録再生する場合につ!/、て以下に説明する。  [0075] Next, the case where various kinds of information are recorded / reproduced on / from the disk D by the information recording / reproducing apparatus 1 configured as described above will be described below.
[0076] まず、スピンドルモータ 7を駆動させてディスク Dを一定方向に回転させる。次いで、 ァクチユエータ 6を作動させて、キャリッジ 11を介してビーム 3を XY方向にスキャンさ せる。これにより、図 1に示すように、ディスク D上の所望する位置に記録ヘッド 2を位 置させること力 Sできる。この際、記録ヘッド 2は、スライダ 20の対向面 20aに形成され た 2つの凸条部 20bによって浮上する力を受けると共に、ビーム 3等によってディスク D側に所定の力で押さえ付けられる。記録ヘッド 2は、この両者の力のバランスによつ て、図 2に示すようにディスク D上から所定距離 H離間した位置に浮上する。  [0076] First, the spindle motor 7 is driven to rotate the disk D in a certain direction. Next, the actuator 6 is actuated to scan the beam 3 in the XY directions via the carriage 11. As a result, as shown in FIG. 1, the force S for positioning the recording head 2 at a desired position on the disk D can be achieved. At this time, the recording head 2 receives a force that rises by the two ridges 20b formed on the opposing surface 20a of the slider 20, and is pressed against the disk D side with a predetermined force by the beam 3 or the like. The recording head 2 floats to a position separated by a predetermined distance H from the disk D as shown in FIG.
[0077] また、記録ヘッド 2は、ディスク Dのうねりに起因して発生する風圧を受けたとしても、 ビーム 3によって Z方向の変位が吸収されると共に、ジンバル部 24によって XY軸回り に変位することができるようになっているので、うねりに起因する風圧を吸収すること ができる。そのため、記録ヘッド 2を安定した状態で浮上させることができる。  In addition, even when the recording head 2 receives wind pressure generated due to the undulation of the disk D, the displacement in the Z direction is absorbed by the beam 3 and is displaced about the XY axis by the gimbal portion 24. It is possible to absorb the wind pressure caused by the swell. Therefore, the recording head 2 can be floated in a stable state.
[0078] ここで、情報の記録を行う場合、制御部 8は光信号コントローラ 5を作動させると共に 、情報に応じて変調した電流をコイル 33に供給して記録素子 21を作動させる。  Here, when recording information, the control unit 8 operates the optical signal controller 5 and supplies the coil 33 with a current modulated according to the information to operate the recording element 21.
[0079] まず、光信号コントローラ 5は、制御部 8からの指示を受けて光束 Lを光導波路 4の 基端側から入射させる。入射した光束 Lは、光導波路 4のコア 4a内を先端側に向かつ て進み、図 4に示すように、スポットサイズ変換器 22の一端側からコア 40内に導入さ れる。この際光束 Lは、スライダ 20に対して平行な方向でコア 40内に導入される。す ると、導入された光束 Lは、反射面 40aで反射されて向きが略 90度変わる。即ち、導 入方向とは異なる方向に向きが変化する。そして、向きが変わった光束 Lは、ディスク D側に位置する他端側に向かう。そして、光束 Lは、他端側に向かって光束集光部 4 Obを伝播する。  First, in response to an instruction from the control unit 8, the optical signal controller 5 causes the light beam L to enter from the proximal end side of the optical waveguide 4. The incident light beam L travels toward the front end side in the core 4a of the optical waveguide 4 and is introduced into the core 40 from one end side of the spot size converter 22, as shown in FIG. At this time, the light beam L is introduced into the core 40 in a direction parallel to the slider 20. Then, the introduced light beam L is reflected by the reflecting surface 40a and changes its direction by approximately 90 degrees. That is, the direction changes in a direction different from the introduction direction. Then, the light beam L whose direction has changed is directed toward the other end located on the disk D side. Then, the light beam L propagates through the light beam condensing unit 4 Ob toward the other end side.
[0080] この際、光束集光部 40bは、一端側から他端側に向力、う長手方向に直交する断面 積が漸次減少するように絞り成形されている。そのため、光束 Lはこの光束集光部 40 bを通過する際に、側面で反射を繰り返しながら徐々に集光されてコア 40の内部を 伝播していく。特に、コア 40の側面にはクラッド 41が密着しているので、コア 40の外 部に光が漏れることはない。よって、導入された光束 Lを無駄にすることなく絞りなが ら他端側に伝播させることができる。 [0080] At this time, the light beam condensing part 40b is drawn so that the cross-sectional area perpendicular to the longitudinal direction is gradually decreased from one end side to the other end side. Therefore, when the light beam L passes through the light beam condensing part 40 b, it is gradually condensed while repeating reflection on the side surface, and the inside of the core 40 is reflected. Propagate. In particular, since the clad 41 is in close contact with the side surface of the core 40, light does not leak to the outside of the core 40. Therefore, the introduced light beam L can be propagated to the other end side without being wasted.
[0081] そのため光束 Lは、光束集光部 40bの他端側に達した時点で絞り込まれてスポット サイズが小さくなる。つまり光束集光部 40bは、導入された光束 Lのスポットサイズを、 直径が約 1 μ m程度の小さいサイズに絞り込むことができる。これにより、スポット光 R を生成することができ、他端側の端面 40cから外部に発することができる。  [0081] Therefore, the light beam L is narrowed down when it reaches the other end side of the light beam condensing part 40b, and the spot size is reduced. That is, the light beam condensing unit 40b can narrow the spot size of the introduced light beam L to a small size having a diameter of about 1 μm. Thereby, the spot light R can be generated and emitted from the end face 40c on the other end side to the outside.
[0082] すると、ディスク Dは、このスポット光 Rによって局所的に加熱されて一時的に保磁 力が低下する。特に、光束集光部 40bは、このスポット光 Rを主磁極 32の近傍、即ち 、主磁極 32からスポット光 Rの直径と同程度の距離だけ離間した範囲内に発生させ るので、主磁極 32にできるだけ近い位置でディスク Dの保磁力を低下させることがで きる。  Then, the disk D is locally heated by the spot light R, and the coercive force temporarily decreases. In particular, the light beam condensing unit 40b generates the spot light R in the vicinity of the main magnetic pole 32, that is, in a range separated from the main magnetic pole 32 by a distance approximately equal to the diameter of the spot light R. The coercive force of disk D can be reduced as close as possible.
[0083] 一方、制御部 8によってコイル 33に電流が供給されると、電磁石の原理により電流 磁界が磁気回路 31内に磁界を発生させるので、主磁極 32と補助磁極 30との間にデ イスク Dに対して垂直方向の記録磁界を発生させることができる。すると、主磁極 32 側から発生した磁束が、図 4に示すように、ディスク Dの垂直記録層 d2を真直ぐ通り 抜けて軟磁性層 d3に達する。これによつて、垂直記録層 d2の磁化をディスク面 D1に 対して垂直に向けた状態で記録を行うことができる。また、軟磁性層 d3に達した磁束 は、該軟磁性層 d3を経由して補助磁極 30に戻る。この際、補助磁極 30に戻るときに は磁化の方向に影響を与えることはない。これは、ディスク面 D1に対向する補助磁 極 30の面積力 主磁極 32よりも大き!/、ので磁束密度が大きく磁化を反転させるほど の力が生じないためである。つまり、主磁極 32側でのみ記録を行うことができる。  On the other hand, when a current is supplied to the coil 33 by the control unit 8, a current magnetic field generates a magnetic field in the magnetic circuit 31 according to the principle of the electromagnet, so that the disk is interposed between the main magnetic pole 32 and the auxiliary magnetic pole 30. A recording magnetic field perpendicular to D can be generated. Then, the magnetic flux generated from the main magnetic pole 32 side passes straight through the perpendicular recording layer d2 of the disk D and reaches the soft magnetic layer d3 as shown in FIG. As a result, recording can be performed in a state in which the magnetization of the perpendicular recording layer d2 is directed perpendicular to the disk surface D1. Further, the magnetic flux reaching the soft magnetic layer d3 returns to the auxiliary magnetic pole 30 via the soft magnetic layer d3. At this time, when returning to the auxiliary magnetic pole 30, the direction of magnetization is not affected. This is because the area force of the auxiliary magnetic pole 30 facing the disk surface D1 is larger than the main magnetic pole 32, so that the magnetic flux density is large and a force sufficient to reverse the magnetization does not occur. That is, recording can be performed only on the main magnetic pole 32 side.
[0084] その結果、スポット光 Rと両磁極 30、 32で発生した記録磁界とを協働させたハイブ リツド磁気記録方式により情報の記録を行うことができる。しかも垂直記録方式で記録 を行うので、熱揺らぎ現象等の影響を受け難ぐ安定した記録を行うことができる。よ つて、書き込みの信頼性を高めることができる。  As a result, information can be recorded by a hybrid magnetic recording method in which the spot light R and the recording magnetic field generated by the magnetic poles 30 and 32 cooperate with each other. In addition, since recording is performed by the perpendicular recording method, stable recording that is hardly affected by the thermal fluctuation phenomenon or the like can be performed. Therefore, the writing reliability can be improved.
[0085] 特に、主磁極 32の近傍でディスク Dの保磁力を低下させることができるので、記録 磁界が局所的に作用する位置に加熱温度のピーク位置を入れることができる。従つ て、確実に記録を行うことができ、信頼性の向上化を図ることができると共に高密度 記録ィ匕を図ること力 Sでさる。 In particular, since the coercive force of the disk D can be reduced in the vicinity of the main magnetic pole 32, the peak position of the heating temperature can be set at a position where the recording magnetic field acts locally. Follow Thus, recording can be performed reliably, reliability can be improved, and high density recording can be achieved with the power S.
[0086] 次に、ディスク Dに記録された情報を再生する場合には、スポットサイズ変換器 22 に隣接して固定されている再生素子 23が、ディスク Dの垂直記録層 d2から漏れ出て いる磁界を受けて、その大きさに応じて電気抵抗が変化する。よって、再生素子 23の 電圧が変化する。これにより制御部 8は、ディスク Dから漏れ出た磁界の変化を電圧 の変化として検出することができる。そして制御部 8は、この電圧の変化から信号の再 生を行うことで、情報の再生を行うことができる。  Next, when reproducing the information recorded on the disc D, the reproducing element 23 fixed adjacent to the spot size converter 22 leaks from the perpendicular recording layer d2 of the disc D. In response to a magnetic field, the electrical resistance changes according to the magnitude. Therefore, the voltage of the reproducing element 23 changes. As a result, the control unit 8 can detect a change in the magnetic field leaking from the disk D as a change in voltage. The control unit 8 can reproduce information by reproducing the signal from the change in voltage.
[0087] 特に、本実施形態のスポットサイズ変換器 22によれば、スライダ 20の上面側からデ イスク Dに向力、う他端側の端面 40cに向けて略一直線の光軸に沿って集光しながらス ポット光 Rを生成できるので、従来のように光軸が斜めになることがなぐまた位置調 整が困難であったレンズが不要である。従って、光束 Lを効率良く集光してスポット光 Rを生成することができ、ディスク Dを効率良く加熱することができる。よって、書き込 みの信頼性を向上することができる。  [0087] In particular, according to the spot size converter 22 of the present embodiment, the force is applied to the disk D from the upper surface side of the slider 20, and the light is collected along a substantially straight optical axis toward the end surface 40c on the other end side. Since the spot light R can be generated while shining, a lens that does not tilt the optical axis and is difficult to adjust as in the conventional case is unnecessary. Therefore, the light beam L can be efficiently collected to generate the spot light R, and the disk D can be efficiently heated. Therefore, the writing reliability can be improved.
[0088] また、本実施形態では、コア 40の一端側及び他端側を外部に露出させた状態でク ラッド 41が形成されているので、該クラッド 41を介さずに直接コア 40に光束 Lを導入 すること力 Sできると共に、スポット光 Rを外部に発することができる。そのため、さらに効 率良くスポット光 Rを生成でき、ディスク Dを加熱することができる。  In the present embodiment, since the cladding 41 is formed with one end and the other end of the core 40 exposed to the outside, the light flux L is directly applied to the core 40 without passing through the cladding 41. The power S can be introduced and the spot light R can be emitted to the outside. Therefore, the spot light R can be generated more efficiently and the disk D can be heated.
[0089] また、光導波路 4を利用して光束 Lを導入する上、コア 40内を伝播させているので、 従来のように光束 Lを空中伝播させることがない。よって、導光損失を極力低下させる こと力 Sできる。また、コア 40及びクラッド 41でスポットサイズ変換器 22を構成できるの で、構成の容易化を図ることができる。  In addition, since the light flux L is introduced using the optical waveguide 4 and is propagated through the core 40, the light flux L is not propagated in the air as in the prior art. Therefore, it is possible to reduce the light guide loss as much as possible. Further, since the spot size converter 22 can be configured by the core 40 and the clad 41, the configuration can be facilitated.
[0090] 更には、スライダ 20の流出端側の側面に、記録素子 21、スポットサイズ変換器 22 を順に配置しているので、光導波路 4以外の各構成品がスライダ 20の厚み方向に重 なることを防止している。従って、記録ヘッド 2をコンパクトで薄型に設計することがで きる。しかも、光導波路 4を利用して確実に光束 Lを導入できるので、光束 Lを発生さ せる光源を容易に配置することができる。つまり、図 1に示すように、光信号コントロー ラ 5を設置し易いハウジング 9内に配置することができる。 [0091] また、本実施形態の記録ヘッド 2を製造する場合には、フォトリソグラフィ技術及び エッチング加工技術等の半導体技術を利用して製造を行うことができる。つまり、スポ ットサイズ変換器 22を有している場合であっても、特別な手法を用いずに、従来の製 造プロセスの流れの中でスポットサイズ変換器 22も同時に作りこむことができる。 Further, since the recording element 21 and the spot size converter 22 are arranged in this order on the side surface on the outflow end side of the slider 20, each component other than the optical waveguide 4 overlaps in the thickness direction of the slider 20. To prevent that. Therefore, the recording head 2 can be designed to be compact and thin. In addition, since the light flux L can be reliably introduced using the optical waveguide 4, a light source that generates the light flux L can be easily arranged. That is, as shown in FIG. 1, the optical signal controller 5 can be disposed in a housing 9 where it is easy to install. In addition, when the recording head 2 of the present embodiment is manufactured, it can be manufactured using a semiconductor technique such as a photolithography technique and an etching technique. That is, even if the spot size converter 22 is provided, the spot size converter 22 can be simultaneously formed in the flow of the conventional manufacturing process without using a special method.
[0092] 具体的に説明すると、スライダ 20を所定の外形形状に加工した後、該スライダ 20の 流出端側の側面に上記半導体技術を利用して記録素子 21を作りこむ。次いで、この 記録素子 21上に同様に半導体技術を利用して、スポットサイズ変換器 22を作りこむ 。そして最後に、スポットサイズ変換器 22上に再生素子 23を作りこめば良い。このよう に、スライダ 20側から順々に各構成品を作りこむ途中で、スポットサイズ変換器 22の 製造工程を一工程追加するだけで、容易に記録ヘッド 2を製造すること力 Sできる。  More specifically, after processing the slider 20 into a predetermined outer shape, the recording element 21 is formed on the side surface on the outflow end side of the slider 20 using the semiconductor technology. Next, a spot size converter 22 is formed on the recording element 21 in the same manner using semiconductor technology. Finally, the reproducing element 23 may be built on the spot size converter 22. In this way, it is possible to easily manufacture the recording head 2 by adding only one manufacturing process of the spot size converter 22 in the process of manufacturing each component in order from the slider 20 side.
[0093] なお、スポットサイズ変換器 22を製造する際には、まず、主磁極 32上にクラッド 41 を成膜する。この際、後に光導波路 4を一端側に接続させるために、クラッド 41に溝 部 41 aが形成されるようにパターユングする。次いで、このクラッド 41上にコア 40を凸 状に成膜した後、適宜エッチングを行って反射面 40a及び光束集光部 40bをそれぞ れ形成する。次いで、コア 40を内部に閉じ込めるように再度クラッド 41を成膜する。 そして、最後にクラッド 41の外形形状が所定の形になるように加工する。この際、スポ ットサイズ変換器 22の他端側をダイシング等で切断加工することで、端面 40cを形成 すること力 Sできる。このように半導体技術を利用して、容易にスポットサイズ変換器 22 を製造すること力できる。  In manufacturing the spot size converter 22, first, the cladding 41 is formed on the main magnetic pole 32. At this time, in order to connect the optical waveguide 4 to one end side later, the clad 41 is patterned so that the groove 41a is formed. Next, after the core 40 is formed in a convex shape on the clad 41, etching is appropriately performed to form the reflecting surface 40a and the light beam condensing part 40b, respectively. Next, the clad 41 is formed again so as to confine the core 40 inside. Finally, the outer shape of the clad 41 is processed into a predetermined shape. At this time, a force S for forming the end face 40c can be obtained by cutting the other end side of the spot size converter 22 by dicing or the like. In this manner, the spot size converter 22 can be easily manufactured using semiconductor technology.
[0094] また、本実施形態の情報記録再生装置 1によれば、上述した記録ヘッド 2を備えて いるので、書き込みの信頼性が高ぐ高密度記録化に対応することができ、高品質化 を図ること力 Sできる。また、同時に薄型化を図ることができる。  In addition, according to the information recording / reproducing apparatus 1 of the present embodiment, since the recording head 2 described above is provided, it is possible to cope with high-density recording with high writing reliability and high quality. The power S can be achieved. At the same time, the thickness can be reduced.
(第 2実施形態)  (Second embodiment)
次に、本発明に係る記録ヘッドの第 2実施形態を、図 7から図 9を参照して説明する 。なお、この第 2実施形態においては、第 1実施形態における構成要素と同一の部分 については、同一の符号を付しその説明を省略する。  Next, a second embodiment of the recording head according to the present invention will be described with reference to FIGS. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0095] 第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、光束 Lを集光さ せてスポット光 Rを生成し、該スポット光 Rによりディスク Dを加熱した力 S、第 2実施形 態の記録ヘッド 2は、スポット光 Rからさらに近接場光 R1を発生させ、該近接場光 R1 によりディスク Dを加熱する点である。 The difference between the second embodiment and the first embodiment is that, in the first embodiment, the light beam L is collected to generate the spot light R, and the force that heats the disk D by the spot light R S, second embodiment The recording head 2 in this state is a point where the near-field light R1 is further generated from the spot light R and the disk D is heated by the near-field light R1.
[0096] 即ち、本実施形態の記録ヘッド 50は、図 7及び図 8に示すように、近接場光発生素 子 51が光束集光部 40bに設けられたスポットサイズ変換器 (スポット光生成素子) 52 を備えている。 That is, as shown in FIGS. 7 and 8, the recording head 50 of the present embodiment has a spot size converter (spot light generating element) in which the near-field light generating element 51 is provided in the light beam condensing unit 40b. ) 52.
[0097] 近接場光発生素子 51は、図 9に示すように、端面 40c上に形成された遮光膜 53と 、該遮光膜 53の略中心に形成された微小開口 54とから構成されている。この微小開 口 54は、例えば、直径数十 nm〜数百 nmの円形状の開口である。  As shown in FIG. 9, the near-field light generating element 51 is composed of a light shielding film 53 formed on the end face 40c and a minute opening 54 formed substantially at the center of the light shielding film 53. . The minute opening 54 is, for example, a circular opening having a diameter of several tens of nm to several hundreds of nm.
[0098] このように構成されたスポットサイズ変換器 52によれば、光束 Lを集光してスポット光 Rにした後、さらにスポットサイズを小さくして近接場光 R1とすることができる。つまり、 光束集光部 40bによって集光された光束 Lは、微小開口 54を通過した後に外部に出 てくる。この際、微小開口 54を通過することでさらにスポットサイズが小さくなるので、 近接場光 R1となる。よってこの場合には、微小開口 54と同程度のスポットサイズとな つた近接場光 R1が発生する。  According to the spot size converter 52 configured in this way, after the light beam L is condensed into the spot light R, the spot size can be further reduced to obtain the near-field light R1. That is, the light beam L condensed by the light beam condensing unit 40b passes through the minute aperture 54 and then comes out to the outside. At this time, since the spot size is further reduced by passing through the minute opening 54, the near-field light R1 is obtained. Therefore, in this case, near-field light R1 having the same spot size as the minute aperture 54 is generated.
[0099] 従って、この近接場光 R1によりディスクをさらに微小な領域で加熱することができ、 さらなる高密度記録化を図ること力できる。なお、この場合には、主磁極 32と光束集 光部 40bの端面 40cとの距離を、近接場光 R1の直径と同程度である数十 nm〜数百 nmの距離に設計すれば良い。こうすることで、近接場光 R1で加熱する範囲内に記 録磁界を確実に入れることができる。  [0099] Accordingly, the near-field light R1 can heat the disc in a smaller area, and can achieve higher density recording. In this case, the distance between the main magnetic pole 32 and the end face 40c of the light flux collecting section 40b may be designed to be a distance of several tens nm to several hundreds nm, which is approximately the same as the diameter of the near-field light R1. By doing so, the recording magnetic field can be reliably placed within the range heated by the near-field light R1.
[0100] なお、本実施形態では、微小開口 54を円形状とした力 この形状に限定されるもの ではない。例えば、図 10に示すように、三角形状の微小開口 54としても構わない。こ の場合であっても、近接場光 R1を発生することができる。特にこの場合には、図中に 示す矢印 L2方向に光束 Lの偏光成分が向くように調整した後に、光束 Lを光導波路 4内に導入することが好ましい。こうすることで、近接場光 R1を微小開口 54の一辺付 近(図中に示す領域 S)に集中的に局在化させることができる。従って、さらなる高密 度記録化を図ることができる。  [0100] In the present embodiment, the force that circularly forms the minute opening 54 is not limited to this shape. For example, as shown in FIG. 10, a triangular micro opening 54 may be used. Even in this case, the near-field light R1 can be generated. Particularly in this case, it is preferable to introduce the light beam L into the optical waveguide 4 after adjusting the polarization component of the light beam L in the direction of the arrow L2 shown in the drawing. By doing so, the near-field light R1 can be concentrated in the vicinity of one side of the minute aperture 54 (region S shown in the figure). Therefore, higher density recording can be achieved.
[0101] また、図 11に示すように、三角状の突起が微小な隙間 55を空けて対向するように 微小開口 54を形成しても構わない。こうすることで、微小な隙間 55に近接場光 R1を 集中的に局在化させることができるので、さらなる高密度記録化を図ることができる。 In addition, as shown in FIG. 11, the minute opening 54 may be formed so that the triangular protrusions face each other with a minute gap 55 therebetween. By doing this, the near-field light R1 is passed through the minute gap 55. Since it can be localized, it is possible to achieve higher density recording.
[0102] 更には、図 12に示すように、四角形状に形成された微小開口 54内に、集光された 光束 Lを散乱させる微小散乱体 56を形成しても構わない。この微小散乱体 56は、例 えば、微小開口 54の略中心位置にくるように端面 40c上に金属材料を蒸着や成膜 等によって形成すれば良い。こうすることで、微小散乱体 56付近に近接場光 R1を集 中的に局在化させることができるので、さらなる高密度記録化を図ることができる。 (第 3実施形態) Furthermore, as shown in FIG. 12, a minute scatterer 56 that scatters the collected light beam L may be formed in a minute opening 54 formed in a square shape. For example, the minute scatterer 56 may be formed by vapor deposition, film formation, or the like on the end face 40c so that the minute scatterer 56 comes to substantially the center position of the minute opening 54. By doing so, the near-field light R1 can be centrally localized in the vicinity of the minute scatterer 56, so that further high-density recording can be achieved. (Third embodiment)
次に、本発明に係る記録ヘッドの第 3実施形態を、図 13、 14を参照して説明する。 なお、この第 3実施形態においては、第 1実施形態における構成要素と同一の部分 については、同一の符号を付しその説明を省略する。  Next, a third embodiment of the recording head according to the present invention will be described with reference to FIGS. In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0103] 第 3実施形態と第 1実施形態との異なる点は、第 1実施形態では、スライダ 20の流 出端側の側面から順に、記録素子 21、スポットサイズ変換器 22、再生素子 23が固 定されていたが、第 3実施形態の記録ヘッド 60は、スライダ 20の流出端側の側面か ら順に、再生素子 23、記録素子 21、スポットサイズ変換器 22が固定されている点で ある。 [0103] The difference between the third embodiment and the first embodiment is that in the first embodiment, the recording element 21, the spot size converter 22, and the reproducing element 23 are arranged in order from the side surface on the outflow end side of the slider 20. Although fixed, the recording head 60 of the third embodiment is that the reproducing element 23, the recording element 21, and the spot size converter 22 are fixed in order from the side surface on the outflow end side of the slider 20. .
[0104] 即ち、本実施形態の記録ヘッド 60の再生素子 23は、図 13に示すように、スライダ 2 0の流入端側の側面と記録素子 21との間に設けられている。そのため、スポットサイ ズ変換器 22及び記録素子 21は、第 1実施形態の場合と比較して、再生素子 23の厚 み分だけスライダ 20の流出端側に移動した状態となっている。  That is, the reproducing element 23 of the recording head 60 of the present embodiment is provided between the recording element 21 and the side surface on the inflow end side of the slider 20 as shown in FIG. Therefore, the spot size converter 22 and the recording element 21 are moved to the outflow end side of the slider 20 by the thickness of the reproducing element 23 as compared with the case of the first embodiment.
[0105] ここで、浮上時のスライダ 20の姿勢についてより詳細に説明すると、図 14に示すよ うに、スライダ 20はディスク面 D1に対して水平ではなぐ僅かに傾いている。具体的 には、流出端側がディスク Dに接近した状態で、ディスク面 D1とスライダ 20の ABSと のなす角度 Θが微小角度(例えば、 1° 〜5° 程度)を保つように傾いている。そのた め、スライダ 20の流出端から流入端に向力、うにつれて、ディスク面 D1との距離 Hが徐 々に離間してしまう。つまり、スライダ 20の流出端側力 最もディスク面 D1に接近した 状態となっている。  Here, the attitude of the slider 20 at the time of flying will be described in more detail. As shown in FIG. 14, the slider 20 is slightly tilted with respect to the disk surface D1. Specifically, with the outflow end side approaching the disk D, the angle Θ formed by the disk surface D1 and the ABS of the slider 20 is inclined so as to maintain a very small angle (for example, about 1 ° to 5 °). For this reason, the distance H from the disk surface D1 is gradually separated from the outflow end of the slider 20 toward the inflow end. That is, the outflow end side force of the slider 20 is in the state closest to the disk surface D1.
[0106] 従って、本実施形態の記録ヘッド 60によれば、スポットサイズ変換器 22及び記録 素子 21がスライダ 20の流出端側により近づいているので、第 1実施形態の場合と比 較してスポットサイズ変換器 22及び記録素子 21をディスク面 Dlにより近づけることが できる。そのため、より効率良くディスク Dに対してスポット光 R及び記録磁界を作用さ せること力 Sでき、より高密度な記録を行うことができる。なお、その他の作用効果は、 第 1実施形態と同様である。 Therefore, according to the recording head 60 of the present embodiment, since the spot size converter 22 and the recording element 21 are closer to the outflow end side of the slider 20, this is compared with the case of the first embodiment. In comparison, the spot size converter 22 and the recording element 21 can be brought closer to the disk surface Dl. Therefore, the force S can be applied to the disc D more efficiently by applying the spot light R and the recording magnetic field, and higher density recording can be performed. Other functions and effects are the same as those of the first embodiment.
(第 4実施形態)  (Fourth embodiment)
次に、本発明に係る記録ヘッドの第 4実施形態を、図 15を参照して説明する。なお 、この第 4実施形態においては、第 1実施形態における構成要素と同一の部分につ いては、同一の符号を付しその説明を省略する。  Next, a fourth embodiment of the recording head according to the invention will be described with reference to FIG. In the fourth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0107] 第 4実施形態と第 1実施形態との異なる点は、第 1実施形態では、スライダ 20の流 出端側の側面から順に、記録素子 21、スポットサイズ変換器 22、再生素子 23が固 定されていたが、第 4実施形態の記録ヘッド 70は、再生素子 23がスポットサイズ変換 器 22のクラッド 41に埋め込まれた状態で設けられている点である。  [0107] The difference between the fourth embodiment and the first embodiment is that, in the first embodiment, the recording element 21, the spot size converter 22, and the reproducing element 23 are arranged in order from the side surface on the outflow end side of the slider 20. Although fixed, the recording head 70 of the fourth embodiment is that the reproducing element 23 is provided in a state of being embedded in the clad 41 of the spot size converter 22.
[0108] 即ち、本実施形態の記録ヘッド 70の再生素子 23は、図 15に示すように、コア 40を 内部に閉じ込めているクラッド 41の一部に埋め込まれている。そのため、再生素子 2 3の厚みをクラッド 41で吸収することができ、第 3実施形態と同様に、スポットサイズ変 換器 22及び記録素子 21をスライダ 20の流出端側により近づけることができる。従つ て、スライダ 20が傾いて浮上したときに、第 1実施形態の場合と比較してスポットサイ ズ変換器 22及び記録素子 21をディスク面 D1により近づけることができる。そのため 、より効率良くディスク Dに対してスポット光 R及び記録磁界を作用させることができ、 より高密度な記録を行うことができる。なお、その他の作用効果は、第 1実施形態と同 様である。  That is, as shown in FIG. 15, the reproducing element 23 of the recording head 70 of the present embodiment is embedded in a part of the clad 41 that confines the core 40 therein. Therefore, the thickness of the reproducing element 23 can be absorbed by the clad 41, and the spot size converter 22 and the recording element 21 can be brought closer to the outflow end side of the slider 20 as in the third embodiment. Therefore, when the slider 20 is inclined and floated, the spot size converter 22 and the recording element 21 can be brought closer to the disk surface D1 as compared with the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed. Other functions and effects are the same as in the first embodiment.
(第 5実施形態)  (Fifth embodiment)
次に、本発明に係る記録ヘッドの第 5実施形態を、図 16を参照して説明する。なお 、この第 5実施形態においては、第 1実施形態における構成要素と同一の部分につ いては、同一の符号を付しその説明を省略する。  Next, a fifth embodiment of the recording head according to the invention will be described with reference to FIG. In the fifth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0109] 第 5実施形態と第 1実施形態との異なる点は、第 1実施形態では、コア 40の一端側 を外部に露出させた状態でクラッド 41が形成されていた力 第 5実施形態の記録へ ッド 80は、コア 40の一端側がクラッド 41で覆われている点である。 [0110] 即ち、本実施形態の記録ヘッド 80は、図 16に示すように、コア 40の一端側がクラッ ド 41で覆われたスポットサイズ変換器 (スポット光生成素子) 81を有している。よって、 光導波路 4のコア 4a内を進んできた光束 Lは、クラッド 41を通過した後、スポットサイ ズ変換器 81のコア 40に導入されるようになっている。本実施形態の場合であっても、 第 1実施形態と同様の作用効果を奏することができる。それに加え、本実施形態のス ポットサイズ変換器 81を製造する場合には、第 1実施形態の場合と異なり、コア 40の 一端側が露出するようにクラッド 41をパターユングする必要がない。そのため、製造 し易ぐより短時間で効率良く製造することができる利点を有している。 [0109] The difference between the fifth embodiment and the first embodiment is that, in the first embodiment, the force in which the clad 41 is formed with one end side of the core 40 exposed to the outside is different from that of the fifth embodiment. The recording head 80 is that one end side of the core 40 is covered with the clad 41. That is, the recording head 80 of the present embodiment has a spot size converter (spot light generating element) 81 in which one end side of the core 40 is covered with the cladding 41 as shown in FIG. Therefore, the light beam L that has traveled through the core 4 a of the optical waveguide 4 passes through the cladding 41 and is then introduced into the core 40 of the spot size converter 81. Even in the case of the present embodiment, the same effects as those of the first embodiment can be achieved. In addition, when manufacturing the spot size converter 81 of the present embodiment, unlike the case of the first embodiment, it is not necessary to pattern the clad 41 so that one end side of the core 40 is exposed. Therefore, it has the advantage that it can be manufactured efficiently in a shorter time than it is easy to manufacture.
(第 6実施形態)  (Sixth embodiment)
次に、本発明に係る記録ヘッドの第 6実施形態を、図 17及び図 18を参照して説明 する。なお、この第 6実施形態においては、第 1実施形態における構成要素と同一の 部分については、同一の符号を付しその説明を省略する。  Next, a sixth embodiment of the recording head according to the invention will be described with reference to FIGS. In the sixth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0111] 第 6実施形態と第 1実施形態との異なる点は、第 1実施形態では、スライダ 20の流 出端側から見たときに、スポットサイズ変換器 22のコア 40がスライダ 20の対向面 20a に対して略直交するように真下に向けて直線状に形成されていたが、第 6実施形態 の記録ヘッド 85は、コア 40が対向面 20aに対して傾斜するように斜めに形成されて いる点である。 [0111] The difference between the sixth embodiment and the first embodiment is that, in the first embodiment, the core 40 of the spot size converter 22 faces the slider 20 when viewed from the outflow end side of the slider 20. Although the recording head 85 of the sixth embodiment is formed linearly so as to be substantially perpendicular to the surface 20a, the recording head 85 of the sixth embodiment is formed obliquely so that the core 40 is inclined with respect to the facing surface 20a. It is a point.
[0112] 即ち、本実施形態の記録ヘッド 85は、図 17及び図 18に示すように、スライダ 20の 流出端側から見たときに、一端側から他端側に向かって斜めに傾斜しているコア 40 力もなるスポットサイズ変換器 (スポット光生成素子) 86を備えている。詳細には、コア 40の一端側は、第 1実施形態の位置よりもスライダ 20の横幅方向にずれており、該 位置から他端側に向けて斜めに形成されている。なお、本実施形態の場合には、コ ァ 40の位置に合わせて光導波路 4の位置をスライダ 20の横幅方向にずらした状態 で固定すれば良い。  That is, as shown in FIGS. 17 and 18, the recording head 85 of this embodiment is inclined obliquely from one end side to the other end side when viewed from the outflow end side of the slider 20. A spot size converter (spot light generating element) 86 having a core 40 force is provided. Specifically, one end side of the core 40 is shifted in the lateral width direction of the slider 20 from the position of the first embodiment, and is formed obliquely from the position toward the other end side. In the present embodiment, the position of the optical waveguide 4 may be fixed while being shifted in the lateral width direction of the slider 20 in accordance with the position of the core 40.
[0113] なお、図 18は、図 17に示す矢印 A方向、即ち、スライダ 20の流出端側からコア 40 を見た図である。また、図 18では、見易くするため、一部のクラッド 41だけを図示して いる。  FIG. 18 is a view of the core 40 as viewed from the direction of arrow A shown in FIG. 17, that is, from the outflow end side of the slider 20. Further, in FIG. 18, only a part of the clad 41 is shown for easy understanding.
[0114] また、本実施形態の記録素子 21及びスポットサイズ変換器 86は、第 1実施形態の ように完全に独立した形で隣接するのではなく、図 17に示すように一部が重なった状 態となつている。つまり本実施形態の記録素子 21は、斜めに傾斜した状態で形成さ れて!/、るコア 40に対して、横に並ぶように形成されて!/、る。 [0114] The recording element 21 and the spot size converter 86 of the present embodiment are the same as those of the first embodiment. As shown in Fig. 17, they are not completely adjacent to each other, but are partially overlapped. That is, the recording element 21 of the present embodiment is formed in an inclined state! /, And is formed so as to be aligned horizontally with respect to the core 40 !.
[0115] そのため、第 1実施形態と比較して、スポットサイズ変換器 86及び記録素子 21をス ライダ 20の流出端側により近づけることができる。従って、スライダ 20が傾いて浮上し たときに、第 1実施形態の場合と比較してスポットサイズ変換器 86及び記録素子 21 をディスク面 D1により近づけることができる。よって、より効率良くディスク Dに対して スポット光 R及び記録磁界を作用させることができ、より高密度な記録を行うことができ Therefore, the spot size converter 86 and the recording element 21 can be brought closer to the outflow end side of the slider 20 as compared with the first embodiment. Therefore, when the slider 20 is inclined and floated, the spot size converter 86 and the recording element 21 can be brought closer to the disk surface D1 as compared with the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed.
[0116] 加えて、コア 40を斜めに形成しているので、スライダ 20の高さよりも全長(以下、コ ァ長と称する)を長くすることができる。そのため、第 1実施形態よりも、断面積の漸減 率を小さくすること力 Sできる。一般的に、コア 40の断面積を急激に小さくした場合には 、コア 40から漏れる光束 L (漏れ光)の割合が大きくなつてしまい、光伝播効率が低下 してしまう。し力、しながら、本実施形態のコア 40によれば、上述したように断面積の漸 減率を小さくすることができるので、第 1実施形態に比べて光束 Lの光伝播率を向上 させること力 Sできる。よって、より光強度の強いスポット光 Rを生成することができ、さら なる高密度記録化を図ることができる。 [0116] In addition, since the core 40 is formed obliquely, the overall length (hereinafter referred to as the core length) can be made longer than the height of the slider 20. Therefore, the force S can be reduced as compared with the first embodiment. In general, when the cross-sectional area of the core 40 is rapidly reduced, the ratio of the light beam L (leakage light) leaking from the core 40 increases, and the light propagation efficiency decreases. However, according to the core 40 of the present embodiment, the gradual decrease rate of the cross-sectional area can be reduced as described above, so that the light propagation rate of the light flux L is improved compared to the first embodiment. That power S. Therefore, it is possible to generate spot light R with a higher light intensity, and to achieve further high density recording.
[0117] なお、その他の作用効果は、第 1実施形態と同様である。また、本実施形態の場合 には、第 1実施形態の場合とは逆に、スライダ 20側が主磁極 32、スポットサイズ変換 器 86側が補助磁極 30となるように記録素子 21を構成すれば良い。  [0117] The other functions and effects are the same as those of the first embodiment. Further, in the case of this embodiment, contrary to the case of the first embodiment, the recording element 21 may be configured so that the slider 20 side becomes the main magnetic pole 32 and the spot size converter 86 side becomes the auxiliary magnetic pole 30.
(第 7実施形態)  (Seventh embodiment)
次に、本発明に係る記録ヘッドの第 7実施形態を、図 19及び図 20を参照して説明 する。なお、この第 7実施形態においては、第 1実施形態における構成要素と同一の 部分については、同一の符号を付しその説明を省略する。  Next, a seventh embodiment of the recording head according to the invention will be described with reference to FIGS. In the seventh embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0118] 第 7実施形態と第 1実施形態との異なる点は、第 1実施形態では、スライダ 20の流 出端側から見たときに、スポットサイズ変換器 22のコア 40は直線状に形成されていた 1S 第 7実施形態の記録ヘッド 90は、コア 40が湾曲している点である。  [0118] The difference between the seventh embodiment and the first embodiment is that, in the first embodiment, the core 40 of the spot size converter 22 is formed linearly when viewed from the outflow end side of the slider 20. The 1S recording head 90 of the seventh embodiment is that the core 40 is curved.
[0119] 即ち、本実施形態の記録ヘッド 90は、図 19及び図 20に示すように、スライダ 20の 流出端側から見たときに、一端側から他端側に亘つて湾曲しているコア 40からなるス ポットサイズ変換器 (スポット光生成素子) 91を備えている。詳細には、コア 40の一端 側及び他端側は、第 1実施形態と同じ位置に位置しており、一端側から他端側に向 力、う途中の経路だけが数箇所で折り曲がることで湾曲している。 That is, the recording head 90 of the present embodiment has a slider 20 as shown in FIGS. When viewed from the outflow end side, a spot size converter (spot light generation element) 91 including a core 40 that is curved from one end side to the other end side is provided. Specifically, one end side and the other end side of the core 40 are located at the same position as in the first embodiment, and the direction from one end side to the other end side is bent, and only the path along the way is bent at several places. Is curved.
[0120] なお、図 20は、図 19に示す矢印 A方向、即ち、スライダ 20の流出端側からコア 40 を見た図である。また、図 20では、見易くするため、一部のクラッド 41だけを図示して いる。 Note that FIG. 20 is a view of the core 40 as seen from the direction of arrow A shown in FIG. 19, that is, from the outflow end side of the slider 20. In FIG. 20, only a part of the clad 41 is shown for easy viewing.
[0121] また、本実施形態の記録素子 21及びスポットサイズ変換器 91は、第 1実施形態の ように完全に独立した形で隣接するのではなぐ図 19に示すように一部が重なった状 態となつている。つまり本実施形態の記録素子 21は、途中で湾曲しているコア 40の 領域に入り込むように形成されている。言い換えると、記録素子 21への干渉を防ぐた め、該記録素子 21を迂回するようにコア 40が形成されている。  [0121] Further, the recording element 21 and the spot size converter 91 of the present embodiment are not completely adjacent to each other as in the first embodiment, but are partially overlapped as shown in FIG. It has become a state. That is, the recording element 21 of the present embodiment is formed so as to enter the region of the core 40 that is curved in the middle. In other words, the core 40 is formed so as to bypass the recording element 21 in order to prevent interference with the recording element 21.
[0122] そのため、第 1実施形態と比較して、スポットサイズ変換器 91及び記録素子 21をス ライダ 20の流出端側により近づけることができる。従って、スライダ 20が傾いて浮上し たときに、第 1実施形態の場合と比較してスポットサイズ変換器 91及び記録素子 21 をディスク面 D1により近づけることができる。よって、より効率良くディスク Dに対して スポット光 R及び記録磁界を作用させることができ、より高密度な記録を行うことができ る。なお、その他の作用効果は、第 1実施形態と同様である。  Therefore, compared to the first embodiment, the spot size converter 91 and the recording element 21 can be brought closer to the outflow end side of the slider 20. Therefore, when the slider 20 is inclined and floated, the spot size converter 91 and the recording element 21 can be brought closer to the disk surface D1 compared to the case of the first embodiment. Therefore, the spot light R and the recording magnetic field can be applied to the disk D more efficiently, and higher density recording can be performed. Other functions and effects are the same as in the first embodiment.
[0123] なお本実施形態の場合には、第 1実施形態の場合とは逆に、スライダ 20側が主磁 極 32、スポットサイズ変換器 91側が補助磁極 30となるように記録素子 21を構成すれ ば良い。  In the case of this embodiment, contrary to the case of the first embodiment, the recording element 21 is configured such that the slider 20 side is the main magnetic pole 32 and the spot size converter 91 side is the auxiliary magnetic pole 30. It ’s fine.
[0124] また、上述した第 7実施形態において、図 21に示すように、スライダ 20の流出端の 側面と記録素子 21との間に再生素子 23を設けても構わない。こうすることで、スポッ トサイズ変換器 91及び記録素子 21をさらにスライダ 20の流出端側に近づけることが できるので、より好ましい。また、上述した第 7実施形態では、一端側から他端側に向 力、う途中の経路を数箇所で折り曲げることでコア 40を湾曲させた力 図 22に示すよう に、折れ曲がる箇所が発生しないように滑らかに湾曲させても構わない。こうすること で、より損失を低減させた状態で光束 Lを伝播させることができるので、より好ましい。 [0125] また、図 19から図 22に示すコア 40の場合であっても、第 6実施形態と同様にコア 長を長くすることができるので、同様の作用効果を奏することができる。つまり、より光 強度の強いスポット光 Rを生成することができ、さらなる高密度記録化を図ることがで きる。 In the seventh embodiment described above, a reproducing element 23 may be provided between the side surface of the outflow end of the slider 20 and the recording element 21 as shown in FIG. This is more preferable because the spot size converter 91 and the recording element 21 can be further brought closer to the outflow end side of the slider 20. Further, in the above-described seventh embodiment, the force is applied from one end side to the other end side, and the core 40 is bent by bending the intermediate path at several places. As shown in FIG. 22, no bent portion is generated. You may make it curve smoothly. This is more preferable because the light beam L can be propagated in a state where the loss is further reduced. Further, even in the case of the core 40 shown in FIGS. 19 to 22, since the core length can be increased similarly to the sixth embodiment, the same effects can be obtained. That is, the spot light R having a higher light intensity can be generated, and higher density recording can be achieved.
(第 8実施形態)  (Eighth embodiment)
次に、本発明に係る記録ヘッドの第 8実施形態を、図 23を参照して説明する。なお 、この第 8実施形態においては、第 1実施形態における構成要素と同一の部分につ いては、同一の符号を付しその説明を省略する。  Next, an eighth embodiment of the recording head according to the invention will be described with reference to FIG. In the eighth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0126] 第 8実施形態と第 1実施形態との異なる点は、第 1実施形態では、光導波路 4のクラ ッド 4bが光信号コントローラ 5に接続される基端側からスポットサイズ変換器 22に接 続される先端側に亘つて同一形状であつたが、第 8実施形態の記録ヘッド 100は、ク ラッド 4bの先端側に切り欠き部 Tが形成された光導波路 4を備えている点である。  The difference between the eighth embodiment and the first embodiment is that, in the first embodiment, the spot size converter 22 from the base end side where the cladding 4b of the optical waveguide 4 is connected to the optical signal controller 5 is used. However, the recording head 100 according to the eighth embodiment includes the optical waveguide 4 in which the notch T is formed on the front end side of the clad 4b. It is.
[0127] 即ち、本実施形態の光導波路 4のクラッド 4bは、図 23に示すように、スポットサイズ 変換器 22のコア 40に接続される先端側において、全周に亘つて斜めにカットされて おり、外径が小さくなつている。そして、このカットされた部分が作りだす空間が、上記 切り欠き部 Tとされている。  That is, as shown in FIG. 23, the clad 4b of the optical waveguide 4 of the present embodiment is obliquely cut over the entire circumference on the tip side connected to the core 40 of the spot size converter 22. The outer diameter is getting smaller. The space created by the cut portion is the cutout portion T.
[0128] ここで、光導波路 4を取り付ける手順としては、まずクラッド 4bの周囲に図示しない 接着剤を塗布する。次に、スポットサイズ変換器 22のクラッド 41に形成された溝部 41 a及びスライダ 20の上面に形成された図示しな!/、溝部に、接着剤を塗布した光導波 路 4を嵌め込んでしつ力、りと固定する。そして、最後に接着剤を硬化させることで、光 導波路 4の取り付けが終了する。  Here, as a procedure for attaching the optical waveguide 4, first, an adhesive (not shown) is applied around the clad 4b. Next, the groove 41a formed in the clad 41 of the spot size converter 22 and the optical waveguide 4 coated with an adhesive are fitted in the groove! Fix firmly. Finally, the adhesive is cured to complete the attachment of the optical waveguide 4.
[0129] ところで、接着剤が塗布された光導波路 4を嵌め込んだ後に、毛細管現象等により 光導波路 4のコア 4aとスポットサイズ変換器 22のコア 40との界面に接着剤が入り込 んでしまう場合があった。仮に接着剤が入り込んでしまった場合には、光導波路 4か らコア 40に導入される光束 Lに悪影響を与えてしまい光の損失を招く恐れがあった。  [0129] By the way, after fitting the optical waveguide 4 to which the adhesive is applied, the adhesive enters the interface between the core 4a of the optical waveguide 4 and the core 40 of the spot size converter 22 due to a capillary phenomenon or the like. There was a case. If the adhesive enters, the light flux L introduced from the optical waveguide 4 to the core 40 may be adversely affected and light may be lost.
[0130] しかしながら、本実施形態では、光導波路 4に切り欠き部 Tが形成されているので、 光導波路 4のコア 4aとスポットサイズ変換器 22のコア 40との界面に入り込む前に、接 着剤を切り欠き部 Tに溜め込むことができる。そのため、上述した不都合が発生する ことを防止すること力でさる。 [0130] However, in the present embodiment, the notch T is formed in the optical waveguide 4, so that the optical waveguide 4 is bonded before entering the interface between the core 4a of the optical waveguide 4 and the core 40 of the spot size converter 22. The agent can be stored in the notch T. Therefore, the inconvenience described above occurs. The power to prevent this.
[0131] なお、本実施形態では、クラッド 41の全周を斜めにカットすることで切り欠き部 Tを 形成したが、この場合に限られず、クラッド 41の先端側を少なくとも 1箇所だけカットし て切り欠き部 Tを形成しても構わなレ、。 [0131] In the present embodiment, the cutout portion T is formed by cutting the entire circumference of the clad 41 obliquely. However, the present invention is not limited to this, and at least one tip side of the clad 41 is cut. It is possible to form the notch T.
[0132] なお、本発明の技術範囲は上記実施の形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 [0132] It should be noted that the technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0133] 例えば、上記各実施形態では、記録ヘッドを浮上させた空気浮上タイプの情報記 録再生装置を例に挙げて説明したが、この場合に限られず、ディスク面に対向配置 されていればディスクとスライダとが接触していても構わない。つまり、本発明に係る 記録ヘッドは、コンタクトスライダタイプのヘッドであっても構わない。この場合であつ ても、同様の作用効果を奏することができる。 For example, in each of the embodiments described above, the air floating type information recording / reproducing apparatus in which the recording head is levitated has been described as an example. The disk and slider may be in contact. That is, the recording head according to the present invention may be a contact slider type head. Even in this case, the same effect can be obtained.
産業上の利用可能性  Industrial applicability
[0134] 本発明に係る記録ヘッドによれば、光束を効率良く集光させてスポット光を生成す ること力 Sでき、書き込みの信頼性を向上することができる。また、コンパクト化及び薄型 ィ匕を図ること力 Sでさる。 [0134] According to the recording head of the present invention, it is possible to generate spot light by efficiently condensing a light beam, and to improve the writing reliability. In addition, it is possible to reduce the size and thickness by using force S.
[0135] また、本発明に係る情報記録再生装置によれば、上述した記録ヘッドを備えて!/、る ので、書き込みの信頼性が高ぐ高密度記録化に対応することができ、高品質化を図 ること力 Sできる。また、同時にコンパクト化及び薄型化を図ることができる。  [0135] Further, according to the information recording / reproducing apparatus of the present invention, since the recording head described above is provided! /, It is possible to cope with high-density recording with high writing reliability and high quality. The power to make it S At the same time, a reduction in size and thickness can be achieved.

Claims

請求の範囲 The scope of the claims
[1] 光束を集光して生成したスポット光により一定方向に回転する磁気記録媒体を加熱 すると共に、磁気記録媒体に対して垂直方向の記録磁界を与えることで磁化反転を 生じさせ、情報を記録させる記録ヘッドであって、  [1] The magnetic recording medium rotating in a certain direction is heated by the spot light generated by condensing the light beam, and a perpendicular recording magnetic field is applied to the magnetic recording medium to cause magnetization reversal and A recording head for recording,
前記磁気記録媒体の表面に対向配置されたスライダと、  A slider disposed opposite to the surface of the magnetic recording medium;
該スライダの先端面に固定され、前記記録磁界を発生させる主磁極及び補助磁極 を有する記録素子と、  A recording element having a main magnetic pole and an auxiliary magnetic pole fixed to the front end surface of the slider and generating the recording magnetic field;
一端側から導入された前記光束を導入方向とは異なる方向で他端側に反射させる 反射面と、前記一端側から前記他端側に向かう方向に直交する断面積が漸次減少 するように絞り成形され、反射された前記光束を集光させながら他端側に向けて伝播 させて前記スポット光を生成すると共に、該スポット光を他端側から外部に向けて発 する光束集光部とを有するコアと、該コアよりも屈折率が低い材料で形成され、コアの 他端側を外部に露出させた状態でコアの側面に密着してコアを内部に閉じ込めるク ラッドとを有し、前記他端側を前記磁気記録媒体側に向けた状態で前記記録素子に 隣接して固定されたスポット光生成素子と、  Drawing is performed so that the reflection surface that reflects the light beam introduced from one end side to the other end side in a direction different from the introduction direction and the cross-sectional area perpendicular to the direction from the one end side to the other end side gradually decrease And the reflected light flux is condensed and propagated toward the other end side to generate the spot light, and the spot light is emitted from the other end side to the outside. A core formed of a material having a refractive index lower than that of the core, the second end of the core being exposed to the outside, and being in close contact with the side surface of the core and confining the core inside. A spot light generating element fixed adjacent to the recording element with the end side facing the magnetic recording medium side;
前記スライダに対して平行に配置された状態で該スライダに固定され、前記一端側 から前記コア内に前記光束を導入させる光束導入手段とを備え、  A light beam introducing means fixed to the slider in a state of being arranged in parallel to the slider and introducing the light beam into the core from the one end side;
前記光束集光部は、前記主磁極の近傍に前記スポット光を発生させることを特徴と する記録ヘッド。  The recording head characterized in that the light beam condensing unit generates the spot light in the vicinity of the main magnetic pole.
[2] 請求項 1に記載の記録ヘッドにお!/、て、  [2] In the recording head according to claim 1,! /
前記クラッドは、前記コアの一端側を外部に露出させた状態で形成されて!/、ること を特徴とする記録ヘッド。  The recording head is characterized in that the clad is formed with one end side of the core exposed to the outside! /.
[3] 請求項 1に記載の記録ヘッドにお!/、て、 [3] In the recording head according to claim 1,! /
前記光束集光部には、前記スポット光から近接場光を発生させて該近接場光を前 記他端側から外部に発する近接場光発生素子が設けられていることを特徴とする記 ま求ヘッド。  The light beam condensing unit is provided with a near-field light generating element that generates near-field light from the spot light and emits the near-field light from the other end side to the outside. Seeking head.
[4] 請求項 1に記載の記録ヘッドにお!/、て、  [4] In the recording head according to claim 1,! /
前記磁気記録媒体から漏れ出た磁界の大きさに応じた電気信号を出力する再生 素子を備えて!/、ることを特徴とする記録ヘッド。 Playback that outputs an electric signal corresponding to the magnitude of the magnetic field leaking from the magnetic recording medium A recording head comprising an element! /.
[5] 請求項 4に記載の記録ヘッドにおいて、 [5] In the recording head according to claim 4,
前記再生素子は、前記スライダと前記記録素子との間に設けられていることを特徴 とする記録ヘッド。  The recording head, wherein the reproducing element is provided between the slider and the recording element.
[6] 請求項 4に記載の記録ヘッドにお!/ヽて、 [6] The recording head according to claim 4!
前記再生素子は、前記クラッドに埋め込まれた状態で設けられていることを特徴と する記録ヘッド。  The read head is provided in a state of being embedded in the clad.
[7] 請求項 4に記載の記録ヘッドと、 [7] The recording head according to claim 4,
前記磁気記録媒体の表面に平行な方向に移動可能とされ、該磁気記録媒体の表 面に平行で且つ互いに直交する 2軸回りに回動自在な状態で、前記記録ヘッドを先 端側で支持するビームと、  The recording head can be moved in a direction parallel to the surface of the magnetic recording medium, and the recording head is supported on the leading end side while being rotatable about two axes parallel to the surface of the magnetic recording medium and orthogonal to each other. And a beam to
前記光束導入手段に対して前記光束を入射させる光源と、  A light source for making the light beam incident on the light beam introducing means;
前記ビームの基端側を支持すると共に、該ビームを前記磁気記録媒体の表面に平 行な方向に向けて移動させるァクチユエータと、  An actuator for supporting the base end side of the beam and moving the beam in a direction parallel to the surface of the magnetic recording medium;
前記磁気記録媒体を前記一定方向に回転させる回転駆動部と、  A rotation drive unit for rotating the magnetic recording medium in the fixed direction;
前記記録素子及び前記光源の作動を制御する制御部とを備えていることを特徴と する情報記録再生装置。  An information recording / reproducing apparatus comprising: a control unit that controls the operation of the recording element and the light source.
PCT/JP2007/071746 2006-11-20 2007-11-09 Recording head and information recording/reproducing device WO2008062677A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/312,614 US8054570B2 (en) 2006-11-20 2007-11-09 Recording head and data recording and reproducing apparatus
CN2007800428328A CN101536090B (en) 2006-11-20 2007-11-09 Recording head and information recording/reproducing device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-313200 2006-11-20
JP2006313200 2006-11-20
JP2007029070 2007-02-08
JP2007-029070 2007-02-08
JP2007228758A JP5201571B2 (en) 2006-11-20 2007-09-04 Recording head and information recording / reproducing apparatus
JP2007-228758 2007-09-04

Publications (1)

Publication Number Publication Date
WO2008062677A1 true WO2008062677A1 (en) 2008-05-29

Family

ID=39429615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071746 WO2008062677A1 (en) 2006-11-20 2007-11-09 Recording head and information recording/reproducing device

Country Status (1)

Country Link
WO (1) WO2008062677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213271B2 (en) 2008-12-31 2012-07-03 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for internal polarization rotation for horizontal cavity, surface emitting laser beam for thermally assisted recording in disk drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028536A1 (en) * 1998-11-09 2000-05-18 Seiko Instruments Inc. Near-field optical head and production method thereof
JP2005004901A (en) * 2003-06-12 2005-01-06 Hitachi Ltd Magnetic head and magnetic recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028536A1 (en) * 1998-11-09 2000-05-18 Seiko Instruments Inc. Near-field optical head and production method thereof
JP2005004901A (en) * 2003-06-12 2005-01-06 Hitachi Ltd Magnetic head and magnetic recording method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213271B2 (en) 2008-12-31 2012-07-03 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for internal polarization rotation for horizontal cavity, surface emitting laser beam for thermally assisted recording in disk drive
US8379495B2 (en) 2008-12-31 2013-02-19 HGST Netherlands B.V. System, method and apparatus for internal polarization rotation for horizontal cavity, surface emitting laser beam for thermally assisted recording in disk drive

Similar Documents

Publication Publication Date Title
JP5278887B2 (en) Near-field optical head and information recording / reproducing apparatus
JP5201571B2 (en) Recording head and information recording / reproducing apparatus
JP5505947B2 (en) Near-field optical head and information recording / reproducing apparatus
JP5841313B2 (en) Near-field optical head and information recording / reproducing apparatus
US8184506B2 (en) Near-field optical head with inclined magnetic poles and information recording/reproducing device
JP2012104171A (en) Recording head, method for manufacturing recording head, and information recording and reproducing device
WO2008035645A1 (en) Proximity field light recording element, proximity field light head, and information recording/reproducing device
JP4569966B2 (en) Near-field optical recording element, near-field optical head, and information recording / reproducing apparatus
JP2009140538A (en) Recording head and information recording/reproduction device
JP5943417B2 (en) Near-field light generating element, near-field light head, and information recording / reproducing apparatus
JP2009037661A (en) Recording head and information recording and reproducing device
JP5270829B2 (en) Near-field light assisted magnetic recording head and recording apparatus using the same
WO2008062677A1 (en) Recording head and information recording/reproducing device
JP4674817B2 (en) Near-field optical head and information recording / reproducing apparatus
JP5553302B2 (en) Near-field optical head manufacturing method, near-field optical head, and information recording / reproducing apparatus
JP2009295203A (en) Recording/reproducing head and information recording/reproducing device
JP5334203B2 (en) Near-field optical head and information recording / reproducing apparatus
JP2010123226A (en) Near field light head and information recording and reproducing device
JP5200273B2 (en) Head gimbal assembly and information recording / reproducing apparatus including the same
WO2008062676A1 (en) Proximity field light generation element, proximity field light head, and information recording/reproducing device
JP5692724B2 (en) Near-field light generating element manufacturing method, near-field light generating element, near-field light head, and information recording / reproducing apparatus
JP2009099212A (en) Recording head and information recording/reproducing device
JP2009295205A (en) Information recording/reproducing device
JP2009301684A (en) Head gimbal assembly with light guide structure and information recording and playback device
JP2012064261A (en) Recording head and information recording/reproduction device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042832.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12312614

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07831477

Country of ref document: EP

Kind code of ref document: A1