JP2005004901A - Magnetic head and magnetic recording method - Google Patents

Magnetic head and magnetic recording method Download PDF

Info

Publication number
JP2005004901A
JP2005004901A JP2003168371A JP2003168371A JP2005004901A JP 2005004901 A JP2005004901 A JP 2005004901A JP 2003168371 A JP2003168371 A JP 2003168371A JP 2003168371 A JP2003168371 A JP 2003168371A JP 2005004901 A JP2005004901 A JP 2005004901A
Authority
JP
Japan
Prior art keywords
magnetic
recording
light
head
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168371A
Other languages
Japanese (ja)
Other versions
JP3984568B2 (en
Inventor
Fumiko Akagi
文子 赤城
Kazusukatsu Igarashi
万壽和 五十嵐
Takuya Matsumoto
拓也 松本
Hideki Saga
秀樹 嵯峨
Hiroshi Ishikawa
啓 石川
Masabumi Mochizuki
正文 望月
Atsushi Nakamura
敦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003168371A priority Critical patent/JP3984568B2/en
Publication of JP2005004901A publication Critical patent/JP2005004901A/en
Application granted granted Critical
Publication of JP3984568B2 publication Critical patent/JP3984568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Abstract

<P>PROBLEM TO BE SOLVED: To realize ultra-high density thermally assisted magnetic recording by generating near-field light in and at an optimum light irradiation position and light irradiation timing. <P>SOLUTION: The position to be provided with a light irradiation means is confined within a distance half the magnetic pole width in the track width direction of a main magnetic pole from a trailing side terminal 101 of the main magnetic pole 100. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高記録密度の情報記憶装置に関し、特に、記録媒体に光を照射する近接場光プローブと磁気記録再生用ヘッドを備えた熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置に関する。
【0002】
【従来の技術】
現代の情報化社会を支える情報記憶システムの1つとしてコンピュータ等に装着されている磁気ディスク装置は、高記録密度化と高速化及び小型化が急速に進んでいる。磁気ディスク装置の高密度化を実現するためには、磁気ディスクと磁気ヘッドの距離を狭めること、磁気記録媒体の磁性膜を構成する結晶粒径を微細化すること、磁気記録媒体の保磁力(異方性磁界)を増大させること、信号処理方法の高速化等が要望されている。
【0003】
磁気記録媒体において、結晶粒子を微細化することはノイズを低減することにつながるが、一方、粒子が熱的に不安定になるという問題が生じる。従って、結晶粒子を微細化して更に熱安定性も確保するためには、異方性定数を大きくする必要がある。異方性定数を大きくすること、即ち、異方性磁界を大きくするということは、記録に必要なヘッド磁界強度も大きくしなければならないことを意味する。しかし、記録用ヘッドに使われる磁極材料の制限及び、磁気ディスクと磁気ヘッドの距離を狭めることの制限から、今後、高記録密度化に比例して異方性磁界を増大させることは困難である。
【0004】
一方、光ディスクの分野では、相変化型記録媒体の実用化や青紫色半導体レーザの開発により、書き換え型媒体でかつ高密度化が進められてきた。更に高密度化するためには、記録再生用の光スポットを縮小することが最も効果的な方法であり、そのためには光源の発振波長を短くすることと、光をディスク上に絞り込む対物レンズ開口数の拡大を行うことが効果的である。しかし、短波長の光源素子開発には多くの困難が伴い、また、開口数は1未満という限界が存在するために光スポットの縮小による高密度化には限界があった。
【0005】
このような状況下で、近年では近接場光記録技術が、光ディスクの高密度技術として注目を浴びている。通常の光ディスク光学系では、光スポット径に回折限界が存在し、これよりも小さい光スポットは形成できないという問題があったが、光の絞込み手段として光ファイバの先端等に形成した開口、あるいは、固体浸レンズの構造を導入することにより、回折限界以下の光スポットを形成することが可能となる。しかし、開口型は開口径を光源の波長以下に縮小していくと光利用効率が急激に低下し、実用的な速度での記録が困難となる。また、固体浸レンズの場合は、材料によって絞り込み効果が決定されてしまうため高密度化には限界がある。また、いずれもデバイス表面からλ以上離れた空間には光エネルギーが殆ど到達しないので、これらの近接場光デバイスは記録媒体の表面にきわめて接近した配置とせざるを得ず、その場合には塵埃の存在に比較的強く媒体交換が容易であるという光ディスクの特徴は損なわれることとなる。即ち、近接場光記録技術によってストレージ・デバイスを実現する場合には、その構造は、必然的に現行のハードディスク装置と同様に、記録媒体の表面至近を浮上するスライダ上に記録再生素子、即ち、近接場光発生機構等が積載される形態となる。媒体が交換できず、装置内部に固定されることになれば、記録媒体は装置寿命と同等以上であることが求められる。従って、書き換え耐久性が低い相変化記録媒体を用いることは非現実的である。
【0006】
以上述べた磁気ディスク装置と光ディスク装置の問題を解決するために、光記録技術と磁気記録技術を結合したハイブリッド記録技術が提案された。例えば、Intermag2000 HA−04及びHA−06がある。これらは、記録媒体及び再生ヘッド原理は従来の磁気記録の延長線上とし、記録ヘッドに関してのみ、記録磁界が発生する部分に近接場光を発生させる機構を付加する。これより、従来の磁気ヘッドでは記録磁界が不足して記録が困難であった超高記録密度用の高い異方性磁界強度、即ち高保磁力を持つ媒体の保磁力を下げて記録を可能にするという効果が得られる。
【0007】
従来の熱アシスト磁気ヘッドによると、近接場光の光照射位置は、ヘッドが移動する方向に対して前方(媒体が移動する方向に対して後方)にあった。即ち、磁気ヘッドからヘッド磁界が印加される前に光照射が行われ、媒体が暖められた後、磁界が印加されるという方式であった(例えば、特開2002−117502号公報)。もしくは、光照射位置とヘッド磁界印加位置は一致していた(例えば、特開2002−298302号公報)。これらの光照射位置では、光の照射タイミングはヘッド磁界が印加される前か、ヘッド磁界と温度が最大値となるタイミングがほぼ一致している。
【0008】
【特許文献1】
特開2002−117502号公報
【特許文献2】
特開2002−298302号公報
【非特許文献1】
Intermag2000 HA−04, HA−06
【0009】
【発明が解決しようとする課題】
しかし、ヘッド磁界が印加される前又は、同時に光が照射されると、記録された磁化は、記録後も数ナノ秒の間ヘッドの真下を通過するため、記録した磁化がヘッド磁界と熱の影響を受けて消去されてしまうという問題が生じる。
【0010】
本発明の目的は、このような問題を解決するために、最適な光照射位置と光照射タイミングで近接場光を発生させることにより、超高密度熱アシスト磁気記録を可能とする熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明の磁気ヘッドは記録磁極のトレーリング側終端近傍に光照射部を設ける。このような構成を持つ熱アシスト磁気記録装置では、光照射による熱分布の最大上昇温度における磁気記録媒体の異方性磁界の大きさが、記録ヘッドの最大ヘッド磁界以下であれば熱アシスト磁気記録が可能であり、記録磁極のトレーリング側の終端近傍に記録磁化遷移が形成される。光照射部を設ける位置は、トラック走行方向に対して、トレーリング終端から、記録磁極のトラック幅方向の磁極幅の半分の大きさに相当する距離以内とすることにより高効率の再生出力が得られる。記録ヘッドが主磁極と補助磁極とを有するヘッドの場合、記録ヘッドは主磁極である。
【0012】
光照射部は、金属の散乱体を用いて近接場光を発生することにより、光学系の回折限界や光学部品材料の制限を受けることなく、熱アシスト磁気記録に用いられる光スポットのサイズを縮小することができ、記録媒体上の記録密度を増大させることができる。近接場光を発生する金属の散乱体の形状を円錐又は多角錘の形状をした構造とすると、効率的に近接場光を発生することができ、三角形とするとより効率的に近接場光を発生することができる。
【0013】
光照射部は、記録磁極のトレーリング終端のトラック幅方向中心付近を適当な大きさに削って配置することにより、温度勾配と磁界勾配が最も急峻な位置に配置することができる。あるいは、光照射部を、記録磁極のトラック幅方向の両面に記録磁極を挟むように対称的に配置することにより、温度勾配と磁界勾配が最も急峻な位置に配置することができる。
【0014】
また、近接場光を発生させる金属の散乱体は、Cu,Ag,Al等の熱伝導率の高い金属膜を介して記録磁極と接するように配置することにより、効率よく熱を拡散して記録磁極が発熱することを防ぐことができる。また、近接場光を発生させる金属の散乱体は、散乱体の一部をAl,SiO,Cr,SiN,BN等の誘電体と接して設けるか、もしくは散乱体全体を前記誘電体で覆うように形成することにより、金属の散乱体は効率的に近接場光を集光できる。
【0015】
本発明の熱アシスト磁気記録装置は、ヘッドトレーリング近傍に設けた光照射部と、光源として平面レーザを備え、この平面レーザによりレーザ光を光照射部に導くことにより、光を照射して記録用媒体を加熱昇温した状態でヘッド磁界を印加して磁気的な記録が可能となる。他の構成として、ヘッドトレーリング近傍に光照射部を設け、光源としてヘッドスライダー上に半導体レーザ等を備え、半導体レーザから出射されたレーザ光を光ファイバによって光照射手段に導くようにしてもよい。また、熱アシスト磁気記録装置の記録用信号処理回路の記録コイル駆動回路とレーザ駆動回路の前に遅延時間を補正するための遅延回路を設けることにより、ヘッド磁界の反転のタイミングと光照射のタイミングを精度良く制御できる。
【0016】
本発明による熱アシスト磁気記録方法は、磁気記録層に印加された記録磁界のトラック方向における磁界勾配の最も急峻な位置と光照射による磁気記録層の熱分布の温度勾配の最も急峻な位置とが略一致するように記録磁界の印加と光照射とを行う。光照射を止めるタイミングを、ヘッド磁界が反転を始めるタイミングと、ヘッド磁界が反転を始めるタイミングから最小反転時間の半分だけ遡ったタイミングとの間とすることにより、高い再生出力を得ることが可能となる。 また、光照射を行う間隔を、熱アシスト磁気記録装置における最小磁化反転単位に一致させることにより、全ての磁化反転単位において、高い再生出力を得ることが可能となる。
本発明によると、高分解能で低ノイズ記録磁化が得られるため、記録密度を増大することが可能となる。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図2は、本発明による磁気ディスク装置の構造を示す模式図である。磁気ディスク装置のドライブ内には通常一枚ないし数枚の磁気ディスク15が実装されている。本例の磁気ディスク15は、軟磁性下地層と垂直磁気記録層を備える垂直磁気記録用の磁気ディスクであり、矢印10の方向に回転駆動される。拡大図(a)に示すように、キャリッジ13の先端に固定された磁気ヘッドスライダー11後端にある磁気ヘッド12は、ボイスコイルモータ14によって任意のトラックにアクセスし、磁気ディスク(媒体)上で情報の記録再生を行っている。拡大図(b)は、磁気ヘッド12について、記録を行う記録ヘッド102と再生を行う再生ヘッド16の構成を媒体対向面から見た概略図である。記録ヘッド102は主磁極100と補助磁極103とを備える垂直磁気記録用の単磁極型記録ヘッドであり、主磁極100から漏れ出る磁界によって媒体15に磁気記録が行われる。再生ヘッド16は、磁気シールド17と補助磁極103を兼ねる磁気シールドの間に配置される磁気抵抗効果素子からなる再生素子18を備え、再生素子18内に媒体15からの漏れ磁束が流入することで、再生出力が得られる。
【0018】
図3は、本発明による記録ヘッドの構成例を示す図である。図は、記録ヘッド及び記録媒体を、記録媒体面に垂直(図中の上下方向)かつトラック走行方向に平行な面で切断した場合における記録ヘッド周辺の断面構造を表している。
【0019】
記録媒体110は、結晶化ガラス基板113上に形成された軟磁性層112及び磁気記録層111を備える。磁気記録層111は、膜面垂直方向に磁化容易軸を有する垂直磁化膜(Pd/Co多層膜)である。記録ヘッド102は主磁極100と補助磁極103を有し、平板状の補助磁極103は記録媒体110に略直交するように形成されている。更にこの補助磁極103には、導体パターン104が螺旋状に形成され、その両終端は外部に引き出されて磁気ヘッド駆動回路に接続されている。主磁極100は一端が補助磁極103に接続され、他端は記録ヘッド102底面に至り、記録媒体110に対向している。補助磁極103、主磁極100及び導体パターン104は全体として電磁石を構成しており、駆動電流によって主磁極100の先端部分近傍の磁気記録層111に記録磁界が印加される。また、記録ヘッド102は、主磁極100の記録媒体110対向面のトレーリング終端101に光散乱体106を有し、光散乱体106にレーザ光108を照射するための平面レーザ107及びホログラム・レンズ109を備える。以上の構造を有する記録ヘッドは、薄膜形成プロセスとリソグラフィ・プロセスによって作製することができる。
【0020】
図4は、主磁極100及び光散乱体106を記録媒体110対向面から見た図である。図4(a)は主磁極の媒体対向面形状が長方形の場合、図4(b)は、主磁極の媒体対向面形状がトレーリング側の主磁極幅を底辺とする台形の場合を示している。図中の矢印はヘッド走行方向を表す。
【0021】
主磁極100の記録媒体110対向面のトレーリング終端101は、トラック幅方向の磁極幅(Tww)の中心付近を窪ませるように半楕円形状に削る。光散乱体106は、図示するように、磁極幅中心の磁極を削った位置に設ける。また、この窪みの大きさは、以下に示す計算機シミュレーションから得られた最適領域を選ぶのが良い。図3に図示した光散乱体106の形状はほぼ三角形であり、AuもしくはPd等の材料できているが、光散乱体の形状は、円錐又は他の多角錐でもよい。いずれの形状の場合でも、尖った頂点が媒体に向くように配置する。
【0022】
記録媒体110に対する情報の記録時には、記録磁界発生と同時に光源である平面レーザ107からレーザ光108が放射される。このレーザ光はホログラム・レンズ109によって収束され、散乱体106に照射される。金属散乱体106は、コヒーレントなレーザ光108の照射を受けると、内部の自由電子がレーザ光108の電場によって一様に振動させられる結果としてプラズモンが励起され、散乱体106の先端部分には強い近接場光が発生される。こうして記録時に、磁気記録層111は近接場光によって加熱され、同時に主磁極100によって記録磁界が印加されるので、記録すべき情報に対応した所望の記録磁化遷移を磁気記録層111上に熱アシスト記録によって形成することができる。
【0023】
磁気記録層111に記録された情報の再生は、GMR(巨大磁気抵抗効果)素子、又はTMR(トンネル磁気抵抗効果)素子等の磁束検出手段を搭載した再生ヘッドを用いて、磁気記録層からの漏洩磁束を検出することにより磁気的に情報の再生を行う。あるいは、記録媒体のKerr効果及びFaraday効果を利用した光学的磁束検出手段を搭載した再生ヘッドを用いて光学的に再生してもよい。
【0024】
以下に、本発明の効果について、マイクロマグネティクスを用いた計算機シミュレーション手段によって計算、検討した結果を示す。図5は、本発明のヘッド主磁極100のみを取り出して記録媒体110とともに示した簡易モデル図、及び、ヘッド磁界プロファイルと熱プロファイルの一例を示す図である。主磁極100はトラック走行方向に400nmの磁極厚さを持ち、トラック幅方向の磁極幅は100 nmとした。主磁極100と媒体間の空隙は15 nmとした。図の矢印117は光照射位置である。
計算は、以下に示すLandau−Lifshitz−Gilbert方程式に、熱エネルギーによる磁界h(t)を加えたLangevin方程式を用いた(J.Appl.Phys.75(2),15 Jan.1994)。
【0025】
【数1】

Figure 2005004901
【0026】
ここで、M は粒子の磁化、tは時間、Heff は実効磁界、γはジャイロ磁気定数、αはGilbertのダンピング定数(消衰定数)、Mは飽和磁化、h(t)は熱揺らぎによる実効的な磁界、kはボルツマン定数、Tは温度、Vは粒子の体積、δ(τ)はDiracのデルタ関数、τは時間ステップである。δijはKronecker deltaで、i,jは磁界の成分(x,y,z)である。<>は時間平均である。
【0027】
式(2)、(3)より、各粒子に印加されるh(t)の大きさは、平均が0、(2)式の右辺の係数(2kTα/γVM)を分散とするガウス分布に従うとし、その方向はランダムなベクトルであるとした。また、(2)式より、δ(τ)は、時間ステップの逆数とし、時間刻みごとに、粒子に加わる熱揺らぎによる実効磁界の大きさが変化するとした。
【0028】
ヘッド磁界は、市販の積分要素法を用いた三次元ヘッド磁界解析プログラムMAGICを用いた。ヘッド磁界は最大12 kOeである。熱プロファイルは有限要素法を用いて熱拡散方程式を解くことによって求めた。この時、記録層の中心部でガウス分布の強度分布を有する光スポットが照射されるとし、照射された光のエネルギーは膜厚方向に均等に吸収されると仮定した。図は、入射パワー1 mWで1 ns照射した場合で、スポット半径(最大光強度の1/eの等温線の半径)50 nmの温度プロファイルである。最大発熱温度は235℃である。再生出力はMRヘッドの感度分布をリングヘッドの相反定理の式に代入して求めた(松本光功:磁気記録(共立出版、東京、1977))。再生条件は、シールド間距離Gs = 0.06μm、再生トラック幅Twr = 0.8μmとした。
【0029】
図6は、媒体上における熱分布の中心温度の時間依存性を示す図である。入射パワー1 mWで1 ns照射した後、1 ns冷却した結果である。
図7に示した表は、Pd/Co多層膜媒体の磁気特性を示している。これによると、異方性磁界Hは20 kOeとCoCr系媒体の倍近い値であるため、図5に示した最大12 kOeのヘッド磁界では記録することができない。
【0030】
図8は、異方性磁界Hと飽和磁化Mの温度依存性を示す図である。異方性磁界は温度が40 ℃増加すると15 %減少し、飽和磁化は5 %減少するとした(IEEE Trans. Magn., vol. 34 , pp. 1558−1560, 1998)。この図より、上記照射手段による最大発熱温度235℃では、異方性磁界Hは4 kOe以下となり、最大ヘッド磁界強度12 kOe以下である。
【0031】
以上の計算手段、計算条件にて、光散乱体による光照射位置依存性及び光照射タイミング依存性について計算を行った。ここで、光照射タイミングとは、光照射を始める時間であり、ヘッド磁界が反転を始める時刻を0秒として、1ビットの記録が終わるまでの間の時間とした。
【0032】
図9は、光照射タイミングIt = 0.0 nsで記録したときの再生出力の光照射位置Xp(主磁極のトラック幅方向の磁極幅Twwで規格化:Xp/Twwと定義)依存性を示す図である。ヘッドは図において、右方向に周速20m/sで動いているとした。図における主磁極100の終端はヘッドトレーリング側の主磁極終端101であり、この主磁極終端101を光照射位置0 nmの位置と決めた。記録密度は3 Tb/mを目標として、6.6 mfcm (mfcm: mega flux change per m)、19.7 mfcm、39.4 mfcmの計算を行った。これより、記録密度が6.6 mfcmでは、Xp/Tww = 0.2〜1.0までは再生出力はほぼ一定であるが、0.0以下になると急激に減衰する。19.7 mfcmでは、Xp/Tww = 0.2近傍を再生出力の最大値として、この近傍から遠ざかるに従い再生出力は減少する。39.4 mfcmの時は19.7 mfcmの時と同様の結果が得られた。
【0033】
光散乱体をヘッドの主磁極終端101より外側に配置すると再生出力が減少する理由は、ヘッド磁界が減衰している所に光が照射されるためである。主磁極終端101より内側に配置した場合、低密度と高密度で現象が異なる理由は以下のように考えられる。低密度の場合、Xp/Tww≦ 1.0ならば、記録ビットは、次のビットが書かれる時にはヘッド磁界と熱の影響の小さい主磁極終端101の外側にあるため、図に示したように再生出力は低下しない。しかし、記録密度が増加するに従い、光照射位置がヘッド中心側にあるほど、記録ビットはヘッド磁界と熱の影響が残る領域内に長時間留まることになるので再生出力は減少してしまう。また、高密度において、Xp/Tww = 0.2近傍で最大再生出力値を得る理由は、記録磁化遷移の中心とヘッド磁界勾配の最大値と温度勾配の最大値をとる位置がほぼ一致するためである。即ち、ヘッド磁界勾配の最大値と温度勾配の最大値をとる位置がほぼ一致するように光散乱体を設け、更に記録磁化遷移の中心位置も一致するようなHの温度依存性をもつ媒体と組み合わせることにより最も高い効率で再生出力を得ることができる。
【0034】
図10は、Xp/Tww = 0.2のヘッド磁界分布と熱分布から求めた実効的なスイッチング磁界Hceのプロファイルを示す図である。ここで、Hce = H×0.9とし、Hは図8のHの温度依存性から求めた。ヘッド磁界分布とスイッチング磁界Hceの交差する位置が、磁化遷移領域の中心であることを意味する。この時、この磁化遷移領域の中心は、ヘッド磁界分布の勾配と熱の温度勾配が最大値をとる位置に相当している。同図に、実際に磁化が形成されている位置を円と矢印で示した。実際の磁化遷移中心は解析的に求めた位置よりも多少ずれているが、これは、磁化容易軸が膜厚方向に分布を持っていることやHが分散を持っていることが原因と考えられる。しかし、磁化遷移中心は最大磁界勾配領域内にあり、更に、熱分布の最大勾配位置近傍でもある。従って、Xp/Tww = 0.2の位置では、高密度になるほど最大再生出力が得られると考えられる。
【0035】
図1は再生出力の分解能を知るために、19.7 mfcmの再生出力を6.6 mfcmの再生出力で規格化した結果を示す図であり、Xp/Tww = 0.1の分解能を基準分解能(0 % )として示した。図1から、良好な分解能を得るためには、光照射位置を、ヘッドトレーリング側の磁極終端からXp/Tww = +0.5を超えるような主磁極の内側に設定すべきでないことが分かる。
【0036】
また、図11は、6.6 mfcm (mfcm: mega flux change per m)の再生出力を39.4 mfcmのノイズで規格化した結果S6.6mfcm/N39.4mfcm(Xp/Tww = 0.2のS/N比を基準分解能(0 dB )として示す)を示す図である。図11からXp/Tww ≦−0.5では、急激にS6.6mfcm/N39.4mfcmが劣化することが分かる。これは、39.4 mfcmの記録が困難となり、ノイズが増加するためである。
【0037】
図1及び図11より、良好な分解能をもって記録するための最適光照射位置は、ヘッドトレーリング側の磁極終端からほぼXp/Twwが±0.5以内であることが分かる。即ち、最適光照射位置の最大値を最適光照射距離と定義すると、最適光照射距離は主磁極のトラック幅方向の磁極幅の半分の大きさに相当する。
【0038】
以上より、最適光照射位置を、主磁極のトレーリング終端から、主磁極のトラック幅方向の磁極幅/2以内、又は光散乱体の媒体対向面側の頂点の曲率半径に相当する距離以内に設定することにより、高分解能が得られる。
【0039】
図12に、主磁極のトラック幅方向の磁極幅を変えて分解能を計算し、最適光照射距離と主磁極の磁極幅との関係をまとめた結果を示す。これより、最適光照射距離は、主磁極の磁極幅/2にほぼ一致することがわかった。
【0040】
以上の結果は、ヘッド・媒体間の周速を10 m/sから100 m/sまで変えても適用できることを確認した。また、本発明による効果は垂直磁気記録に対してだけではなく、面内磁気異方性を有する記録膜を用いる面内磁気記録に対しても同様に発揮される。面内磁気記録の場合には、主磁極の先端部分が、記録媒体に対して面内方向の記録磁界を十分に印加できるいわゆる「リングヘッド構造」であることが必要となる。
【0041】
以上より、トラック走行方向において、光散乱体を設ける位置(光散乱体の媒体対向面の中心位置)は、主磁極トレーリング側の終端から、主磁極のトラック幅方向の磁極幅/2に相当する距離以内に配置することにより、高分解能、低ノイズとなる磁化パターンを得ることができる。特に、ヘッド磁界勾配と温度分布勾配の最も急峻な位置が一致するように光散乱体を配置することにより、最も高い再生出力を得ることが可能となる。本実施例では、Xp/Tww = 0.2の位置に相当する。従って、図4に示すように、主磁極のトラック幅方向の磁極幅中心を窪ませるように半楕円形状に削ることにより光散乱体の媒体対向面の中心をXp/Tww = 0.2の位置に配置することが可能となり、本構成において、最も高分解能、高S/N比(低ノイズ)を持った熱アシスト磁気記録装置が得られる。
【0042】
図13は、光照射位置をパラメータとして再生出力の光照射タイミング依存性を計算した結果を示す図である。(a)は記録密度6.6 mfcm、(b)は19.7 mfcm、(c)は39.4 mfcmである。光照射タイミングは、各記録密度において1ビット以内の時間のずれを仮定した。ここで、39.4 mfcmの場合には照射時間と冷却時間の総和が1ビット内に収まるように、冷却時間を短くして計算を行った。即ち、温度が立ち上がり初めてから1ビット分経過した時点で、熱分布を強制的に室温に戻した。
【0043】
図より、光照射タイミングは、ほぼ全領域で同じ再生出力値を得るが,各記録密度に依存した特定の時間において、再生出力が激減する光照射タイミングが存在する。再生出力が激減する原因は、ヘッド磁界の時間変化と温度の時間変化のタイミングが合わないことによる。即ち、ヘッド磁界が立ち上がりかけている時に温度が最大となってしまい、ヘッド磁界が立ち上がった時には逆に温度が減少しているためである。従って、照射タイミングはヘッド磁界強度と温度がともに最大となるタイミングを選ぶことが重要である。
【0044】
図14は、図13(c)に表示した記録密度=39.4 mfcm、光照射位置 = 20 nmの結果を、光照射を止めるタイミングに観点を変えて、電流プロファイルとの関係をまとめた結果を示す図である。また、同図に、照射時間0.5ns で、入射パワーを1mWより少しあげて、最大温度が235℃となるような条件で記録した場合も示した。これより、各条件において、最大再生出力を得るためには、記録ビットが半分記録されてからヘッド磁界が立ち下がり始める時間以内に光照射を止めるタイミングを設定する必要があることがわかった。また、光照射を行う間隔は、熱アシスト磁気記録装置における最小磁化反転単位に一致させることにより、全ての磁化反転単位において、高分解能、低ノイズとなる熱アシスト磁気記録装置が得られる。
以上のことを実現するためには、記録コイル駆動回路とレーザ駆動回路の同期をとる必要がある。
【0045】
図15は、信号処理回路の構成例を示すブロック図である。情報の記録時においては、記録すべきユーザ・データ600が外部機器とのインタフェース回路601を介してシステム・コントローラ602に送り込まれ、必要に応じてエラー検出、訂正情報等の付加後、符号器603に伝えられる。符号器603はユーザ・データ600に対して例えば(1,7)変調後、NRZI変換を施し、記録媒体上の記録磁化の配列を反映した信号を生成する。記録波形発生回路604はこの信号を参照し、記録バイアス磁界の制御信号及びレーザ発光強度の制御信号を発生する。更に、記録波形発生回路の後に遅延回路605,606を設けることにより、磁気コイル駆動回路607とレーザ駆動回路608の駆動タイミングのずれを補正することができ、記録バイアス磁界の制御信号に対し、所望のレーザ発光強度の制御信号が得られる。磁気コイル駆動回路607は、システム・コントローラ602からの指示を受け、記録バイアス磁界の制御信号に従って記録ヘッドの記録コイルを駆動し、金属散乱体によって強い近接場光が発生される部分に記録バイアス磁界を発生する。またレーザ駆動回路608もシステム・コントローラ602からの指示を受け、レーザ発光強度の制御信号に従って記録エネルギー源である半導体レーザを駆動する。このときレーザ駆動回路608は、レーザの光照射を行う間隔が熱アシスト磁気記録装置における最小磁化反転単位に一致するように半導体レーザを駆動する。
【0046】
情報の再生時においては、磁気記録媒体の表面をGMR素子によって走査し、記録磁化の配列を反映した信号を検出する。記録磁化の配列を反映したGMR素子の出力信号は増幅器610によって必要なレベルまで増幅された後に、復号器611に入力される。復号器611は符号器603の逆変換を施すことにより記録されていたデータを復元し、復元結果をシステム・コントローラ602に伝える。システム・コントローラ602は必要に応じてエラー検出、訂正等の処理を行い、インタフェース回路601を介して再生されたユーザ・データ600を外部機器に送り出す。
【0047】
図16及び図17は、本発明による記録ヘッドの他の構成例を示す模式図である。図16は、記録ヘッド及び記録媒体を、記録媒体面に垂直かつトラック走行方向に平行な面で切断した断面を示している。図17は、主磁極及び光散乱体を媒体対向面側から見た図である。図17(a)は主磁極の媒体対向面形状が長方形の場合、図17(b)は主磁極の媒体対向面形状がトレーリング側の磁極幅を底辺とする台形の場合である。図中の矢印はヘッド走行方向を表す。
【0048】
この実施例では、光散乱体106を主磁極100のトラック幅方向の側面に配置した。具体的には、図17に示すように、光散乱体106を、主磁極100のトラック幅方向の両側面に、主磁極の中心線に対して対称となるように配置した。この時、光散乱体106を設ける位置は、図1で求めた最適光照射位置と同じにすることにより、上記計算結果から、高分解能、低ノイズを達成できる熱アシスト磁気記録装置が得られる。
【0049】
次に、光散乱体と主磁極間の構成について説明する。散乱体は、主磁極に直接接していてもよいが、散乱体からの熱が主磁極に伝導して、主磁極の材料の変質等、ヘッド磁界に大きな影響を及ぼす可能性を考えた場合、散乱体と主磁極の間にCu,Ag,Al等の熱伝導率の高い金属膜を設けることにより、散乱体の損失によって生じた熱を、金属膜を通して速やかに拡散させるのが望ましい。しかし、熱伝導率の高い金属膜を設けることは、熱が金属膜に吸収され易くなることも意味するため、散乱体先端の熱の集光率が下がる恐れがある。これは、散乱体の一部に誘電体を接して設けるか、もしくは誘電体で散乱体全体を覆うことで解決できる。誘電体の材料はAl,SiO,Cr,SiN等とする。
【0050】
図18は、本発明による記録ヘッドの更に他の構成例を示す模式図である。本例は、光源が磁気ヘッドスライダー上等、記録ヘッドと離れている場合の記録ヘッドの構成例を示すものである。半導体レーザ(図示せず)から出射したレーザ光108は、光ファイバ119により記録ヘッド102近傍まで導かれた後、ミラー120によって反射され散乱体に照射される。ミラーの形状は、図のように平面又は、曲面とする。また、ミラー120と散乱体106の間にホログラム・レンズを配して光を収束させてもよい。本例によると、半導体レーザを散乱体106に近接して配置する必要がなくなる。
【0051】
【発明の効果】
本発明によれば、光を照射させながらヘッド磁界によって磁気記録媒体に磁化情報を記録する熱アシスト磁気記録装置において、高い再生出力、分解能及び低ノイズとなる磁化パターンを形成することができる。
【図面の簡単な説明】
【図1】本発明の熱アシスト磁気記録装置における分解能S19.7mfcm/S6.6mfcmの光照射位置依存性を示す図。
【図2】本発明による磁気ディスク装置の構造を示す模式図。
【図3】本発明による記録ヘッドの構成例を示す図。
【図4】主磁極と光散乱体を媒体対向面側から見た図。
【図5】ヘッド磁界及び温度プロファイルの一例を示す図。
【図6】媒体上における熱分布の中心温度の時間依存性を示す図。
【図7】媒体パラメータ (T = 300 K)を示す図。
【図8】異方性磁界 H と飽和磁化Mの温度依存性を示す図。
【図9】再生出力の光照射位置依存性(照射タイミング= 0 ns)を示す図。
【図10】ヘッド磁界Hと実効保磁力Hceのプロファイル(Xp/Tww = 0.2)を示す図。
【図11】S6.6mfcm /Nd39.4mfcmの光照射位置依存性を示す図。
【図12】最適照射位置と主磁極のトラック幅方向の磁極幅の関係を示す図。
【図13】本発明による再生出力の光照射タイミング依存性を示す図。
【図14】本発明による光照射を止めるタイミングと再生出力の値及び電流プロファイルとの関係を示す図。
【図15】信号処理回路の構成例を示すブロック図。
【図16】本発明による記録ヘッドの他の構成例を示す模式図。
【図17】本発明による記録ヘッドの他の構成例を示す模式図。
【図18】本発明による記録ヘッドの更に他の構成例を示す模式図。
【符号の説明】
11…磁気ヘッドスライダー
12…磁気ヘッド
13…キャリッジ
14…ボイスコイルモータ
15…磁気ディスク
16…再生ヘッド
17…下部シールド
18…再生素子
100…主磁極
101…主磁極トレーリング側終端
102…記録ヘッド
103…補助磁極
106…光散乱体
107…平面レーザ
108…レーザ光
109…ホログラム・レンズ
110…磁気記録媒体
111…磁気記録層
112…軟磁性層
113…ガラス基板
117…光照射位置
119…光ファイバ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high recording density information storage device, and more particularly, to a thermally assisted magnetic recording head and a thermally assisted magnetic recording device including a near-field optical probe for irradiating light on a recording medium and a magnetic recording / reproducing head.
[0002]
[Prior art]
Magnetic disk drives mounted on computers and the like as one of information storage systems that support the modern information society are rapidly increasing in recording density, speed, and size. In order to realize a high density magnetic disk device, the distance between the magnetic disk and the magnetic head is reduced, the crystal grain size constituting the magnetic film of the magnetic recording medium is reduced, the coercive force of the magnetic recording medium ( Increasing the (anisotropic magnetic field), speeding up the signal processing method, and the like are desired.
[0003]
In a magnetic recording medium, miniaturization of crystal grains leads to reduction of noise, but on the other hand, there arises a problem that the grains become thermally unstable. Therefore, it is necessary to increase the anisotropy constant in order to make the crystal grains finer and further ensure thermal stability. Increasing the anisotropy constant, that is, increasing the anisotropy magnetic field means that the head magnetic field strength necessary for recording must also be increased. However, it is difficult to increase the anisotropic magnetic field in proportion to the higher recording density due to the limitation of the magnetic pole material used for the recording head and the limitation of reducing the distance between the magnetic disk and the magnetic head. .
[0004]
On the other hand, in the field of optical disks, rewritable media and higher density have been promoted by the practical use of phase change recording media and the development of blue-violet semiconductor lasers. In order to further increase the density, the most effective method is to reduce the light spot for recording and reproduction. For this purpose, the oscillation wavelength of the light source is shortened and the objective lens aperture that narrows the light on the disk is used. It is effective to increase the number. However, there are many difficulties in developing a light source element with a short wavelength, and since there is a limit that the numerical aperture is less than 1, there is a limit to increasing the density by reducing the light spot.
[0005]
Under such circumstances, near-field optical recording technology has recently attracted attention as a high-density technology for optical disks. In a normal optical disk optical system, there is a problem that there is a diffraction limit in the light spot diameter, and a light spot smaller than this cannot be formed, but an aperture formed at the tip of the optical fiber as a light narrowing means, or By introducing the structure of the solid immersion lens, it becomes possible to form a light spot below the diffraction limit. However, in the aperture type, when the aperture diameter is reduced to be equal to or smaller than the wavelength of the light source, the light use efficiency is drastically reduced, and recording at a practical speed becomes difficult. In the case of a solid immersion lens, there is a limit to increasing the density because the narrowing effect is determined by the material. In addition, since almost no light energy reaches a space separated from the device surface by λ or more, these near-field light devices must be arranged very close to the surface of the recording medium, and in that case, dust The characteristic of the optical disc that it is relatively strong in existence and easy to exchange media is impaired. That is, when a storage device is realized by the near-field optical recording technology, the structure is inevitably the same as the current hard disk device, the recording / reproducing element on the slider that floats close to the surface of the recording medium, that is, The near-field light generating mechanism and the like are loaded. If the medium cannot be exchanged and is fixed inside the apparatus, the recording medium is required to be equal to or longer than the apparatus life. Therefore, it is unrealistic to use a phase change recording medium with low rewriting durability.
[0006]
In order to solve the problems of the magnetic disk apparatus and the optical disk apparatus described above, a hybrid recording technique combining an optical recording technique and a magnetic recording technique has been proposed. For example, Intermag 2000 HA-04 and HA-06. In these methods, the principle of the recording medium and the reproducing head is on an extension line of the conventional magnetic recording, and a mechanism for generating near-field light is added only to the recording head in the portion where the recording magnetic field is generated. As a result, recording is possible by lowering the coercive force of a medium having a high anisotropy magnetic field strength for ultra-high recording density, that is, a high coercive force, which has been difficult to record with a conventional magnetic head due to insufficient recording magnetic field. The effect is obtained.
[0007]
According to the conventional heat-assisted magnetic head, the light irradiation position of the near-field light is in front of the direction in which the head moves (backward in the direction in which the medium moves). In other words, light irradiation is performed before the head magnetic field is applied from the magnetic head, and the magnetic field is applied after the medium is warmed (for example, Japanese Patent Application Laid-Open No. 2002-117502). Alternatively, the light irradiation position coincides with the head magnetic field application position (for example, JP-A-2002-298302). At these light irradiation positions, the light irradiation timing is substantially the same as that before the head magnetic field is applied, or the timing at which the head magnetic field and the temperature reach the maximum value.
[0008]
[Patent Document 1]
JP 2002-117502 A
[Patent Document 2]
JP 2002-298302 A
[Non-Patent Document 1]
Intermag2000 HA-04, HA-06
[0009]
[Problems to be solved by the invention]
However, if the light is irradiated before or simultaneously with the application of the head magnetic field, the recorded magnetization passes directly under the head for several nanoseconds after recording, so the recorded magnetization is There arises a problem of being erased under the influence.
[0010]
An object of the present invention is to solve such problems by generating near-field light at an optimal light irradiation position and light irradiation timing, thereby enabling ultra-high-density heat-assisted magnetic recording. A head and a thermally assisted magnetic recording apparatus are provided.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the magnetic head of the present invention is provided with a light irradiation part in the vicinity of the trailing end of the recording magnetic pole. In the heat-assisted magnetic recording device having such a configuration, if the magnitude of the anisotropic magnetic field of the magnetic recording medium at the maximum rising temperature of the heat distribution due to light irradiation is less than the maximum head magnetic field of the recording head, the heat-assisted magnetic recording The recording magnetization transition is formed near the trailing end of the recording magnetic pole. The position where the light irradiation unit is provided should be within a distance corresponding to half the magnetic pole width of the recording magnetic pole in the track width direction from the trailing end with respect to the track running direction. It is done. When the recording head is a head having a main magnetic pole and an auxiliary magnetic pole, the recording head is the main magnetic pole.
[0012]
The light irradiator uses a metal scatterer to generate near-field light, thereby reducing the size of the light spot used for thermally-assisted magnetic recording without being limited by the diffraction limit of the optical system or the optical component material. And the recording density on the recording medium can be increased. If the shape of the metal scatterer that generates near-field light is a cone or polygonal pyramid shape, it can efficiently generate near-field light, and if it is a triangle, it can generate near-field light more efficiently. can do.
[0013]
The light irradiating unit can be arranged at a position where the temperature gradient and the magnetic field gradient are steepest by cutting the vicinity of the center of the recording magnetic pole in the track width direction to an appropriate size. Alternatively, by arranging the light irradiating portions symmetrically so that the recording magnetic pole is sandwiched between both sides of the recording magnetic pole in the track width direction, the temperature gradient and the magnetic field gradient can be arranged at the steepest positions.
[0014]
In addition, the metal scatterer that generates near-field light is disposed so as to be in contact with the recording magnetic pole through a metal film having high thermal conductivity such as Cu, Ag, Al, etc., thereby efficiently diffusing heat and recording. It is possible to prevent the magnetic pole from generating heat. In addition, a metal scatterer that generates near-field light has a part of the scatterer made of Al. 2 O 3 , SiO 2 , Cr 2 O 3 , SiN, BN or the like, or provided so as to cover the entire scatterer with the dielectric, the metal scatterer can efficiently collect near-field light.
[0015]
The heat-assisted magnetic recording apparatus of the present invention includes a light irradiation unit provided in the vicinity of head trailing and a planar laser as a light source, and the laser beam is guided to the light irradiation unit by the planar laser, thereby irradiating light and recording. Magnetic recording can be performed by applying a head magnetic field while the medium is heated and heated. As another configuration, a light irradiation unit may be provided in the vicinity of the head trailing, a semiconductor laser or the like may be provided on the head slider as a light source, and the laser light emitted from the semiconductor laser may be guided to the light irradiation means by an optical fiber. . In addition, by providing a delay circuit for correcting the delay time before the recording coil drive circuit and the laser drive circuit of the recording signal processing circuit of the heat-assisted magnetic recording apparatus, the timing of reversal of the head magnetic field and the timing of light irradiation Can be accurately controlled.
[0016]
The thermally-assisted magnetic recording method according to the present invention has the steepest position of the magnetic field gradient in the track direction of the recording magnetic field applied to the magnetic recording layer and the steepest position of the temperature gradient of the thermal distribution of the magnetic recording layer by light irradiation. A recording magnetic field is applied and light is irradiated so as to substantially match. It is possible to obtain a high reproduction output by stopping the light irradiation between the timing when the head magnetic field starts reversal and the timing that goes back by half the minimum reversal time from the timing when the head magnetic field starts reversing. Become. In addition, by making the light irradiation interval coincide with the minimum magnetization reversal unit in the heat-assisted magnetic recording apparatus, it is possible to obtain a high reproduction output in all magnetization reversal units.
According to the present invention, since high-resolution and low-noise recording magnetization can be obtained, the recording density can be increased.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 is a schematic diagram showing the structure of a magnetic disk device according to the present invention. Usually, one or several magnetic disks 15 are mounted in the drive of the magnetic disk device. The magnetic disk 15 of this example is a magnetic disk for perpendicular magnetic recording including a soft magnetic underlayer and a perpendicular magnetic recording layer, and is rotationally driven in the direction of an arrow 10. As shown in the enlarged view (a), the magnetic head 12 at the rear end of the magnetic head slider 11 fixed to the front end of the carriage 13 accesses an arbitrary track by the voice coil motor 14 and moves on the magnetic disk (medium). Information is recorded and played back. The enlarged view (b) is a schematic view of the configuration of the recording head 102 for recording and the reproducing head 16 for reproducing the magnetic head 12 as seen from the medium facing surface. The recording head 102 is a single magnetic pole type recording head for perpendicular magnetic recording including a main magnetic pole 100 and an auxiliary magnetic pole 103, and magnetic recording is performed on the medium 15 by a magnetic field leaking from the main magnetic pole 100. The reproducing head 16 includes a reproducing element 18 composed of a magnetoresistive effect element arranged between the magnetic shield 17 and the magnetic shield serving also as the auxiliary magnetic pole 103, and leakage magnetic flux from the medium 15 flows into the reproducing element 18. Playback output is obtained.
[0018]
FIG. 3 is a diagram showing a configuration example of a recording head according to the present invention. The drawing shows a cross-sectional structure around the recording head when the recording head and the recording medium are cut along a plane perpendicular to the recording medium surface (vertical direction in the drawing) and parallel to the track running direction.
[0019]
The recording medium 110 includes a soft magnetic layer 112 and a magnetic recording layer 111 formed on a crystallized glass substrate 113. The magnetic recording layer 111 is a perpendicular magnetization film (Pd / Co multilayer film) having an easy axis of magnetization in the direction perpendicular to the film surface. The recording head 102 has a main magnetic pole 100 and an auxiliary magnetic pole 103, and the flat auxiliary magnetic pole 103 is formed so as to be substantially orthogonal to the recording medium 110. Further, a conductor pattern 104 is spirally formed on the auxiliary magnetic pole 103, and both ends thereof are drawn out and connected to a magnetic head driving circuit. One end of the main magnetic pole 100 is connected to the auxiliary magnetic pole 103, and the other end reaches the bottom surface of the recording head 102 and faces the recording medium 110. The auxiliary magnetic pole 103, the main magnetic pole 100, and the conductor pattern 104 constitute an electromagnet as a whole, and a recording magnetic field is applied to the magnetic recording layer 111 near the tip of the main magnetic pole 100 by a driving current. The recording head 102 has a light scatterer 106 at the trailing end 101 of the main magnetic pole 100 facing the recording medium 110, and a planar laser 107 and a hologram lens for irradiating the light scatterer 106 with the laser beam 108. 109. The recording head having the above structure can be manufactured by a thin film formation process and a lithography process.
[0020]
FIG. 4 is a view of the main magnetic pole 100 and the light scatterer 106 as viewed from the surface facing the recording medium 110. 4A shows the case where the medium facing surface shape of the main pole is a rectangle, and FIG. 4B shows the case where the medium facing surface shape of the main pole is a trapezoid whose bottom is the main pole width on the trailing side. Yes. The arrow in the figure represents the head traveling direction.
[0021]
The trailing end 101 of the main magnetic pole 100 facing the recording medium 110 is cut into a semi-elliptical shape so as to be recessed near the center of the magnetic pole width (Tww) in the track width direction. As shown in the drawing, the light scatterer 106 is provided at a position where the magnetic pole at the center of the magnetic pole width is cut. For the size of the depression, it is preferable to select an optimum region obtained from the computer simulation shown below. The shape of the light scatterer 106 shown in FIG. 3 is substantially triangular and is made of a material such as Au or Pd. However, the shape of the light scatterer may be a cone or other polygonal pyramid. Regardless of the shape, it is arranged so that the pointed apex faces the medium.
[0022]
At the time of recording information on the recording medium 110, a laser beam 108 is emitted from a planar laser 107 which is a light source simultaneously with the generation of a recording magnetic field. This laser light is converged by the hologram lens 109 and irradiated to the scatterer 106. When the metal scatterer 106 is irradiated with the coherent laser beam 108, plasmons are excited as a result of the internal free electrons being uniformly oscillated by the electric field of the laser beam 108, and the tip of the scatterer 106 is strong. Near-field light is generated. Thus, at the time of recording, the magnetic recording layer 111 is heated by near-field light, and at the same time, a recording magnetic field is applied by the main magnetic pole 100, so that a desired recording magnetization transition corresponding to information to be recorded is thermally assisted on the magnetic recording layer 111. It can be formed by recording.
[0023]
Information recorded on the magnetic recording layer 111 is reproduced from a magnetic recording layer using a reproducing head equipped with magnetic flux detecting means such as a GMR (giant magnetoresistive effect) element or a TMR (tunnel magnetoresistive effect) element. Information is magnetically reproduced by detecting the leakage magnetic flux. Alternatively, optical reproduction may be performed using a reproducing head equipped with an optical magnetic flux detection means using the Kerr effect and Faraday effect of the recording medium.
[0024]
The results of calculation and examination of the effects of the present invention by computer simulation means using micromagnetics are shown below. FIG. 5 is a simplified model diagram showing only the head main magnetic pole 100 of the present invention taken out together with the recording medium 110, and a diagram showing an example of a head magnetic field profile and a thermal profile. The main magnetic pole 100 has a magnetic pole thickness of 400 nm in the track running direction, and the magnetic pole width in the track width direction is 100 nm. The gap between the main magnetic pole 100 and the medium was 15 nm. The arrow 117 in the figure is the light irradiation position.
The calculation used the Langevin equation in which the magnetic field h (t) by thermal energy was added to the Landau-Lifshitz-Gilbert equation shown below (J. Appl. Phys. 75 (2), 15 Jan. 1994).
[0025]
[Expression 1]
Figure 2005004901
[0026]
Where M is the magnetization of the particle, t is the time, H eff Is the effective magnetic field, γ is the gyro magnetic constant, α is the Gilbert damping constant (extinction constant), M s Is saturation magnetization, h (t) is an effective magnetic field due to thermal fluctuation, k is Boltzmann's constant, T is temperature, V is the volume of the particle, δ (τ) is the Dirac delta function, and τ is the time step. δ ij Is Kronecker delta, and i and j are magnetic field components (x, y, z). <> Is a time average.
[0027]
From the equations (2) and (3), the average of h (t) applied to each particle is 0, and the coefficient on the right side of the equation (2) (2kTα / γVM) s ) Is distributed and the direction is a random vector. Also, from equation (2), δ (τ) is the reciprocal of the time step, and the magnitude of the effective magnetic field due to the thermal fluctuation applied to the particles changes for each time step.
[0028]
As the head magnetic field, a commercially available three-dimensional head magnetic field analysis program MAGIC using an integral element method was used. The head magnetic field is a maximum of 12 kOe. The thermal profile was obtained by solving the thermal diffusion equation using the finite element method. At this time, it is assumed that a light spot having a Gaussian intensity distribution is irradiated at the central portion of the recording layer, and the energy of the irradiated light is evenly absorbed in the film thickness direction. The figure shows a spot radius (1 / e of the maximum light intensity) when irradiated with 1 ns at an incident power of 1 mW. 2 Is the temperature profile of 50 nm. The maximum exothermic temperature is 235 ° C. The reproduction output was obtained by substituting the sensitivity distribution of the MR head into the formula of the reciprocity theorem of the ring head (Mitsuyoshi Matsumoto: Magnetic Recording (Kyoritsu Shuppan, Tokyo, 1977)). Reproduction conditions are: distance between shields Gs = 0.06 μm, reproduction track width T wr = 0.8 μm.
[0029]
FIG. 6 is a diagram showing the time dependence of the center temperature of the heat distribution on the medium. This is a result of cooling for 1 ns after irradiation for 1 ns with an incident power of 1 mW.
The table shown in FIG. 7 shows the magnetic characteristics of the Pd / Co multilayer medium. According to this, the anisotropic magnetic field H k Since the value of 20 kOe is nearly double that of a CoCr-based medium, recording cannot be performed with a maximum head magnetic field of 12 kOe shown in FIG.
[0030]
FIG. 8 shows the anisotropic magnetic field H k And saturation magnetization M s It is a figure which shows the temperature dependence of. The anisotropic magnetic field decreased by 15% when the temperature increased by 40 ° C., and the saturation magnetization decreased by 5% (IEEE Trans. Magn., Vol. 34, pp. 1558-1560, 1998). From this figure, at the maximum heat generation temperature of 235 ° C. by the irradiation means, the anisotropic magnetic field H k Is 4 kOe or less, and the maximum head magnetic field strength is 12 kOe or less.
[0031]
With the above calculation means and calculation conditions, the light irradiation position dependency and the light irradiation timing dependency by the light scatterer were calculated. Here, the light irradiation timing is the time to start light irradiation, and the time from the start of reversal of the head magnetic field to 0 second is defined as the time from the end of 1-bit recording.
[0032]
FIG. 9 shows the dependency of the reproduction output light irradiation position Xp (normalized by the magnetic pole width Tww in the track width direction of the main magnetic pole: defined as Xp / Tww) when recording is performed at the light irradiation timing It = 0.0 ns. FIG. In the drawing, the head is moving in the right direction at a peripheral speed of 20 m / s. The end of the main magnetic pole 100 in the figure is a main magnetic pole end 101 on the head trailing side, and this main magnetic pole end 101 is determined to be a light irradiation position of 0 nm. Recording density is 3 Tb / m 2 6.6 mfcm (mfcm: mega flux change per m), 19.7 mfcm, and 39.4 mfcm were calculated. As a result, when the recording density is 6.6 mfcm, the reproduction output is almost constant from Xp / Tww = 0.2 to 1.0, but when the recording density is 0.0 or less, the reproduction output is rapidly attenuated. At 19.7 mfcm, the vicinity of Xp / Tww = 0.2 is set as the maximum value of the reproduction output, and the reproduction output decreases with increasing distance from the vicinity. The result similar to that at 19.7 mfcm was obtained at 39.4 mfcm.
[0033]
The reason why the reproduction output decreases when the light scatterer is arranged outside the main magnetic pole terminal 101 of the head is that light is irradiated to the place where the head magnetic field is attenuated. The reason why the phenomenon is different between the low density and the high density when arranged inside the main magnetic pole terminal 101 is considered as follows. In the case of low density, if Xp / Tw ≦ 1.0, the recording bit is outside the main magnetic pole terminal 101 having a small influence of the head magnetic field and heat when the next bit is written. Playback output does not decrease. However, as the recording density increases, the closer the light irradiation position is to the center of the head, the longer the recording bit stays in the region where the influence of the head magnetic field and heat remains, so the reproduction output decreases. Also, the reason why the maximum reproduction output value is obtained near Xp / Tww = 0.2 at high density is that the center of the recording magnetization transition, the maximum value of the head magnetic field gradient, and the position where the maximum value of the temperature gradient are obtained substantially coincide. It is. That is, a light scatterer is provided so that the position where the maximum value of the head magnetic field gradient and the maximum value of the temperature gradient are substantially matched, and the center position of the recording magnetization transition is also matched. k The reproduction output can be obtained with the highest efficiency by combining with a medium having the above temperature dependency.
[0034]
FIG. 10 shows an effective switching magnetic field H obtained from the head magnetic field distribution and thermal distribution of Xp / Tww = 0.2. ce FIG. Where H ce = H k X 0.9, H k Is H in FIG. k It was obtained from the temperature dependence of. Head magnetic field distribution and switching magnetic field H ce This means that the position where the crossing points is the center of the magnetization transition region. At this time, the center of the magnetization transition region corresponds to the position where the gradient of the head magnetic field distribution and the temperature gradient of the heat take the maximum values. In the figure, the positions where the magnetization is actually formed are indicated by circles and arrows. The actual magnetization transition center is slightly deviated from the analytically determined position. This is because the easy axis of magnetization has a distribution in the film thickness direction and H k Is considered to be due to the variance. However, the magnetization transition center is in the maximum magnetic field gradient region, and is also near the maximum gradient position of the heat distribution. Therefore, at the position of Xp / Tww = 0.2, it is considered that the maximum reproduction output is obtained as the density increases.
[0035]
FIG. 1 is a diagram showing the result of normalizing the reproduction output of 19.7 mfcm with the reproduction output of 6.6 mfcm in order to know the resolution of the reproduction output. The resolution of Xp / Tww = 0.1 is the reference resolution. It was shown as (0%). From FIG. 1, it can be seen that in order to obtain good resolution, the light irradiation position should not be set to the inside of the main magnetic pole exceeding Xp / Tww = + 0.5 from the magnetic pole terminal on the head trailing side.
[0036]
FIG. 11 shows the result of normalizing the reproduction output of 6.6 mfcm (mfcm: megaflux change per m) with noise of 39.4 mfcm. 6.6mfcm / N 39.4mfcm It is a figure which shows (S / N ratio of Xp / Tww = 0.2 is shown as reference | standard resolution (0 dB)). From FIG. 11, when Xp / Tw ≦ −0.5, S 6.6mfcm / N 39.4mfcm It turns out that deteriorates. This is because recording at 39.4 mfcm becomes difficult and noise increases.
[0037]
From FIG. 1 and FIG. 11, it can be seen that the optimum light irradiation position for recording with good resolution is approximately Xp / Tww within ± 0.5 from the magnetic pole terminal on the head trailing side. That is, if the maximum value of the optimum light irradiation position is defined as the optimum light irradiation distance, the optimum light irradiation distance corresponds to half the magnetic pole width in the track width direction of the main magnetic pole.
[0038]
From the above, the optimum light irradiation position is within the magnetic pole width / 2 in the track width direction of the main magnetic pole from the trailing end of the main magnetic pole, or within the distance corresponding to the radius of curvature of the apex on the medium facing surface side of the light scatterer. High resolution can be obtained by setting.
[0039]
FIG. 12 shows the results of calculating the resolution by changing the magnetic pole width of the main magnetic pole in the track width direction and summarizing the relationship between the optimum light irradiation distance and the magnetic pole width of the main magnetic pole. From this, it was found that the optimum light irradiation distance substantially coincided with the magnetic pole width / 2 of the main magnetic pole.
[0040]
It was confirmed that the above results were applicable even when the peripheral speed between the head and the medium was changed from 10 m / s to 100 m / s. Further, the effect of the present invention is exhibited not only for perpendicular magnetic recording but also for in-plane magnetic recording using a recording film having in-plane magnetic anisotropy. In the case of in-plane magnetic recording, the tip portion of the main pole needs to have a so-called “ring head structure” that can sufficiently apply a recording magnetic field in the in-plane direction to the recording medium.
[0041]
From the above, in the track traveling direction, the position where the light scatterer is provided (the center position of the light scattering medium facing the medium) corresponds to the pole width / 2 in the track width direction of the main pole from the end on the main pole trailing side. By arranging within the distance, a magnetization pattern with high resolution and low noise can be obtained. In particular, the highest reproduction output can be obtained by arranging the light scatterers so that the steepest positions of the head magnetic field gradient and the temperature distribution gradient coincide. In this embodiment, this corresponds to the position of Xp / Tww = 0.2. Therefore, as shown in FIG. 4, the center of the light-scattering medium facing the medium is Xp / Tww = 0.2 by cutting into a semi-elliptical shape so that the center of the pole width in the track width direction of the main pole is depressed. In this configuration, a heat-assisted magnetic recording device having the highest resolution and the highest S / N ratio (low noise) can be obtained.
[0042]
FIG. 13 is a diagram illustrating a result of calculating the light irradiation timing dependency of the reproduction output using the light irradiation position as a parameter. (A) is a recording density of 6.6 mfcm, (b) is 19.7 mfcm, and (c) is 39.4 mfcm. The light irradiation timing was assumed to be a time lag within 1 bit at each recording density. Here, in the case of 39.4 mfcm, the calculation was performed by shortening the cooling time so that the sum of the irradiation time and the cooling time was within one bit. In other words, the heat distribution was forcibly returned to room temperature when 1 bit had passed since the first rise in temperature.
[0043]
From the figure, the light reproduction timing obtains the same reproduction output value in almost all areas, but there is a light irradiation timing at which the reproduction output drastically decreases at a specific time depending on each recording density. The reason why the reproduction output is drastically reduced is that the time change of the head magnetic field and the time change of the temperature do not match. That is, the temperature becomes maximum when the head magnetic field is rising, and conversely, the temperature decreases when the head magnetic field rises. Therefore, it is important to select a timing at which both the head magnetic field strength and the temperature are maximized.
[0044]
FIG. 14 shows the results of recording density = 39.4 mfcm and light irradiation position = 20 nm displayed in FIG. 13C, and the relationship with the current profile is summarized by changing the viewpoint to stop the light irradiation. FIG. The figure also shows the case where the irradiation time is 0.5 ns, the incident power is increased slightly from 1 mW, and recording is performed under such a condition that the maximum temperature is 235 ° C. From this, it has been found that in order to obtain the maximum reproduction output under each condition, it is necessary to set the timing for stopping the light irradiation within the time when the head magnetic field starts to fall after the half recording bit is recorded. Further, by making the light irradiation interval coincide with the minimum magnetization reversal unit in the heat-assisted magnetic recording device, a heat-assisted magnetic recording device having high resolution and low noise can be obtained in all magnetization reversal units.
In order to realize the above, it is necessary to synchronize the recording coil driving circuit and the laser driving circuit.
[0045]
FIG. 15 is a block diagram illustrating a configuration example of a signal processing circuit. At the time of recording information, user data 600 to be recorded is sent to the system controller 602 via an interface circuit 601 with an external device, and error detection, correction information, etc. are added as necessary, and then an encoder 603. To be told. The encoder 603 performs, for example, (1, 7) modulation on the user data 600 and then performs NRZI conversion to generate a signal reflecting the recording magnetization arrangement on the recording medium. The recording waveform generation circuit 604 refers to this signal and generates a recording bias magnetic field control signal and a laser emission intensity control signal. Further, by providing the delay circuits 605 and 606 after the recording waveform generating circuit, it is possible to correct the drive timing deviation between the magnetic coil driving circuit 607 and the laser driving circuit 608, and to control the recording bias magnetic field control signal as desired. A laser emission intensity control signal is obtained. The magnetic coil driving circuit 607 receives an instruction from the system controller 602, drives the recording coil of the recording head according to the recording bias magnetic field control signal, and records the magnetic field in the portion where strong near-field light is generated by the metal scatterer. Is generated. The laser drive circuit 608 also receives an instruction from the system controller 602 and drives a semiconductor laser that is a recording energy source in accordance with a laser emission intensity control signal. At this time, the laser drive circuit 608 drives the semiconductor laser so that the interval at which the laser beam is irradiated matches the minimum magnetization reversal unit in the thermally-assisted magnetic recording apparatus.
[0046]
At the time of reproducing information, the surface of the magnetic recording medium is scanned with a GMR element, and a signal reflecting the recording magnetization arrangement is detected. The output signal of the GMR element reflecting the recording magnetization arrangement is amplified to a required level by the amplifier 610 and then input to the decoder 611. The decoder 611 restores the recorded data by performing the inverse transformation of the encoder 603 and transmits the restoration result to the system controller 602. The system controller 602 performs processing such as error detection and correction as necessary, and sends the user data 600 reproduced via the interface circuit 601 to an external device.
[0047]
16 and 17 are schematic views showing other examples of the configuration of the recording head according to the present invention. FIG. 16 shows a cross section in which the recording head and the recording medium are cut along a plane perpendicular to the recording medium surface and parallel to the track running direction. FIG. 17 is a view of the main pole and the light scatterer as seen from the medium facing surface side. FIG. 17A shows the case where the medium facing surface shape of the main pole is a rectangle, and FIG. 17B shows the case where the medium facing surface shape of the main pole is a trapezoid whose bottom is the magnetic pole width on the trailing side. The arrow in the figure represents the head traveling direction.
[0048]
In this embodiment, the light scatterer 106 is disposed on the side surface of the main magnetic pole 100 in the track width direction. Specifically, as shown in FIG. 17, the light scatterers 106 are arranged on both side surfaces of the main pole 100 in the track width direction so as to be symmetric with respect to the center line of the main pole. At this time, the position at which the light scatterer 106 is provided is the same as the optimum light irradiation position obtained in FIG. 1, so that a heat-assisted magnetic recording apparatus capable of achieving high resolution and low noise can be obtained from the above calculation results.
[0049]
Next, the configuration between the light scatterer and the main magnetic pole will be described. The scatterer may be in direct contact with the main pole. By providing a metal film having high thermal conductivity such as Cu, Ag, Al or the like between the scatterer and the main pole, it is desirable to quickly diffuse the heat generated by the loss of the scatterer through the metal film. However, providing a metal film having a high thermal conductivity also means that heat is easily absorbed by the metal film, so that the heat condensing rate of the scatterer tip may be lowered. This can be solved by providing a dielectric on a part of the scatterer or covering the entire scatterer with the dielectric. Dielectric material is Al 2 O 3 , SiO 2 , Cr 2 O 3 , SiN, etc.
[0050]
FIG. 18 is a schematic diagram showing still another configuration example of the recording head according to the present invention. This example shows a configuration example of a recording head when the light source is separated from the recording head, such as on a magnetic head slider. A laser beam 108 emitted from a semiconductor laser (not shown) is guided to the vicinity of the recording head 102 by an optical fiber 119, and then reflected by a mirror 120 and applied to a scatterer. The shape of the mirror is flat or curved as shown in the figure. Further, a hologram lens may be disposed between the mirror 120 and the scatterer 106 to converge the light. According to this example, it is not necessary to arrange the semiconductor laser close to the scatterer 106.
[0051]
【The invention's effect】
According to the present invention, in a heat-assisted magnetic recording apparatus that records magnetization information on a magnetic recording medium by a head magnetic field while irradiating light, it is possible to form a magnetization pattern that provides high reproduction output, resolution, and low noise.
[Brief description of the drawings]
FIG. 1 shows a resolution S in a heat-assisted magnetic recording apparatus of the present invention. 19.7mfcm / S 6.6mfcm The figure which shows light irradiation position dependence.
FIG. 2 is a schematic diagram showing the structure of a magnetic disk device according to the present invention.
FIG. 3 is a diagram illustrating a configuration example of a recording head according to the present invention.
FIG. 4 is a diagram of a main magnetic pole and a light scatterer viewed from the medium facing surface side.
FIG. 5 is a diagram showing an example of a head magnetic field and a temperature profile.
FIG. 6 is a graph showing the time dependence of the center temperature of the heat distribution on the medium.
FIG. 7 is a diagram showing medium parameters (T = 300 K).
FIG. 8: Anisotropic magnetic field H k And saturation magnetization M s FIG.
FIG. 9 is a diagram showing light irradiation position dependency of reproduction output (irradiation timing = 0 ns).
FIG. 10 shows a head magnetic field H. h And effective coercive force H ce The figure which shows the profile (Xp / Tww = 0.2).
FIG. 11 S 6.6mfcm / N d39.4mfcm The figure which shows light irradiation position dependence.
FIG. 12 is a diagram showing the relationship between the optimum irradiation position and the magnetic pole width in the track width direction of the main magnetic pole.
FIG. 13 is a diagram showing dependency of reproduction output on light irradiation timing according to the present invention.
FIG. 14 is a diagram showing the relationship between the timing of stopping light irradiation according to the present invention, the value of the reproduction output, and the current profile.
FIG. 15 is a block diagram illustrating a configuration example of a signal processing circuit.
FIG. 16 is a schematic diagram showing another configuration example of the recording head according to the present invention.
FIG. 17 is a schematic diagram showing another configuration example of the recording head according to the present invention.
FIG. 18 is a schematic diagram showing still another configuration example of the recording head according to the present invention.
[Explanation of symbols]
11 ... Magnetic head slider
12 ... Magnetic head
13 Carriage
14 ... Voice coil motor
15 ... Magnetic disk
16: Reproduction head
17 ... Bottom shield
18 ... Reproducing element
100: Main magnetic pole
101 ... Main magnetic pole trailing end
102: Recording head
103 ... Auxiliary magnetic pole
106: Light scatterer
107: Planar laser
108: Laser light
109 ... Hologram lens
110: Magnetic recording medium
111 ... Magnetic recording layer
112 ... Soft magnetic layer
113 ... Glass substrate
117 ... Light irradiation position
119: Optical fiber

Claims (10)

磁気記録媒体に対して記録磁界を印加する記録磁極と、前記磁気記録媒体に対して光照射する光照射部とを備える磁気ヘッドにおいて、
前記光照射部は前記記録磁極のトレーリング側終端近傍に設けられていることを特徴とする磁気ヘッド。
In a magnetic head comprising a recording magnetic pole for applying a recording magnetic field to the magnetic recording medium, and a light irradiation unit for irradiating the magnetic recording medium with light.
2. The magnetic head according to claim 1, wherein the light irradiation unit is provided in the vicinity of a trailing end of the recording magnetic pole.
請求項1記載の磁気ヘッドにおいて、前記光照射部は、前記記録磁極のトレーリング側終端からトラック方向に、当該記録磁極のトラック幅方向の磁極幅の半分の幅に相当する距離以内に設けられていることを特徴とする磁気ヘッド。2. The magnetic head according to claim 1, wherein the light irradiation section is provided within a distance corresponding to half the width of the magnetic pole width in the track width direction of the recording magnetic pole in the track direction from the trailing end of the recording magnetic pole. A magnetic head characterized by that. 請求項2記載の磁気ヘッドにおいて、主磁極と補助磁極とを有し、主磁極が前記記録磁極であることを特徴とする磁気ヘッド。3. The magnetic head according to claim 2, further comprising a main magnetic pole and an auxiliary magnetic pole, wherein the main magnetic pole is the recording magnetic pole. 請求項1記載の磁気ヘッドにおいて、前記光照射部に金属製の光散乱体が設けられ、前記金属製の散乱体はレーザ光の照射を受けて近接場光を発生することを特徴とする磁気ヘッド。2. The magnetic head according to claim 1, wherein the light irradiator is provided with a metal light scatterer, and the metal scatterer is irradiated with laser light to generate near-field light. head. 請求項1記載の磁気ヘッドにおいて、前記光照射部は、前記記録磁極のトラック幅方向の中心に配置されていることを特徴とする磁気ヘッド。2. The magnetic head according to claim 1, wherein the light irradiation unit is disposed at a center of the recording magnetic pole in the track width direction. 請求項5記載の磁気ヘッドにおいて、前記光照射部は、前記記録磁極のトレーリング側終端に設けられた窪みに配置されていることを特徴とする磁気ヘッド。6. The magnetic head according to claim 5, wherein the light irradiation unit is disposed in a recess provided at a trailing end of the recording magnetic pole. 請求項1記載の磁気ヘッドにおいて、前記光照射部は、前記記録磁極のトラック幅方向の両側面に配置されていることを特徴とする磁気ヘッド。2. The magnetic head according to claim 1, wherein the light irradiation section is disposed on both side surfaces of the recording magnetic pole in the track width direction. 磁気記録層を備える磁気記録媒体に対して記録磁界の印加と光照射とを行って情報を磁気的に書き込む磁気記録方法において、
前記磁気記録層に印加された記録磁界のトラック方向における磁界勾配の最も急峻な位置と前記光照射による前記磁気記録層の熱分布の温度勾配の最も急峻な位置とが略一致するように前記記録磁界の印加と前記光照射とを行うことを特徴とする磁気記録方法。
In a magnetic recording method for magnetically writing information by applying a recording magnetic field and irradiating light to a magnetic recording medium having a magnetic recording layer,
The steepest position of the magnetic field gradient in the track direction of the recording magnetic field applied to the magnetic recording layer is substantially the same as the steepest position of the temperature gradient of the thermal distribution of the magnetic recording layer by the light irradiation. A magnetic recording method comprising applying a magnetic field and irradiating the light.
請求項8記載の磁気記録方法において、前記光照射を止めるタイミングが、ヘッド磁界が反転を始めるタイミングと、前記ヘッド磁界が反転を始めるタイミングから最小反転時間の半分だけ遡ったタイミングとの間にあることを特徴とする磁気記録方法。9. The magnetic recording method according to claim 8, wherein the timing of stopping the light irradiation is between a timing at which the head magnetic field starts reversing and a timing that goes back by half of the minimum reversing time from the timing at which the head magnetic field starts reversing. A magnetic recording method. 請求項8記載の磁気記録方法において、前記光照射を行う間隔は、熱アシスト磁気記録装置における最小磁化反転単位に一致することを特徴とする磁気記録方法。9. The magnetic recording method according to claim 8, wherein an interval at which the light irradiation is performed coincides with a minimum magnetization reversal unit in a thermally assisted magnetic recording apparatus.
JP2003168371A 2003-06-12 2003-06-12 Magnetic recording apparatus and magnetic recording method Expired - Fee Related JP3984568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168371A JP3984568B2 (en) 2003-06-12 2003-06-12 Magnetic recording apparatus and magnetic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168371A JP3984568B2 (en) 2003-06-12 2003-06-12 Magnetic recording apparatus and magnetic recording method

Publications (2)

Publication Number Publication Date
JP2005004901A true JP2005004901A (en) 2005-01-06
JP3984568B2 JP3984568B2 (en) 2007-10-03

Family

ID=34093888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168371A Expired - Fee Related JP3984568B2 (en) 2003-06-12 2003-06-12 Magnetic recording apparatus and magnetic recording method

Country Status (1)

Country Link
JP (1) JP3984568B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074650A1 (en) * 2005-12-28 2007-07-05 Seiko Instruments Inc. Head using near-field light and information recorder
JP2007184075A (en) * 2006-01-04 2007-07-19 Samsung Electronics Co Ltd Heat assisted magnetic recording head
JP2007188619A (en) * 2006-01-10 2007-07-26 Samsung Electronics Co Ltd Heat-assisted magnetic recording head and manufacturing method thereof
JP2007305184A (en) * 2006-05-09 2007-11-22 Seiko Instruments Inc Near field light recording element, near field light head, and information recording and reproducing apparatus
JP2007305185A (en) * 2006-05-09 2007-11-22 Seiko Instruments Inc Near field light head and information recording and reproducing apparatus
JP2008027543A (en) * 2006-07-24 2008-02-07 Seiko Instruments Inc Near-field assisted magnetic recording head and recorder using the same
WO2008062677A1 (en) * 2006-11-20 2008-05-29 Seiko Instruments Inc. Recording head and information recording/reproducing device
WO2008062676A1 (en) * 2006-11-20 2008-05-29 Seiko Instruments Inc. Proximity field light generation element, proximity field light head, and information recording/reproducing device
JP2008152897A (en) * 2006-11-20 2008-07-03 Seiko Instruments Inc Near-field light generation element, near-field light head, and information recording/reproducing device
JP2008217961A (en) * 2006-11-20 2008-09-18 Seiko Instruments Inc Recording head and information recording/reproducing device
JP2009059417A (en) * 2007-08-31 2009-03-19 Hitachi Global Storage Technologies Netherlands Bv Magnetic head slider
JP2009099212A (en) * 2007-10-17 2009-05-07 Seiko Instruments Inc Recording head and information recording/reproducing device
JP2009187645A (en) * 2008-02-08 2009-08-20 Tdk Corp Heat-assisted magnetic head, head gimbal assembly, and hard disk apparatus
JPWO2007119519A1 (en) * 2006-04-13 2009-08-27 シャープ株式会社 Magnetic sensor element, magnetic reproducing head, magnetic reproducing device, and magnetic reproducing method
US7663982B2 (en) 2006-01-14 2010-02-16 Samsung Electronics Co., Ltd. Light delivery module, method of fabricating the same and heat-assisted magnetic recording head using the light delivery module
JP2010040113A (en) * 2008-08-06 2010-02-18 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording method and magnetic recording device
US7855937B2 (en) 2008-09-05 2010-12-21 Tdk Corporation Near-field light generating element and heat-assisted magnetic recording head utilizing surface plasmon mode
WO2011004716A1 (en) * 2009-07-06 2011-01-13 株式会社日立製作所 Heat-assisted recording head and heat-assisted recording device
US7885029B2 (en) 2009-04-14 2011-02-08 Tdk Corporation Thermally-assisted magnetic recording head and thermally-assisted magnetic recording method
US7911882B2 (en) 2005-12-16 2011-03-22 Tdk Corporation Thin-film magnetic head with near-field-light-generating layer
US7911883B2 (en) 2009-06-26 2011-03-22 Headway Technologies, Inc. Near-field light generating element having two different angles
JP2011090752A (en) * 2009-10-26 2011-05-06 Hitachi Ltd Thermal-assisted recording head, thermal-assisted recording device, and near-field light generating apparatus
US7948710B2 (en) 2008-07-22 2011-05-24 Tdk Corporation Heat-assisted thin-film magnetic head and heat-assisted magnetic recording method
JP2011146097A (en) * 2010-01-14 2011-07-28 Hitachi Ltd Thermally assisted magnetic recording head and thermally assisted magnetic recording device
US8000178B2 (en) 2008-10-29 2011-08-16 Tdk Corporation Near-field light generating element utilizing surface plasmon
JP2011198453A (en) * 2010-02-23 2011-10-06 Seiko Instruments Inc Recording head and information recording and reproducing apparatus
US8045422B2 (en) 2009-01-07 2011-10-25 Tdk Corporation Near-field light generating element comprising surface plasmon antenna and waveguide with groove
US8077556B2 (en) 2007-02-26 2011-12-13 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8107325B2 (en) 2008-12-16 2012-01-31 Tdk Corporation Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
US8116172B2 (en) 2009-02-09 2012-02-14 Tdk Corporation Near-field light generating device including surface plasmon generating element
US8116034B2 (en) 2007-12-28 2012-02-14 Tdk Corporation Thermally assisted magnetic head having main pole arranged between near-field light-generating portions and manufacturing method of same
JP2012053950A (en) * 2010-09-01 2012-03-15 Hitachi Ltd Magnetic recording device and magnetic recording method
US8139447B2 (en) 2009-04-08 2012-03-20 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
JP2012064261A (en) * 2010-09-14 2012-03-29 Seiko Instruments Inc Recording head and information recording/reproduction device
US8194511B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8194510B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8223596B2 (en) 2009-10-19 2012-07-17 Tdk Corporation Thermally-assisted magnetic recording head with plane-emission type light source
US8248894B2 (en) 2010-01-07 2012-08-21 Headway Technologies, Inc. Thermally-assisted magnetic recording head having heat radiation layer and interposed layer
US8325441B2 (en) 2010-03-31 2012-12-04 Headway Technologies, Inc. Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8331204B2 (en) 2010-06-14 2012-12-11 Sharp Kabushiki Kaisha Near-field light generating device, recording head, and recording device
JP2012248266A (en) * 2011-05-27 2012-12-13 Hgst Netherlands B V Channel-source laser-pulsing system architecture for thermal-assisted recording
US8366948B2 (en) 2010-03-01 2013-02-05 Headway Technologies, Inc. Method of manufacturing near-field light generating element and method of manufacturing heat-assisted magnetic recording head
US8395973B2 (en) 2009-10-08 2013-03-12 Sharp Kabushiki Kaisha Waveguide, recording head, and recording device
US8395971B2 (en) 2009-07-15 2013-03-12 Headway Technologies, Inc. Heat-assisted magnetic recording head with laser diode fixed to slider
US8400885B2 (en) 2011-04-29 2013-03-19 Tdk Corporation Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
US8406089B2 (en) 2009-09-04 2013-03-26 Headway Technologies, Inc. Heat-assisted magnetic recording head with laser diode fixed to slider
US8619518B1 (en) 2012-08-15 2013-12-31 Headway Technologies, Inc. Thermally-assisted magnetic recording head having expanded near-field light generating layer and method of manufacture
KR101433869B1 (en) 2007-02-08 2014-08-29 소니 주식회사 Optical near-field generating apparatus and method and information recording and reproducing apparatus
US8842504B2 (en) 2007-07-10 2014-09-23 Seiko Instruments Inc. Near-field light head and information recording/reproducing device
US8988975B1 (en) 2013-09-24 2015-03-24 Headyway Technologies, Inc. Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911882B2 (en) 2005-12-16 2011-03-22 Tdk Corporation Thin-film magnetic head with near-field-light-generating layer
US8023366B2 (en) 2005-12-28 2011-09-20 Seiko Instruments Inc. Near-field optical head and information recording apparatus
JP5060961B2 (en) * 2005-12-28 2012-10-31 セイコーインスツル株式会社 Near-field light utilizing head and information recording apparatus
WO2007074650A1 (en) * 2005-12-28 2007-07-05 Seiko Instruments Inc. Head using near-field light and information recorder
JP2007184075A (en) * 2006-01-04 2007-07-19 Samsung Electronics Co Ltd Heat assisted magnetic recording head
JP4642738B2 (en) * 2006-01-04 2011-03-02 三星電子株式会社 Heat-assisted magnetic recording head
JP2007188619A (en) * 2006-01-10 2007-07-26 Samsung Electronics Co Ltd Heat-assisted magnetic recording head and manufacturing method thereof
US8023228B2 (en) 2006-01-10 2011-09-20 Samsung Electronics Co., Ltd. Heat assisted magnetic recording head and method of manufacturing the same
US7663982B2 (en) 2006-01-14 2010-02-16 Samsung Electronics Co., Ltd. Light delivery module, method of fabricating the same and heat-assisted magnetic recording head using the light delivery module
US8208214B2 (en) 2006-04-13 2012-06-26 Sharp Kabushiki Kaisha Magnetic sensor device having near field light generation section employing a dielectric layer between a protruding metal layer and magnetic layer
JP4705165B2 (en) * 2006-04-13 2011-06-22 シャープ株式会社 Magnetic sensor element, magnetic reproducing head, magnetic reproducing device, and magnetic reproducing method
JPWO2007119519A1 (en) * 2006-04-13 2009-08-27 シャープ株式会社 Magnetic sensor element, magnetic reproducing head, magnetic reproducing device, and magnetic reproducing method
JP2007305184A (en) * 2006-05-09 2007-11-22 Seiko Instruments Inc Near field light recording element, near field light head, and information recording and reproducing apparatus
JP4674817B2 (en) * 2006-05-09 2011-04-20 セイコーインスツル株式会社 Near-field optical head and information recording / reproducing apparatus
JP2007305185A (en) * 2006-05-09 2007-11-22 Seiko Instruments Inc Near field light head and information recording and reproducing apparatus
JP4569966B2 (en) * 2006-05-09 2010-10-27 セイコーインスツル株式会社 Near-field optical recording element, near-field optical head, and information recording / reproducing apparatus
JP4673263B2 (en) * 2006-07-24 2011-04-20 セイコーインスツル株式会社 Near-field light assisted magnetic recording head and recording apparatus using the same
JP2008027543A (en) * 2006-07-24 2008-02-07 Seiko Instruments Inc Near-field assisted magnetic recording head and recorder using the same
JP2008152897A (en) * 2006-11-20 2008-07-03 Seiko Instruments Inc Near-field light generation element, near-field light head, and information recording/reproducing device
US8270259B2 (en) 2006-11-20 2012-09-18 Seiko Instruments Inc. Near-field optical head including waveguide having polyhedron core
WO2008062677A1 (en) * 2006-11-20 2008-05-29 Seiko Instruments Inc. Recording head and information recording/reproducing device
WO2008062676A1 (en) * 2006-11-20 2008-05-29 Seiko Instruments Inc. Proximity field light generation element, proximity field light head, and information recording/reproducing device
JP2008217961A (en) * 2006-11-20 2008-09-18 Seiko Instruments Inc Recording head and information recording/reproducing device
US8054570B2 (en) 2006-11-20 2011-11-08 Seiko Intstruments Inc. Recording head and data recording and reproducing apparatus
KR101433869B1 (en) 2007-02-08 2014-08-29 소니 주식회사 Optical near-field generating apparatus and method and information recording and reproducing apparatus
US8077556B2 (en) 2007-02-26 2011-12-13 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8842504B2 (en) 2007-07-10 2014-09-23 Seiko Instruments Inc. Near-field light head and information recording/reproducing device
JP2009059417A (en) * 2007-08-31 2009-03-19 Hitachi Global Storage Technologies Netherlands Bv Magnetic head slider
JP2009099212A (en) * 2007-10-17 2009-05-07 Seiko Instruments Inc Recording head and information recording/reproducing device
US8116034B2 (en) 2007-12-28 2012-02-14 Tdk Corporation Thermally assisted magnetic head having main pole arranged between near-field light-generating portions and manufacturing method of same
JP4518158B2 (en) * 2008-02-08 2010-08-04 Tdk株式会社 Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
JP2009187645A (en) * 2008-02-08 2009-08-20 Tdk Corp Heat-assisted magnetic head, head gimbal assembly, and hard disk apparatus
US8243558B2 (en) 2008-02-08 2012-08-14 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk apparatus
US7948710B2 (en) 2008-07-22 2011-05-24 Tdk Corporation Heat-assisted thin-film magnetic head and heat-assisted magnetic recording method
JP2010040113A (en) * 2008-08-06 2010-02-18 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording method and magnetic recording device
US7855937B2 (en) 2008-09-05 2010-12-21 Tdk Corporation Near-field light generating element and heat-assisted magnetic recording head utilizing surface plasmon mode
US8000178B2 (en) 2008-10-29 2011-08-16 Tdk Corporation Near-field light generating element utilizing surface plasmon
US8107325B2 (en) 2008-12-16 2012-01-31 Tdk Corporation Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
US8045422B2 (en) 2009-01-07 2011-10-25 Tdk Corporation Near-field light generating element comprising surface plasmon antenna and waveguide with groove
US8116172B2 (en) 2009-02-09 2012-02-14 Tdk Corporation Near-field light generating device including surface plasmon generating element
US8139447B2 (en) 2009-04-08 2012-03-20 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US7885029B2 (en) 2009-04-14 2011-02-08 Tdk Corporation Thermally-assisted magnetic recording head and thermally-assisted magnetic recording method
US7911883B2 (en) 2009-06-26 2011-03-22 Headway Technologies, Inc. Near-field light generating element having two different angles
JP5587883B2 (en) * 2009-07-06 2014-09-10 株式会社日立製作所 Thermal assist recording head and thermal assist recording apparatus
US8406094B2 (en) 2009-07-06 2013-03-26 Hitachi, Ltd. Heat-assisted recording head and heat-assisted recording device
WO2011004716A1 (en) * 2009-07-06 2011-01-13 株式会社日立製作所 Heat-assisted recording head and heat-assisted recording device
US8395971B2 (en) 2009-07-15 2013-03-12 Headway Technologies, Inc. Heat-assisted magnetic recording head with laser diode fixed to slider
US8406089B2 (en) 2009-09-04 2013-03-26 Headway Technologies, Inc. Heat-assisted magnetic recording head with laser diode fixed to slider
US8395973B2 (en) 2009-10-08 2013-03-12 Sharp Kabushiki Kaisha Waveguide, recording head, and recording device
US8223596B2 (en) 2009-10-19 2012-07-17 Tdk Corporation Thermally-assisted magnetic recording head with plane-emission type light source
JP2011090752A (en) * 2009-10-26 2011-05-06 Hitachi Ltd Thermal-assisted recording head, thermal-assisted recording device, and near-field light generating apparatus
US8248894B2 (en) 2010-01-07 2012-08-21 Headway Technologies, Inc. Thermally-assisted magnetic recording head having heat radiation layer and interposed layer
US8705327B2 (en) 2010-01-14 2014-04-22 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
JP2011146097A (en) * 2010-01-14 2011-07-28 Hitachi Ltd Thermally assisted magnetic recording head and thermally assisted magnetic recording device
JP2011198453A (en) * 2010-02-23 2011-10-06 Seiko Instruments Inc Recording head and information recording and reproducing apparatus
US8366948B2 (en) 2010-03-01 2013-02-05 Headway Technologies, Inc. Method of manufacturing near-field light generating element and method of manufacturing heat-assisted magnetic recording head
US8194510B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8194511B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8325441B2 (en) 2010-03-31 2012-12-04 Headway Technologies, Inc. Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8331204B2 (en) 2010-06-14 2012-12-11 Sharp Kabushiki Kaisha Near-field light generating device, recording head, and recording device
JP2012053950A (en) * 2010-09-01 2012-03-15 Hitachi Ltd Magnetic recording device and magnetic recording method
JP2012064261A (en) * 2010-09-14 2012-03-29 Seiko Instruments Inc Recording head and information recording/reproduction device
US8400885B2 (en) 2011-04-29 2013-03-19 Tdk Corporation Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
JP2012248266A (en) * 2011-05-27 2012-12-13 Hgst Netherlands B V Channel-source laser-pulsing system architecture for thermal-assisted recording
US8619518B1 (en) 2012-08-15 2013-12-31 Headway Technologies, Inc. Thermally-assisted magnetic recording head having expanded near-field light generating layer and method of manufacture
US8988975B1 (en) 2013-09-24 2015-03-24 Headyway Technologies, Inc. Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive

Also Published As

Publication number Publication date
JP3984568B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3984568B2 (en) Magnetic recording apparatus and magnetic recording method
JP4100133B2 (en) Recording head and information recording apparatus using the same
JP3903365B2 (en) Optically assisted magnetic recording head and optically assisted magnetic recording apparatus
JP5330757B2 (en) Magnetic recording method and magnetic recording apparatus
US8295010B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7911882B2 (en) Thin-film magnetic head with near-field-light-generating layer
JP4193847B2 (en) THIN FILM MAGNETIC HEAD HAVING NEAR FIELD LIGHT GENERATING LAYER AND THERMAL EXPANSION PROJECTING LAYER, HEAD GIMBAL ASSY
US7773342B2 (en) Thin-film magnetic head having near-field-light-generating portion with trapezoidal end
US8107325B2 (en) Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
JP4705165B2 (en) Magnetic sensor element, magnetic reproducing head, magnetic reproducing device, and magnetic reproducing method
US8116172B2 (en) Near-field light generating device including surface plasmon generating element
KR20010082611A (en) Thermally-assisted magnetic recording method and thermally-assisted magnetic recorder
JP2008210452A (en) Thermal assist magnetic head, head gimbal assembly, and hard disk drive
Cumpson et al. A hybrid recording method using thermally assisted writing and flux sensitive detection
JP5539817B2 (en) Magnetic recording apparatus and magnetic recording method
US8374060B2 (en) Thermally-assisted magnetic recording method for writing data on a hard disk medium
JP4504960B2 (en) Thermally assisted magnetic recording device
US8351144B2 (en) Thermally assisted magnetic recording head, recording system, and recording method
JP3884031B2 (en) Thermally assisted magnetic recording device using near-field light
JP2008059691A (en) Heat assisted magnetic head, head gimbal assembly, and hard disk drive
JP2007200505A (en) Thin film magnetic head provided with near-field light generating part having trapezoid end
JP3492270B2 (en) Thermally assisted magnetic recording head and thermally assisted magnetic recording apparatus
JP5710531B2 (en) Thermally assisted magnetic recording method and thermally assisted magnetic recording apparatus
JP2007115375A (en) Magnetic recording and reproducing device
JP2007012226A (en) Method and device for recording magnetic information

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees