WO2009152670A1 - 射频电极及薄膜制备装置 - Google Patents
射频电极及薄膜制备装置 Download PDFInfo
- Publication number
- WO2009152670A1 WO2009152670A1 PCT/CN2008/073410 CN2008073410W WO2009152670A1 WO 2009152670 A1 WO2009152670 A1 WO 2009152670A1 CN 2008073410 W CN2008073410 W CN 2008073410W WO 2009152670 A1 WO2009152670 A1 WO 2009152670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio frequency
- frequency electrode
- conductive protrusions
- air
- conductive
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
Definitions
- the present invention relates to a film preparation technique, and more particularly to a radio frequency electrode for film preparation, and a film preparation apparatus.
- FIG. 1 is a schematic structural view of a conventional thin film preparation apparatus, including a flat RF cathode 1, a gas plate 3, and a TCO substrate.
- the air distribution plate 3 is evenly distributed with a plurality of air holes 4, and the reactive gas 2 introduced during the film preparation is ionized into ions under the action of the electric field, and deposited on the TCO substrate 5,
- the ions passing through the vent 2 also cause strong bombardment of the thin film layer 7 on the TCO substrate 5 by the electric field, resulting in the uniformity of the deposited film being affected by 'J.
- Another object of the present invention is to provide a thin film preparation apparatus capable of effectively reducing the bombardment damage of ions to a deposited film layer and improving the uniformity of the deposited film layer.
- the present invention provides a radio frequency electrode having a flat plate structure (11), and a plurality of conductive protrusions (13) are disposed on a bottom surface of the flat plate structure (11), and the plurality of conductive protrusions (13) can be inserted into the air vent (4) distributed on the air distribution plate (3) during the film preparation process, so that the gas passing through the air vent (4) is in the plurality of conductive protrusions (13) Discharge between the air hole and the air hole (4).
- a portion of the plurality of conductive protrusions (13) extending into the air hole (4) is a cylinder, a tube body, an inverted cone or a sphere, and the plurality of conductive protrusions (13) and the air holes of the cloth (13) 4)
- the area between the discharges is not angular.
- the cylinder is a cylinder, an elliptical cylinder or a polygonal cylinder;
- the tubular body is a cylindrical tubular body, an elliptical cylindrical tubular body or a polygonal cylindrical tubular body.
- the end of the cylinder or the tube body has a circular arc shape.
- the present invention provides a thin film preparation apparatus including any of the above RF electrodes, wherein a plurality of conductive protrusions (13) of the RF electrode extend into a cloth distributed on the air distribution plate (3) In the center of the air hole (4), there is a gap between the conductive bump (13) and the air hole (4) which is capable of generating an electric field higher than an electric field generated between the RF electrode and the substrate (12).
- a portion of the plurality of conductive protrusions (3) extending into the air hole (4) is an inverted cone or a sphere, and an inner wall of the air hole (4) and the plurality of conductive protrusions (3) are extended.
- the part of the air supply hole (4) is adapted.
- a bias voltage is added between the RF electrode and the substrate.
- the gap is 0.2 mm to 20 mm.
- a distance between an end of the plurality of conductive protrusions (13) of the radio frequency electrode and the substrate (12) is 2 mm to 100 mm.
- the length of the plurality of conductive protrusions (13) of the RF electrode is from 1 mm to 100 mm.
- the present invention provides a conductive protrusion inserted into the air hole of the flat plate structure, so that the gas in the air supply hole can generate a strong discharge around the conductive protrusion during the film preparation process, thereby reducing the ionized ions.
- the bombardment damage to the film improves the uniformity of the deposited film layer.
- FIG. 1 is a schematic structural view of a conventional film preparing apparatus.
- FIG. 2 is a schematic view showing the structure of an embodiment of a film preparing apparatus of the present invention.
- Figure 3 is a plan view showing the air distribution plate and the inserted conductive projections of the film preparing apparatus of the present invention.
- FIGS. 4a-4d are plan views of several air distribution plates and inserted conductive protrusions of the film preparation apparatus of the present invention.
- 5a-5c are schematic cross-sectional views showing several air distribution plates and inserted conductive projections of the film preparation apparatus of the present invention.
- FIG. 2 is a schematic view showing the structure of an embodiment of the film preparing apparatus of the present invention.
- the device includes at least a radio frequency electrode, a gas distribution plate 3, and a substrate 12 for depositing a thin film.
- the radio frequency electrode has a flat plate structure 11, and a plurality of conductive protrusions 13 are disposed on the bottom surface of the flat plate structure 11, and the conductive protrusions 13 are extended.
- the center of the air vent 4 is distributed in the air distribution plate 3 so that the gas passing through the air vent 4 is discharged between the plurality of conductive projections 13 and the air vent 4. There is a gap between the conductive bumps 13 and the air holes 4.
- the radio frequency electrode, the air distribution plate 3, and the substrate 12 are usually placed in a closed environment to operate.
- the reaction gas 2 enters the air distribution plate 3 through the gap between the air supply hole 4 and the conductive protrusion 13.
- the reaction gas 2 generates a strong discharge around the conductive bumps 13, and since the distance between the RF electrode and the substrate 12 is relatively far, the generated electric field is weak relative to the electric field generated between the conductive bumps 13 and the air holes 4. Therefore, the electric field is weakened, and the damage caused by ion bombardment to the film is effectively reduced.
- Correction page (Article 91)
- the plurality of air holes 4 and the conductive protrusions 13 distributed on the air distribution plate 3 correspond in number and position, thereby ensuring that the conductive protrusions 13 can be accurately inserted into the air holes 4 when the film preparation device is mounted. .
- the conductive protrusions 13 are generally inserted into the center of the air vent 4 more accurately, and avoid contact with one side of the air vent 4 or a large degree of deflection, if one side contacts or a large degree Skewed, it may lead to plasma unevenness generated at near and far distances, and even arcing, which affects the quality of the film.
- the portion of the conductive protrusion 13 extending into the air hole 4 in FIG. 3 is a cylinder.
- the portion of the conductive protrusion 13 extending into the air hole 4 may also be a cylinder or a tube body.
- the end of the cylinder or tube can also be designed as a circular arc (see Figure 5a).
- the portion of the conductive protrusion 13 extending into the air hole 4 may also be an inverted cone or a sphere, wherein the inner wall of the air hole 4 is adapted to the extending portion, and both designs are improved.
- the area of the plasma discharge region increases the utilization rate of the reaction gas.
- the choice of the size of the gap between the conductive bump 13 and the air vent 4 is related to machine accuracy, gas flow rate, and film uniformity, and the electric field generated by the gap is required to be higher than the electric field generated between the RF electrode and the substrate 12. .
- the interval of the gap can be selected from 0.2mm to 20mm o
- the distance between the substrate 12 and the end of the conductive bump 13 and the length of the conductive bump 13 are also related to machine accuracy, gas flow rate, and film uniformity.
- the electric field generated in the gap is higher than the RF electrode and the substrate.
- the optional interval between the substrate 12 and the end of the conductive protrusion 13 is 2 mm to 100 mm, and the length of the conductive protrusion 13 is optional from 1 mm to 100 mm.
- a voltage bias can be added between the substrate 12 and the RF electrode to attenuate the momentum of the ions reaching the film layer, thereby further reducing damage to the film by bombardment.
- a heating plate may also be disposed under the substrate 12.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
Description
射频电极及薄膜制备装置 技术领域 本发明涉及薄膜制备技术, 尤其涉及一种用于薄膜制备的射频电 极, 以及薄膜制备装置。
背景技术 在非晶硅电池生产工艺中, 通常要通过等离子体加强化学气相沉积
( Plasma Enhanced Chemical Vapor Deposition, 简称 PECVD )方式进行 薄膜制备。 在这种 PECVD工艺中, 多采用平板电极和微孔式结构的布 气方式, 如图 1 所示, 为现有薄膜制备装置的结构示意图, 包括平板 RF阴极 1、 布气板 3、 TCO基板 5和加热板 6, 其中布气板 3上均匀分 布着多个布气孔 4, 在薄膜制备时通入的反应气体 2会在电场的作用下 被电离成离子, 并沉积在 TCO基板 5上, 同时通过布气孔 2的离子也 在电场的作用下对 TCO基板 5上的薄膜层 7造成强烈的轰击, 导致沉 积的薄膜的均匀度受 'J影响。
发明内容
本发明的目的是提出一种射频电极,能够用于在薄膜制备过程中有 效的减少离子对沉积膜层的轰击损伤。
本发明的另一目的是提出一种薄膜制备装置,能够有效的减少离子 对沉积膜层的轰击损伤, 提高沉积膜层的均匀度。
为实现上述目的, 本发明提供了一种射频电极, 该射频电极具有平 板结构 ( 11 ) , 且在平板结构 ( 11 ) 的底面设有多个导电凸起( 13 ) , 所述多个导电凸起( 13 ) 能够在薄膜制备过程中伸入布气板(3 ) 上分 布的布气孔(4 ) 中, 以使通过布气孔(4 )的气体在多个导电凸起( 13 )
和布气孔 (4)之间放电。
进一步的, 所述多个导电凸起( 13)伸入布气孔 (4) 的部分为柱 体、 管体、 倒锥体或球体, 且所述多个导电凸起( 13) 与布气孔 (4) 之间放电的区域没有棱角。
进一步的, 所述柱体为圆柱体、 椭圆柱体或多边形柱体; 所述管体 为圆柱管体、 椭圆柱管体或多边形柱管体。
进一步的, 所述柱体或管体的末端为圆弧形。
为实现上述另一目的,本发明提供了一种包括上述任一射频电极的 薄膜制备装置,其中所述射频电极的多个导电凸起( 13)伸入布气板(3) 上分布的布气孔(4) 的中央, 在导电凸起( 13) 和布气孔(4)之间存 在能够产生比所述射频电极与基板( 12)之间所产生的电场高的电场的 间隙。
进一步的, 所述多个导电凸起(3)伸入布气孔(4)的部分为倒锥 体或球体, 所述布气孔(4) 的内壁与所述多个导电凸起(3)伸入布气 孔 (4) 的部分相适应。
进一步的, 在所述射频电极和基板之间增加偏置电压。
进一步的, 所述间隙为 0.2mm~20mm。
进一步的, 所述射频电极的多个导电凸起( 13)的末端与基板( 12) 之间的距离为 2mm~ 100mm。
进一步的, 所述射频电极的多个导电凸起 ( 13 ) 的长度为 lmm~100mm。
基于上述技术方案, 本发明在平板结构上设置了插入布气孔中的导 电凸起, 使得薄膜制备过程中通过布气孔中的气体能够在导电凸起周围 产生强烈放电, 从而减少了电离出的离子对薄膜的轰击损伤, 提高了沉 积膜层的均匀性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的
—部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对 本发明的不当限定。 在附图中:
图 1为现有薄膜制备装置的结构示意图。
图 2为本发明薄膜制备装置的一实施例的结构示意图。
图 3 为本发明薄膜制备装置的布气板和插入的导电凸起的平面示 意图。
图 4a-4d为本发明薄膜制备装置的几种布气板和插入的导电凸起的 平面示意图
图 5a-5c为本发明薄膜制备装置的几种布气板和插入的导电凸起的 剖面示意图。
具体实施方式 下面通过附图和实施例, 对本发明的技术方案做进一步的详细描 述。
如图 2所示, 为本发明薄膜制备装置的一实施例的结构示意图。该 装置至少包括射频电极、 布气板 3、 用于沉积薄膜的基板 12, 其中射频 电极具有平板结构 11, 且在平板结构 11的底面设有多个导电凸起 13 , 这些导电凸起 13伸入布气板 3上分布的布气孔 4的中央, 以使通过布 气孔 4的气体在多个导电凸起 13和布气孔 4之间放电。 在导电凸起 13 和布气孔 4之间存在有间隙。
射频电极、布气板 3以及基板 12通常被置于密闭环境中进行工作, 当通入反应气体 2时, 反应气体 2通过布气孔 4和导电凸起 13之间的 间隙进入布气板 3和基板 12之间的腔体, 此时如果打开射频电极的电 源, 而布气板 3接地, 通过的反应气体 2会被充分电离, 这些离子运动 到基板 12表面沉积出薄膜。 反应气体 2会在导电凸起 13周围产生强烈 的放电, 而由于射频电极和基板 12之间的距离相对较远, 所产生的电 场相对于导电凸起 13和布气孔 4之间产生的电场要弱, 因此会对电场 产生减弱的效果, 有效地减少离子轰击对薄膜造成的损伤。
更正页 (细则第 91条)
布气板 3上分布的多个布气孔 4与导电凸起 13在数量和位置上都 是相对应的,从而保证在安装薄膜制备装置时能够准确地将导电凸起 13 插入到布气孔 4中。
如图 3所示, 导电凸起 13通常被较精确的插入布气孔 4的中央, 而避免与布气孔 4的一边接触或者有较大程度的偏斜, 如果出现了一边 接触或者较大程度的偏斜, 则可能导致距离较近和较远位置产生的等离 子不均匀, 甚至产生打弧现象, 影响薄膜制成的质量。
为了避免尖端放电, 通常在导电凸起 13与布气孔 4之间放电的区 域没有棱角。 图 3 中导电凸起 13伸入布气孔 4的部分为圆柱体, 在其 他实施例中 (参见图 4a-4d ) , 导电凸起 13伸入布气孔 4的部分还可以 是柱体或管体的几种形式, 例如椭圆柱体、 多边形柱体(比如矩形柱体、 三角形柱体等) 、 圆柱管体、 椭圆柱管体或多边形柱管体等。
为了减少柱体或管体的末端的棱角的放电影响,还可以将柱体或管 体的末端设计为圆弧形 (参见图 5a ) 。
如图 5b-5c所示, 导电凸起 13伸入布气孔 4的部分还可以是倒锥 体或球体, 其中布气孔 4的内壁与该伸入的部分相适应, 这两种设计均 提高了等离子体放电区域的面积, 提高了反应气体的利用率。
导电凸起 13和布气孔 4之间的间隙大小的选择与机器精度、 气体 流速以及薄膜一致性有关, 且要满足该间隙产生的电场要高于射频电极 与基板 12 之间所产生的电场的要求。 通常可选择该间隙的区间为 0.2mm~20mmo
基板 12和导电凸起 13的末端之间的距离以及导电凸起 13的长度 的选择也均与机器精度、 气体流速以及薄膜一致性有关, 在满足该间隙 产生的电场要高于射频电极与基板 12之间所产生的电场的要求下, 基 板 12和导电凸起 13的末端之间的距离的可选区间为 2mm~100mm, 导 电凸起 13的长度的可选区间为 lmm~100mm。
在另一个实施例中, 还可以在基板 12和射频电极之间加入一个电 压偏置, 减弱离子到达薄膜层的动量, 从而进一步的减小轰击作用对薄 膜的损伤。
在另一个实施例中, 在基板 12下还可以设置加热板。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非 对其限制; 尽管参照较佳实施例对本发明进行了详细的说明, 所属领域 或者对部分技术特征进行等同替换; 而不脱离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术方案范围当中。
Claims
1、一种用于薄膜制备的射频电极,该射频电极具有平板结构( 11 ), 且在平板结构 ( 11 ) 的底面设有多个导电凸起( 13) , 所述多个导电凸 起( 13) 能够在薄膜制备过程中伸入布气板(3) 上分布的布气孔 (4) 中, 以使通过布气孔 (4) 的气体在多个导电凸起( 13) 和布气孔 (4) 之间放电。
2、 根据权利要求 1所述的射频电极, 其中所述多个导电凸起( 13) 伸入布气孔 (4) 的部分为柱体、 管体、 倒锥体或球体, 且所述多个导 电凸起( 13) 与布气孔 (4)之间放电的区域没有棱角。
3、 根据权利要求 2所述的射频电极, 其中所述柱体为圆柱体、 椭 圆柱体或多边形柱体; 所述管体为圆柱管体、 椭圆柱管体或多边形柱管 体。
4、 根据权利要求 3所述的射频电极, 其中所述柱体或管体的末端 为圆弧形。
5、 一种包括权利要求 1-4任一所述的射频电极的薄膜制备装置, 其中所述射频电极的多个导电凸起( 13) 伸入布气板(3) 上分布的布 气孔(4) 的中央, 在导电凸起( 13) 和布气孔(4)之间存在能够产生 比所述射频电极与基板( 12)之间所产生的电场高的电场的间隙。
6、 根据权利要求 5所述的薄膜制备装置, 其中所述多个导电凸起 (3) 伸入布气孔 (4) 的部分为倒锥体或球体, 所述布气孔 (4) 的内 壁与所述多个导电凸起(3)伸入布气孔 (4) 的部分相适应。
7、 根据权利要求 5所述的薄膜制备装置, 其中在所述射频电极和 基板之间增加偏置电压。
8、 根据权利要求 5 所述的薄膜制备装置, 其中所述间隙为 0.2mm~20mmo
9、 根据权利要求 5所述的薄膜制备装置, 其中所述射频电极的多 个导电凸起( 13) 的末端与基板 ( 12)之间的距离为 2mm~100mm。
10、 根据权利要求 5所述的薄膜制备装置, 其中所述射频电极的多
个导电凸起( 13) 的长度为 lmm~100mm;
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810127058.7 | 2008-06-19 | ||
CN2008101270587A CN101307437B (zh) | 2008-06-19 | 2008-06-19 | 射频电极及薄膜制备装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009152670A1 true WO2009152670A1 (zh) | 2009-12-23 |
Family
ID=40124110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/073410 WO2009152670A1 (zh) | 2008-06-19 | 2008-12-10 | 射频电极及薄膜制备装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101307437B (zh) |
WO (1) | WO2009152670A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090165716A1 (en) * | 2008-01-01 | 2009-07-02 | Dongguan Anwell Digital Machinery Ltd. | Method and system for plasma enhanced chemical vapor deposition |
CN101307437B (zh) * | 2008-06-19 | 2010-12-01 | 东莞宏威数码机械有限公司 | 射频电极及薄膜制备装置 |
CN102098863B (zh) * | 2009-12-14 | 2013-09-11 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 用于等离子体加工设备的电极板和清除工艺沉积物的方法 |
TWI525887B (zh) * | 2011-11-14 | 2016-03-11 | 財團法人金屬工業研究發展中心 | 導氣電極板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037551A (zh) * | 1988-02-01 | 1989-11-29 | 三井东圧化学株式会社 | 成膜装置及其用它生产非晶硅化合物薄膜的方法 |
CN1330507A (zh) * | 2000-04-26 | 2002-01-09 | 尤纳克西斯巴尔策斯公司 | 射频等离子发生器 |
JP2004200345A (ja) * | 2002-12-18 | 2004-07-15 | Hitachi Kokusai Electric Inc | プラズマ処理装置 |
US20050183666A1 (en) * | 2004-02-20 | 2005-08-25 | Asm Japan K.K. | Shower plate having projections and plasma CVD apparatus using same |
CN101307437A (zh) * | 2008-06-19 | 2008-11-19 | 东莞宏威数码机械有限公司 | 射频电极及薄膜制备装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4472372B2 (ja) * | 2003-02-03 | 2010-06-02 | 株式会社オクテック | プラズマ処理装置及びプラズマ処理装置用の電極板 |
-
2008
- 2008-06-19 CN CN2008101270587A patent/CN101307437B/zh not_active Expired - Fee Related
- 2008-12-10 WO PCT/CN2008/073410 patent/WO2009152670A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037551A (zh) * | 1988-02-01 | 1989-11-29 | 三井东圧化学株式会社 | 成膜装置及其用它生产非晶硅化合物薄膜的方法 |
CN1330507A (zh) * | 2000-04-26 | 2002-01-09 | 尤纳克西斯巴尔策斯公司 | 射频等离子发生器 |
JP2004200345A (ja) * | 2002-12-18 | 2004-07-15 | Hitachi Kokusai Electric Inc | プラズマ処理装置 |
US20050183666A1 (en) * | 2004-02-20 | 2005-08-25 | Asm Japan K.K. | Shower plate having projections and plasma CVD apparatus using same |
CN101307437A (zh) * | 2008-06-19 | 2008-11-19 | 东莞宏威数码机械有限公司 | 射频电极及薄膜制备装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101307437B (zh) | 2010-12-01 |
CN101307437A (zh) | 2008-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101841585B1 (ko) | 플라즈마 처리 방법 및 플라즈마 처리 장치 | |
CN101469416B (zh) | 用于处理衬底的设备 | |
KR101451244B1 (ko) | 라이너 어셈블리 및 이를 구비하는 기판 처리 장치 | |
US10264662B2 (en) | Plasma processing apparatus | |
JP2013211586A (ja) | 基板縁部からの処理調整ガスの注入 | |
JP5287850B2 (ja) | プラズマcvd用のカソード電極、およびプラズマcvd装置 | |
EP2274764A1 (en) | Plasma processing apparatus and method for the plasma processing of substrates | |
CN104217914B (zh) | 等离子体处理装置 | |
JP2010003958A (ja) | バッフル板及び基板処理装置 | |
TW200901363A (en) | Substrate carrying bench and substrate treatment device | |
US10580622B2 (en) | Plasma processing apparatus | |
WO2009152670A1 (zh) | 射频电极及薄膜制备装置 | |
JP2004200345A (ja) | プラズマ処理装置 | |
JP2000331995A (ja) | Ccp反応容器の平板型ガス導入装置 | |
CN102082063B (zh) | 一种用于中、低频等离子体加工设备的电极板和反应腔室 | |
US20210280389A1 (en) | Large-area vhf pecvd chamber for low-damage and high-throughput plasma processing | |
KR20020084617A (ko) | 반도체 소자의 제조 장치 | |
TWI474395B (zh) | A plasma processing device | |
JP2004186532A (ja) | プラズマ処理装置 | |
JP2009253102A (ja) | プラズマcvd用のカソード電極、およびプラズマcvd装置 | |
JP3151364U (ja) | プラズマ化学気相堆積装置 | |
JP2012164766A (ja) | エッチング装置 | |
KR100725614B1 (ko) | 플라즈마 처리 장치 | |
JP2018536768A (ja) | 基板上のスパッタ堆積用に構成されたシステム、スパッタ堆積チャンバ用のシールド装置、およびスパッタ堆積チャンバ内に電気シールドを設ける方法 | |
TWI525887B (zh) | 導氣電極板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08874674 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08874674 Country of ref document: EP Kind code of ref document: A1 |