WO2009150913A1 - Illumination apparatus, exposure apparatus, and device fabrication method - Google Patents

Illumination apparatus, exposure apparatus, and device fabrication method Download PDF

Info

Publication number
WO2009150913A1
WO2009150913A1 PCT/JP2009/058770 JP2009058770W WO2009150913A1 WO 2009150913 A1 WO2009150913 A1 WO 2009150913A1 JP 2009058770 W JP2009058770 W JP 2009058770W WO 2009150913 A1 WO2009150913 A1 WO 2009150913A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
illumination
light
unit
optical axis
Prior art date
Application number
PCT/JP2009/058770
Other languages
French (fr)
Japanese (ja)
Inventor
達雄 福井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010516798A priority Critical patent/JP5531955B2/en
Publication of WO2009150913A1 publication Critical patent/WO2009150913A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems

Definitions

  • the present invention relates to an illumination apparatus, an exposure apparatus, and a device manufacturing method for irradiating an irradiation object with illumination light.
  • an exposure apparatus is used to manufacture devices such as a semiconductor element, a liquid crystal display element, and a thin film magnetic head in a photolithography process.
  • an original pattern formed on a mask is illuminated with exposure light and transferred onto a plate (photosensitive substrate) coated with a photosensitive agent such as a photoresist. Yes.
  • illumination light emitted from two light sources is introduced symmetrically with respect to a common optical system across the optical axis of the common optical system.
  • the locus of the center of gravity of the entire illumination light irradiated on the irradiated object changes (inclination changes).
  • the transfer accuracy of the mask pattern in the exposure apparatus is lowered.
  • An object of an aspect of the present invention is to provide an illumination apparatus, an exposure apparatus, and a device manufacturing method capable of increasing the amount of illumination light and stabilizing the locus of the center of gravity of the amount of light.
  • a plurality of light source units that hold a light source and output illumination light emitted from the light source, and a projection that irradiates an irradiated object with each illumination light output from the plurality of light source units.
  • an introduction unit for introducing each illumination light from a different position around the optical axis of the common optical system or on the optical axis with respect to a common optical system including at least the projection unit and common to the illumination light.
  • An illumination device is provided that includes an imaging unit that forms one or more light source images of the light source for each light source, with the projection unit being substantially centered on the optical axis of the common optical system.
  • a mask holding unit that holds a mask on which a pattern is formed
  • a substrate holding unit that holds a photosensitive substrate
  • irradiation of illumination light to the photosensitive substrate through the mask there is provided an exposure apparatus including the illumination apparatus according to the first aspect of the present invention.
  • the exposure apparatus is used to transfer the pattern onto the photosensitive substrate, and to transfer the photosensitive substrate onto which the pattern has been transferred.
  • a device manufacturing method including processing based on the pattern.
  • the amount of illumination light can be increased and the locus of the center of gravity of the amount of light can be stabilized.
  • FIG. 1 is a view showing the arrangement of an exposure apparatus provided with an illumination apparatus according to the first embodiment of the present invention.
  • a step-and-repeat type exposure apparatus that sequentially transfers an image of the pattern of the mask M to a plurality of shot areas on the photosensitive substrate P while moving the photosensitive substrate P as an example will be described. To do.
  • the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ rectangular coordinate system.
  • the XYZ orthogonal coordinate system is set so that the X axis and the Y axis are parallel to the photosensitive substrate P, and the Z axis is set in a direction orthogonal to the photosensitive substrate P.
  • the XY plane is actually set to a plane parallel to the horizontal plane, and the Z axis is set to the vertically upward direction.
  • the exposure apparatus shown in FIG. 1 has a pattern formed with an illumination apparatus IL that uniformly irradiates an illumination area on a mask M as an irradiated body and irradiates the photosensitive substrate P with illumination light through the mask M.
  • a mask holding unit (not shown) that holds the mask M, a projection unit (projection optical system) PL that forms a projection image of a pattern on the mask M in a shot area on the photosensitive substrate P, and a base B are mounted.
  • FIG. 2 is a diagram showing the configuration of the illuminating device IL
  • FIG. 3 is a diagram of the configuration from the folding mirror 4b of the illuminating device IL to the reflecting elements 9 to 12 as viewed from the direction of the arrow A shown in FIG.
  • the illuminating device IL holds two light sources 2a and 2b each composed of a discharge lamp such as an ultra-high pressure mercury lamp and outputs two light source units (first light source unit and first light source unit) that output illumination light emitted from the light sources 2a and 2b. 2 light source sections).
  • the first light source unit includes an elliptical mirror 3a that collects the illumination light emitted from the light source 2a, a folding mirror 4a that folds the illumination light reflected by the elliptical mirror 3a, and a position at which the illumination light reflected by the elliptical mirror 3a is collected.
  • the shutter 5a is provided and arranged. As shown in FIG. 4, a light source image Ia is formed around the optical axis AX1 of the first light source unit at the arrangement position of the shutter 5a.
  • the illumination device IL includes a first imaging unit provided for the light source 2a.
  • the first imaging unit includes a relay lens 6a and a second lens 7a, and is substantially the optical axis AX3 of the common optical system with respect to a projection unit (input lens 16 to blind imaging system 21) described later.
  • Two light source images of the light source 2a are formed around the center.
  • the common optical system includes an after-mentioned projection unit, and is an optical system (relay lens group 13 to blind connection) provided in common for each illumination light output from each of the first light source unit and the second light source unit. Image system 21).
  • the optical axis AX1 of the first light source unit and the optical axis AX3 of the common optical system are optical axes that are deflected to each other via reflecting elements 9 and 10 to be described later, and are optically continuous one. It can be regarded as an optical axis (hereinafter, appropriately referred to as an optical axis AX). Therefore, to form a plurality of (two in the present embodiment) light source images substantially centering on the optical axis AX3, in consideration of the deflection of the optical axis by the reflective elements (here, the reflective elements 9 and 10), This means that a plurality of light source images are formed around a predetermined point on the optical axis AX.
  • FIG. 5 is a diagram illustrating a configuration of a second lens 7a as a dividing unit provided for the first light source unit.
  • the second lens 7a includes a first imaging element 8a and a second imaging element 8b, and the first imaging element 8a and the second imaging element 8b have an optical axis. They are arranged side by side in the Z direction at symmetrical positions around AX1.
  • the second lens 7a divides the illumination light output from the first light source unit into two partial illumination lights in the Z direction by making the illumination light enter each of the first imaging element 8a and the second imaging element 8b. To do.
  • the second lens 7a substantially converts the light source images I A and I B (see FIG.
  • the optical axis AX3 is formed at a symmetrical position.
  • the first direction that substantially intersects with the optical axis AX3 is a direction that can be regarded as optically the same before and after the deflection in consideration of the deflection of the optical axis by the reflecting elements 9 and 10 as described above. Is included.
  • both the X direction with respect to the optical axis AX3 and the Z direction with respect to the optical axis AX1 can be regarded as a first direction with respect to the optical axis AX3, that is, a first direction with respect to the optical axis AX.
  • the second light source unit includes an elliptical mirror 3b, a folding mirror 4b, and a shutter 5b.
  • the illumination device IL includes a second imaging unit provided for the light source 2b.
  • the second image forming unit includes a relay lens 6b and a second lens 7b as a dividing unit provided for the second light source unit.
  • the second lens 7b is composed of a first imaging element 8c and a second imaging element 8d as imaging elements provided individually for each partial illumination light to be divided.
  • the first imaging element 8c and the second imaging element 8d are arranged side by side in the Y direction at symmetrical positions around the optical axis AX2 of the second light source unit.
  • the second lens 7b divides the illumination light output from the second light source unit into two partial illumination lights in the Y direction by causing the illumination light to enter each of the first imaging element 8c and the second imaging element 8d.
  • the second imaging unit provided for the light source 2b substantially converts the light source images I C and I D (see FIG. 6) for each of the two partial illumination lights corresponding to the second light source unit to substantially the optical axis. It is formed at a position symmetrical to the optical axis AX3 along the Y direction which is a second direction orthogonal to the first direction around AX3.
  • optical axis AX2 of the second light source unit and the optical axis AX3 of the common optical system are mutually connected via reflective elements 11 and 12, which will be described later, similarly to the relationship between the optical axis AX1 and the optical axis AX3 described above.
  • the deflected optical axis can be regarded as one optical axis that is optically continuous (hereinafter, appropriately referred to as an optical axis AX).
  • the illumination device IL includes an introduction unit that introduces each illumination light output from the first light source unit and the second light source unit from different positions around the optical axis AX3 of the common optical system with respect to the common optical system.
  • the introduction unit includes four reflection elements 9 to 12, and each partial illumination light divided by the second lenses 7a and 7b is reflected by the reflection elements 9 to 12 and introduced into the common optical system.
  • the reflecting elements 9 to 12 are arranged around the optical axis AX3, and a reflecting surface is provided around the optical axis AX3.
  • FIG. 6 is a diagram showing the arrangement of the light source images I A to I D formed substantially around the optical axis AX3.
  • Light source image I A shown in FIG. 6 are formed by the partial illumination light from the first imaging element 8a
  • the light source image I B are formed by the partial illumination light from the second imaging element 8b
  • the light source image I C is the The light source image ID is formed by partial illumination light from the second image formation element 8d.
  • the first and second imaging units form the light source images I A to I D at the rotationally symmetric positions around the optical axis AX3 via the reflecting elements 9 to 12.
  • the illumination device IL includes an image interval changing unit that changes the intervals of the light source images I A to I D for each partial illumination light.
  • the image interval changing unit includes a relay lens group 13 and a cone prism group 14.
  • the cone prism group 14 includes a cone prism 14a having a transmission part formed in a cone or a quadrangular pyramid shape and a cone prism 14b having a concave part as a transmission part formed in a cone or a quadrangular pyramid shape on the optical axis AX3. It arrange
  • the light source images I A ⁇ I D source image I A ' ⁇ I D' is a conjugate image of the ( 7), and the interval between the light source images I A ′ to I D ′ is reduced as compared with the interval between the light source images I A to I D.
  • the light source images I A ′ and I B ′ have the optical axis AX3 on the imaging surface 15 of the light source images I A ′ to I D ′ by the relay lens group 13 and the cone prism group 14.
  • the light source images I C ′ and I D ′ are formed along the Y direction intersecting with the optical axis AX3, and the light source images I A ′ to I D ′ have the optical axis AX3. It is formed at a rotationally symmetric position around the center.
  • the illumination device IL outputs the illumination light (each partial illumination light) output from the first light source unit and the second light source unit and passed through the first and second imaging units, the introduction unit, and the image interval changing unit. )
  • the projection unit includes an input lens 16, a fly-eye lens 17, an aperture stop 18, a condenser lens 19, a blind 20, and a blind imaging system 21.
  • each partial illumination light from the light source images I A ′ and I B ′ is substantially elliptical having a major axis in the Y direction on the incident surface 17 a of the fly-eye lens 17 via the input lens 16.
  • the shaped irradiation region R1 is illuminated.
  • each partial illumination light from the light source images I C ′ and I D ′ illuminates a substantially elliptical irradiation region R2 having a major axis in the X direction.
  • Each partial illumination light that illuminates the incident surface 17a is divided into wavefronts by a plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG. 9, four light source images I are respectively provided on the exit surface side of each lens element.
  • the input lens 16 and the fly eye lens 17 are four conjugate images of the light source images I A ′ to I D ′ on the exit surface side of each lens element of the fly eye lens 17 in the irradiation regions R1 and R2.
  • the light source images I A ′′ to I D ′′ are formed in cooperation.
  • the input lens 16 and the fly-eye lens 17 form four light source images I A ′′ to I D ′′ on the rear focal plane on the exit surface side of each lens element as a conjugate plane of the imaging plane 15. .
  • a secondary light source is formed on the exit surface 17b side of the fly-eye lens 17 as a surface light source in which the light source images I A ′′ to I D ′′ are arranged for each lens element.
  • An aperture stop 18 is provided on or near the rear focal plane of the fly-eye lens 17, and the aperture diameter (aperture diameter) of the aperture stop 18 is the illumination light that illuminates the mask M by irradiating from the projection unit.
  • the numerical aperture (NA) that is, the illumination ⁇ value for the projection part PL (ratio of the exit pupil diameter of the projection part to the entrance pupil diameter of the projection part PL) is determined.
  • the imaging surface 15 is conjugated or substantially conjugated to the aperture surface of the aperture stop 18, and is conjugated or substantially conjugated to the pupil plane on which the exit pupil of the projection unit based on the aperture stop 18 is formed. Has been.
  • the illumination light that has passed through the aperture of the aperture stop 18 illuminates the illumination area of the mask M corresponding to the blind 20 substantially uniformly via the condenser lens 19, the blind 20, and the blind imaging system 21.
  • Illumination light from the illumination area of the mask M enters the projection unit PL shown in FIG. 1, and the projection unit PL projects an image of the pattern of the mask M onto an exposure area (shot area) on the photosensitive substrate P.
  • the substrate stage PS is configured to be movable in the X direction, the Y direction, the rotation direction with respect to the X axis and the Y axis, and the Z direction, and performs adjustment of the position of the photosensitive substrate P and step movement of the photosensitive substrate P.
  • the photosensitive substrate P By projecting the substrate stage PS, the photosensitive substrate P is moved stepwise, and the illumination device IL irradiates the photosensitive substrate P with illumination light through the projection unit PL, thereby projecting the pattern formed on the mask M. Are sequentially transferred to each shot area on the photosensitive substrate P.
  • the illumination light from each of the light sources 2a and 2b is divided into two partial illumination lights by the dividing unit, and each divided partial illumination light is optical axis AX. Since the light is introduced into the common optical system from different positions around the (optical axis AX3), the light amount loss of the illumination light from each of the light sources 2a and 2b is suppressed, and the illumination light irradiated to the mask M through the common optical system is suppressed. The amount of light can be increased efficiently.
  • two light source images I A ′ and I B ′ of the light source 2a are formed around the optical axis AX3 (optical axis AX) of the common optical system with respect to the projection unit, and two light source images I of the light source 2b are formed.
  • C ′ and ID ′ are formed, for example, illumination that irradiates the illumination area of the mask M even if there is a difference in the amount of light in the illumination light emitted from each of the light sources 2a and 2b due to the consumption of the light sources 2a and 2b. It is possible to stabilize the locus of the center of gravity of the illumination light without changing the locus of the center of gravity of the light.
  • the light source images I A ′ to I D ′ of the light sources 2 a and 2 b are formed on the imaging surface 15 with respect to the projection unit, that is, the light source images I A ′ to I D ′ of the light sources 2 a and 2 b.
  • the numerical aperture of the illumination light with respect to the fly-eye lens 17 can be made equal for each illumination light (each partial illumination light) from the light sources 2a and 2b, and the mask M The entire illumination area can be illuminated efficiently and uniformly.
  • the numerical aperture of the illumination light for the fly-eye lens 17 is set to the illumination light from the light sources 2a and 2b. (Each partial illumination light) cannot be made equal. In this case, between the illumination light from the light source 2 a and the illumination light from the light source 2 b, the illumination area on the arrangement surface of the blind 20 differs according to the numerical aperture for the fly-eye lens 17.
  • the central portion of the blind 20 (the region corresponding to the numerical aperture common to each illumination light from the light sources 2a and 2b) is illuminated by both illumination lights from the light sources 2a and 2b, and its peripheral portion ( The region corresponding to the difference in the numerical aperture of each illumination light from the light sources 2a and 2b) is illuminated only by one illumination light from the light sources 2a or 2b. Therefore, if the light source images of the light sources 2a and 2b are not formed on the same plane with respect to the projection unit, the entire illumination area of the mask M cannot be illuminated uniformly. Alternatively, only the uniform illumination area limited except for the area illuminated only by the illumination light from one light source is used as the illumination area of the mask M.
  • the illumination apparatus and the exposure apparatus according to the first embodiment can efficiently and uniformly illuminate the entire illumination area of the mask M without causing unnecessary light loss. The effect that it is possible can be produced.
  • FIG. 10 is a diagram illustrating a configuration of the illumination device IL2 according to the second embodiment. As shown in FIG. 10, the illumination device IL2 is obtained by removing the cone prism group 14 from the illumination device IL shown in FIG. 2 and adding an optical system corresponding to the third light source unit. In FIG.
  • the illumination device IL2 includes a third light source unit, and the third light source unit includes a light source 22, an elliptical mirror 23, and a shutter 25. Further, the illumination device IL2 includes a relay optical system 26 as a third imaging unit that forms a light source image of the light source 22.
  • the third light source unit and the relay optical system 26 are arranged on the same axis as the common optical system (the relay lens group 13 to the blind imaging system 21), and the relay optical system 26 transmits light between the light source images I C and I D.
  • One light source image of the light source 22 is formed on the axis AX3 (optical axis AX).
  • the illumination light output from the third light source unit and passed through the relay optical system 26 passes on the optical axis AX3 between the reflective elements 9 and 10 and between the reflective elements 11 and 12.
  • the reflecting elements 9 to 12 as introduction parts introduce the four partial illumination lights from the light sources 2a and 2b into the common optical system from different positions around the optical axis AX3, and also emit the illumination light from the light source 22 as light.
  • the relay lens group 13 places the light source images I A ′ to I E ′ of the light sources 2a, 2b, and 22 at different positions around the optical axis AX3 on the imaging plane 15. Form.
  • the light source image I E ′ of the light source 22 is formed on the optical axis AX3.
  • FIG. 12 is a diagram illustrating an irradiation area of the incident surface 17 a of the fly-eye lens 17.
  • Each partial illumination light from the light source images I A ′ and I B ′ illuminates a substantially elliptical irradiation region R1 having a major axis in the Y direction, and each partial illumination light from the light source images I C ′ and I D ′
  • the illumination region R2 having a major axis in the X direction is illuminated, and the illumination light from the light source image I E ′ illuminates the annular illumination region R3 centered on the optical axis AX.
  • Each illumination light (partial illumination light) that illuminates the incident surface 17a is wavefront-divided by a plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG.
  • Two light source images I A ′′ to I E ′′ are formed.
  • the input lens 16 and the fly eye lens 17 cooperate with the five light source images I A ′′ to I E ′′ on the rear focal plane of each lens element of the fly eye lens 17 in the irradiation regions R1 to R3.
  • a secondary light source surface light source in which five light source images I A ′′ to I E ′′ are arranged for each lens element is formed on the exit surface 17 b side of the fly-eye lens 17.
  • the illumination light emitted from the secondary light source and passed through the opening of the aperture stop 18 corresponds to the blind 20 via the condenser lens 19, the blind 20, and the blind imaging system 21, as in the first embodiment.
  • the illumination area of the mask M is illuminated substantially uniformly.
  • the illumination apparatus and the exposure apparatus in addition to introducing the four partial illumination lights from the light sources 2a and 2b from different positions around the optical axis AX3 (optical axis AX) to the common optical system. Since the illumination light from the light source 22 is introduced into the common optical system from above the optical axis AX3, the amount of illumination light applied to the mask M via the common optical system is further increased as compared with the first embodiment. Can be increased. Further, two light source images I A ′ and I B ′ of the light source 2 a and two light source images I C ′ of the light source 2 b around the optical axis AX3 (optical axis AX) of the common optical system with respect to the projection unit.
  • the locus of the center of gravity of the illumination light irradiated on the mask M is stabilized as in the first embodiment. Can do.
  • the light source images I A ′ to I E ′ of the light sources 2 a, 2 b, and 22 are formed on the same plane (imaging plane 15) with respect to the projection unit, the illumination light aperture for the fly-eye lens 17 is formed. The number can be made equal for each illumination light (each partial illumination light) from the light sources 2a, 2b, 22 and the entire illumination area of the mask M is illuminated efficiently and uniformly as in the first embodiment. be able to.
  • the pattern of the mask M is illuminated by illumination light from the three light sources 2a, 2b, and 22.
  • illumination light from the two light sources 2a and 22 or the light sources 2b and 22 is used.
  • the pattern of the mask M may be illuminated.
  • the illumination device according to the present invention may include only the first and third light source units, or may include only the second and third light source units.
  • the partial illumination light obtained by dividing the illumination light from the first and second light source parts is reflected by the reflecting elements 9 to 12 as the introduction part and introduced into the common optical system
  • the illumination light that is not split from the third light source unit is introduced into the common optical system without being reflected by the introduction unit.
  • the arrangement of the first to third light source units may be changed as appropriate.
  • the first light source unit and the first image forming unit are arranged on the optical axis AX3, and two partial illumination lights from the first image forming unit are introduced into the common optical system without passing through the reflecting element.
  • the third light source unit and the third image forming unit are arranged on the optical axis AX1 in FIG.
  • the non-divided illumination light from the third image forming unit is reflected by the reflecting element and introduced into the common optical system. can do.
  • the reflective element that reflects the illumination light from the third imaging unit may be disposed on the optical axis AX (optical axis AX3).
  • FIG. 14 is a diagram showing the configuration of the illumination device IL3 according to the third embodiment
  • FIG. 15 is a diagram showing the configuration from the folding mirror 4b to the reflection elements 9 to 12 of the illumination device IL3 as seen from the direction of the arrow C shown in FIG. FIG.
  • the illumination device IL3 includes a first dividing unit that divides the illumination light output from the first light source unit configured by the light source 2a to the shutter 5a into two partial illumination lights in the Z direction, and each of the two partial illumination lights. And a first optical path interval changing unit that changes the interval of the optical paths.
  • the first dividing unit and the first optical path interval changing unit are provided integrally, and include a relay lens 30a and a roof-type prism group 32a.
  • Figure 16 is a diagram showing a light flux cross-section B 12 of the illumination light emitted from the relay lens 30a. Illumination light output from the first light source unit, since the center portion is eclipsed by the light source 2a (the light), the light flux cross-sectional B 12, as shown in FIG. 16, the annular shape.
  • the roof-type prism group 32a includes a first prism 34a and a second prism 34b.
  • the first prism 34a has two inclined surfaces 34aa and 34ab that form a roof-shaped recess on the incident side, and the YZ plane on the exit side. It consists of parallel surfaces.
  • the second prism 34b is configured by two inclined surfaces 34ba and 34bb on the incident side that are parallel to the YZ plane and on the emission side that form a roof-shaped convex portion.
  • the illumination light that has passed through the roof-type prism group 32a is divided into two partial illumination lights in the Z direction, and the distance between the optical paths of the two partial illumination lights is expanded in the Z direction on the exit side with respect to the incident side.
  • the illumination device IL3 includes a second dividing unit that divides the illumination light output from the second light source unit configured by the light source 2b to the shutter 5b into two partial illumination lights in the Y direction, and two partial illumination lights.
  • a second optical path interval changing unit that changes the interval between the optical paths.
  • the second dividing unit and the second optical path interval changing unit are provided integrally, and include a relay lens 30b and a roof-type prism group 32b.
  • the light beam cross-section of the illumination light emitted from the relay lens 30b is the same as the light beam cross-section B 12 shown in FIG. 16.
  • the roof-type prism group 32b is composed of a first prism 35a and a second prism 35b.
  • the first prism 35a has two inclined surfaces 35aa on which the incident side forms a roof-shaped recess. 35ab, the emission side is constituted by a plane parallel to the YZ plane.
  • the second prism 35b is configured by two inclined surfaces 35ba and 35bb on the incident side that are parallel to the YZ plane and on the emission side that form a roof-shaped convex portion.
  • the illumination light that has passed through the roof-type prism group 32a is divided into two partial illumination lights in the Y direction, and the distance between the optical paths of the two partial illumination lights is expanded in the Y direction on the exit side with respect to the incident side.
  • FIG. 17 is a diagram showing light beam cross sections B 1 to B 4 of each partial illumination light formed around the optical axis AX3. The light beam cross-section B 1 shown in FIG.
  • the light flux cross-sectional B 2 corresponds to the other part illumination light from the first optical path distance changing unit
  • the light beam cross-section B 3 corresponds to one of the partial illumination light from the second optical path distance changing section
  • the light beam cross-section B 4 corresponds to the other partial illumination light from the second optical path distance changing unit.
  • the illumination device IL3 includes an imaging unit, and the imaging unit includes an imaging lens 36 that is a common imaging element for the four partial illumination lights.
  • the imaging lens 36 converts the light source image for each of the four partial illumination lights to the same location on the optical axis AX3 of the common optical system (imaging lens 36 to blind imaging system 21), that is, the imaging surface 37 of the imaging lens 36.
  • Each partial illumination light from the light source image on the imaging surface 37 enters the fly-eye lens 17 via the input lens 38.
  • FIG. 18 is a diagram illustrating an irradiation area of the incident surface 17 a of the fly-eye lens 17.
  • Partial illumination light corresponding to the light beam cross-section B 1 represents illuminates the illuminated region R4, the light flux cross-sectional portion B illumination light 2 corresponding to illuminates the illumination area R5, a light flux partial illumination light corresponding to the cross-section B 3 is irradiated region R6 illuminating a portion illumination light corresponding to the light beam cross-section B 4 illuminates the illuminated region R6.
  • Each partial illumination light that illuminates the incident surface 17a is divided into wavefronts by corresponding lens elements among the plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG. 19, on the exit surface side of each lens element.
  • a light source image I ′′ in which a light source image for each partial illumination light is superimposed on each other is formed.
  • the input lens 38 and the fly-eye lens 17 are each of the lens elements of the fly-eye lens 17 in the irradiation regions R4 to R7.
  • a light source image I ′′ is cooperatively formed on the rear focal plane.
  • a secondary light source surface light source
  • the secondary light source emits the aperture of the aperture stop 18.
  • the illumination light that has passed through the part illuminates the illumination area of the mask M corresponding to the blind 20 substantially uniformly via the condenser lens 19, the blind 20, and the blind imaging system 21, as in the first embodiment.
  • the illumination condition of the illumination device IL3 is annular illumination.
  • a pupil plane on which the exit pupil of the projection unit based on the aperture stop 18 is formed is a conjugate or substantially conjugate plane with the aperture surface of the aperture stop 18. Conjugate or abbreviated There is a role surface.
  • the illumination light from each of the light sources 2a and 2b is divided into two partial illumination lights by the dividing unit, and each divided partial illumination light is optical axis AX. Since the light is introduced into the common optical system from different positions around the (optical axis AX3), the light amount loss of the illumination light from each of the light sources 2a and 2b is suppressed, and the illumination light irradiated to the mask M through the common optical system is suppressed. The amount of light can be increased efficiently.
  • a light source image I ′′ is formed by superimposing a light source image of each illumination light (partial illumination light) from the light sources 2a and 2b on the optical axis AX3 (optical axis AX) of the common optical system for the projection unit. Therefore, for example, according to the consumption of the light sources 2a and 2b, even if a difference in the amount of light is generated in the illumination light emitted from each of the light sources 2a and 2b, the locus of the center of gravity of the illumination light irradiated on the illumination area of the mask M is stabilized.
  • the numerical aperture of the illumination light for the fly-eye lens 17 can be set to each illumination light (each portion from the light sources 2a and 2b). Illumination light) can be made equal, and the entire illumination area of the mask M can be illuminated efficiently and uniformly.
  • each illumination light from the light sources 2a and 2b is divided into two partial illumination lights and introduced into the common optical system.
  • each illumination light is not divided into the common optical system. It can also be introduced.
  • the light beam cross section of the illumination light from the light source 2a and the light beam cross section of the illumination light from the light source 2b are enlarged or reduced at different magnifications without being divided, so that they have different sizes (diameters).
  • Two illumination lights having a ring-shaped beam cross section are obtained. Then, the two illumination lights are reflected by ring-shaped reflecting elements (introducing portions) having different sizes (diameters) arranged around the optical axis AX3, respectively, so that different positions around the optical axis AX.
  • each illumination light can be introduced into the common optical system.
  • a conical cone prism group (cone lens group) may be used instead of the roof-type prism groups 32a and 32b.
  • one illumination light can be introduce
  • each illumination light from the light sources 2a and 2b is divided into two partial illumination lights, but may be divided into three or more partial illumination lights.
  • each partial illumination light divided into three or more may be introduced into the common optical system from different positions around the optical axis AX3 around the optical axis AX3 (optical axis AX) of the common optical system.
  • the light source images I A ′ and I B ′ of the light source 2a and the light source images I C ′ and I C ′ of the light source 2b are converted into the optical axis AX3 of the common optical system.
  • each illumination light from light sources 2a and 2b is divided into three or more partial illumination lights, each light source of light sources 2a and 2b
  • the images do not necessarily have to be rotationally symmetrical.
  • the exposure apparatus provided with the projection unit PL has been described as an example.
  • the invention can also be applied.
  • the exposure apparatus that performs exposure using a mask on which a predetermined pattern (fixed pattern) such as a chrome pattern is formed as the mask M provided with the pattern has been described as an example.
  • DMD digital micromirror device
  • the present invention can also be applied to an exposure apparatus that performs exposure using a “variable pattern forming apparatus” using liquid crystal or the like as a mask.
  • FIG. 20 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied onto the vapor-deposited metal film (Ste S42).
  • the pattern formed on the mask is transferred to each shot area on the wafer using the exposure apparatus according to the present invention (step S44: exposure process), and the development of the wafer after the transfer, that is, the pattern is transferred.
  • the developed photoresist is developed (step S46: development step).
  • the wafer surface is processed such as etching (step S48: processing step).
  • the resist pattern is a photoresist layer (transfer pattern layer) in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus according to the present invention is formed, and the recess penetrates the photoresist layer. It is what.
  • the wafer surface is processed through this resist pattern.
  • the processing performed in step S48 includes at least one of etching of the wafer surface or film formation of a metal film, for example.
  • the exposure apparatus according to the present invention performs pattern transfer using the photoresist-coated wafer as a photosensitive substrate.
  • FIG. 21 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern forming process step S50
  • a color filter forming process step S52
  • a cell assembling process step S54
  • a module assembling process step S56
  • a predetermined pattern such as a circuit pattern and an electrode pattern is formed on a glass substrate coated with a photoresist as a plate using the exposure apparatus according to the present invention.
  • an exposure process for transferring the projected image of the pattern provided on the mask to the photoresist layer using the exposure apparatus according to the present invention, and development of the plate on which the projected image of the pattern is transferred that is, Development process of developing a photoresist layer on a glass substrate to form a photoresist layer having a shape corresponding to the pattern, and a processing process of processing the glass substrate through the developed photoresist layer (transfer pattern layer) And are included.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or three of R, G, and B are arranged.
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device or a liquid crystal device.
  • an exposure apparatus for a display device such as a plasma display or an organic EL display, or an image sensor (CCD or the like).
  • the present invention can also be widely applied to exposure apparatuses for manufacturing various devices such as micromachines, thin film magnetic heads, and DNA chips.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • this invention is not limited to a glass substrate, a semiconductor wafer, etc.
  • substrate (The board
  • the device manufacturing method generally transfers the pattern to the photosensitive substrate using the exposure apparatus according to the aspect of the present invention, and the pattern is A device including at least a part of the photosensitive substrate can be manufactured by processing the transferred photosensitive substrate based on the pattern.
  • processing the photosensitive substrate based on the transferred pattern includes etching the photosensitive substrate based on the transferred pattern, and printing the photosensitive substrate based on the transferred pattern (based on the transferred pattern). For example, a predetermined material such as conductive ink is applied).
  • the illumination apparatus is not limited to application to an exposure apparatus, and is generally applicable to various apparatuses using an illumination apparatus (light source apparatus), for example, image information (still image information and moving image information). Can be applied to projectors that perform enlarged projection (projection).
  • illumination apparatus light source apparatus
  • image information still image information and moving image information
  • projection projection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An illumination apparatus (IL) comprises a plurality of light source units (3a–5a, 3b–5b), which hold light sources (2a, 2b) and output illuminating light beams emitted by the light sources; a projection unit (16–21), which illuminates an illuminated body (mask (M)) with the illuminating light beams output by the aforementioned multiple light source units; guide units (9–12), which guide the aforementioned illuminating light beams, from different positions around the optical axis (AX3) or from on the optical axis (AX3) of a common optical system (13–21) that is common to the aforementioned illuminating light beams and that includes at least the aforementioned projection unit, to said common optical system; and imaging units (6a–7a, 6b–7b), which form one or more light source images from the aforementioned light sources for each of said light sources for the aforementioned projection unit, essentially centered on the optical axis of the aforementioned common optical system.

Description

照明装置、露光装置及びデバイス製造方法Illumination apparatus, exposure apparatus, and device manufacturing method
 本発明は、被照射体に照明光を照射する照明装置、露光装置及びデバイス製造方法に関するものである。 The present invention relates to an illumination apparatus, an exposure apparatus, and a device manufacturing method for irradiating an irradiation object with illumination light.
 従来、半導体素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをフォトリソグラフィ工程で製造するために露光装置が用いられている。このフォトリソグラフィの手法を用いた製造工程では、マスク上に形成された原画となるパターンを、露光光により照明し、フォトレジスト等の感光剤が塗布されたプレート(感光基板)上に転写している。 Conventionally, an exposure apparatus is used to manufacture devices such as a semiconductor element, a liquid crystal display element, and a thin film magnetic head in a photolithography process. In the manufacturing process using this photolithography technique, an original pattern formed on a mask is illuminated with exposure light and transferred onto a plate (photosensitive substrate) coated with a photosensitive agent such as a photoresist. Yes.
 近年、液晶表示素子等に形成するパターンの微細化が要求されており、これに伴ってフォトレジスト等の感光剤の露光感度が低感度化される傾向にある。このため、露光装置においては露光量の増大が望まれている。これに対して、複数の光源から発する照明光(露光光)を合成して被照射体に照射する照明装置が提案されている(例えば、特許文献1参照)。 In recent years, there has been a demand for miniaturization of patterns formed on liquid crystal display elements and the like, and accordingly, the exposure sensitivity of a photosensitive agent such as a photoresist tends to be lowered. For this reason, in the exposure apparatus, it is desired to increase the exposure amount. On the other hand, an illuminating device that synthesizes illumination light (exposure light) emitted from a plurality of light sources and irradiates the irradiated object has been proposed (for example, see Patent Document 1).
特開2001-326171号公報JP 2001-326171 A
 しかしながら、特許文献1記載の照明装置においては、2つの光源から発した照明光が共通の光学系に対して、この共通の光学系の光軸を挟んで対称的に導入されているため、例えば光源の消耗等に応じ、各光源が発する照明光に光量差が生じた場合、被照射体(特許文献1におけるマスク)に照射される照明光全体の光量重心の軌跡が変化(傾斜変化)し、露光装置におけるマスクのパターンの転写精度が低下するという問題があった。 However, in the illumination device described in Patent Document 1, illumination light emitted from two light sources is introduced symmetrically with respect to a common optical system across the optical axis of the common optical system. When there is a difference in the amount of illumination light emitted from each light source in accordance with the consumption of the light source, the locus of the center of gravity of the entire illumination light irradiated on the irradiated object (the mask in Patent Document 1) changes (inclination changes). There is a problem that the transfer accuracy of the mask pattern in the exposure apparatus is lowered.
 本発明の態様は、照明光の光量を増大させることができるとともに光量重心の軌跡を安定化することができる照明装置、露光装置及びデバイス製造方法を提供することを目的とする。 An object of an aspect of the present invention is to provide an illumination apparatus, an exposure apparatus, and a device manufacturing method capable of increasing the amount of illumination light and stabilizing the locus of the center of gravity of the amount of light.
 本発明の第1の態様に従えば、光源を保持し、該光源が発する照明光を出力する複数の光源部と、前記複数の光源部が出力した各照明光を被照射体に照射する投射部と、少なくとも前記投射部を含み前記各照明光に共通な共通光学系に対して、該共通光学系の光軸周りの異なる位置または光軸上から前記各照明光を導入する導入部と、前記投射部に対して実質的に前記共通光学系の光軸を中心に、前記光源の光源像を該光源ごとに一以上形成する結像部とを備えた照明装置が提供される。 According to the first aspect of the present invention, a plurality of light source units that hold a light source and output illumination light emitted from the light source, and a projection that irradiates an irradiated object with each illumination light output from the plurality of light source units. And an introduction unit for introducing each illumination light from a different position around the optical axis of the common optical system or on the optical axis with respect to a common optical system including at least the projection unit and common to the illumination light, An illumination device is provided that includes an imaging unit that forms one or more light source images of the light source for each light source, with the projection unit being substantially centered on the optical axis of the common optical system.
 また、本発明の第2の態様に従えば、パターンが形成されたマスクを保持するマスク保持部と、感光基板を保持する基板保持部と、前記マスクを介して前記感光基板に照明光を照射する本発明の第1の態様にかかる照明装置とを備えた露光装置が提供される。 According to the second aspect of the present invention, a mask holding unit that holds a mask on which a pattern is formed, a substrate holding unit that holds a photosensitive substrate, and irradiation of illumination light to the photosensitive substrate through the mask. There is provided an exposure apparatus including the illumination apparatus according to the first aspect of the present invention.
 また、本発明の第3の態様に従えば、本発明の第2の態様にかかる露光装置を用いて、前記パターンを前記感光基板に転写することと、前記パターンが転写された前記感光基板を前記パターンに基づいて加工することとを含むデバイス製造方法が提供される。 According to the third aspect of the present invention, the exposure apparatus according to the second aspect of the present invention is used to transfer the pattern onto the photosensitive substrate, and to transfer the photosensitive substrate onto which the pattern has been transferred. There is provided a device manufacturing method including processing based on the pattern.
 本発明の態様によれば、照明光の光量を増大させることができるとともに光量重心の軌跡を安定化することができる。 According to the aspect of the present invention, the amount of illumination light can be increased and the locus of the center of gravity of the amount of light can be stabilized.
第1の実施形態に係る露光装置の構成を示す図である。It is a figure which shows the structure of the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る照明装置の構成を示す図である。It is a figure which shows the structure of the illuminating device which concerns on 1st Embodiment. 第1の実施形態に係る照明装置の一部の構成を示す図である。It is a figure which shows the structure of a part of illuminating device which concerns on 1st Embodiment. シャッタの位置に形成される光源像を示す図である。It is a figure which shows the light source image formed in the position of a shutter. 2つ目レンズの構成を示す図である。It is a figure which shows the structure of the 2nd lens. 結像部によって形成される光源像の配置を示す図である。It is a figure which shows arrangement | positioning of the light source image formed by the image formation part. 像間隔変更部を介して形成される光源像の配置を示す図である。It is a figure which shows arrangement | positioning of the light source image formed via an image space | interval change part. フライアイレンズの入射面の照射領域を示す図である。It is a figure which shows the irradiation area | region of the entrance plane of a fly eye lens. フライアイレンズの射出面側に形成される光源像を示す図である。It is a figure which shows the light source image formed in the emission surface side of a fly eye lens. 第2の実施形態に係る照明装置の構成を示す図である。It is a figure which shows the structure of the illuminating device which concerns on 2nd Embodiment. 結像部によって形成される光源像の配置を示す図である。It is a figure which shows arrangement | positioning of the light source image formed by the image formation part. フライアイレンズの入射面の照射領域を示す図である。It is a figure which shows the irradiation area | region of the entrance plane of a fly eye lens. フライアイレンズの射出面に形成される光源像を示す図である。It is a figure which shows the light source image formed in the output surface of a fly eye lens. 第3の実施形態に係る照明装置の構成を示す図である。It is a figure which shows the structure of the illuminating device which concerns on 3rd Embodiment. 第3の実施形態に係る照明装置の一部の構成を示す図である。It is a figure which shows the structure of a part of illuminating device which concerns on 3rd Embodiment. リレーレンズを介した照明光の光束断面を示す図である。It is a figure which shows the light beam cross section of the illumination light through a relay lens. 分割部によって分割された部分照明光の光束断面を示す図である。It is a figure which shows the light beam cross section of the partial illumination light divided | segmented by the division part. フライアイレンズの入射面の照射領域を示す図である。It is a figure which shows the irradiation area | region of the entrance plane of a fly eye lens. フライアイレンズの射出面側に形成される光源像を示す図である。It is a figure which shows the light source image formed in the emission surface side of a fly eye lens. 半導体デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a semiconductor device. 液晶デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a liquid crystal device.
 以下、図面を参照して、本発明の実施形態に係る照明装置、露光装置及びデバイス製造方法について説明する。図1は、本発明の第1の実施形態に係る照明装置を備えた露光装置の構成を示す図である。本実施形態においては、マスクMのパターンの像を、感光基板Pをステップ移動させつつ感光基板P上の複数のショット領域に順次転写するステップ・アンド・リピート方式の露光装置を例に挙げて説明する。 Hereinafter, an illumination apparatus, an exposure apparatus, and a device manufacturing method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing the arrangement of an exposure apparatus provided with an illumination apparatus according to the first embodiment of the present invention. In this embodiment, a step-and-repeat type exposure apparatus that sequentially transfers an image of the pattern of the mask M to a plurality of shot areas on the photosensitive substrate P while moving the photosensitive substrate P as an example will be described. To do.
 また、以下の説明においては、図1中に示したXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸が感光基板Pに対して平行となるよう設定され、Z軸が感光基板Pに対して直交する方向に設定されている。図中のXYZ直交座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。 In the following description, the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ rectangular coordinate system. The XYZ orthogonal coordinate system is set so that the X axis and the Y axis are parallel to the photosensitive substrate P, and the Z axis is set in a direction orthogonal to the photosensitive substrate P. In the XYZ orthogonal coordinate system in the figure, the XY plane is actually set to a plane parallel to the horizontal plane, and the Z axis is set to the vertically upward direction.
 図1に示す露光装置は、被照射体としてのマスクM上の照明領域内を均一に照射し、マスクMを介して感光基板Pに照明光を照射する照明装置ILと、パターンが形成されたマスクMを保持するマスク保持部(図示せず)と、マスクM上のパターンの投影像を感光基板P上のショット領域に形成する投影部(投影光学系)PLと、ベースB上に載置される基板ステージPSと、基板ステージPS上に載置される基板テーブルPTと、基板テーブルPT上に載置され、感光基板Pを保持する基板保持部PHとを備えている。 The exposure apparatus shown in FIG. 1 has a pattern formed with an illumination apparatus IL that uniformly irradiates an illumination area on a mask M as an irradiated body and irradiates the photosensitive substrate P with illumination light through the mask M. A mask holding unit (not shown) that holds the mask M, a projection unit (projection optical system) PL that forms a projection image of a pattern on the mask M in a shot area on the photosensitive substrate P, and a base B are mounted. A substrate stage PS, a substrate table PT placed on the substrate stage PS, and a substrate holding part PH placed on the substrate table PT and holding the photosensitive substrate P.
 図2は照明装置ILの構成を示す図、図3は照明装置ILの折り返しミラー4bから反射素子9~12までの構成を図2に示す矢印Aの方向から見た図である。照明装置ILは、超高圧水銀ランプ等の放電ランプからなる2つの光源2a,2bのそれぞれを保持し、光源2a,2bが発する照明光を出力する2つの光源部(第1の光源部及び第2の光源部)を備えている。第1の光源部は、光源2aが発する照明光を集光する楕円鏡3a、楕円鏡3aにより反射された照明光を折り返す折り返しミラー4a、楕円鏡3aにより反射された照明光の集光位置に配置されたシャッタ5aを備えて構成されている。シャッタ5aの配置位置には、図4に示すように、第1の光源部の光軸AX1を中心として光源像Iが形成される。 FIG. 2 is a diagram showing the configuration of the illuminating device IL, and FIG. 3 is a diagram of the configuration from the folding mirror 4b of the illuminating device IL to the reflecting elements 9 to 12 as viewed from the direction of the arrow A shown in FIG. The illuminating device IL holds two light sources 2a and 2b each composed of a discharge lamp such as an ultra-high pressure mercury lamp and outputs two light source units (first light source unit and first light source unit) that output illumination light emitted from the light sources 2a and 2b. 2 light source sections). The first light source unit includes an elliptical mirror 3a that collects the illumination light emitted from the light source 2a, a folding mirror 4a that folds the illumination light reflected by the elliptical mirror 3a, and a position at which the illumination light reflected by the elliptical mirror 3a is collected. The shutter 5a is provided and arranged. As shown in FIG. 4, a light source image Ia is formed around the optical axis AX1 of the first light source unit at the arrangement position of the shutter 5a.
 また、照明装置ILは、光源2aに対して設けられた第1の結像部を備えている。第1の結像部は、リレーレンズ6a及び2つ目レンズ7aを備えており、後述する投射部(インプットレンズ16~ブラインド結像系21)に対して実質的に共通光学系の光軸AX3を中心に、光源2aの光源像を2つ形成する。ここで、共通光学系とは、後述の投射部を含み、第1の光源部及び第2の光源部がそれぞれ出力する各照明光に共通に設けられた光学系(リレーレンズ群13~ブラインド結像系21)である。また、第1の光源部の光軸AX1と共通光学系の光軸AX3とは、後述の反射素子9,10を介して互いに偏向された光軸であって、光学的には連続した一つの光軸(以下、光軸AXと適宜称する。)とみなすことができる。したがって、実質的に光軸AX3を中心に複数(本実施形態では2つ)の光源像を形成するとは、反射素子(ここでは反射素子9,10)による光軸の偏向を考慮した上で、光軸AX上の所定点を中心として複数の光源像を形成することを意味するものである。 Further, the illumination device IL includes a first imaging unit provided for the light source 2a. The first imaging unit includes a relay lens 6a and a second lens 7a, and is substantially the optical axis AX3 of the common optical system with respect to a projection unit (input lens 16 to blind imaging system 21) described later. Two light source images of the light source 2a are formed around the center. Here, the common optical system includes an after-mentioned projection unit, and is an optical system (relay lens group 13 to blind connection) provided in common for each illumination light output from each of the first light source unit and the second light source unit. Image system 21). The optical axis AX1 of the first light source unit and the optical axis AX3 of the common optical system are optical axes that are deflected to each other via reflecting elements 9 and 10 to be described later, and are optically continuous one. It can be regarded as an optical axis (hereinafter, appropriately referred to as an optical axis AX). Therefore, to form a plurality of (two in the present embodiment) light source images substantially centering on the optical axis AX3, in consideration of the deflection of the optical axis by the reflective elements (here, the reflective elements 9 and 10), This means that a plurality of light source images are formed around a predetermined point on the optical axis AX.
 図5は、第1の光源部に対して設けられた分割部としての2つ目レンズ7aの構成を示す図である。図5に示すように、2つ目レンズ7aは、第1結像素子8a及び第2結像素子8bにより構成されており、第1結像素子8a及び第2結像素子8bは、光軸AX1を中心とする対称な位置にZ方向に並べて配置されている。2つ目レンズ7aは、第1の光源部が出力した照明光を、第1結像素子8a及び第2結像素子8bのそれぞれに入射させることにより、Z方向に2つの部分照明光に分割する。そして、2つ目レンズ7aは、分割した部分照明光ごとに個別に設けられた第1及び第2結像素子8a,8bによって光源像I,I(図6参照)を、実質的に光軸AX3と交差する第1の方向であるX方向に沿って、光軸AX3に対して対称な位置に形成する。ここで、実質的に光軸AX3と交差する第1の方向とは、上述のように反射素子9,10による光軸の偏向を考慮した上で、その偏向前後で光学的に同一とみなせる方向を含むものである。例えば、光軸AX3に対するX方向と光軸AX1に対するZ方向とは、ともに光軸AX3に対する第1の方向、すなわち光軸AXに対する第1の方向とみなすことができる。 FIG. 5 is a diagram illustrating a configuration of a second lens 7a as a dividing unit provided for the first light source unit. As shown in FIG. 5, the second lens 7a includes a first imaging element 8a and a second imaging element 8b, and the first imaging element 8a and the second imaging element 8b have an optical axis. They are arranged side by side in the Z direction at symmetrical positions around AX1. The second lens 7a divides the illumination light output from the first light source unit into two partial illumination lights in the Z direction by making the illumination light enter each of the first imaging element 8a and the second imaging element 8b. To do. The second lens 7a substantially converts the light source images I A and I B (see FIG. 6) by the first and second imaging elements 8a and 8b individually provided for each of the divided partial illumination lights. Along the X direction that is the first direction intersecting with the optical axis AX3, the optical axis AX3 is formed at a symmetrical position. Here, the first direction that substantially intersects with the optical axis AX3 is a direction that can be regarded as optically the same before and after the deflection in consideration of the deflection of the optical axis by the reflecting elements 9 and 10 as described above. Is included. For example, both the X direction with respect to the optical axis AX3 and the Z direction with respect to the optical axis AX1 can be regarded as a first direction with respect to the optical axis AX3, that is, a first direction with respect to the optical axis AX.
 一方、第2の光源部は、楕円鏡3b、折り返しミラー4b、シャッタ5bを備えて構成されている。また、照明装置ILは、光源2bに対して設けられた第2の結像部を備えている。第2の結像部は、リレーレンズ6b、及び第2の光源部に対して設けられた分割部としての2つ目レンズ7bを備えている。2つ目レンズ7bは、2つ目レンズ7aと同様に、分割する部分照明光ごとに個別に設けられる結像素子としての第1結像素子8c及び第2結像素子8dにより構成されており、第1結像素子8c及び第2結像素子8dは、第2の光源部の光軸AX2を中心とする対称な位置にY方向に並べて配置されている。2つ目レンズ7bは、第2の光源部が出力した照明光を、第1結像素子8c及び第2結像素子8dのそれぞれに入射させることにより、Y方向に2つの部分照明光に分割する。光源2bに対して設けられた第2の結像部は、第2の光源部に対応する2つの部分照明光ごとの光源像I,I(図6参照)を、実質的に光軸AX3回りに第1の方向と直交する第2の方向であるY方向に沿って、光軸AX3に対して対称な位置に形成する。ここで、第2の光源部の光軸AX2と共通光学系の光軸AX3とは、上述の光軸AX1と光軸AX3との関係と同様に、後述の反射素子11,12を介して互いに偏向された光軸であって、光学的には連続した一つの光軸(以下、光軸AXと適宜称する。)とみなすことができる。 On the other hand, the second light source unit includes an elliptical mirror 3b, a folding mirror 4b, and a shutter 5b. In addition, the illumination device IL includes a second imaging unit provided for the light source 2b. The second image forming unit includes a relay lens 6b and a second lens 7b as a dividing unit provided for the second light source unit. Similarly to the second lens 7a, the second lens 7b is composed of a first imaging element 8c and a second imaging element 8d as imaging elements provided individually for each partial illumination light to be divided. The first imaging element 8c and the second imaging element 8d are arranged side by side in the Y direction at symmetrical positions around the optical axis AX2 of the second light source unit. The second lens 7b divides the illumination light output from the second light source unit into two partial illumination lights in the Y direction by causing the illumination light to enter each of the first imaging element 8c and the second imaging element 8d. To do. The second imaging unit provided for the light source 2b substantially converts the light source images I C and I D (see FIG. 6) for each of the two partial illumination lights corresponding to the second light source unit to substantially the optical axis. It is formed at a position symmetrical to the optical axis AX3 along the Y direction which is a second direction orthogonal to the first direction around AX3. Here, the optical axis AX2 of the second light source unit and the optical axis AX3 of the common optical system are mutually connected via reflective elements 11 and 12, which will be described later, similarly to the relationship between the optical axis AX1 and the optical axis AX3 described above. The deflected optical axis can be regarded as one optical axis that is optically continuous (hereinafter, appropriately referred to as an optical axis AX).
 照明装置ILは、共通光学系に対して、共通光学系の光軸AX3周りの異なる位置から、第1の光源部及び第2の光源部が出力した各照明光を導入する導入部を備えている。導入部は、4つの反射素子9~12を有しており、2つ目レンズ7a,7bが分割した各部分照明光を、反射素子9~12によって反射させて共通光学系へ導入する。反射素子9~12は、図3に示すように、光軸AX3周りに配置されており、光軸AX3周りに反射面が設けられている。第1結像素子8aからの部分照明光は反射素子9により反射され、第2結像素子8bからの部分照明光は反射素子10により反射され、第1結像素子8cからの部分照明光は反射素子11により反射され、第2結像素子8dからの部分照明光は反射素子12により反射される。図6は、実質的に光軸AX3周りに形成される光源像I~Iの配置を示す図である。図6に示す光源像Iは第1結像素子8aからの部分照明光により形成され、光源像Iは第2結像素子8bからの部分照明光により形成され、光源像Iは第1結像素子8cからの部分照明光により形成され、光源像Iは第2結像素子8dからの部分照明光により形成される。このようにして、第1及び第2の結像部は、反射素子9~12を介して各光源像I~Iを、光軸AX3を中心とする回転対称な位置に形成する。 The illumination device IL includes an introduction unit that introduces each illumination light output from the first light source unit and the second light source unit from different positions around the optical axis AX3 of the common optical system with respect to the common optical system. Yes. The introduction unit includes four reflection elements 9 to 12, and each partial illumination light divided by the second lenses 7a and 7b is reflected by the reflection elements 9 to 12 and introduced into the common optical system. As shown in FIG. 3, the reflecting elements 9 to 12 are arranged around the optical axis AX3, and a reflecting surface is provided around the optical axis AX3. The partial illumination light from the first imaging element 8a is reflected by the reflection element 9, the partial illumination light from the second imaging element 8b is reflected by the reflection element 10, and the partial illumination light from the first imaging element 8c is The partial illumination light reflected from the reflecting element 11 and reflected from the second imaging element 8 d is reflected by the reflecting element 12. FIG. 6 is a diagram showing the arrangement of the light source images I A to I D formed substantially around the optical axis AX3. Light source image I A shown in FIG. 6 are formed by the partial illumination light from the first imaging element 8a, the light source image I B are formed by the partial illumination light from the second imaging element 8b, the light source image I C is the The light source image ID is formed by partial illumination light from the second image formation element 8d. In this way, the first and second imaging units form the light source images I A to I D at the rotationally symmetric positions around the optical axis AX3 via the reflecting elements 9 to 12.
 また、照明装置ILは、部分照明光ごとの光源像I~Iの間隔を変更する像間隔変更部を備えている。像間隔変更部は、リレーレンズ群13及びコーンプリズム群14を備えている。コーンプリズム群14は、円錐または四角錐形状に形成された透過部を有するコーンプリズム14aと、円錐または四角錐形状に形成された透過部としての凹部を有するコーンプリズム14bとが、光軸AX3に沿って間隔を隔てて配置されており、入射する各部分照明光の間隔を変更する機能を有している。リレーレンズ群13及びコーンプリズム群14は、光源像I~Iからの部分照明光をもとに、光源像I~Iの共役像である光源像I’~I’(図7参照)を形成するとともに、その各光源像I’~I’の間隔を各光源像I~Iの間隔に比して縮小させる。この結果、リレーレンズ群13及びコーンプリズム群14による光源像I’~I’の結像面15には、図7に示すように、光源像I’,I’が光軸AX3と交差するX方向に沿って形成され、光源像I’,I’が光軸AX3と交差するY方向に沿って形成され、各光源像I’~I’が光軸AX3を中心とする回転対称な位置に形成される。 The illumination device IL includes an image interval changing unit that changes the intervals of the light source images I A to I D for each partial illumination light. The image interval changing unit includes a relay lens group 13 and a cone prism group 14. The cone prism group 14 includes a cone prism 14a having a transmission part formed in a cone or a quadrangular pyramid shape and a cone prism 14b having a concave part as a transmission part formed in a cone or a quadrangular pyramid shape on the optical axis AX3. It arrange | positions at intervals along it, and has the function to change the space | interval of each incident partial illumination light. Relay lens group 13 and the cone prism group 14, on the basis of partial illumination light from the light source images I A ~ I D, the light source images I A ~ I D source image I A '~ I D' is a conjugate image of the ( 7), and the interval between the light source images I A ′ to I D ′ is reduced as compared with the interval between the light source images I A to I D. As a result, as shown in FIG. 7, the light source images I A ′ and I B ′ have the optical axis AX3 on the imaging surface 15 of the light source images I A ′ to I D ′ by the relay lens group 13 and the cone prism group 14. The light source images I C ′ and I D ′ are formed along the Y direction intersecting with the optical axis AX3, and the light source images I A ′ to I D ′ have the optical axis AX3. It is formed at a rotationally symmetric position around the center.
 また、照明装置ILは、第1の光源部及び第2の光源部が出力し、第1及び第2の結像部、導入部及び像間隔変後部を介した各照明光(各部分照明光)をマスクMに照射する投射部を備えている。投射部は、インプットレンズ16、フライアイレンズ17、開口絞り18、コンデンサレンズ19、ブラインド20、及びブラインド結像系21を備えて構成されている。 In addition, the illumination device IL outputs the illumination light (each partial illumination light) output from the first light source unit and the second light source unit and passed through the first and second imaging units, the introduction unit, and the image interval changing unit. ) To the mask M is provided. The projection unit includes an input lens 16, a fly-eye lens 17, an aperture stop 18, a condenser lens 19, a blind 20, and a blind imaging system 21.
 光源像I’,I’からの各部分照明光は、インプットレンズ16を介して、図8に示すように、フライアイレンズ17の入射面17a上の、Y方向に長径を有する略楕円形状の照射領域R1を照明する。同様に、光源像I’,I’からの各部分照明光は、X方向に長径を有する略楕円形状の照射領域R2を照明する。入射面17aを照明した各部分照明光は、フライアイレンズ17を構成する複数のレンズエレメントにより波面分割され、図9に示すように、各レンズエレメントの射出面側のそれぞれに4つの光源像I”~I”を形成する。換言すると、インプットレンズ16及びフライアイレンズ17は、照射領域R1,R2内におけるフライアイレンズ17の各レンズエレメントの射出面側に、光源像I’~I’の共役像である4つの光源像I”~I”を協働して形成する。その際、インプットレンズ16及びフライアイレンズ17は、結像面15の共役面としての、各レンズエレメントの射出面側の後側焦点面に4つの光源像I”~I”を形成する。これによって、フライアイレンズ17の射出面17b側には、レンズエレメントごとに光源像I”~I”が配置された面光源としての二次光源が形成される。 As shown in FIG. 8, each partial illumination light from the light source images I A ′ and I B ′ is substantially elliptical having a major axis in the Y direction on the incident surface 17 a of the fly-eye lens 17 via the input lens 16. The shaped irradiation region R1 is illuminated. Similarly, each partial illumination light from the light source images I C ′ and I D ′ illuminates a substantially elliptical irradiation region R2 having a major axis in the X direction. Each partial illumination light that illuminates the incident surface 17a is divided into wavefronts by a plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG. 9, four light source images I are respectively provided on the exit surface side of each lens element. A "to ID " are formed. In other words, the input lens 16 and the fly eye lens 17 are four conjugate images of the light source images I A ′ to I D ′ on the exit surface side of each lens element of the fly eye lens 17 in the irradiation regions R1 and R2. The light source images I A ″ to I D ″ are formed in cooperation. At that time, the input lens 16 and the fly-eye lens 17 form four light source images I A ″ to I D ″ on the rear focal plane on the exit surface side of each lens element as a conjugate plane of the imaging plane 15. . As a result, a secondary light source is formed on the exit surface 17b side of the fly-eye lens 17 as a surface light source in which the light source images I A ″ to I D ″ are arranged for each lens element.
 フライアイレンズ17の後側焦点面上もしくはその近傍には開口絞り18が設けられており、開口絞り18の開口径(絞り径)は、投射部から照射してマスクMを照明する照明光の開口数(NA)、即ち投影部PLに対する照明σ値(投影部PLの入射瞳径に対する投射部の射出瞳径の比)を決定している。また、結像面15は、開口絞り18の絞り面と共役もしくは略共役な面にされるとともに、開口絞り18に基づく投射部の射出瞳が形成される瞳面と共役もしくは略共役な面とされている。 An aperture stop 18 is provided on or near the rear focal plane of the fly-eye lens 17, and the aperture diameter (aperture diameter) of the aperture stop 18 is the illumination light that illuminates the mask M by irradiating from the projection unit. The numerical aperture (NA), that is, the illumination σ value for the projection part PL (ratio of the exit pupil diameter of the projection part to the entrance pupil diameter of the projection part PL) is determined. In addition, the imaging surface 15 is conjugated or substantially conjugated to the aperture surface of the aperture stop 18, and is conjugated or substantially conjugated to the pupil plane on which the exit pupil of the projection unit based on the aperture stop 18 is formed. Has been.
 開口絞り18の開口部を通過した照明光は、コンデンサレンズ19、ブラインド20、ブラインド結像系21を介して、ブラインド20に対応するマスクMの照明領域を略均一に照明する。マスクMの照明領域からの照明光は、図1に示す投影部PLに入射し、投影部PLは、マスクMのパターンの像を感光基板P上の露光領域(ショット領域)に投影する。基板ステージPSは、X方向、Y方向、X軸及びY軸に対する回転方向及びZ方向に移動可能に構成されており、感光基板Pの位置の調整及び感光基板Pのステップ移動を行う。基板ステージPSをステップ移動させることにより感光基板Pをステップ移動させて、照明装置ILにより投影部PLを介して感光基板Pに照明光を照射することにより、マスクMに形成されたパターンの投影像を感光基板P上の各ショット領域に順次転写する。 The illumination light that has passed through the aperture of the aperture stop 18 illuminates the illumination area of the mask M corresponding to the blind 20 substantially uniformly via the condenser lens 19, the blind 20, and the blind imaging system 21. Illumination light from the illumination area of the mask M enters the projection unit PL shown in FIG. 1, and the projection unit PL projects an image of the pattern of the mask M onto an exposure area (shot area) on the photosensitive substrate P. The substrate stage PS is configured to be movable in the X direction, the Y direction, the rotation direction with respect to the X axis and the Y axis, and the Z direction, and performs adjustment of the position of the photosensitive substrate P and step movement of the photosensitive substrate P. By projecting the substrate stage PS, the photosensitive substrate P is moved stepwise, and the illumination device IL irradiates the photosensitive substrate P with illumination light through the projection unit PL, thereby projecting the pattern formed on the mask M. Are sequentially transferred to each shot area on the photosensitive substrate P.
 第1の実施形態に係る照明装置及び露光装置によれば、各光源2a,2bからの照明光を分割部によりそれぞれ2つの部分照明光に分割し、分割された各部分照明光を光軸AX(光軸AX3)周りの異なる位置から共通光学系に導入しているため、各光源2a,2bからの照明光の光量ロスを抑制し、共通光学系を介してマスクMに照射する照明光の光量を効率的に増大させることができる。 According to the illumination apparatus and the exposure apparatus according to the first embodiment, the illumination light from each of the light sources 2a and 2b is divided into two partial illumination lights by the dividing unit, and each divided partial illumination light is optical axis AX. Since the light is introduced into the common optical system from different positions around the (optical axis AX3), the light amount loss of the illumination light from each of the light sources 2a and 2b is suppressed, and the illumination light irradiated to the mask M through the common optical system is suppressed. The amount of light can be increased efficiently.
 また、投射部に対して共通光学系の光軸AX3(光軸AX)を中心に、光源2aの2つの光源像I’,I’を形成するとともに、光源2bの2つの光源像I’,I’を形成しているため、例えば光源2a,2bの消耗等に応じ、各光源2a,2bが発する照明光に光量差が生じても、マスクMの照明領域に照射する照明光の光量重心の軌跡を変化させることがなく、その照明光の光量重心の軌跡を安定化させることができる。 Further, two light source images I A ′ and I B ′ of the light source 2a are formed around the optical axis AX3 (optical axis AX) of the common optical system with respect to the projection unit, and two light source images I of the light source 2b are formed. Since C ′ and ID ′ are formed, for example, illumination that irradiates the illumination area of the mask M even if there is a difference in the amount of light in the illumination light emitted from each of the light sources 2a and 2b due to the consumption of the light sources 2a and 2b. It is possible to stabilize the locus of the center of gravity of the illumination light without changing the locus of the center of gravity of the light.
 また、光源2a,2bの各光源像I’~I’を投射部に対して結像面15に形成しているため、つまり各光源2a,2bの光源像I’~I’を投射部に対して同一面に形成しているため、フライアイレンズ17に対する照明光の開口数を光源2a,2bからの各照明光(各部分照明光)について等しくすることができ、マスクMの照明領域全体を効率的かつ均一に照明することができる。 Further, since the light source images I A ′ to I D ′ of the light sources 2 a and 2 b are formed on the imaging surface 15 with respect to the projection unit, that is, the light source images I A ′ to I D ′ of the light sources 2 a and 2 b. Are formed on the same surface with respect to the projection unit, the numerical aperture of the illumination light with respect to the fly-eye lens 17 can be made equal for each illumination light (each partial illumination light) from the light sources 2a and 2b, and the mask M The entire illumination area can be illuminated efficiently and uniformly.
 ここで、例えば光源2a,2bの光源像を投射部に対して光軸AX方向の異なる面上に形成した場合、フライアイレンズ17に対する照明光の開口数を光源2a,2bからの各照明光(各部分照明光)について等しくすることができない。この場合、光源2aからの照明光と光源2bからの照明光との間で、ブラインド20の配置面上における照明領域が、フライアイレンズ17に対する開口数に応じて異なることとなる。具体的には、ブラインド20の中央部(光源2a,2bからの各照明光に共通な開口数に対応する領域)は、光源2a及び2bからの両方の照明光によって照明され、その周辺部(光源2a,2bからの各照明光の開口数の差分に対応する領域)は、光源2a又は2bからの一方の照明光のみによって照明される。したがって、光源2a,2bの各光源像を投射部に対して同一面に形成しなければ、マスクMの照明領域全体を均一に照明することができなくなる。もしくは、一方の光源からの照明光のみによって照明される領域を除いて限定された均一照明領域のみをマスクMの照明領域として利用することとなる。この後者の場合には、一方の光源からの照明光を無駄にロスすることとなる。また、実用的には、フライアイレンズ17の光学条件を光源2a,2bからの各照明光に対して両立させることができず、一方の光源からの照明光の一部をフライアイレンズ17の各レンズエレメント内の側壁によって遮光することとなり、その遮光分の照明光を無駄にロスすることとなる場合がある。これに対して、第1の実施形態に係る照明装置及び露光装置は、上述のように、マスクMの照明領域全体を、無駄な光量ロスを生じさせることなく効率的かつ均一に照明することができるという効果を奏することができる。 Here, for example, when the light source images of the light sources 2a and 2b are formed on different surfaces in the optical axis AX direction with respect to the projection unit, the numerical aperture of the illumination light for the fly-eye lens 17 is set to the illumination light from the light sources 2a and 2b. (Each partial illumination light) cannot be made equal. In this case, between the illumination light from the light source 2 a and the illumination light from the light source 2 b, the illumination area on the arrangement surface of the blind 20 differs according to the numerical aperture for the fly-eye lens 17. Specifically, the central portion of the blind 20 (the region corresponding to the numerical aperture common to each illumination light from the light sources 2a and 2b) is illuminated by both illumination lights from the light sources 2a and 2b, and its peripheral portion ( The region corresponding to the difference in the numerical aperture of each illumination light from the light sources 2a and 2b) is illuminated only by one illumination light from the light sources 2a or 2b. Therefore, if the light source images of the light sources 2a and 2b are not formed on the same plane with respect to the projection unit, the entire illumination area of the mask M cannot be illuminated uniformly. Alternatively, only the uniform illumination area limited except for the area illuminated only by the illumination light from one light source is used as the illumination area of the mask M. In the latter case, illumination light from one light source is lost wastefully. Further, practically, the optical conditions of the fly-eye lens 17 cannot be made compatible with each illumination light from the light sources 2 a and 2 b, and a part of the illumination light from one light source is used for the fly-eye lens 17. The light is blocked by the side wall in each lens element, and there is a case where illumination light corresponding to the light shielding is lost. On the other hand, as described above, the illumination apparatus and the exposure apparatus according to the first embodiment can efficiently and uniformly illuminate the entire illumination area of the mask M without causing unnecessary light loss. The effect that it is possible can be produced.
 次に、本発明の第2の実施形態に係る照明装置及び露光装置について説明する。なお、第2の実施形態に係る露光装置は、図1に示す露光装置を構成する照明装置ILに代えて照明装置IL2(図10参照)を備えて構成されたものであるため、第2の実施形態の説明においては、第1の実施形態に係る露光装置の構成と同一の構成には同一符号を付して、その詳細な説明は省略する。図10は、第2の実施形態に係る照明装置IL2の構成を示す図である。図10に示すように、照明装置IL2は、図2に示す照明装置ILからコーンプリズム群14を取り除き、第3の光源部に対応する光学系を追加したものである。なお、図10においては、照明装置ILと実質的に共通のコンデンサレンズ19~ブラインド結像系21の図示を省略している。なお、コンデンサレンズ19~ブラインド結像系21の各部は、後述する照明装置IL2の構成に応じて適宜最適化され得るものである。 Next, an illumination apparatus and an exposure apparatus according to the second embodiment of the present invention will be described. Note that the exposure apparatus according to the second embodiment is configured to include the illumination apparatus IL2 (see FIG. 10) instead of the illumination apparatus IL configuring the exposure apparatus shown in FIG. In the description of the embodiment, the same components as those of the exposure apparatus according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 10 is a diagram illustrating a configuration of the illumination device IL2 according to the second embodiment. As shown in FIG. 10, the illumination device IL2 is obtained by removing the cone prism group 14 from the illumination device IL shown in FIG. 2 and adding an optical system corresponding to the third light source unit. In FIG. 10, illustration of the condenser lens 19 to the blind imaging system 21 substantially common to the illumination device IL is omitted. Each part of the condenser lens 19 to the blind imaging system 21 can be optimized as appropriate according to the configuration of the illumination device IL2 described later.
 照明装置IL2は、第3の光源部を備えており、第3の光源部は、光源22、楕円鏡23及びシャッタ25を備えて構成されている。また、照明装置IL2は、光源22の光源像を形成する第3の結像部としてのリレー光学系26を備えている。第3の光源部及びリレー光学系26は、共通光学系(リレーレンズ群13~ブラインド結像系21)と共軸に配置され、リレー光学系26は、光源像I,I間における光軸AX3(光軸AX)上に光源22の1つの光源像を形成する。このため、第3の光源部から出力され、リレー光学系26を介した照明光は、反射素子9と10の間及び反射素子11と12の間にある光軸AX3上を通過する。換言すると、導入部としての反射素子9~12は、光源2a,2bからの4つの部分照明光を光軸AX3周りの異なる位置から共通光学系に導入するとともに、光源22からの照明光を光軸AX3上から共通光学系に導入する。そして、リレーレンズ群13は、図11に示すように、結像面15上において、光軸AX3を中心とした異なる位置に光源2a,2b,22の各光源像I’~I’を形成する。ここで、光源22の光源像I’は、光軸AX3上に形成される。 The illumination device IL2 includes a third light source unit, and the third light source unit includes a light source 22, an elliptical mirror 23, and a shutter 25. Further, the illumination device IL2 includes a relay optical system 26 as a third imaging unit that forms a light source image of the light source 22. The third light source unit and the relay optical system 26 are arranged on the same axis as the common optical system (the relay lens group 13 to the blind imaging system 21), and the relay optical system 26 transmits light between the light source images I C and I D. One light source image of the light source 22 is formed on the axis AX3 (optical axis AX). For this reason, the illumination light output from the third light source unit and passed through the relay optical system 26 passes on the optical axis AX3 between the reflective elements 9 and 10 and between the reflective elements 11 and 12. In other words, the reflecting elements 9 to 12 as introduction parts introduce the four partial illumination lights from the light sources 2a and 2b into the common optical system from different positions around the optical axis AX3, and also emit the illumination light from the light source 22 as light. Introduced into the common optical system from the axis AX3. Then, as shown in FIG. 11, the relay lens group 13 places the light source images I A ′ to I E ′ of the light sources 2a, 2b, and 22 at different positions around the optical axis AX3 on the imaging plane 15. Form. Here, the light source image I E ′ of the light source 22 is formed on the optical axis AX3.
 図12は、フライアイレンズ17の入射面17aの照射領域を示す図である。光源像I’,I’からの各部分照明光は、Y方向に長径を有する略楕円形状の照射領域R1を照明し、光源像I’,I’からの各部分照明光は、X方向に長径を有する略楕円形状の照射領域R2を照明し、光源像I’からの照明光は、光軸AXを中心とする輪帯形状の照射領域R3を照明する。入射面17aを照明した各照明光(部分照明光)は、フライアイレンズ17を構成する複数のレンズエレメントにより波面分割され、図13に示すように、各レンズエレメントの射出面側のそれぞれに5つの光源像I”~I”を形成する。換言すると、インプットレンズ16及びフライアイレンズ17は、照射領域R1~R3内におけるフライアイレンズ17の各レンズエレメントの後側焦点面に5つの光源像I”~I”を協働して形成する。これによって、フライアイレンズ17の射出面17b側には、レンズエレメントごとに5つの光源像I”~I”が配置された二次光源(面光源)が形成される。この二次光源から発し、開口絞り18の開口部を通過した照明光は、第1の実施形態と同様に、コンデンサレンズ19、ブラインド20及びブラインド結像系21を介して、ブラインド20に対応するマスクMの照明領域を略均一に照明する。 FIG. 12 is a diagram illustrating an irradiation area of the incident surface 17 a of the fly-eye lens 17. Each partial illumination light from the light source images I A ′ and I B ′ illuminates a substantially elliptical irradiation region R1 having a major axis in the Y direction, and each partial illumination light from the light source images I C ′ and I D ′ The illumination region R2 having a major axis in the X direction is illuminated, and the illumination light from the light source image I E ′ illuminates the annular illumination region R3 centered on the optical axis AX. Each illumination light (partial illumination light) that illuminates the incident surface 17a is wavefront-divided by a plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG. Two light source images I A ″ to I E ″ are formed. In other words, the input lens 16 and the fly eye lens 17 cooperate with the five light source images I A ″ to I E ″ on the rear focal plane of each lens element of the fly eye lens 17 in the irradiation regions R1 to R3. Form. As a result, a secondary light source (surface light source) in which five light source images I A ″ to I E ″ are arranged for each lens element is formed on the exit surface 17 b side of the fly-eye lens 17. The illumination light emitted from the secondary light source and passed through the opening of the aperture stop 18 corresponds to the blind 20 via the condenser lens 19, the blind 20, and the blind imaging system 21, as in the first embodiment. The illumination area of the mask M is illuminated substantially uniformly.
 第2の実施形態に係る照明装置及び露光装置によれば、光源2a,2bからの4つの部分照明光を光軸AX3(光軸AX)周りの異なる位置から共通光学系に導入することに加え、光源22からの照明光を光軸AX3上から共通光学系に導入させているため、共通光学系を介してマスクMに照射する照明光の光量を、第1の実施形態に比して更に増大させることができる。また、投射部に対して共通光学系の光軸AX3(光軸AX)を中心に、光源2aの2つの光源像I’,I’と、光源2bの2つの光源像I’,I’とを形成するとともに、光源22の光源像I’を形成しているため、第1の実施形態と同様に、マスクMに照射する照明光の光量重心の軌跡を安定化させることができる。また、光源2a,2b,22の各光源像I’~I’を投射部に対して同一面(結像面15)上に形成しているため、フライアイレンズ17に対する照明光の開口数を光源2a,2b,22からの各照明光(各部分照明光)について等しくすることができ、マスクMの照明領域全体を、第1の実施形態と同様に、効率的かつ均一に照明することができる。 According to the illumination apparatus and the exposure apparatus according to the second embodiment, in addition to introducing the four partial illumination lights from the light sources 2a and 2b from different positions around the optical axis AX3 (optical axis AX) to the common optical system. Since the illumination light from the light source 22 is introduced into the common optical system from above the optical axis AX3, the amount of illumination light applied to the mask M via the common optical system is further increased as compared with the first embodiment. Can be increased. Further, two light source images I A ′ and I B ′ of the light source 2 a and two light source images I C ′ of the light source 2 b around the optical axis AX3 (optical axis AX) of the common optical system with respect to the projection unit. Since I D 'is formed and the light source image I E ' of the light source 22 is formed, the locus of the center of gravity of the illumination light irradiated on the mask M is stabilized as in the first embodiment. Can do. Further, since the light source images I A ′ to I E ′ of the light sources 2 a, 2 b, and 22 are formed on the same plane (imaging plane 15) with respect to the projection unit, the illumination light aperture for the fly-eye lens 17 is formed. The number can be made equal for each illumination light (each partial illumination light) from the light sources 2a, 2b, 22 and the entire illumination area of the mask M is illuminated efficiently and uniformly as in the first embodiment. be able to.
 なお、第2の実施形態においては、3つの光源2a,2b,22からの照明光によりマスクMのパターンを照明しているが、2つの光源2a及び22、または光源2b及び22からの照明光によりマスクMのパターンを照明するようにしてもよい。即ち、本発明にかかる照明装置として、第1及び第3の光源部のみを備えるか、第2及び第3の光源部のみを備えるようにすることもできる。 In the second embodiment, the pattern of the mask M is illuminated by illumination light from the three light sources 2a, 2b, and 22. However, illumination light from the two light sources 2a and 22 or the light sources 2b and 22 is used. Thus, the pattern of the mask M may be illuminated. In other words, the illumination device according to the present invention may include only the first and third light source units, or may include only the second and third light source units.
 また、第2の実施形態においては、第1及び第2の光源部からの照明光を分割した部分照明光を、導入部としての反射素子9~12により反射させて共通光学系に導入し、第3の光源部からの分割しない照明光を、導入部によって反射させずに共通光学系に導入しているが、第1~第3の光源部の配置を適宜入れ換える構成にしてもよい。例えば、第1の光源部及び第1の結像部を光軸AX3上に配置し、第1の結像部からの2つの部分照明光を反射素子を介さずに共通光学系に導入する。そして、第3の光源部及び第3の結像部を図10における光軸AX1上に配置し、第3の結像部からの分割しない照明光を反射素子により反射させて共通光学系に導入することができる。この場合、第3の結像部からの照明光を反射する反射素子は、光軸AX(光軸AX3)上に配置するとよい。 In the second embodiment, the partial illumination light obtained by dividing the illumination light from the first and second light source parts is reflected by the reflecting elements 9 to 12 as the introduction part and introduced into the common optical system, The illumination light that is not split from the third light source unit is introduced into the common optical system without being reflected by the introduction unit. However, the arrangement of the first to third light source units may be changed as appropriate. For example, the first light source unit and the first image forming unit are arranged on the optical axis AX3, and two partial illumination lights from the first image forming unit are introduced into the common optical system without passing through the reflecting element. Then, the third light source unit and the third image forming unit are arranged on the optical axis AX1 in FIG. 10, and the non-divided illumination light from the third image forming unit is reflected by the reflecting element and introduced into the common optical system. can do. In this case, the reflective element that reflects the illumination light from the third imaging unit may be disposed on the optical axis AX (optical axis AX3).
 次に、本発明の第3の実施形態に係る照明装置及び露光装置について説明する。なお、第3の実施形態に係る露光装置は、図1に示す露光装置を構成する照明装置ILに代えて照明装置IL3(図14参照)を備えて構成されたものであるため、第3の実施形態の説明においては、第1の実施形態に係る露光装置の構成と同一の構成には同一符号を付して、その詳細な説明は省略する。図14は第3の実施形態に係る照明装置IL3の構成を示す図、図15は照明装置IL3の折り返しミラー4bから反射素子9~12までの構成を図14に示す矢印Cの方向から見た図である。 照明装置IL3は、光源2a~シャッタ5aにより構成される第1の光源部から出力した照明光をZ方向に2つの部分照明光に分割する第1の分割部と、2つの部分照明光の各光路の間隔を変更する第1の光路間隔変更部とを備えている。第1の分割部及び第1の光路間隔変更部は、一体に設けられており、リレーレンズ30a及び屋根型プリズム群32aを備えて構成されている。図16は、リレーレンズ30aから射出した照明光の光束断面B12を示す図である。第1の光源部から出力された照明光は、その中心部が光源2aによりけられる(遮光される)ため、光束断面B12は、図16に示すように、輪帯形状になる。 Next, an illumination apparatus and an exposure apparatus according to the third embodiment of the present invention will be described. Note that the exposure apparatus according to the third embodiment is configured to include an illumination apparatus IL3 (see FIG. 14) instead of the illumination apparatus IL configuring the exposure apparatus shown in FIG. In the description of the embodiment, the same components as those of the exposure apparatus according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 14 is a diagram showing the configuration of the illumination device IL3 according to the third embodiment, and FIG. 15 is a diagram showing the configuration from the folding mirror 4b to the reflection elements 9 to 12 of the illumination device IL3 as seen from the direction of the arrow C shown in FIG. FIG. The illumination device IL3 includes a first dividing unit that divides the illumination light output from the first light source unit configured by the light source 2a to the shutter 5a into two partial illumination lights in the Z direction, and each of the two partial illumination lights. And a first optical path interval changing unit that changes the interval of the optical paths. The first dividing unit and the first optical path interval changing unit are provided integrally, and include a relay lens 30a and a roof-type prism group 32a. Figure 16 is a diagram showing a light flux cross-section B 12 of the illumination light emitted from the relay lens 30a. Illumination light output from the first light source unit, since the center portion is eclipsed by the light source 2a (the light), the light flux cross-sectional B 12, as shown in FIG. 16, the annular shape.
 屋根型プリズム群32aは、第1プリズム34a及び第2プリズム34bにより構成されており、第1プリズム34aは、入射側が屋根型の凹部を形成する2つの傾斜面34aa,34ab、射出側がYZ平面に平行な面により構成されている。また、第2プリズム34bは、入射側がYZ平面に平行な面、射出側が屋根型の凸部を形成する2つの傾斜面34ba,34bbにより構成されている。屋根型プリズム群32aを通過した照明光はZ方向に2つの部分照明光に分割され、2つの部分照明光の光路の間隔は、入射側に対して射出側でZ方向に拡大される。 The roof-type prism group 32a includes a first prism 34a and a second prism 34b. The first prism 34a has two inclined surfaces 34aa and 34ab that form a roof-shaped recess on the incident side, and the YZ plane on the exit side. It consists of parallel surfaces. The second prism 34b is configured by two inclined surfaces 34ba and 34bb on the incident side that are parallel to the YZ plane and on the emission side that form a roof-shaped convex portion. The illumination light that has passed through the roof-type prism group 32a is divided into two partial illumination lights in the Z direction, and the distance between the optical paths of the two partial illumination lights is expanded in the Z direction on the exit side with respect to the incident side.
 また、照明装置IL3は、光源2b~シャッタ5bにより構成される第2の光源部から出力した照明光をY方向に2つの部分照明光に分割する第2の分割部と、2つの部分照明光の各光路の間隔を変更する第2の光路間隔変更部とを備えている。第2の分割部及び第2の光路間隔変更部は、一体に設けられており、リレーレンズ30b及び屋根型プリズム群32bを備えて構成されている。なお、リレーレンズ30bから射出した照明光の光束断面は、図16に示す光束断面B12と同様となる。 In addition, the illumination device IL3 includes a second dividing unit that divides the illumination light output from the second light source unit configured by the light source 2b to the shutter 5b into two partial illumination lights in the Y direction, and two partial illumination lights. A second optical path interval changing unit that changes the interval between the optical paths. The second dividing unit and the second optical path interval changing unit are provided integrally, and include a relay lens 30b and a roof-type prism group 32b. The light beam cross-section of the illumination light emitted from the relay lens 30b is the same as the light beam cross-section B 12 shown in FIG. 16.
 屋根型プリズム群32bは、第1プリズム35a及び第2プリズム35bにより構成されており、第1プリズム35aは、図15に示すように、入射側が屋根型の凹部を形成する2つの傾斜面35aa,35ab、射出側がYZ平面に平行な面により構成されている。また、第2プリズム35bは、入射側がYZ平面に平行な面、射出側が屋根型の凸部を形成する2つの傾斜面35ba,35bbにより構成されている。屋根型プリズム群32aを通過した照明光はY方向に2つの部分照明光に分割され、2つの部分照明光の光路の間隔は、入射側に対して射出側でY方向に拡大される。 The roof-type prism group 32b is composed of a first prism 35a and a second prism 35b. As shown in FIG. 15, the first prism 35a has two inclined surfaces 35aa on which the incident side forms a roof-shaped recess. 35ab, the emission side is constituted by a plane parallel to the YZ plane. The second prism 35b is configured by two inclined surfaces 35ba and 35bb on the incident side that are parallel to the YZ plane and on the emission side that form a roof-shaped convex portion. The illumination light that has passed through the roof-type prism group 32a is divided into two partial illumination lights in the Y direction, and the distance between the optical paths of the two partial illumination lights is expanded in the Y direction on the exit side with respect to the incident side.
 第1の光路間隔変更部からの一方の部分照明光は反射素子9により反射され、第1の光路間隔変更部からの他方の部分照明光は反射素子10により反射され、第2の光路間隔変更部からの一方の部分照明光は反射素子11により反射され、第2の光路間隔変更部からの他方の部分照明光は反射素子12により反射される。図17は、光軸AX3周りに形成される各部分照明光の光束断面B~Bを示す図である。図17に示す光束断面Bは第1の光路間隔変更部からの一方の部分照明光に対応し、光束断面Bは第1の光路間隔変更部からの他方の部分照明光に対応し、光束断面Bは第2の光路間隔変更部からの一方の部分照明光に対応し、光束断面Bは第2の光路間隔変更部からの他方の部分照明光に対応する。 One partial illumination light from the first optical path interval changing unit is reflected by the reflecting element 9, and the other partial illumination light from the first optical path interval changing unit is reflected by the reflecting element 10 to change the second optical path interval. One partial illumination light from the part is reflected by the reflective element 11, and the other partial illumination light from the second optical path interval changing part is reflected by the reflective element 12. FIG. 17 is a diagram showing light beam cross sections B 1 to B 4 of each partial illumination light formed around the optical axis AX3. The light beam cross-section B 1 shown in FIG. 17 corresponds to one of the partial illumination light from the first optical path distance changing unit, the light flux cross-sectional B 2 corresponds to the other part illumination light from the first optical path distance changing unit, the light beam cross-section B 3 corresponds to one of the partial illumination light from the second optical path distance changing section, the light beam cross-section B 4 corresponds to the other partial illumination light from the second optical path distance changing unit.
 また、照明装置IL3は、結像部を備えており、結像部は、4つの部分照明光に対して共通の結像素子である結像レンズ36を備えて構成されている。結像レンズ36は、4つの部分照明光ごとの光源像を共通光学系(結像レンズ36~ブラインド結像系21)の光軸AX3上の同一箇所、つまり結像レンズ36の結像面37と光軸AX3との交点上に形成する。結像面37上の光源像からの各部分照明光は、インプットレンズ38を介してフライアイレンズ17に入射する。図18は、フライアイレンズ17の入射面17aの照射領域を示す図である。光束断面Bに対応する部分照明光は照射領域R4を照明し、光束断面Bに対応する部分照明光は照射領域R5を照明し、光束断面Bに対応する部分照明光は照射領域R6を照明し、光束断面Bに対応する部分照明光は照射領域R6を照明する。入射面17aを照明した各部分照明光は、フライアイレンズ17を構成する複数のレンズエレメントのうちそれぞれ対応するレンズエレメントにより波面分割され、図19に示すように、各レンズエレメントの射出面側のそれぞれに部分照明光ごとの光源像が重畳された光源像I”を形成する。換言すると、インプットレンズ38及びフライアイレンズ17は、照射領域R4~R7内におけるフライアイレンズ17の各レンズエレメントの後側焦点面に光源像I”を協働して形成する。これによって、フライアイレンズ17の射出面17b側にはレンズエレメントごとに光源像I”が配置された二次光源(面光源)が形成される。この二次光源から発し、開口絞り18の開口部を通過した照明光は、第1の実施形態と同様に、コンデンサレンズ19、ブラインド20及びブラインド結像系21を介して、ブラインド20に対応するマスクMの照明領域を略均一に照明する。この際、図19に示すように、射出面17b側に形成される二次光源は略輪帯形状となるため、照明装置IL3の照明条件は輪帯照明となる。なお、結像面37は、第1の実施形態における結像面15と同様に、開口絞り18の絞り面と共役もしくは略共役な面にされるとともに、開口絞り18に基づく投射部の射出瞳が形成される瞳面と共役もしくは略共役な面とされている。 The illumination device IL3 includes an imaging unit, and the imaging unit includes an imaging lens 36 that is a common imaging element for the four partial illumination lights. The imaging lens 36 converts the light source image for each of the four partial illumination lights to the same location on the optical axis AX3 of the common optical system (imaging lens 36 to blind imaging system 21), that is, the imaging surface 37 of the imaging lens 36. And the optical axis AX3. Each partial illumination light from the light source image on the imaging surface 37 enters the fly-eye lens 17 via the input lens 38. FIG. 18 is a diagram illustrating an irradiation area of the incident surface 17 a of the fly-eye lens 17. Partial illumination light corresponding to the light beam cross-section B 1 represents illuminates the illuminated region R4, the light flux cross-sectional portion B illumination light 2 corresponding to illuminates the illumination area R5, a light flux partial illumination light corresponding to the cross-section B 3 is irradiated region R6 illuminating a portion illumination light corresponding to the light beam cross-section B 4 illuminates the illuminated region R6. Each partial illumination light that illuminates the incident surface 17a is divided into wavefronts by corresponding lens elements among the plurality of lens elements constituting the fly-eye lens 17, and as shown in FIG. 19, on the exit surface side of each lens element. A light source image I ″ in which a light source image for each partial illumination light is superimposed on each other is formed. In other words, the input lens 38 and the fly-eye lens 17 are each of the lens elements of the fly-eye lens 17 in the irradiation regions R4 to R7. A light source image I ″ is cooperatively formed on the rear focal plane. Thereby, a secondary light source (surface light source) in which a light source image I ″ is arranged for each lens element is formed on the exit surface 17 b side of the fly-eye lens 17. The secondary light source emits the aperture of the aperture stop 18. The illumination light that has passed through the part illuminates the illumination area of the mask M corresponding to the blind 20 substantially uniformly via the condenser lens 19, the blind 20, and the blind imaging system 21, as in the first embodiment. At this time, since the secondary light source formed on the exit surface 17b side has a substantially annular shape, as shown in Fig. 19, the illumination condition of the illumination device IL3 is annular illumination. Similarly to the imaging surface 15 in the first embodiment, a pupil plane on which the exit pupil of the projection unit based on the aperture stop 18 is formed is a conjugate or substantially conjugate plane with the aperture surface of the aperture stop 18. Conjugate or abbreviated There is a role surface.
 第3の実施形態に係る照明装置及び露光装置によれば、各光源2a,2bからの照明光を分割部によりそれぞれ2つの部分照明光に分割し、分割された各部分照明光を光軸AX(光軸AX3)周りの異なる位置から共通光学系に導入しているため、各光源2a,2bからの照明光の光量ロスを抑制し、共通光学系を介してマスクMに照射する照明光の光量を効率的に増大させることができる。また、投射部に対して共通光学系の光軸AX3(光軸AX)上に、光源2a,2bからの各照明光(部分照明光)による光源像を重畳した光源像I”を形成しているため、例えば光源2a,2bの消耗等に応じ、各光源2a,2bが発する照明光に光量差が生じても、マスクMの照明領域に照射する照明光の光量重心の軌跡を安定化させることができる。また、光源像I”を同一面(結像面37)上に形成しているため、フライアイレンズ17に対する照明光の開口数を光源2a,2bからの各照明光(各部分照明光)について等しくすることができ、マスクMの照明領域全体を効率的かつ均一に照明することができる。 According to the illumination apparatus and the exposure apparatus according to the third embodiment, the illumination light from each of the light sources 2a and 2b is divided into two partial illumination lights by the dividing unit, and each divided partial illumination light is optical axis AX. Since the light is introduced into the common optical system from different positions around the (optical axis AX3), the light amount loss of the illumination light from each of the light sources 2a and 2b is suppressed, and the illumination light irradiated to the mask M through the common optical system is suppressed. The amount of light can be increased efficiently. Further, a light source image I ″ is formed by superimposing a light source image of each illumination light (partial illumination light) from the light sources 2a and 2b on the optical axis AX3 (optical axis AX) of the common optical system for the projection unit. Therefore, for example, according to the consumption of the light sources 2a and 2b, even if a difference in the amount of light is generated in the illumination light emitted from each of the light sources 2a and 2b, the locus of the center of gravity of the illumination light irradiated on the illumination area of the mask M is stabilized. Further, since the light source image I ″ is formed on the same plane (imaging plane 37), the numerical aperture of the illumination light for the fly-eye lens 17 can be set to each illumination light (each portion from the light sources 2a and 2b). Illumination light) can be made equal, and the entire illumination area of the mask M can be illuminated efficiently and uniformly.
 なお、上述した照明装置IL3では、光源2a,2bからの各照明光を2つの部分照明光に分割して共通光学系に導入しているが、各照明光を分割することなく共通光学系に導入することもできる。例えば、光源2aからの照明光の光束断面と、光源2bからの照明光の光束断面とを、分割することなく相対的に異なる倍率で拡大もしくは縮小させることで、互いに異なる大きさ(径)の輪帯形状の光束断面を有する2つの照明光を得る。そして、この2つの照明光を、それぞれ光軸AX3を中心として配置された異なる大きさ(径)の輪帯状の反射素子(導入部)によって反射させることで、光軸AXを中心とした異なる位置から各照明光を共通光学系に導入することができる。この場合、屋根型プリズム群32a,32bに替えて円錐状のコーンプリズム群(コーンレンズ群)を用いるとよい。なお、一方の照明光は、光源部を光軸AX3上に配置させることで、反射素子を介さずに共通光学系に導入することができる。 In the illumination device IL3 described above, each illumination light from the light sources 2a and 2b is divided into two partial illumination lights and introduced into the common optical system. However, each illumination light is not divided into the common optical system. It can also be introduced. For example, the light beam cross section of the illumination light from the light source 2a and the light beam cross section of the illumination light from the light source 2b are enlarged or reduced at different magnifications without being divided, so that they have different sizes (diameters). Two illumination lights having a ring-shaped beam cross section are obtained. Then, the two illumination lights are reflected by ring-shaped reflecting elements (introducing portions) having different sizes (diameters) arranged around the optical axis AX3, respectively, so that different positions around the optical axis AX. Thus, each illumination light can be introduced into the common optical system. In this case, a conical cone prism group (cone lens group) may be used instead of the roof- type prism groups 32a and 32b. In addition, one illumination light can be introduce | transduced into a common optical system not via a reflective element by arrange | positioning a light source part on the optical axis AX3.
 また、上述の各実施形態においては、光源2a,2bからの各照明光を2つの部分照明光に分割しているが、3つ以上の部分照明光に分割するようにしてもよい。この場合においても、3つ以上に分割された各部分照明光を共通光学系の光軸AX3(光軸AX)を中心として光軸AX3周りの異なる位置から共通光学系に導入させるとよい。なお、上述した第1及び第2の実施形態では、光源2aの光源像I’,I’と、光源2bの光源像I’,I’とを、共通光学系の光軸AX3(光軸AX)を中心とする回転対称な位置に形成するものとしたが、光源2a,2bからの各照明光を3つ以上の部分照明光に分割する場合、光源2a,2bの各光源像を必ずしも回転対称に配置しなくても構わない。 Further, in each of the above-described embodiments, each illumination light from the light sources 2a and 2b is divided into two partial illumination lights, but may be divided into three or more partial illumination lights. In this case as well, each partial illumination light divided into three or more may be introduced into the common optical system from different positions around the optical axis AX3 around the optical axis AX3 (optical axis AX) of the common optical system. In the first and second embodiments described above, the light source images I A ′ and I B ′ of the light source 2a and the light source images I C ′ and I C ′ of the light source 2b are converted into the optical axis AX3 of the common optical system. Although formed at a rotationally symmetric position with respect to (optical axis AX), when each illumination light from light sources 2a and 2b is divided into three or more partial illumination lights, each light source of light sources 2a and 2b The images do not necessarily have to be rotationally symmetrical.
 また、上述の各実施形態においては、投影部PLを備えた露光装置を例として説明したが、マスクMのパターンを投影部を介すことなく感光基板P上に露光するプロキシミティ露光装置に本発明を適用することもできる。また、パターンが設けられたマスクMとしてクロムパターン等による所定パターン(固定パターン)が形成されたマスクを用いて露光を行う露光装置を例として説明したが、DMD(デジタル・マイクロミラー・デバイス)や液晶等を用いた「可変パターン形成装置」をマスクとして用いて露光を行う露光装置に本発明を適用することもできる。 In each of the above-described embodiments, the exposure apparatus provided with the projection unit PL has been described as an example. However, the proximity exposure apparatus that exposes the pattern of the mask M onto the photosensitive substrate P without passing through the projection unit. The invention can also be applied. In addition, the exposure apparatus that performs exposure using a mask on which a predetermined pattern (fixed pattern) such as a chrome pattern is formed as the mask M provided with the pattern has been described as an example. However, DMD (digital micromirror device), The present invention can also be applied to an exposure apparatus that performs exposure using a “variable pattern forming apparatus” using liquid crystal or the like as a mask.
 次に、本発明に係る露光装置を用いたデバイス製造方法について説明する。図20は、半導体デバイスの製造工程を示すフローチャートである。この図に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウエハに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、本発明に係る露光装置を用いてマスクに形成されたパターンをウエハ上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウエハの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウエハ表面に形成されたレジストパターンを加工用のマスクとし、ウエハ表面に対してエッチング等の加工を行う(ステップS48:加工工程)。 Next, a device manufacturing method using the exposure apparatus according to the present invention will be described. FIG. 20 is a flowchart showing a manufacturing process of a semiconductor device. As shown in this figure, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied onto the vapor-deposited metal film ( Step S42). Subsequently, the pattern formed on the mask is transferred to each shot area on the wafer using the exposure apparatus according to the present invention (step S44: exposure process), and the development of the wafer after the transfer, that is, the pattern is transferred. The developed photoresist is developed (step S46: development step). Thereafter, using the resist pattern formed on the wafer surface in step S46 as a mask for processing, the wafer surface is processed such as etching (step S48: processing step).
 ここで、レジストパターンとは、本発明にかかる露光装置によって転写されたパターンに対応する形状の凹凸が形成されたフォトレジスト層(転写パターン層)であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウエハ表面の加工を行う。ステップS48で行われる加工には、例えばウエハ表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、本発明にかかる露光装置は、フォトレジストが塗布されたウエハを感光基板としてパターンの転写を行う。 Here, the resist pattern is a photoresist layer (transfer pattern layer) in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus according to the present invention is formed, and the recess penetrates the photoresist layer. It is what. In step S48, the wafer surface is processed through this resist pattern. The processing performed in step S48 includes at least one of etching of the wafer surface or film formation of a metal film, for example. In step S44, the exposure apparatus according to the present invention performs pattern transfer using the photoresist-coated wafer as a photosensitive substrate.
 図21は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。この図に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。 FIG. 21 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in this figure, in the liquid crystal device manufacturing process, a pattern forming process (step S50), a color filter forming process (step S52), a cell assembling process (step S54) and a module assembling process (step S56) are sequentially performed.
 ステップS50のパターン形成工程では、プレートとしてフォトレジストが塗布されたガラス基板上に、本発明にかかる露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、本発明にかかる露光装置を用いてフォトレジスト層に、マスクに設けられたパターンの投影像を転写する露光工程と、パターンの投影像が転写されたプレートの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を形成する現像工程と、この現像されたフォトレジスト層(転写パターン層)を介してガラス基板を加工する加工工程とが含まれている。 In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on a glass substrate coated with a photoresist as a plate using the exposure apparatus according to the present invention. In this pattern forming process, an exposure process for transferring the projected image of the pattern provided on the mask to the photoresist layer using the exposure apparatus according to the present invention, and development of the plate on which the projected image of the pattern is transferred, that is, Development process of developing a photoresist layer on a glass substrate to form a photoresist layer having a shape corresponding to the pattern, and a processing process of processing the glass substrate through the developed photoresist layer (transfer pattern layer) And are included.
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリクス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 In the color filter forming step in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or three of R, G, and B are arranged. A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction. In the cell assembly process in step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイスまたは液晶デバイス製造用の露光装置への適用に限定されることなく、例えば、プラズマディスプレイまたは有機ELディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。なお、本発明は、ガラス基板および半導体ウェハ等に限定されず、例えば可撓性を有するシート状の基板(面積に対する厚さの比がガラス基板および半導体ウェハに比して小さい基板)を露光対象としての感光基板とすることができる。 The present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device or a liquid crystal device. For example, an exposure apparatus for a display device such as a plasma display or an organic EL display, or an image sensor (CCD or the like). The present invention can also be widely applied to exposure apparatuses for manufacturing various devices such as micromachines, thin film magnetic heads, and DNA chips. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process. In addition, this invention is not limited to a glass substrate, a semiconductor wafer, etc., For example, the sheet-like board | substrate (The board | substrate whose thickness ratio with respect to an area is small compared with a glass substrate and a semiconductor wafer) which has flexibility is object for exposure It can be set as a photosensitive substrate.
 また、本発明の態様にかかるデバイス製造方法は、半導体デバイスおよび液晶デバイス等以外にも、一般には、本発明の態様にかかる露光装置を用いてパターンを感光基板に転写することと、そのパターンが転写された感光基板をそのパターンに基づいて加工することとを経て、少なくともその感光基板の一部を含むデバイスを製造することができる。ここで、転写されたパターンに基づいて感光基板を加工することには、その転写パターンに基づいて感光基板をエッチングすること、その転写パターンに基づいて感光基板を印刷すること(転写パターンに基づいて、例えば導電性インク等の所定材料を塗布すること)等が適用可能である。 In addition to the semiconductor device and the liquid crystal device, the device manufacturing method according to the aspect of the present invention generally transfers the pattern to the photosensitive substrate using the exposure apparatus according to the aspect of the present invention, and the pattern is A device including at least a part of the photosensitive substrate can be manufactured by processing the transferred photosensitive substrate based on the pattern. Here, processing the photosensitive substrate based on the transferred pattern includes etching the photosensitive substrate based on the transferred pattern, and printing the photosensitive substrate based on the transferred pattern (based on the transferred pattern). For example, a predetermined material such as conductive ink is applied).
 なお、本発明の態様にかかる照明装置は、露光装置への適用に限定されず、一般に照明装置(光源装置)を用いる各種装置に適用可能であり、例えば、画像情報(静止画情報および動画情報を含む)を拡大投影(投写)するプロジェクターに適用可能である。 Note that the illumination apparatus according to the aspect of the present invention is not limited to application to an exposure apparatus, and is generally applicable to various apparatuses using an illumination apparatus (light source apparatus), for example, image information (still image information and moving image information). Can be applied to projectors that perform enlarged projection (projection).
2a,2b,22…光源、3a,3b,23…楕円鏡、4a,4b…折り返しミラー、5a,5b,25…シャッタ、6a,6b,36…リレーレンズ、7a,7b…2つ目レンズ、9~12…反射素子、13…リレーレンズ群、14…コーンプリズム群、16,38…インプットレンズ、17…フライアイレンズ、18…開口絞り、19…コンデンサレンズ、20…ブラインド、21…ブラインド結像系、32a,32b…屋根型プリズム群、IL,IL2,IL3…照明装置、M…マスク、PL…投影部、P…感光基板。  2a, 2b, 22 ... light source, 3a, 3b, 23 ... elliptical mirror, 4a, 4b ... folding mirror, 5a, 5b, 25 ... shutter, 6a, 6b, 36 ... relay lens, 7a, 7b ... second lens, 9 to 12: reflecting element, 13: relay lens group, 14: cone prism group, 16, 38 ... input lens, 17 ... fly-eye lens, 18 ... aperture stop, 19 ... condenser lens, 20 ... blind, 21 ... blind connection Image system, 32a, 32b ... roof prism group, IL, IL2, IL3 ... illumination device, M ... mask, PL ... projection unit, P ... photosensitive substrate.

Claims (21)

  1.  光源を保持し、該光源が発する照明光を出力する複数の光源部と、
     前記複数の光源部が出力した各照明光を被照射体に照射する投射部と、
     少なくとも前記投射部を含み前記各照明光に共通な共通光学系に対して、該共通光学系の光軸周りの異なる位置または光軸上から前記各照明光を導入する導入部と、
     前記投射部に対して実質的に前記共通光学系の光軸を中心に、前記光源の光源像を該光源ごとに一以上形成する結像部と、
    を備えたことを特徴とする照明装置。
    A plurality of light source units that hold a light source and output illumination light emitted from the light source;
    A projection unit that irradiates the irradiated object with each illumination light output from the plurality of light source units;
    An introduction unit that introduces each illumination light from a different position or optical axis around the optical axis of the common optical system with respect to a common optical system that includes at least the projection unit and is common to the illumination light,
    An image forming unit that forms one or more light source images of the light source for each light source, with the projection unit being substantially centered on the optical axis of the common optical system;
    An illumination device comprising:
  2.  前記結像部は、前記複数の光源部が保持する各光源の前記光源像を所定面に形成することを特徴とする請求項1に記載の照明装置。 The illumination device according to claim 1, wherein the imaging unit forms the light source image of each light source held by the plurality of light source units on a predetermined surface.
  3.  前記所定面は、前記投射部が有する開口絞りの絞り面と共役な面であることを特徴とする請求項2に記載の照明装置。 3. The illumination device according to claim 2, wherein the predetermined surface is a surface conjugate with a stop surface of an aperture stop included in the projection unit.
  4.  前記所定面は、前記投射部の射出瞳が形成される瞳面と共役な面であることを特徴とする請求項2に記載の照明装置。 3. The illumination device according to claim 2, wherein the predetermined plane is a plane conjugate with a pupil plane on which an exit pupil of the projection unit is formed.
  5.  前記所定面は、前記投射部が有するフライアイレンズの後側焦点面と共役な面であることを特徴とする請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the predetermined plane is a plane conjugate with a rear focal plane of a fly-eye lens included in the projection unit.
  6.  少なくとも1つの前記光源部に対して設けられ、該光源部が出力した前記照明光を複数の部分照明光に分割する分割部を備え、
     前記導入部は、前記複数の部分照明光を前記共通光学系の光軸を中心とする異なる位置から該共通光学系へ導入することを特徴とする請求項1~5のいずれか一項に記載の照明装置。
    Provided with respect to at least one of the light source units, and provided with a dividing unit that divides the illumination light output from the light source unit into a plurality of partial illumination lights,
    The introduction section introduces the plurality of partial illumination lights into the common optical system from different positions around the optical axis of the common optical system. Lighting equipment.
  7.  前記結像部は、前記複数の部分照明光ごとの前記光源像を、前記共通光学系の光軸を中心とする回転対称な位置に形成することを特徴とする請求項6に記載の照明装置。 The illumination device according to claim 6, wherein the imaging unit forms the light source image for each of the plurality of partial illumination lights at a rotationally symmetric position about the optical axis of the common optical system. .
  8.  前記結像部は、前記複数の部分照明光ごとに個別の結像素子を有することを特徴とする請求項6または7に記載の照明装置。 The illumination device according to claim 6 or 7, wherein the imaging unit includes an individual imaging element for each of the plurality of partial illumination lights.
  9.  前記結像部は、前記分割部と一体に設けられることを特徴とする請求項6~8のいずれか一項に記載の照明装置。 The illumination device according to any one of claims 6 to 8, wherein the imaging unit is provided integrally with the dividing unit.
  10.  前記分割部は、前記複数の光源部のうち第1および第2の光源部が出力した各照明光をそれぞれ2つの部分照明光に分割し、
     前記結像部は、前記第1の光源部に対応する2つの前記部分照明光ごとの前記光源像を実質的に前記共通光学系の光軸と交差する第1の方向に沿って形成するとともに、前記第2の光源部に対応する2つの前記部分照明光ごとの前記光源像を、実質的に前記共通光学系の光軸回りに前記第1の方向と直交する第2の方向に沿って形成することを特徴とする請求項6~9のいずれか一項に記載の照明装置。
    The dividing unit divides each illumination light output from the first and second light source units out of the plurality of light source units into two partial illumination lights, respectively.
    The imaging unit forms the light source image for each of the two partial illumination lights corresponding to the first light source unit along a first direction substantially intersecting the optical axis of the common optical system. The light source image for each of the two partial illumination lights corresponding to the second light source unit is substantially along a second direction orthogonal to the first direction around the optical axis of the common optical system. The illumination device according to any one of claims 6 to 9, wherein the illumination device is formed.
  11.  前記結像部は、前記複数の光源部のうち第3の光源部が保持する前記光源の光源像を前記共通光学系の光軸上に形成することを特徴とする請求項10に記載の照明装置。 The illumination according to claim 10, wherein the imaging unit forms a light source image of the light source held by a third light source unit among the plurality of light source units on an optical axis of the common optical system. apparatus.
  12.  前記結像部は、前記複数の部分照明光ごとの前記光源像を前記共通光学系の光軸上に形成することを特徴とする請求項6に記載の照明装置。 The illumination device according to claim 6, wherein the imaging unit forms the light source image for each of the plurality of partial illumination lights on an optical axis of the common optical system.
  13.  前記結像部は、前記複数の部分照明光に対して共通の結像素子を有することを特徴とする請求項12に記載の照明装置。 The illuminating device according to claim 12, wherein the imaging unit includes an imaging element common to the plurality of partial illumination lights.
  14.  前記部分照明光ごとの前記光源像の間隔を変更する像間隔変更部を備えることを特徴とする請求項6~11のいずれか一項に記載の照明装置。 The illumination device according to any one of claims 6 to 11, further comprising an image interval changing unit that changes an interval between the light source images for each partial illumination light.
  15.  前記複数の部分照明光の各光路の間隔を変更する光路間隔変更部を備えることを特徴とする請求項6~14のいずれか一項に記載の照明装置。 15. The illumination device according to claim 6, further comprising an optical path interval changing unit that changes an interval between the optical paths of the plurality of partial illumination lights.
  16.  前記光路間隔変更部は、前記分割部と一体に設けられることを特徴とする請求項15に記載の照明装置。 The illumination device according to claim 15, wherein the optical path interval changing unit is provided integrally with the dividing unit.
  17.  前記導入部は、前記共通光学系の光軸周りおよび光軸上の少なくとも一方に反射面が設けられた一以上の反射素子を有し、少なくとも1つの前記光源部が出力した前記照明光を前記反射素子によって反射させて前記共通光学系へ導入することを特徴とする請求項1~16のいずれか一項に記載の照明装置。 The introduction unit includes one or more reflection elements provided with a reflection surface around at least one of the optical axis of the common optical system and on the optical axis, and the illumination light output from at least one of the light source units is The illumination device according to any one of claims 1 to 16, wherein the illumination device is reflected by a reflective element and introduced into the common optical system.
  18.  前記導入部は、前記共通光学系の光軸周りに反射面が設けられた一以上の反射素子を有し、該反射素子によって前記複数の部分照明光を反射させて前記共通光学系へ導入することを特徴とする請求項6~16のいずれか一項に記載の照明装置。 The introduction unit includes one or more reflection elements provided with reflection surfaces around the optical axis of the common optical system, and the plurality of partial illumination lights are reflected by the reflection element and introduced into the common optical system. The illumination device according to any one of claims 6 to 16, wherein:
  19.  パターンが形成されたマスクを保持するマスク保持部と、
     感光基板を保持する基板保持部と、
     前記マスクを介して前記感光基板に照明光を照射する請求項1~18のいずれか一項に記載の照明装置と、
     を備えたことを特徴とする露光装置。
    A mask holding section for holding a mask on which a pattern is formed;
    A substrate holder for holding the photosensitive substrate;
    The illumination device according to any one of claims 1 to 18, wherein the photosensitive substrate is irradiated with illumination light through the mask;
    An exposure apparatus comprising:
  20.  前記マスクのパターンの像を投影する投影部を備え、
     前記照明装置は、前記投影部を介して前記感光基板に前記照明光を照射することを特徴とする請求項19に記載の露光装置。
    A projection unit that projects an image of the mask pattern;
    The exposure apparatus according to claim 19, wherein the illumination apparatus irradiates the photosensitive substrate with the illumination light through the projection unit.
  21.  請求項19または20に記載の露光装置を用いて、前記パターンを前記感光基板に転写することと、
     前記パターンが転写された前記感光基板を前記パターンに基づいて加工することと、
     を含むことを特徴とするデバイス製造方法。
    Using the exposure apparatus according to claim 19 or 20, transferring the pattern to the photosensitive substrate;
    Processing the photosensitive substrate to which the pattern is transferred based on the pattern;
    A device manufacturing method comprising:
PCT/JP2009/058770 2008-06-12 2009-05-11 Illumination apparatus, exposure apparatus, and device fabrication method WO2009150913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010516798A JP5531955B2 (en) 2008-06-12 2009-05-11 Illumination apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12922708P 2008-06-12 2008-06-12
US61/129,227 2008-06-12

Publications (1)

Publication Number Publication Date
WO2009150913A1 true WO2009150913A1 (en) 2009-12-17

Family

ID=41416624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058770 WO2009150913A1 (en) 2008-06-12 2009-05-11 Illumination apparatus, exposure apparatus, and device fabrication method

Country Status (2)

Country Link
JP (1) JP5531955B2 (en)
WO (1) WO2009150913A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105461A1 (en) * 2010-02-24 2011-09-01 Nskテクノロジー株式会社 Optical projection device for exposure apparatus, exposure apparatus, method for exposure, method for fabricating substrate, mask, and exposed substrate
JP2011242563A (en) * 2010-05-18 2011-12-01 Hitachi High-Technologies Corp Exposure apparatus, method for positioning lamp of exposure apparatus, and method of manufacturing display panel substrate
CN109634059A (en) * 2017-10-09 2019-04-16 上海微电子装备(集团)股份有限公司 The manufacturing method of exposure device, exposure method and element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267515A (en) * 1991-02-22 1992-09-24 Canon Inc Image projection method and manufacture of semiconductor device by said method
JPH04316311A (en) * 1991-04-16 1992-11-06 Nikon Corp Projection aligner
JPH05303209A (en) * 1992-02-10 1993-11-16 Tadahiro Omi Lithographic process
JPH11111596A (en) * 1997-10-02 1999-04-23 Topcon Corp Lighting optical system for exposure apparatus
JP2005093522A (en) * 2003-09-12 2005-04-07 Canon Inc Optical illumination system and aligner using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267515A (en) * 1991-02-22 1992-09-24 Canon Inc Image projection method and manufacture of semiconductor device by said method
JPH04316311A (en) * 1991-04-16 1992-11-06 Nikon Corp Projection aligner
JPH05303209A (en) * 1992-02-10 1993-11-16 Tadahiro Omi Lithographic process
JPH11111596A (en) * 1997-10-02 1999-04-23 Topcon Corp Lighting optical system for exposure apparatus
JP2005093522A (en) * 2003-09-12 2005-04-07 Canon Inc Optical illumination system and aligner using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105461A1 (en) * 2010-02-24 2011-09-01 Nskテクノロジー株式会社 Optical projection device for exposure apparatus, exposure apparatus, method for exposure, method for fabricating substrate, mask, and exposed substrate
JP2011242563A (en) * 2010-05-18 2011-12-01 Hitachi High-Technologies Corp Exposure apparatus, method for positioning lamp of exposure apparatus, and method of manufacturing display panel substrate
CN109634059A (en) * 2017-10-09 2019-04-16 上海微电子装备(集团)股份有限公司 The manufacturing method of exposure device, exposure method and element
CN109634059B (en) * 2017-10-09 2020-10-16 上海微电子装备(集团)股份有限公司 Exposure apparatus, exposure method, and device manufacturing method

Also Published As

Publication number Publication date
JP5531955B2 (en) 2014-06-25
JPWO2009150913A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
TWI479271B (en) An exposure apparatus and an exposure method, and an element manufacturing method
JP4678493B2 (en) Light source unit, illumination optical apparatus, exposure apparatus, and exposure method
JPWO2006082738A1 (en) Optical integrator, illumination optical apparatus, exposure apparatus, and exposure method
JP2013251583A (en) Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2010004008A (en) Optical unit, illumination optical device, exposure apparatus, exposure method and production process of device
JP2006235533A (en) Exposure device and method for manufacturing micro device
JP2006049904A (en) Off-axis reflection/refraction type projection optical system for lithography
JP6651124B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5531955B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP5327056B2 (en) Illumination apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2006253529A (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2011003714A (en) Exposure method, mask and method of manufacturing device
JP2010272631A (en) Lighting apparatus, exposure apparatus, and device manufacturing method
JP2009267390A (en) Optical integrator, illumination optical system, exposure device, and device manufacturing method
JP7340167B2 (en) Illumination optical system, exposure equipment, and device manufacturing method
JP2006080109A (en) Illumination device, exposure device and method of manufacturing micro device
JP2010028089A (en) Dimming unit, lighting optical system, aligner, and device manufacturing method
JP2010118383A (en) Illumination apparatus, exposure apparatus and device manufacturing method
JPWO2004090955A1 (en) Illumination optical apparatus, projection exposure apparatus, and exposure method
JP2005150541A (en) Illumination optical apparatus, aligner, and method for exposure
JP2006066429A (en) Lighting optical device, aligner, and exposure method
JP2006019476A (en) Aligner and fabrication process of microdevice
JP5604813B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2006228794A (en) Illuminating optical device, exposure device, and method of exposure
JP2020074031A (en) Illumination optical system, exposure apparatus, and method for manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516798

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762343

Country of ref document: EP

Kind code of ref document: A1