WO2009150095A1 - Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione - Google Patents

Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione Download PDF

Info

Publication number
WO2009150095A1
WO2009150095A1 PCT/EP2009/056881 EP2009056881W WO2009150095A1 WO 2009150095 A1 WO2009150095 A1 WO 2009150095A1 EP 2009056881 W EP2009056881 W EP 2009056881W WO 2009150095 A1 WO2009150095 A1 WO 2009150095A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
methyl
formula
compound
alkyl
Prior art date
Application number
PCT/EP2009/056881
Other languages
English (en)
Inventor
Christopher John Mathews
James Nicholas Scutt
Mangala Govenkar
Michel Muehlebach
Original Assignee
Syngenta Participations Ag
Syngenta Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0810817A external-priority patent/GB0810817D0/en
Priority claimed from GB0813689A external-priority patent/GB0813689D0/en
Application filed by Syngenta Participations Ag, Syngenta Limited filed Critical Syngenta Participations Ag
Priority to EP09761658A priority Critical patent/EP2300449A1/fr
Publication of WO2009150095A1 publication Critical patent/WO2009150095A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/32Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/02Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/10Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems

Definitions

  • the present invention relates to new pesticidal, in particular insecticidal, acaricidal, molluscicidal and nematicidal compositions and to methods of using them to combat and control pests such as insect, acarine, mollusc and nematode pests.
  • R 1 is halogen, d-C 4 alkyl, CrC 4 haloalkyl, C 3 -C 6 cycloalkyl, C 2 -C 4 alkenyl, C 2 -C 4 haloalkenyl,
  • R 2 is optionally substituted aryl or optionally substituted heteroaryl; r is O, 1 , 2 or 3;
  • R 3 if r is 1 is halogen, Ci.C 6 alkyl, Ci.C 6 haloalkyl, Ci.C 6 alkoxy, Ci.C 6 haloalkoxy, C 2-
  • Ci.C 6 alkoxy Ci.C 6 haloalkoxy
  • Ci.C 6 haloalkoxy C 2- C 6 alkenyl, C 2- C 6 alkynyl, Ci.C 6 alkylthio, Ci-
  • R 4 , R 5 , R 6 and R 7 independently of each other, are hydrogen, Ci-C 4 alkyl, Ci-C 4 haloalkyl,
  • C 2 haloalkyl or halogen cyclobutyl or cyclobutyl substituted by d- or C 2 alkyl; oxetanyl or oxetanyl substituted by d- or C 2 alkyl; C 5 -C 7 cycloalkyl or C 5 -C 7 cycloalkyl substituted by d- or C 2 alkyl or d- or C 2 haloalkyl, where a methylene group of the cycloalkyl moiety is optionally replaced by an oxygen or sulfur atom or a sulfinyl or sulfonyl group; C 4 - dcycloalkenyl or C 4 -C 7 cycloalkenyl substituted by d- or C 2 alkyl or d- or C 2 haloalkyl, where a methylene group of the cycloalkenyl moiety is optionally replaced by an oxygen or sulfur atom or a sulfin
  • R 4 and R 5 , or R 6 and R 7 are joined to form a 5-7 membered saturated or unsaturated ring in which a methylene group is optionally replaced by an oxygen or sulfur atom, or a 5-7 membered saturated or unsaturated ring substituted by Cr or C 2 alkyl, where a methylene group of the ring is optionally replaced by an oxygen or sulfur atom; or R 4 and R 7 are joined to form a 5-7 membered saturated or unsaturated ring unsubstituted or substituted by d- or C 2 alkyl, d- or C 2 alkoxy, Ci-C 2 alkoxyCi-C 2 alkyl, hydroxy, halogen, phenyl or phenyl substituted by d-C 4 alkyl, d-C 4 alkoxy, Ci-C 4 haloalkyl, halogen, nitro, cyano, d-C 4 alkylthio, d-C 4 alkylsulfiny
  • R 8 is hydrogen, d-C 6 alkyl, C 3 -C 6 cycloalkyl, d-C 6 alkoxycarbonyl, tri(d-C 6 alkyl)silyl- ethyloxycarbonyl, d-C 6 haloalkoxycarbonyl, cyano, d-C 6 haloalkyl, d-C 6 hydroxyalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkenyl, d-C 6 alkylcarbonyl, d-C 6 haloalkylcarbonyl, Ci-C 6 cycloalkylcarbonyl, phenylcarbonyl or phenylcarbonyl substituted by R 9 ; benzylcarbonyl or benzylcarbonyl substituted by R 9 ; pyridylcarbonyl or pyridylcarbonyl substituted by R 9 ;
  • the compounds of the formula I are known as herbicides from International application No. PCT/EP2007/010848.
  • a preferred composition contains those compounds of the formula I, wherein R 1 is halogen, Ci-C 4 alkyl, C r C 4 haloalkyl, C 2 -C 4 alkenyl or C 2 -C 4 alkynyl.
  • R 2 in the compounds of the formula I is aryl or heteroaryl; or aryl or heteroaryl both substituted by halogen, Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 2 -C 4 alkenyl, C 2 -C 4 haloalkenyl, C 2 -C 4 alkynyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, phenoxy, Ci-C 4 alkylthio, d- C 4 alkylsulfinyl, Ci-C 4 alkylsulfonyl, Ci-C 4 haloalkylthio, Ci-C 4 haloalkylsulfinyl, d- C 4 haloalkylsulfonyl, C 3 -C 6 cycloalkyl, Ci-C 4 alkylsulfonyloxy, Ci-C 4 haloalkylsulfonyloxy, d- C
  • R 2 is phenyl, thienyl, furyl, pyrrolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, triazinyl, pyridazinyl, oxadiazolyl and thiadiazolyl, and N-oxides and salts thereof, where these rings are unsubstituted or substituted by halogen, d-C 4 alkyl, Ci-C 4 haloalkyl, C 2 -C 4 alkenyl, C 2 - C 4 haloalkenyl, C 2 -C 4 alkynyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, Ci-C 4 alkylthio, d- C 4 alkylsul
  • R 2 is phenyl or pyridyl or phenyl or pyridyl both substituted by halogen, nitro, cyano, Ci-C 2 alkyl, Ci-C 2 haloalkyl, d-C 2 alkoxy or
  • Ci-C 2 haloalkoxy Ci-C 2 haloalkoxy
  • R 2 is phenyl substituted at the para-position by halogen (in particular chlorine) and is optionally further substituted by halogen, nitro, d-
  • Ci-C 2 haloalkyl Ci-C 2 alkoxy or Ci-C 2 haloalkoxy.
  • R 3 in the compounds of the formula I is hydrogen (r is 0), halogen or d-C 6 alkyl, especially hydrogen.
  • R 3 if r is 1 , is halogen or d-C 3 alkyl.
  • R 4 , R 5 , R 6 and R 7 in the compounds of the formula I are hydrogen, d-dalkyl, d-dhaloalkyl, d-C 4 alkoxyd-C 4 alkyl, d-dalkylthiod-dalkyl, d-dalkylsulfinyld-dalkyl, d-dalkylsulfonyld-dalkyl; C 5 - dcycloalkyl or C 5 -dcycloalkyl substituted by d- or C 2 alkyl or d- or C 2 haloalkyl and in which a methylene group is optionally replaced by an oxygen or sulfur atom or a sulfinyl or sulfonyl group; C 5 -dcycloalkylCi-C 5 alkyl or C 5 -dcycloalkylCi-C 5 alkyl substituted by d- C
  • R 4 , R 5 , R 6 and R 7 independently of each other, are hydrogen, d-C 2 alkyl, d-C 2 haloalkyl or d-C 2 alkoxyd-C 2 alkyl.
  • G in the compounds of the formula I is C(X a )-R a or C(X b )- X c -R b , and the meanings of X a , R a , X b , X c and R b are as defined above.
  • the latentiating group G is selected from the groups C(X a )-R a , C(X b )-X c -R b , wherein X a , X b and X c are oxygen, R a is d-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl or d- dalkoxyd-dalkyl and R b is d-C 6 alkyl, C 3 -C 6 alkenyl, C 3 -C 6 alkynyl, C 3 -C 6 cycloalkyl or d- C 4 alkoxyCi-C 4 alkyl.
  • More important groups G comprise hydrogen, an alkali metal or alkaline earth metal cation as an agriculturally acceptable cation, where hydrogen is particularly preferred.
  • R 1 in the compounds of the formula I is CrC 4 alkyl
  • R 2 is phenyl or phenyl substituted by halogen or Ci-C 2 alkyl
  • R 3 is hydrogen
  • R 4 , R 5 , R 6 and R 7 independently of each other, are CrC 2 alkyl
  • Y is O
  • G is hydrogen.
  • the invention covers also compositions with salts of the compounds of the formula I with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases.
  • alkali metal and alkaline earth metal hydroxides as salt formers, special mention should be made of the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially the hydroxides of sodium and potassium.
  • the compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
  • amines suitable for ammonium salt formation include ammonia as well as primary, secondary and tertiary Ci-Ci 8 alkylamines, Ci-C 4 hydroxyalkylamines and C 2 -C 4 alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methylethylamine, methylisopropylamine, methylhexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbuty
  • Preferred quaternary ammonium bases suitable for salt formation correspond, for example, to the formula [N(R 3 R b R c Rd)]OH wherein R 3 , R b , R c and R d are each independently of the others CrC 4 alkyl.
  • Further suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions.
  • substituents G R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 , compounds of formula I may exist in different isomeric forms.
  • G is hydrogen
  • compounds of formula I may exist in different tautomeric forms:
  • the compounds of formula I can be prepared by methods described in International application No. PCT/EP2007/010848.
  • compositions according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
  • the active ingredients act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina.
  • the insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e.
  • compositions according to the invention can be used to combat and control infestations of insect pests such as Lepidoptera, Diptera, Hemiptera, Thysanoptera, Orthoptera, Dictyoptera, Coleoptera, Siphonaptera, Hymenoptera and lsoptera and also other invertebrate pests, for example, acarine, nematode and mollusc pests.
  • insect pests such as Lepidoptera, Diptera, Hemiptera, Thysanoptera, Orthoptera, Dictyoptera, Coleoptera, Siphonaptera, Hymenoptera and lsoptera and also other invertebrate pests, for example, acarine, nematode and mollusc pests.
  • pests Insects, acarines, nematodes and molluscs are hereinafter collectively referred to as pests.
  • the pests which may be combated and controlled by the use of the invention compounds include those pests associated with agriculture (which term includes the growing of crops for food and fibre products), horticulture and animal husbandry, companion animals, forestry and the storage of products of vegetable origin (such as fruit, grain and timber); those pests associated with the damage of man-made structures and the transmission of diseases of man and animals; and also nuisance pests (such as flies).
  • pest species which may be controlled by the inventive compositions include: Myzus persicae (aphid), Aphis gossypii (aphid), Aphis fabae (aphid), Lygus spp. (capsids), Dysdercus spp. (capsids), Nilaparvata lugens (planthopper), Nephotettixc incticeps (leafhopper), Nezara spp. (stinkbugs), Euschistus spp. (stinkbugs), Leptocorisa spp. (stinkbugs), Frankliniella occidentalis (thrip), Thrips spp.
  • the active ingredients can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
  • Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
  • crops is to be understood as including also crops that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • ALS inhibitors for example primisulfuron, prosulfuron and trifloxysulfuron
  • EPSPS 5-enol-pyrovyl-shikimate-3-phosphate-synthase
  • GS glutamine synthetase
  • imazamox by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola).
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®.
  • the term "crops" is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as ⁇ -endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi ) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1 , VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins for example insecticidal proteins from Bacillus cereus or Bacillus popliae
  • Bacillus thuringiensis such as ⁇ -endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecd
  • ⁇ -endotoxins for example CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi ) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1 , VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ).
  • Truncated toxins for example a truncated CrylA(b), are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CrylllA055, a cathepsin-D-recognition sequence is inserted into a CrylllA toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-O 374 753, WO 93/07278, WO 95/34656, EP-A-O 427 529, EP-A-451 878 and WO 03/052073.
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-O 367 474, EP-A-O 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylA(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylllB(bi ) toxin); YieldGard Plus® (maize variety that expresses a CrylA(b) and a CrylllB(bi ) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylA(c) tox
  • transgenic crops are:
  • Bt1 1 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylA(b) toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect- resistant by transgenic expression of a modified CrylllA toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-D-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a CrylllB(bi ) toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacte ⁇ um sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylA(b) toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-O 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-O 392 225, WO 95/33818, and EP-A-O 353 191.
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A- 0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906).
  • ion channel blockers such as blockers for sodium and calcium channels
  • the viral KP1 , KP4 or KP6 toxins for example the viral KP1 , KP4 or KP6 toxins
  • stilbene synthases such as the viral K
  • compositions according to the invention are the protection of stored goods and storerooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
  • compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas. Examples of such parasites are:
  • Anoplurida Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Calliphora spp., Glossina spp., Call
  • Siphonaptrida for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
  • Heteropterida for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
  • Actinedida Prostigmata
  • Acaridida Acaridida
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp.
  • compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
  • the invention therefore provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula I.
  • the compositions are preferably used against insects or acarines.
  • plant as used herein includes seedlings, bushes and trees.
  • inventively used compounds can be applied in unmodified form, as obtained in the synthesis, but they are generally formulated into herbicidal compositions in a variety of ways using formulation adjuvants, such as carriers, solvents and surface-active substances.
  • the formulations can be in various physical forms, for example in the form of dusting powders, gels, wettable powders, water-dispersible granules, water-dispersible tablets, effervescent compressed tablets, emulsifiable concentrates, microemulsifiable concentrates, oil-in-water emulsions, oil flowables, aqueous dispersions, oily dispersions, suspoemulsions, capsule suspensions, emulsifiable granules, soluble liquids, water-soluble concentrates (with water or a water-miscible organic solvent as carrier), impregnated polymer films or in other forms known, for example, from the Manual on Development and Use of FAO Specifications for Plant Protection Products, 5th Edition,
  • the formulations can be prepared, for example, by mixing the active ingredient with formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, for example finely divided solids, mineral oils, vegetable oils, modified vegetable oils, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into their surroundings in controlled amounts (e.g. slow release). Microcapsules usually have a diameter of from 0.1 to 500 microns.
  • the active ingredients contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight.
  • the active ingredients can be present in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes comprise, for example, natural and synthetic gums, cellulose, styrene- butadiene copolymers, polyacrylonitrile, polyacrylate, polyester, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art in this connection.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylenes carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1 ,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropy
  • Water is generally the carrier of choice for the dilution of the concentrates.
  • Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montomorillonite, cottonseed husks, wheatmeal, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar materials, as described, for example, in CFR 180.1001. (c) & (d).
  • a large number of surface-active substances can advantageously be used both in solid and in liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface-active substances may be anionic, cationic, non-ionic or polymeric and they may be used as emulsifiying, wetting or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecyl- benzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol-alkylene oxide addition products, such as tridecyl alcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonat.es, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2- ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride, polyethylene glycol est
  • Further adjuvants which can usually be used in pesticidal formulations include crystallisation inhibitors, viscosity-modifying substances, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing aids, anti-foams, complexing agents, neutralising or pH- modifying substances and buffers, corrosion-inhibitors, fragrances, wetting agents, absorption improvers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, anti-freezes, microbiocides, and also liquid and solid fertilisers.
  • the formulations may also comprise additional active substances, for example further herbicides, herbicide safeners, plant growth regulators, fungicides or insecticides.
  • compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive used in the composition according to the invention is generally from 0.01 to 10 %, based on the spray mixture.
  • the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rh ⁇ ne-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • a preferred additive contains, for example, as active components essentially 80 % by weight alkyl esters of fish oils and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers.
  • Especially preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of Ci 2 -Ci 8 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being important.
  • Those esters are known as methyl laurate (CAS-1 1 1-82-0), methyl palmitate (CAS-1 12-39- 0) and methyl oleate (CAS-1 12-62-9).
  • a preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH).
  • Those and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.
  • the application and action of the oil additives can be further improved by combining them with surface-active substances, such as non-ionic, anionic or cationic surfactants.
  • surface-active substances such as non-ionic, anionic or cationic surfactants.
  • suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485.
  • Preferred surface-active substances are anionic surfactants of the dodecyl- benzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C 12 -C 22 fatty alcohols having a degree of ethoxylation of from 5 to 40.
  • Examples of commercially available surfactants are the Genapol types (Clariant AG).
  • silicone surfactants especially polyalkyl-oxide-modified heptamethyltrisiloxanes, which are commercially available e.g. as Silwet L-77®, and also perfluorinated surfactants.
  • concentration of surface-active substances in relation to the total additive is generally from 1 to 30 % by weight.
  • oil additives that consist of mixtures of oils or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Syngenta AG, CH) and Actipron® (BP Oil UK Limited, GB).
  • the said surface-active substances may also be used in the formulations alone, that is to say without oil additives.
  • an organic solvent to the oil additive/surfactant mixture can contribute to a further enhancement of action.
  • Suitable solvents are, for example, Solvesso® (ESSO) and Aromatic Solvent® (Exxon Corporation).
  • the concentration of such solvents can be from 10 to 80 % by weight of the total weight.
  • Such oil additives which may be in admixture with solvents, are described, for example, in US-A-4 834 908.
  • a commercially available oil additive disclosed therein is known by the name MERGE® (BASF Corporation).
  • a further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada.)
  • alkylpyrrolidones e.g. Agrimax®
  • formulations of alkylpyrrolidones such as, for example, Agrimax®
  • synthetic latices such as, for example, polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®)
  • propionic acid for example Eurogkem Pen-e-trate®
  • the compositions comprise 0.1 to 99%, especially 0.1 to 95%, of active ingredient and 1 to 99.9%, especially 5 to 99.9%, of at least one solid or liquid adjuvant, it being possible as a rule for 0 to 25%, especially 0.1 to 20%, of the composition to be surfactants(% in each case meaning percent by weight).
  • the end consumer as a rule uses dilute compositions which have substantially lower concentrations of active ingredient.
  • Emulsifiable concentrates active ingredient: 1 to 95%, preferably 5 to 20% surfactant: 1 to 30%, preferably 10 to 20 % solvent: 5 to 98%, preferably 70 to 85%
  • Dusts active ingredient: 0.1 to 10%, preferably 0.1 to 1 % solid carrier: 99.9 to 90%, preferably 99.9 to 99%
  • Suspension concentrates active ingredient: 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surfactant: 1 to 40%, preferably 2 to 30% Wettable powders: active ingredient: 0.5 to 90%, preferably 1 to 80% surfactant: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 99%, preferably 15 to 98%
  • Granulates active ingredient: 0.5 to 30%, preferably 3 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%
  • compositions can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
  • a preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question.
  • the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
  • compositions according to the invention are also suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type.
  • the propagation material can be treated with the compositions prior to planting, for example seed can be treated prior to sowing.
  • the compositions can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling.
  • a compound of formula I is usually formulated into a composition which includes, in addition to the compound of formula I, a suitable inert diluent or carrier and, optionally, a formulation adjuvant in form of a surface active agent (SFA) as described herein or, for example, in EP- B-1062217.
  • SFA surface active agent
  • SFAs are chemicals which are able to modify the properties of an interface (for example, liquid/solid, liquid/air or liquid/liquid interfaces) by lowering the interfacial tension and thereby leading to changes in other properties (for example dispersion, emulsification and wetting). It is preferred that all compositions (both solid and liquid formulations) comprise, by weight, 0.0001 to 95%, more preferably 1 to 85%, for example 5 to 60%, of a compound of formula I.
  • the composition is generally used for the control of pests such that a compound of formula I is applied at a rate of from 0.1 g tol Okg per hectare, preferably from 1 g to 6kg per hectare, more preferably from 1 g to 1 kg per hectare.
  • a compound of formula I When used in a seed dressing, a compound of formula I is used at a rate of 0.0001 g to 10g (for example 0.001 g or 0.05g), preferably 0.005g to 10g, more preferably 0.005g to 4g, per kilogram of seed.
  • compositions can be chosen from a number of formulation types, including dustable powders (DP), soluble powders (SP), water soluble granules (SG), water dispersible granules (WG), wettable powders (WP), granules (GR) (slow or fast release), soluble concentrates (SL), oil miscible liquids (OL), ultra low volume liquids (UL), emulsifiable concentrates (EC), dispersible concentrates (DC), emulsions (both oil in water (EW) and water in oil (EO)), micro-emulsions (ME), suspension concentrates (SC), aerosols, fogging/smoke formulations, capsule suspensions (CS) and seed treatment formulations.
  • the formulation type chosen in any instance will depend upon the particular purpose envisaged and the physical, chemical and biological properties of the compound of formula I.
  • Dustable powders may be prepared by mixing a compound of formula I with one or more solid diluents (for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers) and mechanically grinding the mixture to a fine powder.
  • solid diluents for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers
  • Soluble powders may be prepared by mixing a compound of formula I with one or more water-soluble inorganic salts (such as sodium bicarbonate, sodium carbonate or magnesium sulphate) or one or more water-soluble organic solids (such as a polysaccharide) and, optionally, one or more wetting agents, one or more dispersing agents or a mixture of said agents to improve water dispersibility/solubility. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water soluble granules (SG).
  • water-soluble inorganic salts such as sodium bicarbonate, sodium carbonate or magnesium sulphate
  • water-soluble organic solids such as a polysaccharide
  • wetting agents such as sodium bicarbonate, sodium carbonate or magnesium sulphate
  • dispersing agents such as sodium bicarbonate, sodium carbonate or magnesium sulphate
  • SG water soluble granules
  • WP Wettable powders
  • WG Water dispersible granules
  • Granules may be formed either by granulating a mixture of a compound of formula I and one or more powdered solid diluents or carriers, or from pre-formed blank granules by absorbing a compound of formula I (or a solution thereof, in a suitable agent) in a porous granular material (such as pumice, attapulgite clays, fuller's earth, kieselguhr, diatomaceous earths or ground corn cobs) or by adsorbing a compound of formula I (or a solution thereof, in a suitable agent) on to a hard core material (such as sands, silicates, mineral carbonates, sulphates or phosphates) and drying if necessary.
  • a hard core material such as sands, silicates, mineral carbonates, sulphates or phosphates
  • Agents which are commonly used to aid absorption or adsorption include solvents (such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters) and sticking agents (such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils).
  • solvents such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters
  • sticking agents such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils.
  • One or more other additives may also be included in granules (for example an emulsifying agent, wetting agent or dispersing agent).
  • DC Dispersible Concentrates
  • a compound of formula I may be prepared by dissolving a compound of formula I in water or an organic solvent, such as a ketone, alcohol or glycol ether.
  • organic solvent such as a ketone, alcohol or glycol ether.
  • surface active agent for example to improve water dilution or prevent crystallisation in a spray tank.
  • Emulsifiable concentrates or oil-in-water emulsions (EW) may be prepared by dissolving a compound of formula I in an organic solvent (optionally containing one or more wetting agents, one or more emulsifying agents or a mixture of said agents).
  • Suitable organic solvents for use in ECs include aromatic hydrocarbons (such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark), ketones (such as cyclohexanone or methylcyclohexanone) and alcohols (such as benzyl alcohol, furfuryl alcohol or butanol), N-alkylpyrrolidones (such as N-methylpyrrolidone or N-octylpyrrolidone), dimethyl amides of fatty acids (such as Cs-C-io fatty acid dimethylamide) and chlorinated hydrocarbons.
  • aromatic hydrocarbons such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark
  • ketones such as
  • An EC product may spontaneously emulsify on addition to water, to produce an emulsion with sufficient stability to allow spray application through appropriate equipment.
  • Preparation of an EW involves obtaining a compound of formula I either as a liquid (if it is not a liquid at room temperature, it may be melted at a reasonable temperature, typically below 7O 0 C) or in solution (by dissolving it in an appropriate solvent) and then emulsifiying the resultant liquid or solution into water containing one or more SFAs, under high shear, to produce an emulsion.
  • Suitable solvents for use in EWs include vegetable oils, chlorinated hydrocarbons (such as chlorobenzenes), aromatic solvents (such as alkylbenzenes or alkylnaphthalenes) and other appropriate organic solvents which have a low solubility in water.
  • Microemulsions may be prepared by mixing water with a blend of one or more solvents with one or more SFAs, to produce spontaneously a thermodynamically stable isotropic liquid formulation.
  • a compound of formula I is present initially in either the water or the solvent/SFA blend.
  • Suitable solvents for use in MEs include those hereinbefore described for use in in ECs or in EWs.
  • An ME may be either an oil-in-water or a water-in-oil system (which system is present may be determined by conductivity measurements) and may be suitable for mixing water-soluble and oil-soluble pesticides in the same formulation.
  • An ME is suitable for dilution into water, either remaining as a microemulsion or forming a conventional oil-in-water emulsion.
  • SC Suspension concentrates
  • SCs may comprise aqueous or non-aqueous suspensions of finely divided insoluble solid particles of a compound of formula I.
  • SCs may be prepared by ball or bead milling the solid compound of formula I in a suitable medium, optionally with one or more dispersing agents, to produce a fine particle suspension of the compound.
  • One or more wetting agents may be included in the composition and a suspending agent may be included to reduce the rate at which the particles settle.
  • a compound of formula I may be dry milled and added to water, containing agents hereinbefore described, to produce the desired end product.
  • Aerosol formulations comprise a compound of formula I and a suitable propellant (for example n-butane).
  • a compound of formula I may also be dissolved or dispersed in a suitable medium (for example water or a water miscible liquid, such as n-propanol) to provide compositions for use in non-pressurised, hand-actuated spray pumps.
  • a compound of formula I may be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating, in an enclosed space, a smoke containing the compound.
  • Capsule suspensions may be prepared in a manner similar to the preparation of EW formulations but with an additional polymerisation stage such that an aqueous dispersion of oil droplets is obtained, in which each oil droplet is encapsulated by a polymeric shell and contains a compound of formula I and, optionally, a carrier or diluent therefor.
  • the polymeric shell may be produced by either an interfacial polycondensation reaction or by a coacervation procedure.
  • the compositions may provide for controlled release of the compound of formula I and they may be used for seed treatment.
  • a compound of formula I may also be formulated in a biodegradable polymeric matrix to provide a slow, controlled release of the compound.
  • a composition of the present invention may include one or more additives to improve the biological performance of the composition (for example by improving wetting, retention or distribution on surfaces; resistance to rain on treated surfaces; or uptake or mobility of a compound of formula I).
  • additives include surface active agents, spray additives based on oils, for example certain mineral oils or natural plant oils (such as soy bean and rape seed oil), and blends of these with other bio-enhancing adjuvants (ingredients which may aid or modify the action of a compound of formula I).
  • a compound of formula I may also be formulated for use as a seed treatment, for example as a powder composition, including a powder for dry seed treatment (DS), a water soluble powder (SS) or a water dispersible powder for slurry treatment (WS), or as a liquid composition, including a flowable concentrate (FS), a solution (LS) or a capsule suspension (CS).
  • DS powder for dry seed treatment
  • SS water soluble powder
  • WS water dispersible powder for slurry treatment
  • CS capsule suspension
  • the preparations of DS, SS, WS, FS and LS compositions are very similar to those of, respectively, DP, SP, WP, SC and DC compositions described above.
  • Compositions for treating seed may include an agent for assisting the adhesion of the composition to the seed (for example a mineral oil or a film-forming barrier).
  • Wetting agents, dispersing agents and emulsifying agents may be surface active agents (SFAs) of the cationic, anionic, amphoteric or non-ionic type.
  • Suitable SFAs of the cationic type include quaternary ammonium compounds (for example cetyltrimethyl ammonium bromide), imidazolines and amine salts.
  • Suitable anionic SFAs include alkali metals salts of fatty acids, salts of aliphatic monoesters of sulphuric acid (for example sodium lauryl sulphate), salts of sulphonated aromatic compounds (for example sodium dodecylbenzenesulphonate, calcium dodecylbenzenesulphonate, butylnaphthalene sulphonate and mixtures of sodium di- /sopropyl- and tri-/sopropyl-naphthalene sulphonates), ether sulphates, alcohol ether sulphates (for example sodium laureth-3-sulphate), ether carboxylates (for example sodium laureth-3-carboxylate), phosphate esters (products from the reaction between one or more fatty alcohols and phosphoric acid (predominately mono-esters) or phosphorus pentoxide (predominately di-esters), for example the reaction between lauryl alcohol and tetraphosphoric
  • Suitable SFAs of the amphoteric type include betaines, propionates and glycinates.
  • Suitable SFAs of the non-ionic type include condensation products of alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof, with fatty alcohols (such as oleyl alcohol or cetyl alcohol) or with alkylphenols (such as octylphenol, nonylphenol or octylcresol); partial esters derived from long chain fatty acids or hexitol anhydrides; condensation products of said partial esters with ethylene oxide; block polymers (comprising ethylene oxide and propylene oxide); alkanolamides; simple esters (for example fatty acid polyethylene glycol esters); amine oxides (for example lauryl dimethyl amine oxide); and lecithins.
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof
  • fatty alcohols such as oleyl alcohol or cetyl alcohol
  • alkylphenols such as octylphenol, nonyl
  • Suitable suspending agents include hydrophilic colloids (such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose) and swelling clays (such as bentonite or attapulgite).
  • hydrophilic colloids such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose
  • swelling clays such as bentonite or attapulgite
  • a composition of the invention may be applied by any of the known means of applying pesticidal compositions. For example, it may be applied, formulated or unformulated, to the pests or to a locus of the pests (such as a habitat of the pests, or a growing plant liable to infestation by the pests) or to any part of the plant, including the foliage, stems, branches or roots, to the seed before it is planted or to other media in which plants are growing or are to be planted (such as soil surrounding the roots, the soil generally, paddy water or hydroponic culture systems), directly or it may be sprayed on, dusted on, applied by dipping, applied as a cream or paste formulation, applied as a vapour or applied through distribution or incorporation of a composition (such as a granular composition or a composition packed in a water-soluble bag) in soil or an aqueous environment. It may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods, or applied by land or aerial irrigation systems.
  • compositions for use as aqueous preparations are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being added to water before use.
  • These concentrates which may include DCs, SCs, ECs, EWs, MEs SGs, SPs, WPs, WGs and CSs, are often required to withstand storage for prolonged periods and, after such storage, to be capable of addition to water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment.
  • Such aqueous preparations may contain varying amounts of a compound of formula I (for example 0.0001 to 10%, by weight) depending upon the purpose for which they are to be used.
  • a composition of the inventionl may contain mixtures with fertilisers (for example nitrogen-, potassium- or phosphorus-containing fertilisers).
  • fertilisers for example nitrogen-, potassium- or phosphorus-containing fertilisers.
  • Suitable formulation types include granules of fertiliser.
  • the mixtures suitably contain up to 25% by weight of the compound of formula I.
  • the invention therefore also provides a fertiliser composition comprising a fertiliser and a compound of formula I.
  • compositions of this invention may contain other compounds having biological activity, for example micronutrients or compounds having fungicidal activity or which possess plant growth regulating, herbicidal, insecticidal, nematicidal or acaricidal activity.
  • the compound of formula I may be the sole active ingredient of the composition or it may be admixed with one or more additional active ingredients such as a pesticide (insect, acarine, mollusc and nematode pesticide), fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may: provide a composition having a broader spectrum of activity or increased persistence at a locus; synergise the activity or complement the activity (for example by increasing the speed of effect or overcoming repellency) of the compound of formula I; or help to overcome or prevent the development of resistance to individual components.
  • the particular additional active ingredient will depend upon the intended utility of the composition.
  • Suitable pesticides include the following: a) Pyrethroids, such as permethrin, cypermethrin, fenvalerate, esfenvalerate, deltamethrin, cyhalothrin (in particular lambda-cyhalothrin), bifenthrin, fenpropathrin, cyfluthrin, tefluthrin, fish safe pyrethroids (for example ethofenprox), natural pyrethrin, tetramethrin, s-bioallethrin, fenfluthrin, prallethrin or 5-benzyl-3-furylmethyl-(E_)-(1 R,3S)-2,2-dimethyl- 3-(2-oxothiolan-3-ylidenemethyl)cyclopropane carboxylate; b) Organophosphates, such as, profenofos, sulprofos, acep
  • Chloronicotinyl compounds such as imidacloprid, thiacloprid, acetamiprid, nitenpyram or thiamethoxam; m) Diacylhydrazines, such as tebufenozide, chromafenozide or methoxyfenozide; n) Diphenyl ethers, such as diofenolan or pyriproxifen; o) Indoxacarb; p) Chlorfenapyr; or q) Pymetrozine.
  • other pesticides having particular targets may be employed in the composition, if appropriate for the intended utility of the composition.
  • selective insecticides for particular crops for example stemborer specific insecticides (such as cartap) or hopper specific insecticides (such as buprofezin) for use in rice may be employed.
  • insecticides or acaricides specific for particular insect species/stages may also be included in the compositions (for example acaricidal ovo-larvicides, such as clofentezine, flubenzimine, hexythiazox or tetradifon; acaricidal motilicides, such as dicofol or propargite; acaricides, such as bromopropylate or chlorobenzilate; or growth regulators, such as hydramethylnon, cyromazine, methoprene, chlorfluazuron or diflubenzuron).
  • fungicidal compounds which may be included in the composition of the invention are (£)- ⁇ /-methyl-2-[2-(2,5-dimethylphenoxymethyl)phenyl]-2-methoxy- iminoacetamide (SSF-129), 4-bromo-2-cyano- ⁇ /, ⁇ /-dimethyl-6-trifluoromethylbenzimidazole- 1 -sulphonamide, ⁇ -[ ⁇ /-(3-chloro-2,6-xylyl)-2-methoxyacetamido]- ⁇ -butyrolactone, 4-chloro-2- cyano- ⁇ /, ⁇ /-dimethyl-5-p-tolylimidazole-1 -sulfonamide (IKF-916, cyamidazosulfamid), 3-5-dichloro- ⁇ /-(3-chloro-1-ethyl-1-methyl-2-oxopropyl)-4-methylbenzamide (RH-7281 , zoxamide
  • the compounds of formula I may be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases.
  • synergists for use in the compositions include piperonyl butoxide, sesamex, safroxan and dodecyl imidazole.
  • composition according to the invention can also be used in combination with one or more other herbicides.
  • the following mixtures of the compound of formula I are important: compound of formula I + acetochlor, compound of formula I + acifluorfen, compound of formula I + acifluorfen-sodium, compound of formula I + aclonifen, compound of formula I + acrolein, compound of formula I + alachlor, compound of formula I + alloxydim, compound of formula I + allyl alcohol, compound of formula I + ametryn, compound of formula I + amicarbazone, compound of formula I + amidosulfuron, compound of formula I + aminopyralid, compound of formula I + amitrole, compound of formula I + ammonium sulfamate, compound of formula I + anilofos, compound of formula I + asulam, compound of formula I + atraton, compound of formula I + atrazine, compound of formula I + azimsulfuron, compound of formula I + BCPC, compound of formula
  • the mixing partners of the compound of formula I may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 12th Edition (BCPC), 2000.
  • the compound of the formula I is preferably a compound of Tables 1 to 294, and more preferably, a compound of the following Tables A to D.
  • the mixing ratio of the compound of formula I to the mixing partner is preferably from 1 : 100 to 1000:1.
  • mixtures can advantageously be used in the above-mentioned formulations (in which case "active ingredient” relates to the respective mixture of compound of formula I with the mixing partner).
  • Some mixtures may comprise active ingredients which have significantly different physical, chemical or biological properties such that they do not easily lend themselves to the same conventional formulation type.
  • other formulation types may be prepared.
  • one active ingredient is a water insoluble solid and the other a water insoluble liquid
  • the resultant composition is a suspoemulsion (SE) formulation.
  • R 1 is methyl
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R are as defined below:
  • Y is O
  • R 1 is methyl
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • Y is O
  • R 1 is chlorine
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • This table covers 378 compounds of the following type: wherein Y is O, R 1 is methyl, R 4 and R 6 are methyl, R 5 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • Y is O
  • R 1 is chlorine
  • R 4 and R 6 are methyl
  • R 5 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • This table covers 378 compounds of the following type: wherein Y is O, R 1 is ethyl, R 4 , R 5 , R 6 and R 7 are methyl, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • Y is S
  • R 1 is ethyl
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • Y is S, R 1 is ethyl, R 4 is methyl, R 5 , R 6 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • Y is S, R 1 is chlorine, R 4 and R 5 are methyl, R 6 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • This table covers 378 compounds of the following type: wherein Y is S, R 1 is methyl, R 4 and R 6 are methyl, R 5 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • Y is S, R 1 is chlorine, R 4 and R 6 are methyl, R 5 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • Y is S, R 1 is ethyl, R 4 , R 5 and R 6 are methyl, R 7 is hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • This table covers 378 compounds of the following type: wherein Y is S, R 1 is ethyl, R 4 , R 5 , R 6 and R 7 are methyl, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • R 1 is chlorine
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen and R 2 and
  • R 3 are as defined in Table 1.
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is chlorine
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hhyyddrrooggeenn
  • R 2 and R 3 are as defined in Table 1.
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is methyl
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is chlorine
  • R 4 is methyl
  • R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is methyl
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is ethyl
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is methyl
  • R 4 and R 6 are methyl
  • R 5 and R 7 are hydrogen
  • G is hhyyddrrooggeenn
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is ethyl
  • R 4 and R 6 are methyl
  • R 5 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is chlorine
  • R 4 , R 5 and R 6 are methyl
  • R 7 is hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is methyl
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hhyyddrrooggeenn
  • R 2 and R 3 are as defined in Table 1.
  • R 2 and R 3 are as defined in Table 1.
  • Table 81 :
  • R 1 is methyl
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3' are as defined below:
  • Y is O
  • R 1 is ethyl
  • R 4 and R 5 are methyl
  • R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 2 and R 3 are as defined in Table 85.
  • R 2 and R 3 are as defined in Table 85.
  • Y is S
  • R 1 is ethyl
  • R 4 , R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 2 and R 3 are as defined in Table 85.
  • This table covers 126 compounds of the following type: wherein Y is S, R 1 is ethyl, R 4 is methyl, R 5 , R 6 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • Y is S, R 1 is ethyl, R 4 and R 5 are methyl, R 6 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • Y is S, R 1 is ethyl, R 4 and R 6 are methyl, R 5 and R 7 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • This table covers 126 compounds of the following type
  • Y is S, R 1 is ethyl, R 4 , R 5 and R 6 are methyl, R 7 is hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • R 3 are as defined in Table 85.
  • R 2 and R 3 are as defined in Table 85.
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is methyl
  • R 4 is methyl
  • R 5 , R 6 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is methyl
  • R 4 and R 6 are methyl
  • R 5 and R 7 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is ethyl
  • R 4 , R 5 and R 6 are methyl
  • R 7 is hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is ethyl
  • R 4 , R 5 , R 6 and R 7 are methyl
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • Y is O and R 1 and R 3a are methyl, R 4 , R 5 , R 6 and R 7 are methyl, R 3b is methyl, and
  • G is hydrogen and R 2 is as defined in Table 85.
  • Y is O and R 1 is ethyl and R 3a is methyl, R 4 , R 5 , R 6 and R 7 are methyl, R 3b is methyl, and G is hydrogen and R 2 is as defined in Table 85.
  • This table covers 126 compounds of the following type: wherein Y is O and R 1 and R 3a are ethyl, R 4 , R 5 , R 6 and R 7 are methyl, R 3b is methyl, and G is hydrogen and R 2 is as defined in Table 85.
  • G is hydrogen and R 2 is as defined in Table 85.
  • G is hydrogen and R 2 is as defined in Table 85.
  • R 2 and R 3 are as defined in Table 1.
  • Table 168 :
  • This table covers 126 compounds of the following type: wherein Y is O, R 1 is methyl, R 5 is hydrogen and R 6 is methyl, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • Y is O
  • R 1 and R 3a are ethyl
  • R 5 is hydrogen and R 6 is methyl
  • R 3b is methyl
  • G is hydrogen and R 2 is as defined in Table 85.
  • Y is S, R 1 is methyl, R 5 and R 6 are hydrogen, G is hydrogen and R 2 and R 3 are as defined in Table 1.
  • This table covers 126 compounds of the following type: wherein Y is S, R 1 is methyl, R 5 is hydrogen and R 6 is methyl, G is hydrogen and R 2 and R 3 are as defined in Table 85.
  • Y is S, R 1 and R 3a are methyl, R 5 and R 6 are hydrogen, R 3b is methyl, and G is hydrogen and R 2 is as defined in Table 85.
  • R 3 are as defined in Table 85.
  • G is hydrogen and R is as defined in Table 85.
  • Table 233 :
  • R 1 and R 3a are ethyl
  • R 5 and R 6 are hydrogen
  • R 3b is methyl
  • G is hydrogen and R 2 is as defined in Table 85.
  • R 1 is methyl
  • R 5 and R 6 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is ethyl
  • R 5 and R 6 are methyl
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 1.
  • R 1 is methyl
  • R 5 and R 6 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is ethyl
  • R 5 and R 6 are hydrogen
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 is ethyl
  • R 5 and R 6 are methyl
  • G is hydrogen
  • R 2 and R 3 are as defined in Table 85.
  • R 1 and R 3a are ethyl
  • R 5 and R 6 are hydrogen
  • R 3b is methyl
  • G is hydrogen and R 2 is as defined in Table 85.
  • R 3 are as defined in Table 85.
  • G is hydrogen and R 2 is as defined in Table 85.
  • G is hydrogen and R is as defined in Table 85.
  • Example B1 Activity against Myzus persicae (green peach aphid,)
  • Sunflower leaf discs are placed on agar in a 24-well microtiter plate and sprayed with test solutions. After drying, the leaf discs are infested with an aphid population of mixed ages.
  • A-143, B-3, B-46 and D-33 show an activity of over 80% at a concentration of 400ppm.
  • Sunflower leaf discs are placed on agar in a 24-well microtiter plate and sprayed with test solutions. After drying, the leaf discs are infested with a thrips population of mixed ages.
  • A-1 17, A-123, A-125, A-126, A-128, A-131 , A-132, A-141 , A-149, B-4, B-12, B-15, B- 18, B-21 , B-23, B-29, B-31 , B-44, B-49, B-53, C-2, C-3, D-3, D-4, D-5, D-6 and D-33 show an activity of over 80% at a concentration of 400ppm.
  • Example B3 Activity against Tetranychus urticae (two-spotted spider mite)
  • Bean leaf discs on agar in 24-well microtiter plates are sprayed with test solutions. After drying, the leaf discs are infested with mite populations of mixed ages. 8 days later, discs are checked for egg mortality, larval mortality, and adult mortality.
  • B-4, B-18, B-22, B-23, B-52, D-3, D-4, D-5, D-6 and D-33 show an activity of over 80% at a concentration of 400ppm.
  • Example B4 Activity against Heliothis virescens (Tobacco budworm)
  • Eggs (0-24 h old) are placed in 24-well microtiter plate on artificial diet and treated with test solutions by pipetting. After an incubation period of 4 days, samples are checked for egg mortality, larval mortality, and growth regulation.
  • D-4 and D-5 show an activity of over 80% at a concentration of 400ppm.
  • Example B5 Activity against Plutella xylostella (Diamond back moth)
  • MTP 24-well microtiter plate
  • the MTP's are infested with larvae (L2)(10-15 per well). After an incubation period of 5 days, samples are checked for larval mortality, antifeedant and growth regulation. In this test, compounds listed in the Tables A, B, C and D above show good activity.
  • compounds A-1 , A-3, A-4, A-5, A-10, A-29, A-30, A-36, A-37, A-40, A-42, A-43, A- 45, A-47, A-48, A-49, A-50, A-51 , A-79, A-80, A-83, A-84, A-86, A-90, A-96, A-99, A-101 , A- 103, A-1 17, A-123, A-125, A-128, A-132, A-141 , A-142, A-144, A-149, B-4, B-15, B-17, B- 18, B-22, B-23, B-25, B-26, B-31 , B-34, B-36, B-39, B-42, B-43, B-46, B-47, B-51 , D-3, D-4, D-5, D-12, D-15 and D-33 show an activity of over 80% at a concentration of 400ppm.
  • Example B6 Activity against Diabrotica balteata (Corn root worm)
  • MTP 24-well microtiter plate
  • MTP's After drying, the MTP's are infested with larvae (L2)(6-10 per well). After an incubation period of 5 days, samples are checked for larval mortality, antifeedant and growth regulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne des compositions pesticides contenant les composés de pyrandione, de thiopyrandione ou de cyclohexanetrione et des procédés les utilisant pour combattre et contrôler les parasites tels que les insectes, les acariens, les mollusques et les nématodes.
PCT/EP2009/056881 2008-06-12 2009-06-04 Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione WO2009150095A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09761658A EP2300449A1 (fr) 2008-06-12 2009-06-04 Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0810817.7 2008-06-12
GB0810817A GB0810817D0 (en) 2008-06-12 2008-06-12 Pesticidal composition
GB0813689A GB0813689D0 (en) 2008-07-25 2008-07-25 Pesticidal compositions
GB0813689.7 2008-07-25

Publications (1)

Publication Number Publication Date
WO2009150095A1 true WO2009150095A1 (fr) 2009-12-17

Family

ID=41009924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/056881 WO2009150095A1 (fr) 2008-06-12 2009-06-04 Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione

Country Status (2)

Country Link
EP (1) EP2300449A1 (fr)
WO (1) WO2009150095A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281883A1 (en) * 2009-01-19 2011-11-17 Bayer Cropscience Ag 4-Phenyl-pyrane-3,5-diones, 4-Phenyl-thiopyrane-3,5-diones and Cyclohexanetriones and Their Use as Insecticides, Acaricides and/or Fungicides
JP2014040439A (ja) * 2007-06-28 2014-03-06 Syngenta Ltd 新規除草剤
WO2015198859A1 (fr) * 2014-06-26 2015-12-30 住友化学株式会社 Composé hétérocyclique condensé

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102516A1 (en) * 2000-06-19 2004-05-27 Reiner Fischer Phenyl-substituted 5,6-dihydrophyne derivatives for use as pesticides and herbicides
WO2006002810A1 (fr) * 2004-07-05 2006-01-12 Bayer Cropscience Ag Derives de [1.2]-oxazine-3,5-dione et de dihydropyrone substitues par phenyle
US20070015664A1 (en) * 2003-03-14 2007-01-18 Reiner Fischer 2,4,6-Phenyl substituted cyclic ketoenols
WO2008071405A1 (fr) * 2006-12-14 2008-06-19 Syngenta Participations Ag 4-phényl-pyrane-3,5-diones, 4-phényl-thiopyrane-3,5-diones et cyclohexanetriones comme nouveaux herbicides
WO2008145336A1 (fr) * 2007-05-29 2008-12-04 Syngenta Limited Composés bicycliques de 1,3-dione actifs sur le plan herbicide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102516A1 (en) * 2000-06-19 2004-05-27 Reiner Fischer Phenyl-substituted 5,6-dihydrophyne derivatives for use as pesticides and herbicides
US20070015664A1 (en) * 2003-03-14 2007-01-18 Reiner Fischer 2,4,6-Phenyl substituted cyclic ketoenols
WO2006002810A1 (fr) * 2004-07-05 2006-01-12 Bayer Cropscience Ag Derives de [1.2]-oxazine-3,5-dione et de dihydropyrone substitues par phenyle
WO2008071405A1 (fr) * 2006-12-14 2008-06-19 Syngenta Participations Ag 4-phényl-pyrane-3,5-diones, 4-phényl-thiopyrane-3,5-diones et cyclohexanetriones comme nouveaux herbicides
WO2008145336A1 (fr) * 2007-05-29 2008-12-04 Syngenta Limited Composés bicycliques de 1,3-dione actifs sur le plan herbicide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040439A (ja) * 2007-06-28 2014-03-06 Syngenta Ltd 新規除草剤
US20110281883A1 (en) * 2009-01-19 2011-11-17 Bayer Cropscience Ag 4-Phenyl-pyrane-3,5-diones, 4-Phenyl-thiopyrane-3,5-diones and Cyclohexanetriones and Their Use as Insecticides, Acaricides and/or Fungicides
WO2015198859A1 (fr) * 2014-06-26 2015-12-30 住友化学株式会社 Composé hétérocyclique condensé

Also Published As

Publication number Publication date
EP2300449A1 (fr) 2011-03-30

Similar Documents

Publication Publication Date Title
CA2487494C (fr) Derives de spiroindolinepiperidine
US8415369B2 (en) Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides
EP2352376B1 (fr) N-oxyamides spirohétérocycliques utilisés comme pesticides
US9067892B2 (en) Spiroheterocyclic N-oxypiperidines as pesticides
EP2421865B1 (fr) Dérivés spiro-hétérocycliques de pyrrolidine-dione utilisés comme pesticides
US8574607B2 (en) Spiroheterocyclic thiofuran dione derivatives
MXPA06013547A (es) Derivados de piperazina y su uso en el control de plagas.
US8703165B2 (en) Spiro fused 1-amino-piperdine pyrrolidine dione derivatives with pesticidal activity
US20100331348A1 (en) Tropane derivatives useful as pesticides
US8541343B2 (en) Chemical compounds and their use as pesticides
EP2300449A1 (fr) Compositions pesticides contenant un dérivé de pyrandione ou de thiopyrandione ou de cyclohexanetrione
MX2010012251A (es) Compuestos insecticidas.
US9023760B2 (en) 1, 8-diazaspiro [4.5] decane-2, 4-dione derivatives useful as pesticides
AU2010270464A1 (en) Insecticidal compounds
US20130324404A1 (en) 1, 8 -diazaspiro [4.5] decane- 2, 4 -dione derivatives useful as pesticides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009761658

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE