WO2009148269A2 - Benzofluoranthene derivative and an organic luminescent element employing the same - Google Patents

Benzofluoranthene derivative and an organic luminescent element employing the same Download PDF

Info

Publication number
WO2009148269A2
WO2009148269A2 PCT/KR2009/002968 KR2009002968W WO2009148269A2 WO 2009148269 A2 WO2009148269 A2 WO 2009148269A2 KR 2009002968 W KR2009002968 W KR 2009002968W WO 2009148269 A2 WO2009148269 A2 WO 2009148269A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
organic
present
compound represented
Prior art date
Application number
PCT/KR2009/002968
Other languages
French (fr)
Korean (ko)
Other versions
WO2009148269A9 (en
WO2009148269A3 (en
Inventor
신창주
김태형
김경수
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2009148269A2 publication Critical patent/WO2009148269A2/en
Publication of WO2009148269A3 publication Critical patent/WO2009148269A3/en
Publication of WO2009148269A9 publication Critical patent/WO2009148269A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring

Definitions

  • the present invention relates to a novel benzofluoranthene derivative and an organic electroluminescent device using the same. More specifically, a benzimidazole group, a benzothiazole group, The present invention relates to an organic light emitting device including a benzofluoranthene derivative including at least one substituent selected from the group consisting of benzoxazole groups, and an organic material layer containing the benzofluoranthene derivative.
  • organic light emitting phenomenon refers to a phenomenon in which light appears when electric energy is applied to an organic material. That is, when the organic material layer is positioned between the anode and the cathode and a voltage is applied between the two electrodes, electrons and holes are injected and an excited state of the organic material is generated. The excited carrier then returns to its original stable state and emits the unique light of the material itself.
  • organic light emitting devices used in the present invention include a hole injection layer that receives holes from a substrate, an anode, and an anode, a hole transport layer for transferring holes, a light emitting layer for recombining holes and electrons to emit light, an electron transport layer for transferring electrons, It consists of an electron injection layer and a cathode which receive an electron from a cathode.
  • the reason why the EL device is manufactured in multiple layers is that the movement speeds of the holes and the electrons are different. Therefore, if the appropriate hole injection layer, the transport layer, the electron transport layer, and the electron injection layer are made, holes and electrons can be effectively transferred. This is because the light emission efficiency can be improved by balancing the electrons.
  • the electron transport materials disclosed in Japanese Patent Application Laid-Open No. 11-345686 report that they contain oxazole groups and thiazole groups and can be applied to the light emitting layer, but have reached practical use in terms of driving voltage, luminance, and lifetime of the device. I can't.
  • An object of the present invention is to provide a novel compound which is substituted with a substituent having an electron transfer capability to benzofluoranthene, which can be applied to an organic light emitting device to improve luminous efficiency, stability and device life. .
  • an object of this invention is to provide the organic light emitting element using the said compound.
  • the present invention provides a compound represented by the following formula (1).
  • the compound represented by the following formula (1) is a benzofluoranthene derivative.
  • X is selected from the group consisting of NR 6 , S and O;
  • R 1 to R 6 are the same as or different from each other, and are each independently H, a C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group , C 3 ⁇ C 40 heterocycloalkyl group, C 6 ⁇ C 40 arylalkyl group, C 1 ⁇ C 40 alkyloxy group, C 5 ⁇ C 40 aryloxy group, C 5 ⁇ C 40 aryl group and C 5 to C 40 heteroaryl group;
  • A is selected from the group consisting of single bond, heteroarylene, C 5 ⁇ C 40 arylene group and a C 5 ⁇ C 40 of.
  • the present invention also provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode.
  • At least one organic material layer of the one or more organic material layer provides an organic light emitting device characterized in that it comprises a compound represented by the formula (1).
  • the organic material layer including the compound represented by Formula 1 is preferably an electron transport layer.
  • the compound represented by Chemical Formula 1 according to the present invention Since the compound represented by Chemical Formula 1 according to the present invention has excellent electron transporting performance, the compound represented by Chemical Formula 1 exhibits superior performance in terms of voltage and efficiency than when Alq3 is used as the electron transporting layer material of the organic light emitting device. Therefore, the compound represented by Chemical Formula 1 according to the present invention can greatly contribute to improving EL performance and lifespan of an organic EL device. In particular, the improvement of electron transport performance has a great effect on maximizing performance in a full color organic EL panel.
  • FIG. 1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention
  • Example 2 is a TGA graph of Inv-14 prepared in Example 2;
  • Compound represented by the formula (1) according to the present invention is a benzofluoranthene (benzofluoranthene) as a core, a benzimidazole group, a benzothiazole group and a benzoxazole as a substituent having an electron transfer ability It is a benzofluoranthene derivative characterized by including one or more substituents selected from (benzoxazole) groups.
  • the compound represented by Chemical Formula 1 has a structure in which benzofluoranthene is the core, and a benzimidazole group, a benzothiazole group, or a benzoxazole group is substituted at the third carbon position of the benzofluoranthene. It is characteristic to have.
  • the benzofluoranthene moiety (C) is an alkyl group of C 1 ⁇ C 40 , C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C in addition to a hydrogen atom 40 alkynyl group, C 3 to C 40 cycloalkyl group, C 3 to C 40 heterocycloalkyl group, C 6 to C 40 arylalkyl group, C 1 to C 40 alkyloxy group, C 5 to C 40 aryl
  • One or more substituents selected from the group consisting of an oxy group, a C 5 to C 40 aryl group and a C 5 to C 40 heteroaryl group may be introduced.
  • the benzimidazole group, benzothiazole group and benzoxazole group are each independently C 1 ⁇ C 40 Alkyl group, C 2 ⁇ C 40 Alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, C 3 ⁇ C 40 heterocycloalkyl group, C 6 ⁇ C 40 aryl group, C 1 ⁇ alkyloxy group of C 40 of the, C 5 ⁇ C 40 At least one substituent selected from the group consisting of an aryloxy group, a C 5 ⁇ C 40 aryl group and a C 5 ⁇ C 40 heteroaryl group may be substituted.
  • A is selected from the group consisting of single bond, heteroarylene, C 5 ⁇ C 40 arylene group and a C 5 ⁇ C 40 of.
  • Examples of the C 5 to C 40 arylene group and the C 5 to C 40 heteroarylene group of A are as follows, but are not limited thereto.
  • the compound represented by Formula 1 according to the present invention is the same as those of Table 1 below, but the compounds according to the present invention are not limited to those illustrated below.
  • the method for preparing the compound represented by Chemical Formula 1 according to the present invention is not particularly limited, and reactions known in the art may be appropriately applied.
  • the present invention provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer
  • the organic material layer provides an organic light emitting device comprising the compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 may be used one kind or two or more kinds.
  • the compound represented by Chemical Formula 1 may be included as a material for an electron transport layer, in which case the luminous efficiency, stability and device life of the organic light emitting device can be improved. Therefore, the organic material layer including the compound represented by Formula 1 is preferably an electron transport layer.
  • an organic material layer other than the organic material layer including the compound represented by Formula 1 of the present invention may be a hole injection layer, a hole transport layer, a light emitting layer, and / or an electron transport layer.
  • the electron transport layer includes a compound represented by Chemical Formula 1.
  • the electron injection layer may be positioned on the electron transport layer 106.
  • the organic light emitting device of the present invention may not only have a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between the electrode and the organic material layer.
  • the organic material layer including the compound represented by Chemical Formula 1 may be formed by a vacuum deposition method or a solution coating method, but is not limited thereto.
  • the organic light emitting device of the present invention uses an organic material layer and an electrode using materials and methods known in the art, except that one or more organic material layers of the organic material layer are formed to include the compound represented by Chemical Formula 1 of the present invention. By forming.
  • the substrate 101 may be a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet.
  • the anode 102 material may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PE
  • Cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer 103, the hole transport layer 104 and the light emitting layer 105 is not particularly limited, conventional materials known in the art may be used.
  • the glass substrate coated with ITO Indium tin oxide having a thickness of 1500 ⁇ was washed with distilled water ultrasonic waves. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried and transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum depositor.
  • ITO Indium tin oxide
  • Example 3 Compound Inv-1 prepared in Example 1 (Example 3), Compound Inv-14 prepared in Example 2 (Example 4), or Comparative material Alq3 ( Comparative Example 1) was deposited to a thickness of 250 mm 3.
  • LiF an electron injection material
  • aluminum cathode
  • the organic light emitting diode structures of Examples 3 and 4 are listed in Table 2, and the organic light emitting diode structures of Comparative Example 1 are described in Table 3.
  • the properties of the organic light emitting device of Example 3 are described in Table 4
  • the properties of the organic light emitting device of Example 4 are described in Table 5
  • the properties of the organic light emitting device of Comparative Example 1 are described in Table 6 below. It was.
  • organic light emitting diodes (Examples 3 and 4) using the compound according to the present invention exhibited superior performance in terms of voltage and efficiency than organic light emitting diodes (Comparative Example 1) using Alq3. I could confirm it.
  • FIG. 2 is a TGA graph of Inv-14, an electron transporting compound prepared in Example 2
  • FIG. 3 is a TGA graph of Alq3, a known electron transporting material.
  • the Td value of Inv-14 of the present invention is about 80 ° C. higher than that of Alq3, and accordingly, the compound of the present invention can be used to improve the thermal characteristics of the device.
  • the compounds according to the present invention may not only improve the EL performance of the organic EL device, but also greatly contribute to the improvement of the lifetime.
  • the improvement of the electron transport performance is expected to have a great effect in maximizing the performance in the full color organic EL panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a benzofluoranthene derivative and to an organic electroluminescent element employing the same. More specifically, the present invention relates to a benzofluoranthene derivative comprising one or more substituent groups selected from the benzimidazole group, the benzothiazole group and the benzoxazole group, which are substituent groups having an electron-transfer ability. The present invention also relates to an organic luminescent element comprising an organic layer containing this benzofluoranthene derivative.

Description

벤조플루오란센 유도체 및 이를 이용한 유기 발광 소자Benzofluoranthene derivatives and organic light emitting device using the same
본 발명은 신규한 벤조플루오란센(benzofluoranthene) 유도체 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 구체적으로 전자 전달 능력을 갖는 치환기로서 벤즈이미다졸(benzimidazole)기, 벤조티아졸(benzothiazole)기 및 벤즈옥사졸(benzoxazole)기로 이루어진 군에서 선택되는 1종 이상의 치환기를 포함하는 벤조플루오란센 유도체 및 상기 벤조플루오란센 유도체를 함유한 유기물층을 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel benzofluoranthene derivative and an organic electroluminescent device using the same. More specifically, a benzimidazole group, a benzothiazole group, The present invention relates to an organic light emitting device including a benzofluoranthene derivative including at least one substituent selected from the group consisting of benzoxazole groups, and an organic material layer containing the benzofluoranthene derivative.
일반적으로 유기 발광 현상이란 유기 물질에 전기에너지를 가했을 때 빛이 나타나는 현상을 말한다. 즉, 양극(anode)과 음극(cathode) 사이에 유기물층을 위치시키고 두 전극 사이에 전압을 걸어 주면, 전자와 정공의 주입이 일어나며 유기 재료의 여기 상태를 발생시킨다. 이때 여기된 캐리어가 원래의 안정한 상태로 돌아오면서 그 재료 자체의 고유 빛을 방출하게 된다.In general, organic light emitting phenomenon refers to a phenomenon in which light appears when electric energy is applied to an organic material. That is, when the organic material layer is positioned between the anode and the cathode and a voltage is applied between the two electrodes, electrons and holes are injected and an excited state of the organic material is generated. The excited carrier then returns to its original stable state and emits the unique light of the material itself.
유기 EL 소자에 대한 연구는 1950 년대 Bernanose가 유기 색소를 함유한 고분자 박막에 높은 교류 전압을 인가하여 유기 박막으로부터 발광을 관측하였으며, 1965년 안트라센 단결정에 전류를 인가하여 일중항 여기자를 발생시켜 청색 형광을 얻었다. In the 1950s, Bernanose applied luminescence from an organic thin film by applying a high alternating voltage to a polymer thin film containing an organic dye.In 1965, singlet excitons were generated by applying a current to anthracene single crystal to generate blue fluorescence. Got.
이후 유기 발광 소자를 효과적으로 만들기 위한 한 방법으로 소자내의 유기물 층을 다층 구조로 제조하는 연구가 진행되어 왔다. 현재 사용되는 대부분의 유기 발광 소자는 기판, 양극, 양극으로부터 정공을 받아들이는 정공 주입층, 정공을 전달하는 정공 전달층, 정공과 전자가 재결합하여 빛을 내는 발광층, 전자를 전달하는 전자 전달층, 음극으로부터 전자를 받아들이는 전자 주입층 및 음극으로 이루어져 있다. 이렇게 EL 소자를 다층으로 제작하는 이유는 정공과 전자의 이동속도가 상이하므로 적절한 정공 주입층 및 전달층, 전자 전달층 및 전자 주입층을 만들어 주면 정공과 전자가 효과적으로 전달될 수 있으며, 소자 내 정공과 전자의 균형이 이루어져 발광 효율을 높일 수 있기 때문이다. Since then, as a way to effectively make the organic light emitting device has been studied to manufacture the organic material layer in a multi-layer structure. Most organic light emitting devices used in the present invention include a hole injection layer that receives holes from a substrate, an anode, and an anode, a hole transport layer for transferring holes, a light emitting layer for recombining holes and electrons to emit light, an electron transport layer for transferring electrons, It consists of an electron injection layer and a cathode which receive an electron from a cathode. The reason why the EL device is manufactured in multiple layers is that the movement speeds of the holes and the electrons are different. Therefore, if the appropriate hole injection layer, the transport layer, the electron transport layer, and the electron injection layer are made, holes and electrons can be effectively transferred. This is because the light emission efficiency can be improved by balancing the electrons.
전자 수송의 재료에 관한 최초의 보고는 옥사디아졸 유도체(PBD)를 들 수 있다. 이후 트리아졸 유도체(TAZ) 및 페난스로린 유도체(BCP)가 전자 수송성을 나타낸다고 보고 되었다. 전자 수송용 유기 단분자 물질로는 전자에 대한 안정도와 전자 이동 속도가 상대적으로 우수한 유기 금속착제들이 좋은 후보들이며, 그 중에서 전자 이동도가 정공 이동도 보다 큰 Alq3가 가장 우수한 것으로 보고 되었으나, 청색 발광소자에 사용할 경우 엑시톤 디퓨젼(exciton diffusion)에 의한 발광 때문에 색 순도가 떨어지는 문제점이 있다. 또한, 종래에 공지된 전자 수송용 물질로는 산요(Sanyo)사에서 발표한 플라본(flavon) 유도체 또는 치소(Chisso)사의 게르마늄 및 실리콘시클로펜타디엔 유도체 등이 알려져 있다. (일본공개특허공보 제1998-017860호, 일본공개특허공보 제1999-087067호). The earliest reports on the material of electron transport include oxadiazole derivatives (PBDs). It has since been reported that triazole derivatives (TAZ) and phenanthroline derivatives (BCP) exhibit electron transport properties. As organic monomolecular materials for electron transport, organometallic complexes having excellent electron stability and electron transport speed are good candidates. Among them, Alq3 having an electron mobility greater than hole mobility is reported to be the best candidate. When used in the device, there is a problem that the color purity is lowered due to light emission due to exciton diffusion. In addition, conventionally known materials for electron transport include flavon derivatives published by Sanyo or Germanium and silicon cyclopentadiene derivatives from Chiso. (Japanese Laid-Open Patent Publication No. 1998-017860, Japanese Laid-Open Patent Publication No. 1999-087067).
또한, 종래의 전자 주입 및 수송용 물질로는 이미다졸기, 옥사졸기, 또는 티아졸기를 가진 유기 단분자 물질들이 많이 보고되었다. 그러나 이러한 물질들이 전자수송용 물질로 보고되기 이전에 모토롤라(Motorola)사의 EU 0700917 A2에 이러한 물질들의 금속착체 화합물들이 유기 발광 소자의 청색 발광층 또는 청록색 발광층에 적용된 것이 이미 보고되었다. In addition, many organic monomolecular substances having imidazole group, oxazole group, or thiazole group have been reported as materials for conventional electron injection and transport. However, before these materials were reported as electron transport materials, it was previously reported in Motorola EU 0700917 A2 that metal complex compounds of these materials were applied to a blue light emitting layer or a cyan light emitting layer of an organic light emitting device.
1996년도에 코닥사에서 발표하고 미국 특허 제5,645,948호에 기재된 TPBI는 이미다졸기를 가진 대표적인 전자 수송용 물질로 알려져 있으며, 그 구조는 벤젠의 1,3,5 치환 위치에 세 개의 N-페닐 벤즈이미다졸기를 함유하고 기능적으로는 전자를 전달하는 능력뿐 아니라 발광층에서 넘어오는 정공을 차단하는 기능도 있으나, 실제 소자에 적용하기에는 열 안정성이 낮은 문제점을 가지고 있다. TPBI, published by Kodak in 1996 and described in US Pat. No. 5,645,948, is known as a representative electron transporting material having an imidazole group, and its structure is three N-phenyl benz at 1,3,5 substitution position of benzene. It contains an imidazole group and functionally blocks electrons from the light emitting layer as well as its ability to transfer electrons, but has a problem of low thermal stability for practical application.
또한, 일본 공개특허공보 평11-345686호에 개시된 전자수송용 물질들은 옥사졸기, 티아졸기를 함유하고 있고 발광층에도 적용할 수 있다고 보고하고 있으나, 구동전압, 휘도 및 소자의 수명 측면에서 실용화에 도달하지 못하고 있다.In addition, the electron transport materials disclosed in Japanese Patent Application Laid-Open No. 11-345686 report that they contain oxazole groups and thiazole groups and can be applied to the light emitting layer, but have reached practical use in terms of driving voltage, luminance, and lifetime of the device. I can't.
따라서, 상기와 같은 종래 기술의 문제점을 극복하고 유기 발광 소자의 특성을 더욱 향상시키기 위하여, 유기 발광 소자에서 전자 수송용 물질로 사용될 수 있는 보다 안정적이고 효율적인 재료에 대한 개발이 계속 요구되고 있다.Therefore, in order to overcome the problems of the prior art as described above and further improve the characteristics of the organic light emitting device, development of a more stable and efficient material that can be used as an electron transporting material in the organic light emitting device is continuously required.
본 발명은 벤조플루오란센(benzofluoranthene)에 전자 전달 능력을 갖는 치환기가 치환된 화합물로서, 유기 발광 소자에 적용하여 발광효율, 안정성 및 소자 수명을 향상시킬 수 있는 신규 화합물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a novel compound which is substituted with a substituent having an electron transfer capability to benzofluoranthene, which can be applied to an organic light emitting device to improve luminous efficiency, stability and device life. .
또한, 본 발명은 상기 화합물을 이용한 유기 발광 소자를 제공하는 것을 목적으로 하고 있다.Moreover, an object of this invention is to provide the organic light emitting element using the said compound.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다. 하기 화학식 1로 표시되는 화합물은 벤조플루오란센 유도체이다.The present invention provides a compound represented by the following formula (1). The compound represented by the following formula (1) is a benzofluoranthene derivative.
[화학식 1][Formula 1]
Figure PCTKR2009002968-appb-I000001
Figure PCTKR2009002968-appb-I000001
화학식 1에서, X는 N-R6, S 및 O로 이루어진 군에서 선택되며;In formula 1, X is selected from the group consisting of NR 6 , S and O;
R1 내지 R6은 서로 같거나 다르고, 각각 독립적으로 H, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴알킬기, C1~C40의 알킬옥시기, C5~C40의 아릴옥시기, C5~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택되며;R 1 to R 6 are the same as or different from each other, and are each independently H, a C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group , C 3 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 arylalkyl group, C 1 ~ C 40 alkyloxy group, C 5 ~ C 40 aryloxy group, C 5 ~ C 40 aryl group and C 5 to C 40 heteroaryl group;
A는 단일결합, C5~C40의 아릴렌기 및 C5~C40의 헤테로아릴렌기로 이루어진 군에서 선택된다.A is selected from the group consisting of single bond, heteroarylene, C 5 ~ C 40 arylene group and a C 5 ~ C 40 of.
또한 본 발명은 (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서,The present invention also provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode.
상기 1층 이상의 유기물층 중 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 발광 소자를 제공한다.At least one organic material layer of the one or more organic material layer provides an organic light emitting device characterized in that it comprises a compound represented by the formula (1).
본 발명의 유기 발광 소자에서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 전자 수송층인 것이 바람직하다.In the organic light emitting device of the present invention, the organic material layer including the compound represented by Formula 1 is preferably an electron transport layer.
본 발명에 따른 화학식 1로 표시되는 화합물은 전자 수송 성능이 우수하므로, 이를 유기 발광 소자의 전자 수송 층 재료로 채택할 경우 종래 Alq3을 사용하는 경우보다 전압 및 효율 면에서 월등한 성능을 나타낸다. 따라서 본 발명에 따른 화학식 1로 표시되는 화합물은 유기 EL소자의 EL 성능 개선 및 수명 향상에 크게 기여할 수 있으며, 특히 이러한 전자 수송 성능 향상은 풀 칼라 유기 EL 패널에서 성능 극대화에도 큰 효과가 있다.Since the compound represented by Chemical Formula 1 according to the present invention has excellent electron transporting performance, the compound represented by Chemical Formula 1 exhibits superior performance in terms of voltage and efficiency than when Alq3 is used as the electron transporting layer material of the organic light emitting device. Therefore, the compound represented by Chemical Formula 1 according to the present invention can greatly contribute to improving EL performance and lifespan of an organic EL device. In particular, the improvement of electron transport performance has a great effect on maximizing performance in a full color organic EL panel.
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도이며;1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention;
도 2는 실시예 2에서 제조된 Inv-14의 TGA 그래프이며;2 is a TGA graph of Inv-14 prepared in Example 2;
도 3은 종래 알려진 물질인 Alq3의 TGA 그래프이다.3 is a TGA graph of Alq3, a known material.
본 발명에 따른 상기 화학식 1로 표시되는 화합물은 벤조플루오란센(benzofluoranthene)을 코어로 하고, 전자 전달 능력을 갖는 치환기로서 벤즈이미다졸(benzimidazole)기, 벤조티아졸(benzothiazole)기 및 벤즈옥사졸(benzoxazole)기 중에서 선택되는 1 종 이상의 치환기를 포함하는 것이 특징인 벤조플루오란센 유도체이다.Compound represented by the formula (1) according to the present invention is a benzofluoranthene (benzofluoranthene) as a core, a benzimidazole group, a benzothiazole group and a benzoxazole as a substituent having an electron transfer ability It is a benzofluoranthene derivative characterized by including one or more substituents selected from (benzoxazole) groups.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 벤조플루오란센을 코어로 하고, 상기 벤조플루오란센의 3번 탄소 위치에 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징이다.More specifically, the compound represented by Chemical Formula 1 has a structure in which benzofluoranthene is the core, and a benzimidazole group, a benzothiazole group, or a benzoxazole group is substituted at the third carbon position of the benzofluoranthene. It is characteristic to have.
또한, 본 발명에 따른 상기 화학식 1로 표시되는 화합물에 있어서, 벤조플루오란센 모이어티(moiety)에는 수소원자 이외에도 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴알킬기, C1~C40의 알킬옥시기, C5~C40의 아릴옥시기, C5~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택되는 1이상의 치환기가 도입될 수 있다. In addition, in the compound represented by Formula 1 according to the present invention, the benzofluoranthene moiety (C) is an alkyl group of C 1 ~ C 40 , C 2 ~ C 40 alkenyl group, C 2 ~ C in addition to a hydrogen atom 40 alkynyl group, C 3 to C 40 cycloalkyl group, C 3 to C 40 heterocycloalkyl group, C 6 to C 40 arylalkyl group, C 1 to C 40 alkyloxy group, C 5 to C 40 aryl One or more substituents selected from the group consisting of an oxy group, a C 5 to C 40 aryl group and a C 5 to C 40 heteroaryl group may be introduced.
또한, 본 발명에 따른 화학식 1로 표시되는 화합물에서, 상기 벤즈이미다졸기, 벤조티아졸기 및 벤즈옥사졸기는 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴알킬기, C1~C40의 알킬옥시기, C5~C40의 아릴옥시기, C5~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택되는 1이상의 치환기가 치환된 것일 수 있다. In addition, in the compound represented by Formula 1 according to the present invention, the benzimidazole group, benzothiazole group and benzoxazole group are each independently C 1 ~ C 40 Alkyl group, C 2 ~ C 40 Alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, C 3 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group, C 1 ~ alkyloxy group of C 40 of the, C 5 ~ C 40 At least one substituent selected from the group consisting of an aryloxy group, a C 5 ~ C 40 aryl group and a C 5 ~ C 40 heteroaryl group may be substituted.
본 발명에 따른 화학식 1로 표시되는 화합물에서, 상기 A는 단일결합, C5~C40의 아릴렌기 및 C5~C40의 헤테로아릴렌기로 이루어진 군에서 선택된다. 상기 A의 C5~C40의 아릴렌기 및 C5~C40의 헤테로아릴렌기의 예를 들면 아래와 같으나, 이에 한정되는 것은 아니다.In the compound represented by Formula 1 according to the present invention, A is selected from the group consisting of single bond, heteroarylene, C 5 ~ C 40 arylene group and a C 5 ~ C 40 of. Examples of the C 5 to C 40 arylene group and the C 5 to C 40 heteroarylene group of A are as follows, but are not limited thereto.
Figure PCTKR2009002968-appb-I000002
Figure PCTKR2009002968-appb-I000002
Figure PCTKR2009002968-appb-I000003
Figure PCTKR2009002968-appb-I000003
Figure PCTKR2009002968-appb-I000004
Figure PCTKR2009002968-appb-I000004
Figure PCTKR2009002968-appb-I000005
Figure PCTKR2009002968-appb-I000005
본 발명에 따른 화학식 1로 표시되는 화합물을 보다 자세하게 표현하면 하기 표 1의 화합물들과 같으나, 본 발명에 따른 화합물들은 하기 예시된 것들에 한정되는 것은 아니다. In more detail, the compound represented by Formula 1 according to the present invention is the same as those of Table 1 below, but the compounds according to the present invention are not limited to those illustrated below.
표 1
Figure PCTKR2009002968-appb-T000001
Table 1
Figure PCTKR2009002968-appb-T000001
Figure PCTKR2009002968-appb-I000006
Figure PCTKR2009002968-appb-I000006
Figure PCTKR2009002968-appb-I000007
Figure PCTKR2009002968-appb-I000007
Figure PCTKR2009002968-appb-I000008
Figure PCTKR2009002968-appb-I000008
위의 예시된 화합물들 중 아래의 물질들이 좋은 특성을 보여 주고 있으나, 이에 한정 되지는 않는다. Of the compounds exemplified above, the following materials show good properties, but are not limited thereto.
Figure PCTKR2009002968-appb-I000009
Figure PCTKR2009002968-appb-I000009
본 발명에 따른 상기 화학식 1로 표시되는 화합물의 제조방법은 특별히 한정되지 않고, 당업계에 알려진 반응들을 적절히 적용할 수 있다. The method for preparing the compound represented by Chemical Formula 1 according to the present invention is not particularly limited, and reactions known in the art may be appropriately applied.
본 발명은 (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 1층 이상의 유기물 층 중 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 발광 소자를 제공한다. 이때, 상기 화학식 1로 표시되는 화합물은 1종 또는 2종 이상이 사용될 수 있다.The present invention provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer The organic material layer provides an organic light emitting device comprising the compound represented by Chemical Formula 1. In this case, the compound represented by Formula 1 may be used one kind or two or more kinds.
또한 본 발명의 유기 발광 소자에서, 상기 화학식 1로 표시되는 화합물은 전자 수송층용 물질로서 포함될 수 있고, 이 경우 유기 발광 소자의 발광효율, 안정성 및 소자 수명이 향상될 수 있다. 따라서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 전자 수송층인 것이 바람직하다.In addition, in the organic light emitting device of the present invention, the compound represented by Chemical Formula 1 may be included as a material for an electron transport layer, in which case the luminous efficiency, stability and device life of the organic light emitting device can be improved. Therefore, the organic material layer including the compound represented by Formula 1 is preferably an electron transport layer.
또한, 본 발명의 유기 발광 소자에서, 본 발명의 화학식 1로 표시되는 화합물을 포함하는 유기물층 이외의 유기물층은 정공주입층, 정공수송층, 발광층, 및/또는 전자수송층일 수 있다.In addition, in the organic light emitting device of the present invention, an organic material layer other than the organic material layer including the compound represented by Formula 1 of the present invention may be a hole injection layer, a hole transport layer, a light emitting layer, and / or an electron transport layer.
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도로서, 기판(101), 양극(102), 정공 주입층(103), 정공 수송층(104), 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층되어 있다. 이때 상기 전자 수송층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이다. 상기 전자 수송층(106) 위에는 전자 주입층이 위치할 수도 있다.1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention, wherein the substrate 101, the anode 102, the hole injection layer 103, the hole transport layer 104, the light emitting layer 105, the electron transport layer ( 106 and the cathode 107 are sequentially stacked. In this case, the electron transport layer includes a compound represented by Chemical Formula 1. The electron injection layer may be positioned on the electron transport layer 106.
본 발명의 유기 발광 소자는 전술한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입될 수 있다.As described above, the organic light emitting device of the present invention may not only have a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between the electrode and the organic material layer.
본 발명의 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 상기 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있으나, 이에 한정되는 것은 아니다. In the organic light emitting device of the present invention, the organic material layer including the compound represented by Chemical Formula 1 may be formed by a vacuum deposition method or a solution coating method, but is not limited thereto.
본 발명의 유기 발광 소자는 유기물 층 중 1층 이상의 유기물층이 본 발명의 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기물 층 및 전극을 형성함으로써 제조될 수 있다.The organic light emitting device of the present invention uses an organic material layer and an electrode using materials and methods known in the art, except that one or more organic material layers of the organic material layer are formed to include the compound represented by Chemical Formula 1 of the present invention. By forming.
예컨대, 기판(101)으로는 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.For example, the substrate 101 may be a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet.
양극(102) 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이들에만 한정되는 것은 아니다.The anode 102 material may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.Cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
또한, 상기 정공 주입층(103), 정공 수송층(104) 및 발광층(105)은 특별히 한정되는 것은 아니며, 당업계에 알려진 통상의 물질이 사용될 수 있다.In addition, the hole injection layer 103, the hole transport layer 104 and the light emitting layer 105 is not particularly limited, conventional materials known in the art may be used.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.
[실시예 1] Inv-1로 표시되는 화합물의 합성Example 1 Synthesis of Compound Represented by Inv-1
[실시예 1-1]Example 1-1
Figure PCTKR2009002968-appb-I000010
Figure PCTKR2009002968-appb-I000010
아세나프틸렌 14.07g (92.48 mmol) 과 디페닐이소벤조퓨란 25g (92.48 mmol) 을 자일렌 200 ml 에 용해 시킨 후 7시간 동안 환류 교반하였다. Ice bath 설치 후 0℃ 하에서 에테르 1200 ml를 첨가 시킨 후 1시간 동안 교반 하였다. 생성된 고체를 여과하여 화합물 a 25g (수율= 62.8%)을 얻었다.14.07 g (92.48 mmol) of acenaphthylene and 25 g (92.48 mmol) of diphenylisobenzofuran were dissolved in 200 ml of xylene and stirred under reflux for 7 hours. After installing the ice bath, ether 1200 ml was added at 0 ° C. and stirred for 1 hour. The resulting solid was filtered to give 25 g of compound a (yield = 62.8%).
1H NMR(500MHz, THF-d8) : 7.46 (d, 6H), 7.37 (t, 2H) 7.31 (t, 6H), 7.11 (d, 2H), 7.01 (d, 2H), 6.93 (t, 2H), 4.41 (s, 2H) 1 H NMR (500MHz, THF-d8): 7.46 (d, 6H), 7.37 (t, 2H) 7.31 (t, 6H), 7.11 (d, 2H), 7.01 (d, 2H), 6.93 (t, 2H ), 4.41 (s, 2 H)
[실시예 1-2]Example 1-2
Figure PCTKR2009002968-appb-I000011
Figure PCTKR2009002968-appb-I000011
실시예 1-1에서 합성한 화합물 a 24.5g (58.03mmol)을 초산 171.5 ml 에 용해하였다. 48% HBr 17.15 ml를 위의 반응액에 천천히 적하하였다. 최종 반응액을 3시간 동안 환류 교반하였다. 생성된 고체를 여과하여 화합물 b 22.19g (수율= 96.7%)을 얻었다. 24.5 g (58.03 mmol) of Compound a synthesized in Example 1-1 were dissolved in 171.5 ml of acetic acid. 17.15 ml of 48% HBr was slowly added dropwise to the reaction solution. The final reaction solution was stirred at reflux for 3 hours. The resulting solid was filtered to give 22.19 g of compound b (yield = 96.7%).
1H NMR(500MHz, THF-d8) : 8.55 (d, 2H), 7.90 (d, 2H) 7.79 (d, 2H), 7.65 (d, 4H), 7.58 (t, 2H), 7.48 (m, 6H), 7.32 (t, 2H) 1 H NMR (500MHz, THF-d8): 8.55 (d, 2H), 7.90 (d, 2H) 7.79 (d, 2H), 7.65 (d, 4H), 7.58 (t, 2H), 7.48 (m, 6H ), 7.32 (t, 2 H)
[실시예 1-3]Example 1-3
Figure PCTKR2009002968-appb-I000012
Figure PCTKR2009002968-appb-I000012
실시예 1-2에서 얻은 화합물 b 22.19 g (54.86 mmol)과 N-bromosuccinimide 12.4g (54.86 mmol)을 클로로포름 250 ml에 용해시킨 후 환류 교반하였다. 컬럼 크로마토 그래피를 통해 화합물 c 23 g (수율= 86 %)을 얻었다. 22.19 g (54.86 mmol) of Compound b and 12.4 g (54.86 mmol) of N-bromosuccinimide obtained in Example 1-2 were dissolved in 250 ml of chloroform, followed by stirring under reflux. Column chromatography gave the compound c 23 g (yield = 86%).
1H NMR(500MHz, THF-d8) : 8.55 (d, 2H), 8.53 (d, 1H) 8.14 (d, 1H), 7.76 (d, 1H), 7.65 (d, 4H), 7.57 (t, 1H), 7.46 (m, 6H), 7.45 (d, 1H), 7.32 (t, 2H) 1 H NMR (500MHz, THF-d8): 8.55 (d, 2H), 8.53 (d, 1H) 8.14 (d, 1H), 7.76 (d, 1H), 7.65 (d, 4H), 7.57 (t, 1H ), 7.46 (m, 6H), 7.45 (d, 1H), 7.32 (t, 2H)
[실시예 1-4]Example 1-4
Figure PCTKR2009002968-appb-I000013
Figure PCTKR2009002968-appb-I000013
3-브로모벤즈알데하이드 40g (216.2 mmol) 과 N-페닐(Phenyl)-1,2-페닐렌 디아민 (phenylene diamine) 39.82 g(216.2 mmol)을 톨루엔 500 ml 및 150 ml 초산 에 용해 시킨 후 30 시간동안 환류 교반하였다. 최종 반응 물을 상온으로 냉각 시킨 후 감압 증류하여 용매를 제거하였다. 컬럼 크로마토 그래피 (Hex: EA: TEA = 9: 1: 1 (v:v:v))로 정제하여 화합물 d 40.16 g (수율= 26.5 %)을 얻었다. 40 g (216.2 mmol) of 3-bromobenzaldehyde and 39.82 g (216.2 mmol) of N-phenyl-1,2-phenylene diamine were dissolved in 500 ml of toluene and 150 ml of acetic acid for 30 hours. Stirred at reflux. After cooling the final reaction product to room temperature, the solvent was removed by distillation under reduced pressure. Purification by column chromatography (Hex: EA: TEA = 9: 1: 1 (v: v: v)) afforded 40.16 g of compound d (yield = 26.5%).
1H NMR(500MHz, THF-d8) : 8.56 (d, 1H), 7.81 (d, 1H) 7.65 (s, 1H), 7.55 (t, 2H), 7.53 (t, 1H), 7.42 (d, 1H), 7.39 (d, 1H), 7.30 (d, 2H), 7.28 (t, 1H), 7.21 (t, 2H) 1 H NMR (500MHz, THF-d8): 8.56 (d, 1H), 7.81 (d, 1H) 7.65 (s, 1H), 7.55 (t, 2H), 7.53 (t, 1H), 7.42 (d, 1H ), 7.39 (d, 1H), 7.30 (d, 2H), 7.28 (t, 1H), 7.21 (t, 2H)
[실시예 1-5]Example 1-5
Figure PCTKR2009002968-appb-I000014
Figure PCTKR2009002968-appb-I000014
실시예 1-4에서 획득한 화합물 d 40.16g (115.0057 mmol), Pd(dppf)Cl2 4.2 g, Bis(pinacolato)diboron 35.1 g (138.0068 mmol) 및 포타슘 아세테이트 33.86g (345.0171 mmol)을 1,4 -다이옥산(dioxane) 250 ml에 용해시켰다. 반응물을 6시간 동안 환류 교반 한 후, 디클로로 메탄과 증류수로 3회 추출하였다. 컬럼 크로마토 그래피 (Hex: EA = 9: 1 (v: v))로 정제하여 화합물 e 39 g (수율= 86%)을 얻었다. 40.16 g (115.0057 mmol) of Compound d obtained in Examples 1-4, 4.2 g of Pd (dppf) Cl 2 , 35.1 g (138.0068 mmol) of Bis (pinacolato) diboron and 33.86 g (345.0171 mmol) of potassium acetate were prepared in 1,4 -Dissolved in 250 ml of dioxane. The reaction was stirred under reflux for 6 hours, and then extracted three times with dichloromethane and distilled water. Purification by column chromatography (Hex: EA = 9: 1 (v: v)) afforded 39 g of compound e (yield = 86%).
1H NMR(500MHz, THF-d8) : 8.56 (d, 1H), 7.81 (d, 1H) 7.55 (m, 5H), 7.30 (m, 3H), 7.28 (t, 1H), 7.21 (m, 2H), 1.26 (s, 12H) 1 H NMR (500MHz, THF-d8): 8.56 (d, 1H), 7.81 (d, 1H) 7.55 (m, 5H), 7.30 (m, 3H), 7.28 (t, 1H), 7.21 (m, 2H ), 1.26 (s, 12 H)
[실시예 1-6]Example 1-6
Figure PCTKR2009002968-appb-I000015
Figure PCTKR2009002968-appb-I000015
실시예 1-3에서 획득한 화합물 c 10.5 g(21.7373 mmol) 과 실시예 1-5에서 합성한 화합물 e 9.5 g (23.9110 mmol)을 넣은 후 18 시간 동안 환류 교반하였다. 디클로로 메탄으로 추출 후 Hexane: MC= 9: 1 (v:v)으로 컬럼 크로마토 그래피를 진행하여, 목적 화합물인 Inv-1를 11g (수율= 75%) 얻었다. 10.5 g (21.7373 mmol) of the compound c obtained in Example 1-3 and 9.5 g (23.9110 mmol) of the compound e synthesized in Example 1-5 were added thereto, and the mixture was stirred under reflux for 18 hours. Extraction with dichloromethane and column chromatography with Hexane: MC = 9: 1 (v: v) gave 11 g (yield = 75%) of Inv-1 as a target compound.
1H NMR(500MHz, THF-d8) : 7.21 (t, 1H), 7.28 (t, 1H) 7.3 (d, 2H), 7.32 (t, 2H), 7.38 (t, 2H), 7.44 (d, 2H), 7.5 (t, 4H), 7.52 (t, 2H), 7.54 (t, 1H), 7.57 (t, 2H), 7.60 (d, 2H), 7.65 (d, 4H), 7.70 (s, 1H), 7.81 (d, 1H), 8.42 (d, 1H), 8.51 (d, 1H), 8.55 (d, 2H), 8.70 (d, 1H). 1 H NMR (500MHz, THF-d8): 7.21 (t, 1H), 7.28 (t, 1H) 7.3 (d, 2H), 7.32 (t, 2H), 7.38 (t, 2H), 7.44 (d, 2H ), 7.5 (t, 4H), 7.52 (t, 2H), 7.54 (t, 1H), 7.57 (t, 2H), 7.60 (d, 2H), 7.65 (d, 4H), 7.70 (s, 1H) , 7.81 (d, 1H), 8.42 (d, 1H), 8.51 (d, 1H), 8.55 (d, 2H), 8.70 (d, 1H).
[실시예 2] Inv-14로 표시되는 화합물의 합성Example 2 Synthesis of Compound Represented by Inv-14
[실시예 2-1]Example 2-1
Figure PCTKR2009002968-appb-I000016
Figure PCTKR2009002968-appb-I000016
6-bromo-2-naphthol 20 g(89.66mmol), Bis(pinacolato)diboron 27.3 g(107.59 mmol), 포타슘 아세테이트 26.4g(268.97 mmol)을 1,4-다이옥산(dioxane) 400 ml에 현탁 시킨 후 반응액에 Pd(dppf)Cl2[1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(Ⅱ) 2g (2.69 mmol)을 넣었다. 최종 반응액을 5시간 동안 환류 교반시킨 후 디클로로 메탄과 증류수로 3회 추출 한 후, 컬럼 크로마토그래피 (Hex: EA = 8: 1 (v:v))를 하여 화합물 f 19.6 g (수율= 80.9%)을 얻었다.20 g (89.66 mmol) of 6-bromo-2-naphthol, 27.3 g (107.59 mmol) of Bis (pinacolato) diboron, and 26.4 g (268.97 mmol) of potassium acetate were suspended in 400 ml of 1,4-dioxane. 2 g (2.69 mmol) of Pd (dppf) Cl 2 [1,1'-Bis (diphenylphosphino) ferrocene] dichloropalladium (II) was added to the solution. The reaction mixture was stirred under reflux for 5 hours, extracted three times with dichloromethane and distilled water, and then subjected to column chromatography (Hex: EA = 8: 1 (v: v)) to obtain a compound f of 19.6 g (yield = 80.9%). )
1H NMR(500MHz, THF-d8) : 7.88 (d, 1H), 7.60 (s, 1H) 7.50 (d, 1H), 7.30 (d, 1H), 7.00 (m, 2H), 1.26 (s, 12H) 1 H NMR (500MHz, THF-d8): 7.88 (d, 1H), 7.60 (s, 1H) 7.50 (d, 1H), 7.30 (d, 1H), 7.00 (m, 2H), 1.26 (s, 12H )
[실시예 2-2]Example 2-2
Figure PCTKR2009002968-appb-I000017
Figure PCTKR2009002968-appb-I000017
실시예 1-2에서 합성한 화합물 c 15g (31.05 mmol)과 실시예 2-1에서 합성한 화합물 f 9.23g(34.16 mmol), Pd(PPh3)4 1.1 g (0.93 mmol) 및 탄산 나트륨 (sodium carbonate) 9.87g (93.16 mmol)을 톨루엔 300 ml 및 증류수 100 ml에 현탁 시킨 후 6시간 동안 환류 교반하였다. 반응 완료 후 디클로로메탄 및 증류수로 추출하고 컬럼 크로마토그래피 (Hex: EA = 9: 1 (v: v))로 정제하여 화합물 g 10.5 g (수율= 62%)을 얻었다. 15 g (31.05 mmol) of compound c synthesized in Example 1-2 and 9.23 g (34.16 mmol) of compound f synthesized in Example 2-1, 1.1 g (0.93 mmol) of Pd (PPh 3 ) 4 and sodium carbonate (sodium carbonate) 9.87 g (93.16 mmol) was suspended in 300 ml of toluene and 100 ml of distilled water, followed by stirring under reflux for 6 hours. After completion of the reaction was extracted with dichloromethane and distilled water and purified by column chromatography (Hex: EA = 9: 1 (v: v)) to give a compound g 10.5 g (yield = 62%).
1H NMR(500MHz, THF-d8) : 8.55 (d, 2H), 7.90 (d, 2H) 7.79 (m, 4H), 7.65 (m, 6H), 7.58 (t, 2H), 7.48 (t, 2H), 7.46 (t, 4H), 7.32 (t, 2H), 6.98 (m, 1H). 1 H NMR (500MHz, THF-d8): 8.55 (d, 2H), 7.90 (d, 2H) 7.79 (m, 4H), 7.65 (m, 6H), 7.58 (t, 2H), 7.48 (t, 2H ), 7.46 (t, 4H), 7.32 (t, 2H), 6.98 (m, 1H).
[실시예 2-3]Example 2-3
Figure PCTKR2009002968-appb-I000018
Figure PCTKR2009002968-appb-I000018
실시예 2-2에서 합성한 화합물 g 10g (18.29 mmol)을 디클로로 메탄 400ml에 녹였다. 상기 반응액에 피리딘 2.17 g(27.44 mmol)을 첨가하고 1시간 교반한 후, 0℃ 하에서 Trifluoromethanesulfonic anhydride 6.19 g (21.95mmol)을 질소 하에서 서서히 첨가하고 상온에서 반응혼합물을 4시간 동안 교반시켰다. 반응이 종결되었는지는 TLC로 확인하며, 반응이 종결되면 증류수로 추출 후 유기층을 감압증류하여 용매를 제거한 후, Hex: Methylene Chloride = 4: 1(v: v) 용액을 이용하여 크로마토 그래피를 하여 연 노란색 고체의 화합물 h 11 g (수율= 88 %)을 얻었다.10 g (18.29 mmol) of the compound g synthesized in Example 2-2 was dissolved in 400 ml of dichloromethane. 2.17 g (27.44 mmol) of pyridine was added to the reaction solution, and stirred for 1 hour. Then, 6.19 g (21.95 mmol) of trifluoromethanesulfonic anhydride was slowly added under nitrogen at 0 ° C., and the reaction mixture was stirred at room temperature for 4 hours. After completion of the reaction, the reaction was completed by TLC. After completion of the reaction, the organic layer was extracted with distilled water, and the organic layer was distilled under reduced pressure to remove the solvent, followed by chromatography using Hex: Methylene Chloride = 4: 1 (v: v) solution. Compound h 11 g (yield = 88%) as a yellow solid was obtained.
1H NMR(500MHz, THF-d8) : 8.55 (d, 2H), 8.51 (d, 1H) 7.88 (d, 1H), 7.78 (d, 2H), 7.65 (d, 4H), 7.60 (d, 2H), 7.54 (s, 1H), 7.48 (t, 6H), 7.40 (d, 2H), 7.32 (d, 2H), 6.98 (m, 2H). 1 H NMR (500MHz, THF-d8): 8.55 (d, 2H), 8.51 (d, 1H) 7.88 (d, 1H), 7.78 (d, 2H), 7.65 (d, 4H), 7.60 (d, 2H ), 7.54 (s, 1H), 7.48 (t, 6H), 7.40 (d, 2H), 7.32 (d, 2H), 6.98 (m, 2H).
[실시예 2-4]Example 2-4
Figure PCTKR2009002968-appb-I000019
Figure PCTKR2009002968-appb-I000019
실시예 2-3에서 합성한 화합물 h 11 g (16.21 mmol) 과 실시예 1-5에서 합성한 화합물 e 6.49 g (16.21 mmol), Pd(PPh3)4 0.56 g (0.49 mmol), 및 탄산 나트륨 (sodium carbonate) 5.2 g (49 mmol) 을 톨루엔 200 ml 와 증류수 40 ml에 현탁 시킨 후 5시간 동안 환류 교반하였다. 반응 종결 후 디클로로메탄과 증류수로 추출하고, 유기층을 건조, 감압 증류하여 용매를 제거한 후, Hex: Methlyene Chloride = 4: 1(v: v) 용액을 이용하여 크로마토 그래피를 하여 노란색 고체의 생성물 Inv-14 10 g (수율= 77%)을 얻었다.Compound h 11 g (16.21 mmol) synthesized in Example 2-3 and 6.49 g (16.21 mmol) of compound e synthesized in Example 1-5, 0.56 g (0.49 mmol) of Pd (PPh3) 4, and sodium carbonate ( sodium carbonate) was suspended in 200 ml of toluene and 40 ml of distilled water, followed by stirring under reflux for 5 hours. After completion of the reaction, the mixture was extracted with dichloromethane and distilled water, the organic layer was dried and distilled under reduced pressure to remove the solvent, and then chromatographed using Hex: Methlyene Chloride = 4: 1 (v: v) solution to give the product as a yellow solid. 14 10 g (yield = 77%) were obtained.
1H NMR(500MHz, THF-d8) : 7.21(t,1H), 7.3(d, 2H), 7.32(t,2H), 7.38(t,1H), 7.28(t,1H), 7.44(d, 2H), 7.46(t,4H), 7.48 (t,2H), 7.53(t,1H), 7.55(t,2H), 7.58(m, 3H), 7.65 (d, 4H), 7.70 (s, 1H), 7.73 (d, 2H), 7.80 (d, 1H), 7.81 (d,1H), 7.92 (d, 2H), 7.99 (m, 3H), 8.56(d, 3H). 1 H NMR (500MHz, THF-d8): 7.21 (t, 1H), 7.3 (d, 2H), 7.32 (t, 2H), 7.38 (t, 1H), 7.28 (t, 1H), 7.44 (d, 2H), 7.46 (t, 4H), 7.48 (t, 2H), 7.53 (t, 1H), 7.55 (t, 2H), 7.58 (m, 3H), 7.65 (d, 4H), 7.70 (s, 1H ), 7.73 (d, 2H), 7.80 (d, 1H), 7.81 (d, 1H), 7.92 (d, 2H), 7.99 (m, 3H), 8.56 (d, 3H).
[실시예 3~4 및 비교예 1] 유기 발광 소자 제조[Examples 3 to 4 and Comparative Example 1] Fabrication of Organic Light-Emitting Device
ITO (Indium tin oxide)가 1500Å의 두께가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 층착기로 기판을 이송하였다. The glass substrate coated with ITO (Indium tin oxide) having a thickness of 1500 Å was washed with distilled water ultrasonic waves. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried and transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum depositor.
이렇게 준비된 ITO 투명 전극 위에 DS-205(두산社)를 600Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 이송하는 물질인 NPB를 150Å 증착하여 정공 수송층을 형성한 후, 이어서 발광층 역할을 하는 DS-H45(두산社) 및 DS-405(두산社)를 300Å 증착하였다. DS-205 (Doosan Corp.) was vacuum-deposited to a thickness of 600 kPa on the prepared ITO transparent electrode to form a hole injection layer. NPB, which is a material for transporting holes, was deposited thereon to form a hole transport layer, and then DS-H45 (Doosan) and DS-405 (Doosan), which acted as light emitting layers, were deposited at 300Å.
발광층 위에 전자의 주입 및 이송 역할을 하는 물질로서 실시예 1에서 제조된 화합물 Inv-1 (실시예 3), 실시예 2에서 제조된 화합물 Inv-14 (실시예 4), 또는 비교물질인 Alq3 (비교예 1)을 250Å의 두께로 증착하였다. Compound Inv-1 prepared in Example 1 (Example 3), Compound Inv-14 prepared in Example 2 (Example 4), or Comparative material Alq3 ( Comparative Example 1) was deposited to a thickness of 250 mm 3.
그 후, 전자 주입 물질인 LiF를 10 Å의 두께로 증착하였고, 알루미늄 (음극)을 2000 Å의 두께로 증착하여 유기 발광 소자를 제작하였다.Thereafter, LiF, an electron injection material, was deposited to a thickness of 10 mW, and aluminum (cathode) was deposited to a thickness of 2000 mW to fabricate an organic light emitting device.
실시예 3 및 4의 유기 발광 소자 구조는 표 2에 기재 하였고, 비교예 1의 유기 발광 소자 구조는 표 3에 기재 하였다. 또한 실시예 3의 유기 발광 소자의 특성은 하기 표 4에 기재하였고, 실시예 4의 유기 발광 소자의 특성은 하기 표 5에 기재 하였고, 비교예 1의 유기 발광 소자의 특성은 하기 표 6에 기재하였다. The organic light emitting diode structures of Examples 3 and 4 are listed in Table 2, and the organic light emitting diode structures of Comparative Example 1 are described in Table 3. In addition, the properties of the organic light emitting device of Example 3 are described in Table 4, the properties of the organic light emitting device of Example 4 are described in Table 5, and the properties of the organic light emitting device of Comparative Example 1 are described in Table 6 below. It was.
표 2
Figure PCTKR2009002968-appb-T000002
TABLE 2
Figure PCTKR2009002968-appb-T000002
표 3
Figure PCTKR2009002968-appb-T000003
TABLE 3
Figure PCTKR2009002968-appb-T000003
표 4
Figure PCTKR2009002968-appb-T000004
Table 4
Figure PCTKR2009002968-appb-T000004
표 5
Figure PCTKR2009002968-appb-T000005
Table 5
Figure PCTKR2009002968-appb-T000005
표 6
Figure PCTKR2009002968-appb-T000006
Table 6
Figure PCTKR2009002968-appb-T000006
이상에서 살펴본 바와 같이, 본 발명에 따른 화합물을 사용한 유기 발광 소자(실시예 3 및 실시예 4)는 종래 Alq3을 사용한 유기 발광 소자(비교예 1) 보다 전압 및 효율 면에서 월등한 성능을 나타내는 것을 확인할 수 있었다. As described above, organic light emitting diodes (Examples 3 and 4) using the compound according to the present invention exhibited superior performance in terms of voltage and efficiency than organic light emitting diodes (Comparative Example 1) using Alq3. I could confirm it.
도 2는 실시예 2에서 제조된 전자 전달 성 화합물인 Inv-14의 TGA 그래프이고, 도 3은 종래 알려진 전자 전달 성 물질인 Alq3의 TGA 그래프이다. 도 2 및 도 3에 따르면 본 발명의 Inv-14의 Td 값이 Alq3 보다 80℃ 정도 높은 특성을 가지고 있으며, 이에 따라 본 발명의 화합물을 사용하면 소자 내에서의 열 적 특성을 높일 수 있다.2 is a TGA graph of Inv-14, an electron transporting compound prepared in Example 2, and FIG. 3 is a TGA graph of Alq3, a known electron transporting material. According to FIGS. 2 and 3, the Td value of Inv-14 of the present invention is about 80 ° C. higher than that of Alq3, and accordingly, the compound of the present invention can be used to improve the thermal characteristics of the device.
따라서 본 발명에 의한 화합물들은 유기 EL소자의 EL 성능을 개선할 뿐만 아니라 수명 향상에 크게 기여할 수 있으며 특히 이러한 전자 수송 성능 향상은 풀 칼라 유기 EL 패널에서 성능 극대화에도 큰 효과가 있을 것으로 기대된다.Therefore, the compounds according to the present invention may not only improve the EL performance of the organic EL device, but also greatly contribute to the improvement of the lifetime. In particular, the improvement of the electron transport performance is expected to have a great effect in maximizing the performance in the full color organic EL panel.
이상을 통해 본 발명의 바람직한 실시 예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (3)

  1. 하기 화학식 1로 표시되는 화합물: Compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2009002968-appb-I000020
    Figure PCTKR2009002968-appb-I000020
    화학식 1에서, X는 N-R6, S 및 O로 이루어진 군에서 선택되며;In formula 1, X is selected from the group consisting of NR 6 , S and O;
    R1 내지 R6은 서로 같거나 다르고, 각각 독립적으로 H, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴알킬기, C1~C40의 알킬옥시기, C5~C40의 아릴옥시기, C5~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택되며;R 1 to R 6 are the same as or different from each other, and are each independently H, a C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group , C 3 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 arylalkyl group, C 1 ~ C 40 alkyloxy group, C 5 ~ C 40 aryloxy group, C 5 ~ C 40 aryl group and C 5 to C 40 heteroaryl group;
    A는 단일결합, C5~C40의 아릴렌기 및 C5~C40의 헤테로아릴렌기로 이루어진 군에서 선택된다.A is selected from the group consisting of single bond, heteroarylene, C 5 ~ C 40 arylene group and a C 5 ~ C 40 of.
  2. (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서,An organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer interposed between the anode and the cathode,
    상기 1층 이상의 유기물 층 중 적어도 하나의 유기물 층은 제1항의 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 발광 소자.At least one organic material layer of the one or more organic material layer comprises an compound represented by the formula (1) of claim 1.
  3. 제2항에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물 층은 전자 수송 층인 것이 특징인 유기 발광 소자.The organic light emitting device of claim 2, wherein the organic material layer including the compound represented by Chemical Formula 1 is an electron transport layer.
PCT/KR2009/002968 2008-06-04 2009-06-04 Benzofluoranthene derivative and an organic luminescent element employing the same WO2009148269A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080052678A KR101011857B1 (en) 2008-06-04 2008-06-04 Benzofluoranthene derivative and organic light emitting device using the same
KR10-2008-0052678 2008-06-04

Publications (3)

Publication Number Publication Date
WO2009148269A2 true WO2009148269A2 (en) 2009-12-10
WO2009148269A3 WO2009148269A3 (en) 2010-03-04
WO2009148269A9 WO2009148269A9 (en) 2010-04-22

Family

ID=41398676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002968 WO2009148269A2 (en) 2008-06-04 2009-06-04 Benzofluoranthene derivative and an organic luminescent element employing the same

Country Status (2)

Country Link
KR (1) KR101011857B1 (en)
WO (1) WO2009148269A2 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005009A1 (en) 2010-07-09 2012-01-12 出光興産株式会社 Imidazopyridine derivatives and organic electroluminescent elements containing same
WO2012046839A1 (en) 2010-10-08 2012-04-12 出光興産株式会社 Benzo[k]fluoranthene derivative and organic electroluminescence element containing same
JP2014177440A (en) * 2013-03-15 2014-09-25 Idemitsu Kosan Co Ltd Fluoranthene compound, material for organic electroluminescent element, organic electroluminescent element, and electronic equipment
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4369898A1 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4376583A2 (en) 2022-10-27 2024-05-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4386065A1 (en) 2022-12-14 2024-06-19 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024549A (en) * 2013-08-27 2015-03-09 동우 화인켐 주식회사 Photoluminescence Coating Composition and Photoluminescence Film Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US20040076853A1 (en) * 2002-04-24 2004-04-22 Eastman Kodak Company Organic light-emitting diode devices with improved operational stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345686A (en) * 1997-08-07 1999-12-14 Fuji Photo Film Co Ltd Organic electroluminescence element
KR101528241B1 (en) * 2007-12-07 2015-06-15 삼성디스플레이 주식회사 An Aromatic heterocyclic compound, an organic light emitting diode comprising an organic layer comprising the same and an method for preparing the organic light emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US20040076853A1 (en) * 2002-04-24 2004-04-22 Eastman Kodak Company Organic light-emitting diode devices with improved operational stability

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005009A1 (en) 2010-07-09 2012-01-12 出光興産株式会社 Imidazopyridine derivatives and organic electroluminescent elements containing same
JP5315420B2 (en) * 2010-07-09 2013-10-16 出光興産株式会社 IMIDAZOPYRIDINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
WO2012046839A1 (en) 2010-10-08 2012-04-12 出光興産株式会社 Benzo[k]fluoranthene derivative and organic electroluminescence element containing same
JP2014177440A (en) * 2013-03-15 2014-09-25 Idemitsu Kosan Co Ltd Fluoranthene compound, material for organic electroluminescent element, organic electroluminescent element, and electronic equipment
JPWO2015182547A1 (en) * 2014-05-28 2017-04-20 東レ株式会社 Fluoranthene derivative, electronic device containing the same, light emitting element and photoelectric conversion element
CN106458899A (en) * 2014-05-28 2017-02-22 东丽株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4369898A1 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4376583A2 (en) 2022-10-27 2024-05-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4386065A1 (en) 2022-12-14 2024-06-19 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
KR20090126539A (en) 2009-12-09
WO2009148269A9 (en) 2010-04-22
KR101011857B1 (en) 2011-02-01
WO2009148269A3 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
WO2009148269A2 (en) Benzofluoranthene derivative and an organic luminescent element employing the same
EP2364964B1 (en) Novel anthracene derivative and organic electronic device using the same
KR101412437B1 (en) New compounds and organic electronic device using the same
KR102210267B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101460365B1 (en) New imidazole derivatives and organic electronic device using the same
WO2012091428A2 (en) Novel compound, and organic light-emitting device using same
WO2011031086A2 (en) New heterocyclic derivative and organic light emitting device using same
WO2010147319A2 (en) Acridine derivative and an organic electroluminescent element comprising the same
WO2011081286A2 (en) Novel compound for an organic photoelectric device, and organic photoelectric device including same
WO2010126270A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126224A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20110123106A (en) Organic electroluminescence derivative and device using the phenanthrocarbazole
KR20110077930A (en) Organic electroluminescent compounds and organic electroluminescent device comprising same
WO2011055912A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011019156A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011136484A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2013546171A (en) Novel compounds for organic electronic materials and organic electroluminescent devices using the same
KR20130007934A (en) Organic electroluminescence device using the triphenylene derivative
WO2010114253A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR102665302B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
WO2012030145A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
KR20120079411A (en) Phenazine-based compound and organic electroluminescent device comprising the same
WO2010085087A2 (en) Novel cycloalkene derivatives and organic electronic devices using the same
KR20190134356A (en) An electroluminescent compound and an electroluminescent device comprising the same
WO2020175779A1 (en) Novel compound and organic light emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758522

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758522

Country of ref document: EP

Kind code of ref document: A2