WO2009148110A1 - Lubricating oil composition and use of same - Google Patents

Lubricating oil composition and use of same Download PDF

Info

Publication number
WO2009148110A1
WO2009148110A1 PCT/JP2009/060231 JP2009060231W WO2009148110A1 WO 2009148110 A1 WO2009148110 A1 WO 2009148110A1 JP 2009060231 W JP2009060231 W JP 2009060231W WO 2009148110 A1 WO2009148110 A1 WO 2009148110A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
composition according
acid
weight
Prior art date
Application number
PCT/JP2009/060231
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 金重
洋樹 江端
秀一 松村
Original Assignee
三井化学株式会社
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 学校法人 慶應義塾 filed Critical 三井化学株式会社
Priority to JP2010515908A priority Critical patent/JP5398708B2/en
Publication of WO2009148110A1 publication Critical patent/WO2009148110A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M119/00Lubricating compositions characterised by the thickener being a macromolecular compound
    • C10M119/04Lubricating compositions characterised by the thickener being a macromolecular compound containing oxygen
    • C10M119/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/401Fatty vegetable or animal oils used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to a lubricating oil composition containing a ricinoleic acid (co) polymer and its use. More specifically, the present invention relates to a lubricating oil composition containing a ricinoleic acid (co) polymer having good viscosity characteristics and friction characteristics and high biodegradability, and uses thereof.
  • Petroleum products generally have a so-called viscosity temperature dependency in which the viscosity changes greatly when the temperature changes.
  • the lubricating oil also has a temperature dependency of the viscosity, and it is preferable that the temperature dependency of the viscosity is small.
  • a polymer soluble in a lubricating base oil is used as a viscosity index improver.
  • a typical viscosity modifier a mineral oil solution of an olefin copolymer or a polymer of polymethacrylate (hereinafter referred to as PMA) is known.
  • lubricating oil compositions for grease and engine oil containing vegetable oils such as soybean oil and rapeseed oil as base oils and synthetic esters such as polyols have been proposed (for example, see Non-Patent Document 1).
  • a lubricating oil composition containing vegetable oil as a base oil has problems in storage characteristics and stability at low temperatures.
  • a viscosity modifier such as an OCP (olefin copolymer) viscosity modifier
  • the viscosity modifier is poorly soluble in vegetable oil and difficult to apply.
  • the solubility of the viscosity modifier in the base oil is improved by selecting a PMA (polymethacrylate) viscosity modifier as the viscosity modifier of the lubricating oil composition based on vegetable oil or synthetic ester.
  • PMA polymethacrylate
  • the PMA-based viscosity modifier contains 50% by weight or more of a mineral oil having a low biodegradation rate as a diluent oil, the biodegradation rate of the lubricating oil composition was significantly reduced.
  • a lubricating oil composition which has a viscosity characteristic (viscosity index improvement effect) and a friction characteristic equivalent or more compared with the case where a PMA type
  • Another object of the present invention is to provide a lubricating oil composition having excellent biodegradability, which does not include a diluent oil such as mineral oil that has the above-described properties and reduces biodegradability.
  • a viscosity modifier for lubricating oil that has high biodegradability.
  • the present inventors have used a specific ricinoleic acid (co) polymer as a viscosity modifier, so that a lubricating oil can be used as compared with the case where a PMA viscosity modifier is used. It has been found that the composition exhibits an equal or higher viscosity characteristic (viscosity index improving effect) and friction characteristic, and is extremely excellent in biodegradability, and the present invention has been completed.
  • the lubricating oil composition containing the ricinoleic acid (co) polymer according to the present invention (hereinafter sometimes referred to as a lubricating oil composition for convenience) is specified by the following matters.
  • the lubricating oil composition according to the present invention comprises (A) a base oil and (B) a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography).
  • the weight ratio of (A) to (B) is 70/30 to 99.5 / 0.5.
  • the base oil is preferably vegetable oil and / or synthetic ester.
  • the synthetic ester is preferably a diester or a polyol ester, more preferably an aliphatic diester or an aliphatic polyol ester.
  • the weight average molecular weight of the ricinoleic acid (co) polymer (B) is preferably 10,000 to 300,000.
  • the lubricating oil composition comprises an antioxidant, an extreme pressure agent, a rust inhibitor, a metal deactivator, an antiwear additive, an antifoaming agent and a cleaning dispersant. It is preferable to include at least one additive (C) selected from the group consisting of:
  • the lubricating oil composition preferably has a biodegradation rate of 60% or more as measured by the modified MITI test method OECD301C method.
  • the lubricating oil composition is preferably gear oil, hydraulic oil, engine oil, grease, or metalworking oil.
  • the viscosity adjusting agent for lubrication according to the present invention is characterized by comprising a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography).
  • the lubricating oil composition of the present invention compared with a biodegradable lubricating oil composition composed of a viscosity modifier such as a PMA viscosity modifier and a vegetable oil or a synthetic ester, the lubricating oil composition is equivalent or more. In addition to its viscosity characteristics (viscosity index improving effect) and friction characteristics, it can exhibit excellent biodegradability.
  • the base oil is a vegetable oil, good low-temperature storage stability can be exhibited together with the above effects.
  • the viscosity adjusting agent for lubrication of the present invention when added to the lubricating oil composition, imparts excellent biodegradability to the lubricating oil composition, along with viscosity characteristics (viscosity index improving effect) and friction characteristics. Can do.
  • the lubricating oil composition containing the ricinoleic acid (co) polymer according to the present invention (hereinafter, sometimes referred to as a lubricating oil composition for convenience) will be described in detail for each component.
  • Base oil (A) examples include vegetable oils, synthetic esters, low molecular weight poly ⁇ -olefins, and the like. Of these, vegetable oils and synthetic esters are preferred.
  • rapeseed oil, soybean oil, castor oil, palm oil, sunflower oil, safflower oil, corn oil, meadow foam oil, rice bran oil, olive oil, Jojoba oil and the like are preferable, and rapeseed oil, soybean oil, castor oil, and palm oil are more preferable.
  • the biodegradability of the lubricating oil composition is slightly inferior to the case where the base oil is a vegetable oil, but since the lubricating oil composition can be used under a wide range of temperature conditions, the synthetic ester includes a diester, Polyol esters are preferred.
  • the lubricating oil composition can be used under a wide range of temperature conditions from a low temperature range (below room temperature) to a high temperature range (50 ° C. to 100 ° C.), as a diester, di-2-ethylhexyl sebacate, Aliphatic diesters such as dioctyl adipate, dioctyl decanedioate, diisodecyl adipate, and dioctyl sebacate are preferred, and the polyol ester is an aliphatic polyol ester such as pentaerythritol tetraoleate, trimethylolpropane tripelagonate, or neopentyl polyol. Preferably, one or more of these synthetic esters may be used.
  • base oil (A) one or more kinds of vegetable oils and one or more kinds of synthetic esters may be mixed and used.
  • the base oil (A) should have a kinematic viscosity at 40 ° C. (according to ASTM 445 kinematic viscosity test method) of 10 to 80 mm 2 / s. Is more preferable, and 20 to 60 mm 2 / s is more preferable.
  • the pour point of the base oil (A) (according to the measurement method of JIS K2269) should be 0 to -50 ° C. Is preferred.
  • the weight average molecular weight measured from GPC (gel permeation chromatography) of the ricinoleic acid (co) polymer (B) according to the present invention is 10,000 or more, preferably 10,000 to 300,000. More preferably, it is 30,000 to 150,000.
  • the lubricating oil composition blended with the ricinoleic acid (co) polymer has excellent viscosity increase and viscosity index improvement effects. And excellent biodegradability can be imparted.
  • base oil is vegetable oil, favorable low-temperature storage stability can be provided.
  • ricinoleic acid (co) polymer (B) having a weight average molecular weight in such a range is obtained by using ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) as shown in the following reaction formula (I). It can be synthesized from an ester derivative or from a ricinoleic acid ester derivative and a hydroxycarboxylic acid ester derivative (for example, 12-hydroxystearic acid methyl ester) through an ester polymerization reaction with lipase.
  • the ricinoleic acid ester is preferably methyl ricinoleate.
  • the ricinoleic acid copolymer is composed of a ricinoleic acid ester derivative and a hydroxycarboxylic acid ester derivative as monomer components.
  • the hydroxycarboxylic acid ester derivative is not particularly limited as long as it is a carboxylic acid ester derivative having a hydroxyl group (hydroxyl group), but is preferably hydroxystearic acid.
  • the charged molar ratio of the ricinoleic acid ester derivative to the 12-hydroxystearic acid ester derivative is preferably 100/0 to 20/80.
  • ricinoleic acid (co) polymer (B) of the present invention a polymer obtained by subjecting the polyricinoleic acid or ricinoleic acid copolymer to hydrogenation may be used as desired.
  • the lipase is preferably an immobilized lipase derived from Burkholderia cepacia (for example, Lipase PS-C Amano II (trade name), PS-D Amano I (trade name), etc., manufactured by Wako Chemical Co., Ltd.). Since the lipase is not easily deactivated even at high temperatures, the reaction temperature can be increased to 90 ° C.
  • the reaction conditions are preferably a batch method using a reactor equipped with a stirrer under bulk conditions.
  • the reaction time is usually 4 to 7 days, although it varies depending on conditions such as catalyst concentration and polymerization temperature.
  • the ester polymerization reaction using lipase is a reversible reaction, and it is preferable to sequentially remove the produced alcohol in order to advance the efficient ester polymerization reaction. . Specifically, maintaining the pressure state in the reaction system in a reduced pressure state, or performing a synthesis reaction after placing a hygroscopic agent such as synthetic zeolite (for example, molecular sieve 4A) in the reaction system in a non-contact manner. Is mentioned.
  • a hygroscopic agent such as synthetic zeolite (for example, molecular sieve 4A)
  • the viscosity adjusting agent for lubrication composed of a ricinoleic acid (co) polymer synthesized by the above-mentioned method and having a weight average molecular weight measured by GPC of 10,000 or more should be added to the lubricating oil composition.
  • excellent biodegradability can be imparted to the lubricating oil composition together with viscosity characteristics (viscosity index improving effect) and friction characteristics.
  • the weight ratio of the (A) base oil to the (B) ricinoleic acid (co) polymer is 70/30 to It is 99.5 / 0.5, preferably 75/25 to 99/1, and more preferably 80/20 to 97/3.
  • the base oil (A) and the ricinoleic acid (co) polymer (B) are contained in the lubricating oil composition by including the base oil (A) and the ricinoleic acid (co) polymer (B). Good compatibility is obtained, and a thickening effect is imparted to the lubricating oil composition.
  • the lubricating oil composition can exhibit an appropriate viscosity index, and therefore has good fluidity. Furthermore, when the base oil (A) is a vegetable oil, the low temperature storage stability of the lubricating oil composition can be improved.
  • the kinematic viscosity (based on ASTM D445) at 40 ° C. of the lubricating oil composition according to the present invention is 50 preferably to ⁇ 300mm 2 / s, and even more preferably from 80 ⁇ 200mm 2 / s.
  • the kinematic viscosity at 100 ° C. (according to ASTM D445) of the lubricating oil composition according to the present invention is:
  • the thickness is preferably 10 to 100 mm 2 / s, and more preferably 15 to 50 mm 2 / s.
  • the viscosity index (based on ASTM D2270) of the lubricating oil composition according to the present invention is 180. Is preferably from 250 to 250, and more preferably from 200 to 250.
  • the lubricating oil composition when the lubricating oil composition is naturally scattered (leakage), it is required to be quickly decomposed (biodegraded) in the natural environment, so that the modified MITI test of the lubricating oil composition according to the present invention is performed.
  • the biodegradation rate based on the method “OECD301C” is preferably 60% or more.
  • the lubricating oil composition according to the present invention is used for the purpose of improving oxidation stability, rust prevention, extreme pressure, defoaming, etc. Accordingly, it is preferable to include an additive (C).
  • Such an additive (C) is one or more selected from the group consisting of antioxidants, extreme pressure agents, rust inhibitors, metal deactivators, antiwear additives, antifoaming agents and detergent-dispersants. It is preferable that
  • the total amount of the additive (C) can be appropriately blended within a range not impairing the object of the present invention, but is 0.05 to 25% by weight with respect to 100% by weight of the lubricating oil composition. It is preferable.
  • antioxidant used in the lubricating oil composition of the present invention, known antioxidants can be used.
  • di (alkylphenyl) amine alkyl group has 4 to 20 carbon atoms
  • phenyl- ⁇ -Naphthylamine alkyldiphenylamine (alkyl group has 4 to 20 carbon atoms)
  • N-nitrosodiphenylamine phenothiazine, N, N'-dinaphthyl-p-phenylenediamine, acridine, N-methylphenothiazine, N-ethylphenothiazine, dipyridylamine
  • Amine antioxidants such as diphenylamine, phenolamine, 2,6-di-t-butyl- ⁇ -dimethylaminoparacresol, 2,6-di-t-butylparacresol, 4,4′-methylenebis (2, 6-di-t-butylphenol), 2,6-di-t-butyl-4-N, N-dimethyl Phenolic antioxidants such as minomethylphenol, 2,6-
  • antioxidant may be used independently, it can also be used in combination of 2 or more types.
  • known extreme pressure additives can be used. Specifically, chlorine compounds such as chlorinated paraffin, chlorinated diphenyl, and chlorinated fatty acid; Sulfur compounds such as fatty acids, sulfurized fatty acid esters, sulfurized animal oils, sulfurized vegetable oils, dibenzyl disulfide, synthetic polysulfides, amine salts or alkali metal salts of alkylthiopropionic acids, and amine salts or alkali metal salts of alkylthioglycolic acids; phosphoric acid Esters, acidic phosphates, amine salts of acidic phosphates, and phosphorus compounds such as chlorinated phosphates and phosphites, zinc dialkyldithiophosphates or zinc diallyldithiophosphates, organomolybdenum
  • One or two or more extreme pressure agents can be added to the lubricating oil composition of the present invention, and the combination of extreme pressure additives used when two or more extreme pressure agents are added has the desired characteristics of the resulting lubricating oil composition. It can be arbitrarily combined so that it can have.
  • the content of the extreme pressure agent in the lubricating oil composition is preferably 0.5 to 10 parts by weight, preferably 2 to 8 parts by weight, with respect to 100 parts by weight of the base oil (A). Further preferred.
  • Examples of the rust inhibitor used in the lubricating oil composition of the present invention include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
  • Metal corrosion inhibitor Examples of the metal corrosion inhibitor used in the lubricating oil composition of the present invention include benzotriazole and its derivatives, and thiazole compounds.
  • Antiwear additive Examples of the antiwear additive include phosphorus compounds, organic molybdenum compounds, fatty acid ester compounds, and aliphatic amine compounds.
  • antiwear additives for phosphorus compounds include zinc alkyldithiophosphates, phosphoric acid, phosphorous acid, phosphoric acid monoesters, phosphoric acid diesters, phosphoric acid triesters, phosphorous acid monoesters, Examples thereof include phosphoric acid diesters, phosphite triesters, salts of (phosphite) esters, and thiophosphoric acid, thiophosphorous acid or esters thereof, and mixtures thereof.
  • zinc alkyldithiophosphate is preferably used, and usually contains a hydrocarbon group having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms.
  • hydrocarbon group having 2 to 30 carbon atoms examples include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group.
  • organic molybdenum compound as the antiwear additive examples include molybdenum dithiocarbamate, molybdenum dithiophosphate, and molybdate amine salt. Molybdenum dithiocarbamate is particularly preferable.
  • known antifoaming agents can be used as the antifoaming agent used in the lubricating oil composition of the present invention. Examples thereof include silicon-based antifoaming agents such as dimethylsiloxane and silica gel dispersion; alcohols and ester-based antifoaming agents. Can be mentioned.
  • cleaning dispersant As the detergent dispersant used in the lubricating oil composition of the present invention, known detergent dispersants can be used.
  • the lubricating oil composition of the present invention is obtained by mixing and kneading a base oil (A), a predetermined ricinoleic acid (co) polymer (B), and, if necessary, an additive (C) at a predetermined ratio.
  • a mixing / kneading means a known mixing / kneading apparatus such as a tank blend method or an auto blender method can be used.
  • the lubricating oil composition according to the present invention is very useful as a lubricating oil composition for each application because it has good viscosity characteristics and friction characteristics and is excellent in biodegradability.
  • Specific applications include, for example, gear oil, hydraulic oil, engine oil (two-cycle engine oil, gasoline engine oil, diesel engine oil, etc.), grease, cutting oil, grinding oil, punching oil, drawing oil, press oil , Drawing oil, rolling oil, forging oil, sliding oil, electrical insulation oil, turbine oil, gear oil, air compressor oil, compressor oil, vacuum pump oil, bearing oil, heat medium oil, mist oil, refrigerator oil, lock Drill oil is preferred.
  • methyl ricinoleate manufactured by Sigma-Aldrich Sakai Japan Co., Ltd.
  • 250 mg of immobilized lipase derived from Burkholderia cepacia (Wako Chemical Co., Ltd., Lipase PS-C Amano II) were placed in a test tube.
  • Stirring reaction was carried out at 3 ° C. for 3 days.
  • the reaction was carried out by attaching a tube filled with molecular sieve 4A to the top of the test tube.
  • Enzyme amount (wt%) indicates the amount of enzyme used when the raw material (monomer type) is 100 wt%.
  • Table 2 shows the properties of the following base oils used in Examples and Comparative Examples.
  • Rapeseed oil MP Biomedical DIDA (diisodecyl adipate): Daihachi Chemical Industries H-334R (neopentyl polyol fatty acid ester): NOF Corporation
  • The components of the lubricating oil composition are uniformly dispersed and not separated.
  • X Each component of the lubricating oil composition is separated, and crystal solidified fine particles are observed.
  • Kinematic viscosity Kinematic viscosities at 40 ° C. and 100 ° C. were measured based on ASTM D445.
  • Example 1 As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 97/3.
  • the rapeseed oil was mixed to prepare a lubricating oil composition.
  • the physical properties (compatibility, viscosity characteristics, friction characteristics) of the obtained lubricating oil composition were evaluated based on the above evaluation criteria. The results are shown in Table 3.
  • Example 2 As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 95/5.
  • a lubricating oil composition was prepared in the same manner as in Example 1 except that rapeseed oil% was mixed, and the physical properties were evaluated. The results are shown in Table 3.
  • Example 3 As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 90/10.
  • a lubricating oil composition was prepared in the same manner as in Example 1 except that rapeseed oil was mixed, and the physical properties were evaluated. The results are shown in Table 3.
  • Example 4 A lubricating oil composition was prepared in the same manner as in Example 1 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
  • Example 5 A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
  • Example 6 A lubricating oil composition was prepared in the same manner as in Example 3 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
  • Example 7 A lubricating oil composition was prepared in the same manner as in Example 1 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
  • Example 8 A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
  • Example 9 A lubricating oil composition was prepared in the same manner as in Example 3 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
  • Example 10 A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-4), and physical properties were evaluated. The results are shown in Table 3.
  • Example 11 A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to ricinoleic acid copolymer (P-5), and physical properties were evaluated. The results are shown in Table 3.
  • Example 12 A lubricating oil composition was prepared in the same manner as in Example 5 except that rapeseed oil was changed to synthetic ester DIDA (diisodecyl adipate) as a base oil, and physical properties were evaluated. The results are shown in Table 3.
  • Example 13 A lubricating oil composition was prepared in the same manner as in Example 5 except that rapeseed oil was changed to synthetic ester H-334R (neopentyl polyol fatty acid ester) as a base oil, and physical properties were evaluated. The results are shown in Table 3.
  • Example 1 A lubricating oil composition was prepared in the same manner as in Example 1 except that no viscosity modifier was added to the rapeseed oil as the base oil, and the physical properties were evaluated. The results are shown in Table 4.
  • Example 2 Except for changing polyricinoleic acid (P-1) to Aclove 728 (manufactured by Sanyo Kasei Co., Ltd .: mineral oil 40-30%, alkyl methacrylate copolymer 60-70%), a commercially available polymethacrylate viscosity modifier. Prepared a lubricating oil composition in the same manner as in Example 2, and evaluated the physical properties. The results are shown in Table 4.
  • Example 6 A lubricating oil composition was prepared and physical properties were evaluated in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Acube 728, which is a commercially available polymethacrylate viscosity modifier. The results are shown in Table 4.
  • Example 7 A lubricating oil composition was prepared and the physical properties were evaluated in the same manner as in Example 12 except that polyricinoleic acid (P-2) was changed to a commercially available polymethacrylate viscosity modifier Sunlube 1502. The results are shown in Table 4.
  • a lubricating oil composition was prepared in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Sunlube 1502, which is a commercially available polymethacrylate viscosity modifier, and the physical properties were evaluated. The results are shown in Table 4.
  • a lubricating oil composition was prepared in the same manner as in Example 12 except that polyricinoleic acid (P-2) was changed to a commercially available polymethacrylate viscosity modifier Sunlube 1703, and physical properties were evaluated. The results are shown in Table 4.
  • Example 10 A lubricating oil composition was prepared in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Sunlube 1703, which is a commercially available polymethacrylate viscosity modifier, and the physical properties were evaluated. The results are shown in Table 4.

Abstract

Provided is a lubricating oil composition having viscosity characteristics (viscosity index improving effect) and friction characteristics similar to or better than those when a PMA-based viscosity modifier is used.  Also provided is a lubricating oil composition having superior biodegradability while having the abovementioned characteristics. The lubricating oil composition includes (A) base oil and (B) ricinolic acid (co)polymer of weight average molecular weight measured by GPC (gel permeation chromatography) of 10,000 or above, in proportions by weight of (A)/(B) from 70/30 to 99.5/0.5.

Description

潤滑油組成物およびその用途Lubricating oil composition and use thereof
 本発明は、リシノール酸(共)重合体を含有する潤滑油組成物およびその用途に関する。より詳しくは、良好な粘度特性および摩擦特性を有するとともに、生分解性が高いリシノール酸(共)重合体を含有する潤滑油組成物、およびその用途に関する。 The present invention relates to a lubricating oil composition containing a ricinoleic acid (co) polymer and its use. More specifically, the present invention relates to a lubricating oil composition containing a ricinoleic acid (co) polymer having good viscosity characteristics and friction characteristics and high biodegradability, and uses thereof.
 石油製品は一般に温度が変わると粘度が大きく変化する、いわゆる粘度の温度依存性を有している。また、潤滑油も粘度の温度依存性を有しており、粘度の温度依存性が小さいことが好ましい。この粘度の温度依存性を小さくする目的で、粘度指数向上剤として潤滑油基油に可溶なポリマーが用いられている。代表的な粘度調整剤としては、オレフィン共重合体或いはポリメタクリル酸エステルの重合体(以下PMAと記述)の鉱油溶液が知られている。 Petroleum products generally have a so-called viscosity temperature dependency in which the viscosity changes greatly when the temperature changes. The lubricating oil also has a temperature dependency of the viscosity, and it is preferable that the temperature dependency of the viscosity is small. For the purpose of reducing the temperature dependence of the viscosity, a polymer soluble in a lubricating base oil is used as a viscosity index improver. As a typical viscosity modifier, a mineral oil solution of an olefin copolymer or a polymer of polymethacrylate (hereinafter referred to as PMA) is known.
 一方、近年、地球環境問題に対する意識の高まりから、各産業界において環境への負荷を低減させた製品の開発が望まれている。このような要望は、潤滑油組成物に関しても例外ではなく、種々の生分解性を有する潤滑油組成物が提案されている。 On the other hand, in recent years, with the growing awareness of global environmental issues, development of products with reduced environmental impact is desired in each industry. Such a demand is not an exception for lubricating oil compositions, and lubricating oil compositions having various biodegradability have been proposed.
 例えば、基油として大豆油やナタネ油等の植物油やポリオール等の合成エステルを含有するグリース用やエンジン油用の潤滑油組成物が提案されている(例えば、非特許文献1参照)。 For example, lubricating oil compositions for grease and engine oil containing vegetable oils such as soybean oil and rapeseed oil as base oils and synthetic esters such as polyols have been proposed (for example, see Non-Patent Document 1).
 しかしながら、このような潤滑油組成物は、従来の潤滑油組成物と比べて、粘度が低いために、使用範囲が限られていた。 However, since such a lubricating oil composition has a lower viscosity than the conventional lubricating oil composition, the range of use has been limited.
 また、本発明者らが検討したところ、基油として植物油を含有する潤滑油組成物は、低温での保存特性や安定性に問題があった。かかる潤滑油組成物に、OCP(オレフィンコポリマー)系粘度調整剤等の粘度調整剤を含有させた場合、この粘度調整剤は、植物油への溶解性に乏しく、適用することが困難であった。 Further, as a result of examination by the present inventors, a lubricating oil composition containing vegetable oil as a base oil has problems in storage characteristics and stability at low temperatures. When such a lubricating oil composition contains a viscosity modifier such as an OCP (olefin copolymer) viscosity modifier, the viscosity modifier is poorly soluble in vegetable oil and difficult to apply.
 さらには、植物油や合成エステルを基油とした潤滑油組成物の粘度調整剤として、PMA(ポリメタクリレート)系の粘度調整剤を選択することにより、基油への粘度調整剤の溶解性が改善されるものの、PMA系の粘度調整剤は希釈油として生分解率の低い鉱油が50重量%以上の含まれるため、潤滑油組成物の生分解率が著しく低下した。 Furthermore, the solubility of the viscosity modifier in the base oil is improved by selecting a PMA (polymethacrylate) viscosity modifier as the viscosity modifier of the lubricating oil composition based on vegetable oil or synthetic ester. However, since the PMA-based viscosity modifier contains 50% by weight or more of a mineral oil having a low biodegradation rate as a diluent oil, the biodegradation rate of the lubricating oil composition was significantly reduced.
 そこで、PMA系粘度調整剤を用いた場合に比べて同等若しくはそれ以上の粘度特性(粘度指数向上効果)および摩擦特性を有する潤滑油組成物を提供することを課題とする。また、前記した特性を有するとともに、生分解性を低下させるような鉱油等の希釈油を含まず、優れた生分解性を有する潤滑油組成物を提供することを課題とする。
また、生分解性の高い、潤滑油用粘度調整剤を提供することを課題とする。
Then, it makes it a subject to provide the lubricating oil composition which has a viscosity characteristic (viscosity index improvement effect) and a friction characteristic equivalent or more compared with the case where a PMA type | system | group viscosity modifier is used. Another object of the present invention is to provide a lubricating oil composition having excellent biodegradability, which does not include a diluent oil such as mineral oil that has the above-described properties and reduces biodegradability.
Another object of the present invention is to provide a viscosity modifier for lubricating oil that has high biodegradability.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、粘度調整剤として特定のリシノール酸(共)重合体を用いることにより、PMA系粘度調整剤を用いた場合に比べて、潤滑油組成物が、同等若しくはそれ以上の粘度特性(粘度指数向上効果)および摩擦特性を発揮するとともに、生分解性に著しく優れることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a specific ricinoleic acid (co) polymer as a viscosity modifier, so that a lubricating oil can be used as compared with the case where a PMA viscosity modifier is used. It has been found that the composition exhibits an equal or higher viscosity characteristic (viscosity index improving effect) and friction characteristic, and is extremely excellent in biodegradability, and the present invention has been completed.
 すなわち、本発明に係るリシノール酸(共)重合体を含有する潤滑油組成物(以下、便宜上、潤滑油組成物と称する場合がある。)は下記の事項により特定される。 That is, the lubricating oil composition containing the ricinoleic acid (co) polymer according to the present invention (hereinafter sometimes referred to as a lubricating oil composition for convenience) is specified by the following matters.
 本発明に係る潤滑油組成物は、(A)基油および(B)GPC(ゲルパーミエーションクロマトグラフィー)で測定される重量平均分子量が10,000以上であるリシノール酸(共)重合体を含み、かつ(A)と(B)との重量比((A)の重量/(B)の重量)が70/30~99.5/0.5である。 The lubricating oil composition according to the present invention comprises (A) a base oil and (B) a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography). The weight ratio of (A) to (B) (weight of (A) / weight of (B)) is 70/30 to 99.5 / 0.5.
 また、前記基油は、植物油および/または合成エステルが好ましい。 The base oil is preferably vegetable oil and / or synthetic ester.
 また、前記合成エステルが、ジエステルまたはポリオールエステルであることが好ましく、脂肪族ジエステル、脂肪族ポリオールエステルがより好ましい。 The synthetic ester is preferably a diester or a polyol ester, more preferably an aliphatic diester or an aliphatic polyol ester.
 また、前記リシノール酸(共)重合体(B)の重量平均分子量は、10,000~300,000であることが好ましい。 The weight average molecular weight of the ricinoleic acid (co) polymer (B) is preferably 10,000 to 300,000.
 また、前記潤滑油組成物が、(A)および(B)の他に、酸化防止剤、極圧剤、防錆剤、金属不活性剤、耐摩耗添加剤、消泡剤および清浄分散剤からなる群から選ばれる少なくとも1種の添加剤(C)を含むことが好ましい。
また、前記潤滑油組成物は、修正MITI試験法OECD301C法にて測定される生分解率が60%以上であることが好ましい。
In addition to (A) and (B), the lubricating oil composition comprises an antioxidant, an extreme pressure agent, a rust inhibitor, a metal deactivator, an antiwear additive, an antifoaming agent and a cleaning dispersant. It is preferable to include at least one additive (C) selected from the group consisting of:
The lubricating oil composition preferably has a biodegradation rate of 60% or more as measured by the modified MITI test method OECD301C method.
 また、前記潤滑油組成物は、ギヤー油、作動油、エンジン油、グリース、金属加工油とすることが好ましい。 The lubricating oil composition is preferably gear oil, hydraulic oil, engine oil, grease, or metalworking oil.
 さらに、本発明に係る潤滑用粘度調製剤は、GPC(ゲルパーミエーションクロマトグラフィー)で測定される重量平均分子量が10,000以上であるリシノール酸(共)重合体からなることを特徴とする。 Furthermore, the viscosity adjusting agent for lubrication according to the present invention is characterized by comprising a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography).
 本発明の潤滑油組成物によれば、PMA系粘度調整剤等の粘度調整剤と植物油や合成エステルとからなる生分解性潤滑油組成物と比べて、潤滑油組成物が、同等若しくはそれ以上の粘度特性(粘度指数向上効果)および摩擦特性とともに、優れた生分解性を発揮することができる。 According to the lubricating oil composition of the present invention, compared with a biodegradable lubricating oil composition composed of a viscosity modifier such as a PMA viscosity modifier and a vegetable oil or a synthetic ester, the lubricating oil composition is equivalent or more. In addition to its viscosity characteristics (viscosity index improving effect) and friction characteristics, it can exhibit excellent biodegradability.
 さらに、基油が植物油である場合、上記の効果とともに、良好な低温貯蔵安定性を発揮することができる。 Furthermore, when the base oil is a vegetable oil, good low-temperature storage stability can be exhibited together with the above effects.
 また、本発明の潤滑用粘度調製剤は、潤滑油組成物に添加されることで、潤滑油組成物に粘度特性(粘度指数向上効果)および摩擦特性とともに、優れた生分解性を付与することができる。 Moreover, the viscosity adjusting agent for lubrication of the present invention, when added to the lubricating oil composition, imparts excellent biodegradability to the lubricating oil composition, along with viscosity characteristics (viscosity index improving effect) and friction characteristics. Can do.
 以下、本発明に係るリシノール酸(共)重合体を含有する潤滑油組成物(以下、便宜上、潤滑油組成物と称する場合がある。)について、構成要件ごとに詳細に説明する。
[基油(A)]
 本発明において、基油(A)の種類としては、植物油、合成エステル、低分子量のポリα-オレフィン等を挙げることができる。なかでも植物油、合成エステルが好ましい。
Hereinafter, the lubricating oil composition containing the ricinoleic acid (co) polymer according to the present invention (hereinafter, sometimes referred to as a lubricating oil composition for convenience) will be described in detail for each component.
[Base oil (A)]
In the present invention, examples of the base oil (A) include vegetable oils, synthetic esters, low molecular weight poly α-olefins, and the like. Of these, vegetable oils and synthetic esters are preferred.
 また、潤滑油組成物の生分解性をより向上できることから、植物油として、ナタネ油、大豆油、ヒマシ油、パーム油、ヒマワリ油、サフラワー油、とうもろこし油、メドウフォーム油、米ぬか油、オリーブ油、ホホバ油等が好ましく、ナタネ油、大豆油、ヒマシ油、パーム油がさらに好ましい。また、これらの植物油を1種または2種類以上使用してもよい。 In addition, since the biodegradability of the lubricating oil composition can be further improved, rapeseed oil, soybean oil, castor oil, palm oil, sunflower oil, safflower oil, corn oil, meadow foam oil, rice bran oil, olive oil, Jojoba oil and the like are preferable, and rapeseed oil, soybean oil, castor oil, and palm oil are more preferable. Moreover, you may use 1 type, or 2 or more types of these vegetable oils.
 また、基油を植物油とした場合に比べて、潤滑油組成物の生分解性が若干劣るが、幅広い温度条件下で潤滑油組成物が使用可能になることから、合成エステルとしては、ジエステル、ポリオールエステルが好ましい。 In addition, the biodegradability of the lubricating oil composition is slightly inferior to the case where the base oil is a vegetable oil, but since the lubricating oil composition can be used under a wide range of temperature conditions, the synthetic ester includes a diester, Polyol esters are preferred.
 さらに、低温域(室温以下)から高温域(50℃~100℃)までの幅広い温度条件下で、潤滑油組成物が使用可能になることから、ジエステルとしては、ジ-2-エチルヘキシルセバケート、ジオクチルアジペート、ジオクチルドデカンジオエート、ジイソデシルアジペート、ジオクチルセバケート等の脂肪族ジエステルが好ましく、ポリオールエステルとしては、ペンタエリスリトールテトラオレエート、トリメチロールプロパントリペラルゴナート、ネオペンチルポリオール等の脂肪族ポリオールエステルが好ましく、これらの合成エステルを1種または2種類以上使用してもよい。 Furthermore, since the lubricating oil composition can be used under a wide range of temperature conditions from a low temperature range (below room temperature) to a high temperature range (50 ° C. to 100 ° C.), as a diester, di-2-ethylhexyl sebacate, Aliphatic diesters such as dioctyl adipate, dioctyl decanedioate, diisodecyl adipate, and dioctyl sebacate are preferred, and the polyol ester is an aliphatic polyol ester such as pentaerythritol tetraoleate, trimethylolpropane tripelagonate, or neopentyl polyol. Preferably, one or more of these synthetic esters may be used.
 なお、基油(A)として、1種または2種類以上の植物油と、1種または2種類以上の合成エステルとを混合して使用してもよい。 As the base oil (A), one or more kinds of vegetable oils and one or more kinds of synthetic esters may be mixed and used.
 また、適正な潤滑性を有する潤滑油組成物を得るために、基油(A)の40℃での動粘度(ASTM 445動粘度試験法に準拠)は、10~80mm2/sとすることが好ましく、20~60mm2/sとすることがさらに好ましい。 In order to obtain a lubricating oil composition having appropriate lubricity, the base oil (A) should have a kinematic viscosity at 40 ° C. (according to ASTM 445 kinematic viscosity test method) of 10 to 80 mm 2 / s. Is more preferable, and 20 to 60 mm 2 / s is more preferable.
 また、低温域(室温以下)における適正な流動性を有する潤滑油組成物を得るために、基油(A)の流動点(JIS K2269の測定法に準拠)を0~-50℃にすることが好ましい。
[リシノール酸(共)重合体(B)]
 本発明に係るリシノール酸(共)重合体(B)のGPC(ゲルパーミエーションクロマトグラフィー)から測定される重量平均分子量は10,000以上であり、好ましくは10,000~300,000であり、さらに好ましくは30,000~150,000である。このような範囲の重量平均分子量を有するリシノール酸(共)重合体(B)を用いることにより、リシノール酸(共)重合体を配合した潤滑油組成物に、優れた増粘性、粘度指数向上効果及び優れた生分解性を付与することができる。また、基油が植物油の場合、良好な低温貯蔵安定性を付与することができる。
In addition, in order to obtain a lubricating oil composition having appropriate fluidity in a low temperature range (room temperature or lower), the pour point of the base oil (A) (according to the measurement method of JIS K2269) should be 0 to -50 ° C. Is preferred.
[Ricinolic acid (co) polymer (B)]
The weight average molecular weight measured from GPC (gel permeation chromatography) of the ricinoleic acid (co) polymer (B) according to the present invention is 10,000 or more, preferably 10,000 to 300,000. More preferably, it is 30,000 to 150,000. By using the ricinoleic acid (co) polymer (B) having a weight average molecular weight in such a range, the lubricating oil composition blended with the ricinoleic acid (co) polymer has excellent viscosity increase and viscosity index improvement effects. And excellent biodegradability can be imparted. Moreover, when base oil is vegetable oil, favorable low-temperature storage stability can be provided.
 また、このような範囲の重量平均分子量を有するリシノール酸(共)重合体(B)は、下記反応式(I)に示されるように、リシノール酸(12-ヒドロキシ-cis-9-オクタデセン酸)エステル誘導体から、またはリシノール酸エステル誘導体およびヒドロキシカルボン酸エステル誘導体(例えば、12-ヒドロキシステアリン酸メチルエステル)から、リパーゼによるエステル重合反応を経て合成することができる。 In addition, ricinoleic acid (co) polymer (B) having a weight average molecular weight in such a range is obtained by using ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) as shown in the following reaction formula (I). It can be synthesized from an ester derivative or from a ricinoleic acid ester derivative and a hydroxycarboxylic acid ester derivative (for example, 12-hydroxystearic acid methyl ester) through an ester polymerization reaction with lipase.
 上記重合反応において、リシノール酸エステル誘導体単独を重合した場合、単独重合体であるポリリシノール酸が得られる。一方、リシノール酸エステル誘導体とともにヒドロキシカルボン酸エステル誘導体を共重合した場合、リシノール酸共重合体が得られる。 In the above polymerization reaction, when a ricinoleic acid ester derivative alone is polymerized, polyricinoleic acid which is a homopolymer is obtained. On the other hand, when a hydroxycarboxylic acid ester derivative is copolymerized with a ricinoleic acid ester derivative, a ricinoleic acid copolymer is obtained.
 また、エステル重合反応が良好であり、高分子量のポリリシノール酸が得られることから、リシノール酸エステル体は、リシノール酸メチルであることが好ましい。 Also, since the ester polymerization reaction is good and a high molecular weight polyricinoleic acid is obtained, the ricinoleic acid ester is preferably methyl ricinoleate.
 また、上記リシノール酸共重合体は、モノマー成分として、リシノール酸エステル誘導体およびヒドロキシカルボン酸エステル誘導体から構成される。ここで、ヒドロキシカルボン酸エステル誘導体は、水酸基(ヒドロキシル基)を有するカルボン酸エステル誘導体である限り、特に限定されないが、ヒドロキシステアリン酸であることが好ましい。 The ricinoleic acid copolymer is composed of a ricinoleic acid ester derivative and a hydroxycarboxylic acid ester derivative as monomer components. Here, the hydroxycarboxylic acid ester derivative is not particularly limited as long as it is a carboxylic acid ester derivative having a hydroxyl group (hydroxyl group), but is preferably hydroxystearic acid.
 また、リシノール酸エステル誘導体と12-ヒドロキシステアリン酸エステル誘導体との仕込みモル比(リシノール酸エステル誘導体/12-ヒドロキシステアリン酸エステル誘導体)は100/0~20/80が好ましい。 Further, the charged molar ratio of the ricinoleic acid ester derivative to the 12-hydroxystearic acid ester derivative (ricinoleic acid ester derivative / 12-hydroxystearic acid ester derivative) is preferably 100/0 to 20/80.
 また本発明のリシノール酸(共)重合体(B)として、所望により前記ポリリシノール酸またはリシノール酸共重合体を水添する等の処理したものを用いてもよい。 Further, as the ricinoleic acid (co) polymer (B) of the present invention, a polymer obtained by subjecting the polyricinoleic acid or ricinoleic acid copolymer to hydrogenation may be used as desired.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(反応式I)
 また、リパーゼとしては、Burkholderia cepacia由来の固定化リパーゼ(例えば、ワコーケミカル株式会社製の、リパーゼPS-CアマノII(商品名)、PS-DアマノI(商品名)等)が好ましく、この場合、高温でもリパーゼが失活しにくいために、反応温度を90℃まで上げることができる。また、反応条件としては、バルク条件下において、攪拌機付き反応器によるバッチ法とすることが好ましい。
(Scheme I)
The lipase is preferably an immobilized lipase derived from Burkholderia cepacia (for example, Lipase PS-C Amano II (trade name), PS-D Amano I (trade name), etc., manufactured by Wako Chemical Co., Ltd.). Since the lipase is not easily deactivated even at high temperatures, the reaction temperature can be increased to 90 ° C. The reaction conditions are preferably a batch method using a reactor equipped with a stirrer under bulk conditions.
 また、反応時間としては、触媒濃度、重合温度などの条件によって異なるが、通常4~7日間である。 The reaction time is usually 4 to 7 days, although it varies depending on conditions such as catalyst concentration and polymerization temperature.
 また、上記反応式(I)に示されるように、リパーゼを用いたエステル重合反応は可逆反応であり、効率的なエステル重合反応を進行させるためには、生成したアルコールを逐次除去することが好ましい。具体的には、反応系における圧力状態を減圧状態に維持したり、合成ゼオライト(例えば、モレキュラーシーブ4A)等の吸湿剤を反応系に非接触で設置した上で合成反応を実施したりすることが挙げられる。このような条件下においてエステル重合反応を実施することにより、単純かつ容易にエステル重合反応を進行させることができ、高分子量のポリリシノール酸を効率よく合成することができる。 Further, as shown in the above reaction formula (I), the ester polymerization reaction using lipase is a reversible reaction, and it is preferable to sequentially remove the produced alcohol in order to advance the efficient ester polymerization reaction. . Specifically, maintaining the pressure state in the reaction system in a reduced pressure state, or performing a synthesis reaction after placing a hygroscopic agent such as synthetic zeolite (for example, molecular sieve 4A) in the reaction system in a non-contact manner. Is mentioned. By carrying out the ester polymerization reaction under such conditions, the ester polymerization reaction can be advanced simply and easily, and a high molecular weight polyricinoleic acid can be synthesized efficiently.
 また、上述の方法により合成された、GPCから測定される重量平均分子量が10,000以上であるリシノール酸(共)重合体からなる潤滑用粘度調製剤は、潤滑油組成物に添加されることで、潤滑油組成物に粘度特性(粘度指数向上効果)および摩擦特性とともに、優れた生分解性を付与することができる。
[潤滑油組成物]
 本願発明に係る潤滑油組成物において、上記(A)基油と上記(B)リシノール酸(共)重合体との重量比((A)の重量/(B)の重量)が70/30~99.5/0.5であり、好ましくは75/25~99/1、さらに好ましくは80/20~97/3である。このような範囲で、潤滑油組成物に基油(A)とリシノール酸(共)重合体(B)とが含まれることにより、基油(A)とリシノール酸(共)重合体(B)との間に良好な相溶性が得られるとともに、潤滑油組成物に増粘効果が付与される。また、室温条件下であっても、潤滑油組成物が適正な粘度指数を発揮できるために、流動性が良好である。さらに、基油(A)が植物油である場合、潤滑油組成物の低温貯蔵安定性を向上させることができる。
Further, the viscosity adjusting agent for lubrication composed of a ricinoleic acid (co) polymer synthesized by the above-mentioned method and having a weight average molecular weight measured by GPC of 10,000 or more should be added to the lubricating oil composition. Thus, excellent biodegradability can be imparted to the lubricating oil composition together with viscosity characteristics (viscosity index improving effect) and friction characteristics.
[Lubricating oil composition]
In the lubricating oil composition according to the present invention, the weight ratio of the (A) base oil to the (B) ricinoleic acid (co) polymer (weight of (A) / weight of (B)) is 70/30 to It is 99.5 / 0.5, preferably 75/25 to 99/1, and more preferably 80/20 to 97/3. Within such a range, the base oil (A) and the ricinoleic acid (co) polymer (B) are contained in the lubricating oil composition by including the base oil (A) and the ricinoleic acid (co) polymer (B). Good compatibility is obtained, and a thickening effect is imparted to the lubricating oil composition. Further, even under room temperature conditions, the lubricating oil composition can exhibit an appropriate viscosity index, and therefore has good fluidity. Furthermore, when the base oil (A) is a vegetable oil, the low temperature storage stability of the lubricating oil composition can be improved.
 また、潤滑油組成物に、中温域(室温~50℃)において適正な潤滑性能を付与できることから、本願発明に係る潤滑油組成物の40℃での動粘度(ASTM D445に準拠)は、50~300mm2/sとすることが好ましく、80~200mm2/sとすることがさらに好ましい。 Further, since an appropriate lubricating performance can be imparted to the lubricating oil composition in an intermediate temperature range (room temperature to 50 ° C.), the kinematic viscosity (based on ASTM D445) at 40 ° C. of the lubricating oil composition according to the present invention is 50 preferably to ~ 300mm 2 / s, and even more preferably from 80 ~ 200mm 2 / s.
 また、潤滑油組成物に、高温域(50℃~100℃)において適正な潤滑性能を付与できることから、本願発明に係る潤滑油組成物の100℃での動粘度(ASTM D445に準拠)は、10~100mm2/sとすることが好ましく、15~50mm2/sとすることがさらに好ましい。 In addition, since the lubricating oil composition can be provided with appropriate lubricating performance in a high temperature range (50 ° C. to 100 ° C.), the kinematic viscosity at 100 ° C. (according to ASTM D445) of the lubricating oil composition according to the present invention is: The thickness is preferably 10 to 100 mm 2 / s, and more preferably 15 to 50 mm 2 / s.
 また、潤滑油組成物を幅広い温度範囲において使用できるようになるとともに、各温度において適正な潤滑性を維持できることから、本願発明に係る潤滑油組成物の粘度指数(ASTM D2270に準拠)は、180~250とすることが好ましく、200~250とすることがさらに好ましい。 In addition, since the lubricating oil composition can be used in a wide temperature range and appropriate lubricity can be maintained at each temperature, the viscosity index (based on ASTM D2270) of the lubricating oil composition according to the present invention is 180. Is preferably from 250 to 250, and more preferably from 200 to 250.
 また、潤滑油組成物が天然に飛散(漏洩)される場合において、自然環境中で速やかに分解(生分解)されることが求められることから、本願発明に係る潤滑油組成物の修正MITI試験法「OECD301C」に基づく生分解率が、60%以上であることが好ましい。
[添加剤(C)]
 本発明に係る潤滑油組成物は、基油(A)およびリシノール酸(共)重合体(B)の他に、酸化安定性、防錆性、極圧性、消泡性の向上等の目的に応じて、添加剤(C)を含むことが好ましい。
In addition, when the lubricating oil composition is naturally scattered (leakage), it is required to be quickly decomposed (biodegraded) in the natural environment, so that the modified MITI test of the lubricating oil composition according to the present invention is performed. The biodegradation rate based on the method “OECD301C” is preferably 60% or more.
[Additive (C)]
In addition to the base oil (A) and the ricinoleic acid (co) polymer (B), the lubricating oil composition according to the present invention is used for the purpose of improving oxidation stability, rust prevention, extreme pressure, defoaming, etc. Accordingly, it is preferable to include an additive (C).
 このような添加剤(C)としては、酸化防止剤、極圧剤、防錆剤、金属不活性剤、耐摩耗添加剤、消泡剤および清浄分散剤からなる群からから選ばれる1種以上であることが好ましい。 Such an additive (C) is one or more selected from the group consisting of antioxidants, extreme pressure agents, rust inhibitors, metal deactivators, antiwear additives, antifoaming agents and detergent-dispersants. It is preferable that
 また、添加剤(C)の合計配合量は、本発明の目的を損なわない範囲で適宜配合することができるが、潤滑油組成物100重量%に対して、0.05~25重量%とすることが好ましい。
[酸化防止剤]
 本発明の潤滑油組成物に用いる酸化防止剤としては、公知の酸化防止剤が使用できるが、具体的には、ジ(アルキルフェニル)アミン(アルキル基は炭素数4~20)、フェニル-α-ナフチルアミン、アルキルジフェニルアミン(アルキル基は炭素数4~20)、N-ニトロソジフェニルアミン、フェノチアジン、N,N’-ジナフチル-p-フェニレンジアミン、アクリジン、N-メチルフェノチアジン、N-エチルフェノチアジン、ジピリジルアミン、ジフェニルアミン、フェノールアミン、2,6-ジ-t-ブチル-α-ジメチルアミノパラクレゾール等のアミン系酸化防止剤、2,6-ジ-t-ブチルパラクレゾ-ル、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノ-ル)、2,6-ジ-t-ブチル-4-N,N-ジメチルアミノメチルフェノール、2,6-ジ-t-ブチルフェノ-ル、ジオクチルジフェニルアミン等のフェノ-ル系酸化防止剤、また鉄オクトエ-ト、フェロセン、鉄ナフトエ-ト等の有機鉄塩、セリウムナフトエ-ト、セリウムトルエ-ト等の有機セリウム塩、ジルコニウムオクトエ-ト等の有機ジルコニウム塩等の有機金属化合物系酸化防止剤が挙げられる。また、酸化防止剤は単独で使用してもよいが、二種以上組み合わせて使用することもできる。
〔極圧剤〕
 本発明の潤滑油組成物に用いる極圧剤としては、公知の極圧添加剤が使用できるが、具体的には、塩素化パラフィン、塩素化ジフェニル、および塩素化脂肪酸等の塩素系化合物;硫化脂肪酸、硫化脂肪酸エステル、硫化動物油、硫化植物油、ジベンジルジサルファイド、合成ポリサルファイド、アルキルチオプロピオン酸のアミン塩またはアルカリ金属塩、およびアルキルチオグリコール酸のアミン塩またはアルカリ金属塩等のイオウ系化合物;リン酸エステル、酸性リン酸エステル、酸性リン酸エステルのアミン塩、ならびに塩素化リン酸エステルおよび亜リン酸エステル等のリン系化合物、ジアルキルジチオリン酸亜鉛化合物またはジアリルジチオリン酸亜鉛化合物、有機モリブデン化合物、ナフテン酸鉛等の金属石鹸、有機ホウ酸エステルおよびその金属塩やアミン塩、有機ホスホン酸およびその金属塩やアミン塩が挙げられる。
Further, the total amount of the additive (C) can be appropriately blended within a range not impairing the object of the present invention, but is 0.05 to 25% by weight with respect to 100% by weight of the lubricating oil composition. It is preferable.
[Antioxidant]
As the antioxidant used in the lubricating oil composition of the present invention, known antioxidants can be used. Specifically, di (alkylphenyl) amine (alkyl group has 4 to 20 carbon atoms), phenyl-α -Naphthylamine, alkyldiphenylamine (alkyl group has 4 to 20 carbon atoms), N-nitrosodiphenylamine, phenothiazine, N, N'-dinaphthyl-p-phenylenediamine, acridine, N-methylphenothiazine, N-ethylphenothiazine, dipyridylamine, Amine antioxidants such as diphenylamine, phenolamine, 2,6-di-t-butyl-α-dimethylaminoparacresol, 2,6-di-t-butylparacresol, 4,4′-methylenebis (2, 6-di-t-butylphenol), 2,6-di-t-butyl-4-N, N-dimethyl Phenolic antioxidants such as minomethylphenol, 2,6-di-t-butylphenol, dioctyldiphenylamine, organic iron salts such as iron octoate, ferrocene, iron naphthoate, cerium naphthoate And organic metal compound-based antioxidants such as organic cerium salts such as cerium toluene and organic zirconium salts such as zirconium octoate. Moreover, although antioxidant may be used independently, it can also be used in combination of 2 or more types.
(Extreme pressure agent)
As the extreme pressure agent used in the lubricating oil composition of the present invention, known extreme pressure additives can be used. Specifically, chlorine compounds such as chlorinated paraffin, chlorinated diphenyl, and chlorinated fatty acid; Sulfur compounds such as fatty acids, sulfurized fatty acid esters, sulfurized animal oils, sulfurized vegetable oils, dibenzyl disulfide, synthetic polysulfides, amine salts or alkali metal salts of alkylthiopropionic acids, and amine salts or alkali metal salts of alkylthioglycolic acids; phosphoric acid Esters, acidic phosphates, amine salts of acidic phosphates, and phosphorus compounds such as chlorinated phosphates and phosphites, zinc dialkyldithiophosphates or zinc diallyldithiophosphates, organomolybdenum compounds, naphthenic acids Metal soap such as lead, organic borate Le and metal salts thereof and amine salts, organic phosphonic acids and their metal salts or amine salts.
 極圧剤は、本発明の潤滑油組成物中に1種または2種以上添加でき、2種以上添加する場合に用いる極圧添加剤の組み合わせは、得られる潤滑油組成物が所望する特性を有することができるように、任意に組み合わせることができる。 One or two or more extreme pressure agents can be added to the lubricating oil composition of the present invention, and the combination of extreme pressure additives used when two or more extreme pressure agents are added has the desired characteristics of the resulting lubricating oil composition. It can be arbitrarily combined so that it can have.
 また、潤滑油組成物中の極圧剤の含有量は、基油(A)100重量部に対して、0.5~10重量部であることが好ましく、2~8重量部であることがさらに好ましい。
[防錆剤]
本発明の潤滑油組成物に用いる防錆剤としては 、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、及び多価アルコールエステル等が挙げられる。
[金属腐食防止剤]
 本発明の潤滑油組成物に用いる金属腐食防止剤としては、ベンゾトリアゾールとその誘導体、チアゾール系化合物などを挙げることができる。
[耐摩耗添加剤]
 耐摩耗添加剤としては 、リン系化合物、有機モリブデン化合物、脂肪酸エステル化合物あるいは脂肪族アミン系化合物が挙げられる。
The content of the extreme pressure agent in the lubricating oil composition is preferably 0.5 to 10 parts by weight, preferably 2 to 8 parts by weight, with respect to 100 parts by weight of the base oil (A). Further preferred.
[anti-rust]
Examples of the rust inhibitor used in the lubricating oil composition of the present invention include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
[Metal corrosion inhibitor]
Examples of the metal corrosion inhibitor used in the lubricating oil composition of the present invention include benzotriazole and its derivatives, and thiazole compounds.
[Antiwear additive]
Examples of the antiwear additive include phosphorus compounds, organic molybdenum compounds, fatty acid ester compounds, and aliphatic amine compounds.
 リン系化合物の耐摩耗添加剤としては、例えば、アルキルジチオリン酸亜鉛、リン酸、亜リン酸、リン酸モノエステル類、リン酸ジエステル類、リン酸トリエステル類、亜リン酸モノエステル類、亜リン酸ジエステル類、亜リン酸トリエステル類、(亜)リン酸エステル類の塩、及びチオリン酸、あるいはチオ亜リン酸又はこれらのエステル類等、並びにこれらの混合物が挙げられる。この中でも、アルキルジチオリン酸亜鉛が好適に用いられ、通常、炭素数2~30、好ましくは3~20の炭化水素基を含有する。この炭素数2~30の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルキルシクロアルキル基、アルケニル基、アリール基、アルキルアリール基、及びアリールアルキル基を挙げることができる。 Examples of antiwear additives for phosphorus compounds include zinc alkyldithiophosphates, phosphoric acid, phosphorous acid, phosphoric acid monoesters, phosphoric acid diesters, phosphoric acid triesters, phosphorous acid monoesters, Examples thereof include phosphoric acid diesters, phosphite triesters, salts of (phosphite) esters, and thiophosphoric acid, thiophosphorous acid or esters thereof, and mixtures thereof. Among these, zinc alkyldithiophosphate is preferably used, and usually contains a hydrocarbon group having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms. Examples of the hydrocarbon group having 2 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group.
 耐摩耗添加剤の有機モリブデン系化合物としては、例えば、モリブデンジチオカーバメート、モリブデンジチオフォスフェート、モリブデン酸アミン塩などが挙げられ、特に、モリブデンジチオカーバメートが好ましい。
[消泡剤]
 本発明の潤滑油組成物に用いる消泡剤としては、公知の消泡剤が使用できるが、例えば、ジメチルシロキサン、シリカゲル分散体等のシリコン系消泡剤;アルコール、エステル系消泡剤などが挙げられる。
[清浄分散剤]
 本発明の潤滑油組成物に用いる清浄分散剤としては、公知の清浄分散剤が使用できるが、例えば、カルシウムスルホネート、マグネシウムスルホネート、バリウムスルホネート等の金属スルホネートやチオホスホネート、フェナート、サリチレート、コハク酸イミド、ベンジルアミン、コハク酸エステルなどが挙げられる。
[潤滑油組成物の製造方法]
 本発明の潤滑油組成物は、基油(A)および所定のリシノール酸(共)重合体(B)、必要によっては添加剤(C)等を所定割合で混合・混錬して得られる。
Examples of the organic molybdenum compound as the antiwear additive include molybdenum dithiocarbamate, molybdenum dithiophosphate, and molybdate amine salt. Molybdenum dithiocarbamate is particularly preferable.
[Defoaming agent]
As the antifoaming agent used in the lubricating oil composition of the present invention, known antifoaming agents can be used. Examples thereof include silicon-based antifoaming agents such as dimethylsiloxane and silica gel dispersion; alcohols and ester-based antifoaming agents. Can be mentioned.
[Cleaning dispersant]
As the detergent dispersant used in the lubricating oil composition of the present invention, known detergent dispersants can be used. For example, metal sulfonates such as calcium sulfonate, magnesium sulfonate, barium sulfonate, thiophosphonate, phenate, salicylate, succinimide , Benzylamine, succinic acid ester and the like.
[Method for producing lubricating oil composition]
The lubricating oil composition of the present invention is obtained by mixing and kneading a base oil (A), a predetermined ricinoleic acid (co) polymer (B), and, if necessary, an additive (C) at a predetermined ratio.
 ここで、基油(A)、リシノール酸(共)重合体(B)、必要によっては添加剤(C)等を混合・混錬するにあたり、これらの成分を同時に、あるいは任意の順序で、混合・混錬装置に添加してもよい。 Here, when mixing and kneading the base oil (A), the ricinoleic acid (co) polymer (B) and, if necessary, the additive (C), these components are mixed simultaneously or in any order. -You may add to a kneading apparatus.
 また、混合・混錬手段として、タンクブレンド方式、オートブレンダ方式等の公知の混合・混錬装置を使用することができる。 Also, as a mixing / kneading means, a known mixing / kneading apparatus such as a tank blend method or an auto blender method can be used.
 また、潤滑油組成物中の各成分の均一性を良好にするために、各成分を、60~80℃に加熱後あるいは加熱しながら混合・混錬することが好ましい。
[潤滑油組成物の用途]
 本発明に係る潤滑油組成物は、良好な粘度特性および摩擦特性を有するとともに、生分解性に優れているために、各用途の潤滑油組成物として非常に有用である。
In order to improve the uniformity of each component in the lubricating oil composition, it is preferable to mix and knead each component after heating to 60 to 80 ° C. or while heating.
[Use of lubricating oil composition]
The lubricating oil composition according to the present invention is very useful as a lubricating oil composition for each application because it has good viscosity characteristics and friction characteristics and is excellent in biodegradability.
 具体的な用途としては、例えば、ギヤー油、作動油、エンジン油(2サイクルエンジン油、ガソリンエンジン油、ディーゼルエンジン油など)、グリース、切削油、研削油、打ち抜き油、絞り加工油、プレス油、引き抜き油、圧延油、鍛造油、摺動面油、電気絶縁油、タービン油、ギヤー油、エアーコンプレッサー油、圧縮機油、真空ポンプ油、軸受け油、熱媒体油、ミスト油、冷凍機油、ロックドリル油が好ましい。 Specific applications include, for example, gear oil, hydraulic oil, engine oil (two-cycle engine oil, gasoline engine oil, diesel engine oil, etc.), grease, cutting oil, grinding oil, punching oil, drawing oil, press oil , Drawing oil, rolling oil, forging oil, sliding oil, electrical insulation oil, turbine oil, gear oil, air compressor oil, compressor oil, vacuum pump oil, bearing oil, heat medium oil, mist oil, refrigerator oil, lock Drill oil is preferred.
 次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。また、リシノール酸(共)重合体の重量平均分子量の測定条件および製造条件、ならびに潤滑油組成物の各物性の評価基準を以下に示す。
〔重量平均分子量〕
 リシノール酸(共)重合体の重量平均分子量は、GPCを用いた分子量測定によって、ポリスチレン換算により算出した。
以下に、測定に用いた装置および測定条件を以下に示した。
ポンプ:880-PU(日本分光(株))
カラム:Shodex K-804L+K-800D(昭和電工(株))
検出器:830-RI(日本分光(株))
レコーダー:807IT(日本分光(株))
溶離液:クロロホルム (1%エタノールを含む)
測定条件:流速  1.0 ml/min
     :注入量 200 μl(2 mg / ml)
     :温度  25℃
検量線用標準試料:Special polystyrene standard(ケムコ化学(株))(Mw = 600,000、Mw = 50,000、Mw = 17,500、Mw = 9,000、Mw = 2,200、Mw = 906)
〔製造例1〕(ポリリシノール酸 P-1の製造)
 ポリリシノール酸(P-1)は攪拌子を備えた容積10mlの試験管を用いてバッチ式にて合成した。
Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these. The measurement conditions and production conditions for the weight average molecular weight of the ricinoleic acid (co) polymer, and the evaluation criteria for the physical properties of the lubricating oil composition are shown below.
(Weight average molecular weight)
The weight average molecular weight of the ricinoleic acid (co) polymer was calculated in terms of polystyrene by molecular weight measurement using GPC.
The apparatus and measurement conditions used for the measurement are shown below.
Pump: 880-PU (JASCO Corporation)
Column: Shodex K-804L + K-800D (Showa Denko KK)
Detector: 830-RI (JASCO Corporation)
Recorder: 807IT (JASCO Corporation)
Eluent: Chloroform (including 1% ethanol)
Measurement conditions: flow rate 1.0 ml / min
: Injection volume 200 μl (2 mg / ml)
: Temperature 25 ℃
Standard sample for calibration curve: Special polystyrene standard (Chemco Chemical Co., Ltd.) (Mw = 600,000, Mw = 50,000, Mw = 17,500, Mw = 9000, Mw = 2,200, Mw = 906) )
[Production Example 1] (Production of polyricinoleic acid P-1)
Polyricinoleic acid (P-1) was synthesized in a batch manner using a 10-ml test tube equipped with a stirrer.
 具体的には、まず、試験管にリシノール酸メチル(シグマ アルドリッチ ジャパン株式会社製)500mg、およびBurkholderia cepacia由来の固定化リパーゼ250mg(ワコーケミカル株式会社製、リパーゼPS-CアマノII)を入れ、80℃にて3日間、攪拌反応を行った。ただし、反応系より縮合物(メタノール)を除去するため、試験管上部にはモレキュラーシーブ4Aを充填した管を付して反応を行った。 Specifically, first, 500 mg of methyl ricinoleate (manufactured by Sigma-Aldrich Sakai Japan Co., Ltd.) and 250 mg of immobilized lipase derived from Burkholderia cepacia (Wako Chemical Co., Ltd., Lipase PS-C Amano II) were placed in a test tube. Stirring reaction was carried out at 3 ° C. for 3 days. However, in order to remove the condensate (methanol) from the reaction system, the reaction was carried out by attaching a tube filled with molecular sieve 4A to the top of the test tube.
 3日間の反応後、得られたポリリシノール酸粗生成物(固定化リパーゼ含む)に対して、8mlのクロロホルムを添加し、ポリリシノール酸を溶解させた後、濾過することでクロロホルムに対して不溶である固定化リパーゼを取り除いた。エバポレーターにてクロロホルムを濃縮し、約1mlの濃厚ポリリシノール酸を調製した。得られたポリマー溶液を貧溶媒であるメタノール中に滴下することで高分子量ポリリシノール酸を沈殿させ、デカンテーションすることによって、目的とするポリリシノール酸(重量平均分子量40,600)を400mg沈殿物として得た。同様の操作を繰り返すことで、ポリリシノール酸(P-1)を5g調製した。重合条件および得られたポリマーの重量平均分子量を表1に示す。 After the reaction for 3 days, 8 ml of chloroform was added to the obtained polyricinoleic acid crude product (including immobilized lipase) to dissolve polyricinoleic acid, and then insoluble in chloroform by filtration. The immobilized lipase was removed. Chloroform was concentrated with an evaporator to prepare about 1 ml of concentrated polyricinoleic acid. The obtained polymer solution is dropped into methanol, which is a poor solvent, to precipitate high molecular weight polyricinoleic acid and decantate to give 400 mg of the desired polyricinoleic acid (weight average molecular weight 40,600) as a precipitate. Got as. By repeating the same operation, 5 g of polyricinoleic acid (P-1) was prepared. The polymerization conditions and the weight average molecular weight of the obtained polymer are shown in Table 1.
 〔製造例2〕(ポリリシノール酸 P-2の製造)
 重合時間を変更したこと以外はP-1と同様の条件で、ポリリシノール酸(P-2)を合成した。重合条件および得られたポリマーの重量平均分子量を表1に示す。
[Production Example 2] (Production of polyricinoleic acid P-2)
Polyricinoleic acid (P-2) was synthesized under the same conditions as P-1, except that the polymerization time was changed. The polymerization conditions and the weight average molecular weight of the obtained polymer are shown in Table 1.
 〔製造例3〕(ポリリシノール酸 P-3の製造)
 触媒として用いた酵素量および重合時間を変更したこと以外はP-1と同様の条件で、ポリリシノール酸(P-3)を合成した。重合条件および得られたポリマーの重量平均分子量を表1に示す。
[Production Example 3] (Production of polyricinoleic acid P-3)
Polyricinoleic acid (P-3) was synthesized under the same conditions as P-1, except that the amount of enzyme used as a catalyst and the polymerization time were changed. The polymerization conditions and the weight average molecular weight of the obtained polymer are shown in Table 1.
 〔製造例4〕(ポリリシノール酸 P-4の製造)
 触媒として用いた固定化リパーゼPS-C(商品名)を固定化リパーゼPS-D(商品名)に変更したこと以外はP-3と同様の条件で、ポリリシノール酸(P-4)を合成した。重合条件および得られたポリマーの重量平均分子量を表1に示す。
[Production Example 4] (Production of polyricinoleic acid P-4)
Polyricinoleic acid (P-4) was synthesized under the same conditions as P-3 except that the immobilized lipase PS-C (trade name) used as the catalyst was changed to the immobilized lipase PS-D (trade name). did. The polymerization conditions and the weight average molecular weight of the obtained polymer are shown in Table 1.
 〔製造例5〕(リシノール酸共重合体 P-5の製造)
 原料として用いたモノマー種を、リシノール酸メチルエステル単独から、リシノール酸メチルエステルと12-ヒドロキシステアリン酸メチルエステルとからなるモノマーブレンド(等モル仕込み比)に変更したこと以外はP-3と同様の条件で、ポリリシノール酸(P-5)を合成した。重合条件および得られたポリマーの重量平均分子量を表1に示す。
[Production Example 5] (Production of ricinoleic acid copolymer P-5)
The same as P-3, except that the monomer species used as a raw material was changed from a ricinoleic acid methyl ester alone to a monomer blend (equimolar charge ratio) consisting of ricinoleic acid methyl ester and 12-hydroxystearic acid methyl ester. Under the conditions, polyricinoleic acid (P-5) was synthesized. The polymerization conditions and the weight average molecular weight of the obtained polymer are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ※1:酵素量(wt%)は、原料(モノマー種)100wt%とした場合における酵素の使用量を示す。
[基油の性状]
 本実施例および比較例において使用した下記基油の性状を表2に示す。
* 1: Enzyme amount (wt%) indicates the amount of enzyme used when the raw material (monomer type) is 100 wt%.
[Properties of base oil]
Table 2 shows the properties of the following base oils used in Examples and Comparative Examples.
 ナタネ油:MP Biomedical社製
 DIDA(ジイソデシルアジペート):大八化学工業株式会社製
 H-334R(ネオペンチルポリオール脂肪酸エステル):日油株式会社製
Rapeseed oil: MP Biomedical DIDA (diisodecyl adipate): Daihachi Chemical Industries H-334R (neopentyl polyol fatty acid ester): NOF Corporation
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[評価基準]
 以下、潤滑油組成物の(i)貯蔵安定性、(ii)粘度特性(動粘度)、(iii)粘度特性(粘度指数)、(vi)摩擦特性および(v)生分解性の評価方法を示す。
[(i)貯蔵安定性]
 実施例及び比較例で得られた潤滑油組成物10gを20mlのネジ口ビンに入れ、50℃で30分間加熱し、室温に放置した後、25℃、0℃、-5℃の温度条件下で貯蔵安定性として相溶性(流動性、結晶化)を以下の基準に基づいて評価した。
○:潤滑油組成物の各成分が、均一に分散しており、分離していない。
△:潤滑油組成物の各成分が、分離していないが、僅かに結晶化した微粒子が見られる。
×:潤滑油組成物の各成分が、分離するとともに、結晶凝固化した微粒子が見られる。
[(ii)粘度特性(動粘度)]
 動粘度:ASTM D445に基づいて、40℃と100℃の動粘度を測定した。
[(iii)粘度特性(粘度指数)]
 粘度指数:ASTM D2270に基づいて粘度指数を求めた。
[(vi)摩擦特性]
 オプティモール社のSRV摩擦摩耗試験機を用いて、ボールonディスク(鋼球/鋼質円盤)法により、荷重200N、温度80℃での摩擦係数(最大、最小)と摩耗痕深さを測定した。
[(v)生分解性]
 修正MITI試験法「OECD301C」に準拠し、生分解率を測定した。なお、1998年7月に改定されたエコマーク認定基準では、上記生分解率は60%以上であることが要求される。
〔実施例1〕
 ナタネ油とポリリシノール酸(P-1)との重量比((P-1)の重量/ナタネ油の重量)が97/3となるように、ポリリシノール酸(P-1)と基油としてのナタネ油とを、混合して潤滑油組成物を調製した。得られた潤滑油組成物の物性(相溶性、粘度特性、摩擦特性)を、上記の評価基準に基づいて評価した。結果を表3に示す。
[Evaluation criteria]
Hereinafter, (i) storage stability, (ii) viscosity characteristics (kinematic viscosity), (iii) viscosity characteristics (viscosity index), (vi) friction characteristics and (v) biodegradability of the lubricating oil composition will be described. Show.
[(I) Storage stability]
10 g of the lubricating oil composition obtained in the examples and comparative examples was placed in a 20 ml screw mouth bottle, heated at 50 ° C. for 30 minutes, left at room temperature, and then at 25 ° C., 0 ° C., −5 ° C. The compatibility (fluidity, crystallization) as storage stability was evaluated based on the following criteria.
○: The components of the lubricating oil composition are uniformly dispersed and not separated.
(Triangle | delta): Although each component of a lubricating oil composition is not isolate | separated, the microparticles | fine-particles crystallized slightly are seen.
X: Each component of the lubricating oil composition is separated, and crystal solidified fine particles are observed.
[(Ii) Viscosity characteristics (kinematic viscosity)]
Kinematic viscosity: Kinematic viscosities at 40 ° C. and 100 ° C. were measured based on ASTM D445.
[(Iii) Viscosity characteristics (viscosity index)]
Viscosity index: The viscosity index was determined based on ASTM D2270.
[(Vi) Friction characteristics]
Using an Optimol SRV friction and wear tester, the friction coefficient (maximum and minimum) and the wear scar depth at a load of 200 N and a temperature of 80 ° C. were measured by a ball-on-disk (steel ball / steel disk) method. .
[(V) Biodegradability]
The biodegradation rate was measured in accordance with the modified MITI test method “OECD301C”. The Eco Mark certification standard revised in July 1998 requires the biodegradation rate to be 60% or more.
[Example 1]
As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 97/3. The rapeseed oil was mixed to prepare a lubricating oil composition. The physical properties (compatibility, viscosity characteristics, friction characteristics) of the obtained lubricating oil composition were evaluated based on the above evaluation criteria. The results are shown in Table 3.
 〔実施例2〕
 ナタネ油とポリリシノール酸(P-1)との重量比((P-1)の重量/ナタネ油の重量)が95/5となるように、ポリリシノール酸(P-1)と基油としてのナタネ油%とを混合したこと以外は、実施例1と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
[Example 2]
As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 95/5. A lubricating oil composition was prepared in the same manner as in Example 1 except that rapeseed oil% was mixed, and the physical properties were evaluated. The results are shown in Table 3.
 〔実施例3〕
 ナタネ油とポリリシノール酸(P-1)との重量比((P-1)の重量/ナタネ油の重量)が90/10となるように、ポリリシノール酸(P-1)と基油としてのナタネ油とを混合したこと以外は、実施例1と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例4〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-2)に変更したこと以外は、実施例1と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例5〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-2)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例6〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-2)に変更したこと以外は、実施例3と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例7〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-3)に変更したこと以外は、実施例1と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例8〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-3)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例9〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-3)に変更したこと以外は、実施例3と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例10〕
 ポリリシノール酸(P-1)をポリリシノール酸(P-4)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例11〕
 ポリリシノール酸(P-1)をリシノール酸共重合体(P-5)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
Example 3
As polyricinoleic acid (P-1) and base oil, the weight ratio of rapeseed oil to polyricinoleic acid (P-1) (weight of (P-1) / weight of rapeseed oil) is 90/10. A lubricating oil composition was prepared in the same manner as in Example 1 except that rapeseed oil was mixed, and the physical properties were evaluated. The results are shown in Table 3.
Example 4
A lubricating oil composition was prepared in the same manner as in Example 1 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
Example 5
A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
Example 6
A lubricating oil composition was prepared in the same manner as in Example 3 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-2), and physical properties were evaluated. The results are shown in Table 3.
Example 7
A lubricating oil composition was prepared in the same manner as in Example 1 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
Example 8
A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
Example 9
A lubricating oil composition was prepared in the same manner as in Example 3 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-3), and physical properties were evaluated. The results are shown in Table 3.
Example 10
A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to polyricinoleic acid (P-4), and physical properties were evaluated. The results are shown in Table 3.
Example 11
A lubricating oil composition was prepared in the same manner as in Example 2 except that polyricinoleic acid (P-1) was changed to ricinoleic acid copolymer (P-5), and physical properties were evaluated. The results are shown in Table 3.
 〔実施例12〕
 基油として、ナタネ油を合成エステルDIDA(ジイソデシルアジペート)に変更したこと以外は、実施例5と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔実施例13〕
 基油として、ナタネ油を合成エステルH-334R(ネオペンチルポリオール脂肪酸エステル)に変更したこと以外は、実施例5と同様に潤滑油組成物を調製し、物性を評価した。結果を表3に示す。
〔比較例1〕
 基油であるナタネ油に、粘度調整剤を添加しなかったこと以外は、実施例1と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例2〕
 ポリリシノール酸(P-1)を、市販のポリメタクリレート系粘度調整剤であるアクルーブ728(三洋化成社製:鉱油40~30%、アルキルメタクリレート系共重合物60~70%)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例3〕
 ポリリシノール酸(P-1)を、市販のポリメタクリレート系粘度調整剤であるサンルーブ1502(三洋化成社製:鉱油30~40%、アルキルメタクリレート系共重合物60~70%)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例4〕
 ポリリシノール酸(P-1)を、市販のポリメタクリレート系粘度調整剤であるサンルーブ1703(三洋化成社製:鉱油35~45%、アルキルメタクリレート系共重合物55~65%)に変更したこと以外は、実施例2と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例5〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤アクルーブ728に変更したこと以外は、実施例12と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例6〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤であるアクルーブ728に変更したこと以外は、実施例13と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例7〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤サンルーブ1502に変更したこと以外は、実施例12と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例8〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤であるサンルーブ1502に変更したこと以外は、実施例13と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例9〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤サンルーブ1703に変更したこと以外は、実施例12と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
〔比較例10〕
 ポリリシノール酸(P-2)を、市販のポリメタクリレート系粘度調整剤であるサンルーブ1703に変更したこと以外は、実施例13と同様に潤滑油組成物を調製し、物性を評価した。結果を表4に示す。
Example 12
A lubricating oil composition was prepared in the same manner as in Example 5 except that rapeseed oil was changed to synthetic ester DIDA (diisodecyl adipate) as a base oil, and physical properties were evaluated. The results are shown in Table 3.
Example 13
A lubricating oil composition was prepared in the same manner as in Example 5 except that rapeseed oil was changed to synthetic ester H-334R (neopentyl polyol fatty acid ester) as a base oil, and physical properties were evaluated. The results are shown in Table 3.
[Comparative Example 1]
A lubricating oil composition was prepared in the same manner as in Example 1 except that no viscosity modifier was added to the rapeseed oil as the base oil, and the physical properties were evaluated. The results are shown in Table 4.
[Comparative Example 2]
Except for changing polyricinoleic acid (P-1) to Aclove 728 (manufactured by Sanyo Kasei Co., Ltd .: mineral oil 40-30%, alkyl methacrylate copolymer 60-70%), a commercially available polymethacrylate viscosity modifier. Prepared a lubricating oil composition in the same manner as in Example 2, and evaluated the physical properties. The results are shown in Table 4.
[Comparative Example 3]
Other than changing polyricinoleic acid (P-1) to Sunlub 1502 (manufactured by Sanyo Kasei Co., Ltd .: mineral oil 30-40%, alkyl methacrylate copolymer 60-70%), a commercially available polymethacrylate viscosity modifier Prepared a lubricating oil composition in the same manner as in Example 2, and evaluated the physical properties. The results are shown in Table 4.
[Comparative Example 4]
Other than changing polyricinoleic acid (P-1) to Sunlube 1703 (manufactured by Sanyo Chemical Co., Ltd .: mineral oil 35-45%, alkyl methacrylate copolymer 55-65%), a commercially available polymethacrylate viscosity modifier Prepared a lubricating oil composition in the same manner as in Example 2, and evaluated the physical properties. The results are shown in Table 4.
[Comparative Example 5]
A lubricating oil composition was prepared in the same manner as in Example 12 except that polyricinoleic acid (P-2) was changed to a commercially available polymethacrylate viscosity modifier include 728, and physical properties were evaluated. The results are shown in Table 4.
[Comparative Example 6]
A lubricating oil composition was prepared and physical properties were evaluated in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Acube 728, which is a commercially available polymethacrylate viscosity modifier. The results are shown in Table 4.
[Comparative Example 7]
A lubricating oil composition was prepared and the physical properties were evaluated in the same manner as in Example 12 except that polyricinoleic acid (P-2) was changed to a commercially available polymethacrylate viscosity modifier Sunlube 1502. The results are shown in Table 4.
[Comparative Example 8]
A lubricating oil composition was prepared in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Sunlube 1502, which is a commercially available polymethacrylate viscosity modifier, and the physical properties were evaluated. The results are shown in Table 4.
[Comparative Example 9]
A lubricating oil composition was prepared in the same manner as in Example 12 except that polyricinoleic acid (P-2) was changed to a commercially available polymethacrylate viscosity modifier Sunlube 1703, and physical properties were evaluated. The results are shown in Table 4.
[Comparative Example 10]
A lubricating oil composition was prepared in the same manner as in Example 13 except that polyricinoleic acid (P-2) was changed to Sunlube 1703, which is a commercially available polymethacrylate viscosity modifier, and the physical properties were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (13)

  1. (A)基油および(B)GPC(ゲルパーミエーションクロマトグラフィー)で測定される重量平均分子量が10,000以上であるリシノール酸(共)重合体を含み、かつ(A)と(B)との重量比((A)の重量/(B)の重量)が70/30~99.5/0.5である潤滑油組成物。 (A) a base oil and (B) a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography), and (A) and (B) A lubricating oil composition having a weight ratio (weight of (A) / weight of (B)) of 70/30 to 99.5 / 0.5.
  2. 基油が植物油および/又は合成エステルである請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the base oil is a vegetable oil and / or a synthetic ester.
  3.   前記合成エステルが、ジエステルまたはポリオールエステルである請求項2に記載の潤滑油組成物。 The lubricating oil composition according to claim 2, wherein the synthetic ester is a diester or a polyol ester.
  4. 前記合成エステルが、脂肪族ジエステルまたは脂肪族ポリオールエステルである請求項3に記載の潤滑油組成物。 The lubricating oil composition according to claim 3, wherein the synthetic ester is an aliphatic diester or an aliphatic polyol ester.
  5. リシノール酸(共)重合体の重量平均分子量が10,000~300,000である請求項1~4の何れか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 4, wherein the ricinoleic acid (co) polymer has a weight average molecular weight of 10,000 to 300,000.
  6.   前記潤滑油組成物が、(A)および(B)の他に、酸化防止剤、極圧剤、防錆剤、金属不活性剤、耐摩耗添加剤、消泡剤および清浄分散剤からなる群から選ばれる少なくとも1種の添加剤(C)を含む請求項1~5の何れか1項に記載の潤滑油組成物。 In addition to (A) and (B), the lubricating oil composition comprises an antioxidant, an extreme pressure agent, a rust inhibitor, a metal deactivator, an antiwear additive, an antifoaming agent and a cleaning dispersant. The lubricating oil composition according to any one of claims 1 to 5, comprising at least one additive (C) selected from:
  7. 修正MITI試験法OECD301C法にて測定される生分解率が60%以上であることを特徴とする請求項1~6の何れか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6, wherein the biodegradation rate measured by the modified MITI test method OECD301C method is 60% or more.
  8.   請求項1~7の何れか1項に記載の潤滑油組成物からなるギヤー油。 A gear oil comprising the lubricating oil composition according to any one of claims 1 to 7.
  9.   請求項1~7の何れか1項に記載の潤滑油組成物からなる作動油。 A hydraulic oil comprising the lubricating oil composition according to any one of claims 1 to 7.
  10.   請求項1~7の何れか1項に記載の潤滑油組成物からなるエンジン油。 An engine oil comprising the lubricating oil composition according to any one of claims 1 to 7.
  11.   請求項1~7の何れか1項に記載の潤滑油組成物からなるグリース。 A grease comprising the lubricating oil composition according to any one of claims 1 to 7.
  12.   請求項1~7の何れか1項に記載の潤滑油組成物からなる金属加工油。 A metal working oil comprising the lubricating oil composition according to any one of claims 1 to 7.
  13. GPC(ゲルパーミエーションクロマトグラフィー)で測定される重量平均分子量が10,000以上であるリシノール酸(共)重合体からなる潤滑油用粘度調整剤。 A viscosity modifier for a lubricating oil comprising a ricinoleic acid (co) polymer having a weight average molecular weight of 10,000 or more as measured by GPC (gel permeation chromatography).
PCT/JP2009/060231 2008-06-04 2009-06-04 Lubricating oil composition and use of same WO2009148110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010515908A JP5398708B2 (en) 2008-06-04 2009-06-04 Lubricating oil composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008146546 2008-06-04
JP2008-146546 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009148110A1 true WO2009148110A1 (en) 2009-12-10

Family

ID=41398183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060231 WO2009148110A1 (en) 2008-06-04 2009-06-04 Lubricating oil composition and use of same

Country Status (2)

Country Link
JP (1) JP5398708B2 (en)
WO (1) WO2009148110A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838579A (en) * 2010-03-31 2010-09-22 江西圣达威电工材料有限公司 Special aluminum wire drawing oil used for aluminum wires and production method thereof
CN102329684A (en) * 2011-09-13 2012-01-25 上海应用技术学院 Environmental-friendly hydraulic oil composition and preparation method thereof
CN102352276A (en) * 2011-09-13 2012-02-15 上海应用技术学院 Paper machine oil (PMO) composition and preparation method thereof
CN103450977A (en) * 2013-09-12 2013-12-18 广西大学 Intermediate cold rolling lubricating agent for tantalum and tantalum alloy plates
CN103450970A (en) * 2013-09-12 2013-12-18 广西大学 Finished product cold rolling lubricating agent for niobium and niobium alloy plates and strips
CN103450992A (en) * 2013-09-12 2013-12-18 广西大学 Niobium and niobium alloy foil cold-rolled lubricant
CN103468358A (en) * 2013-09-12 2013-12-25 广西大学 Cold-rolling lubricant for tin and tin alloy sheet strips
CN104194889A (en) * 2014-08-30 2014-12-10 广西大学 Exposed gear grease composition
CN104388151A (en) * 2014-11-10 2015-03-04 安徽威萨重工机械有限公司 Diluted low-temperature coagulation-cracking-free anti-rusting grease and preparation method thereof
CN104673458A (en) * 2015-01-06 2015-06-03 北京联飞翔科技股份有限公司 Hydraulic oil with excellent air release performance and preparation method for hydraulic oil
WO2017038734A1 (en) * 2015-08-31 2017-03-09 三井化学株式会社 Copolymer and lubricating oil composition
CN107384537A (en) * 2017-06-28 2017-11-24 常州明华运输有限公司 A kind of vegetable insulating oil and preparation method thereof
CN108277062A (en) * 2018-04-02 2018-07-13 吴伟华 A kind of wire drawing oil
CN109370718A (en) * 2018-10-29 2019-02-22 洛阳鼎辉特钢制品股份有限公司 Clean type solid powder lubricant and its preparation method and application
CN111826226A (en) * 2020-07-16 2020-10-27 常州市九鑫铜业有限公司 Steel pipe drawing oil and preparation method and application thereof
WO2021100634A1 (en) * 2019-11-19 2021-05-27 Eneos株式会社 Refrigerating machine oil, working fluid composition for refrigerating machine, lubricating method, and method for producing refrigerating machine oil
CN113684084A (en) * 2021-09-15 2021-11-23 陈伟民 Functional lubricating oil and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694233B (en) * 2015-01-28 2017-09-12 新疆福克油品股份有限公司 A kind of antiwear hydraulic oil composition of utilization reclaimed oil production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281494A (en) * 1985-10-05 1987-04-14 Toyota Motor Corp Lubricant composition for sliding surface
JPH07252489A (en) * 1994-03-15 1995-10-03 Nippon Oil Co Ltd Lubricating oil composition
JPH1112224A (en) * 1997-06-20 1999-01-19 Hokoku Seiyu Kk Low acid-value monohydroxycarboxylic acid condensed ester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1080225B (en) * 1977-06-17 1985-05-16 Aquila Spa APPLICATION OF HALOGENATED POLYCONDENSATES OF FATTY OXYACIDS TO THE PRODUCTION OF AQUEOUS FLUIDS FOR METAL PROCESSING
JPS57159891A (en) * 1981-03-27 1982-10-02 Yushiro Do Brazil Ind Chem Ltd Water-soluble cutting/grinding oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281494A (en) * 1985-10-05 1987-04-14 Toyota Motor Corp Lubricant composition for sliding surface
JPH07252489A (en) * 1994-03-15 1995-10-03 Nippon Oil Co Ltd Lubricating oil composition
JPH1112224A (en) * 1997-06-20 1999-01-19 Hokoku Seiyu Kk Low acid-value monohydroxycarboxylic acid condensed ester

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838579A (en) * 2010-03-31 2010-09-22 江西圣达威电工材料有限公司 Special aluminum wire drawing oil used for aluminum wires and production method thereof
CN102329684A (en) * 2011-09-13 2012-01-25 上海应用技术学院 Environmental-friendly hydraulic oil composition and preparation method thereof
CN102352276A (en) * 2011-09-13 2012-02-15 上海应用技术学院 Paper machine oil (PMO) composition and preparation method thereof
CN103450977A (en) * 2013-09-12 2013-12-18 广西大学 Intermediate cold rolling lubricating agent for tantalum and tantalum alloy plates
CN103450970A (en) * 2013-09-12 2013-12-18 广西大学 Finished product cold rolling lubricating agent for niobium and niobium alloy plates and strips
CN103450992A (en) * 2013-09-12 2013-12-18 广西大学 Niobium and niobium alloy foil cold-rolled lubricant
CN103468358A (en) * 2013-09-12 2013-12-25 广西大学 Cold-rolling lubricant for tin and tin alloy sheet strips
CN104194889A (en) * 2014-08-30 2014-12-10 广西大学 Exposed gear grease composition
CN104388151A (en) * 2014-11-10 2015-03-04 安徽威萨重工机械有限公司 Diluted low-temperature coagulation-cracking-free anti-rusting grease and preparation method thereof
CN104673458B (en) * 2015-01-06 2017-12-19 北京联飞翔科技股份有限公司 A kind of hydraulic oil with excellent air release property energy and preparation method thereof
CN104673458A (en) * 2015-01-06 2015-06-03 北京联飞翔科技股份有限公司 Hydraulic oil with excellent air release performance and preparation method for hydraulic oil
WO2017038734A1 (en) * 2015-08-31 2017-03-09 三井化学株式会社 Copolymer and lubricating oil composition
CN107922603A (en) * 2015-08-31 2018-04-17 三井化学株式会社 Copolymer and lubricant oil composite
JPWO2017038734A1 (en) * 2015-08-31 2018-06-14 三井化学株式会社 Copolymer and lubricating oil composition
CN107384537A (en) * 2017-06-28 2017-11-24 常州明华运输有限公司 A kind of vegetable insulating oil and preparation method thereof
CN108277062A (en) * 2018-04-02 2018-07-13 吴伟华 A kind of wire drawing oil
CN109370718A (en) * 2018-10-29 2019-02-22 洛阳鼎辉特钢制品股份有限公司 Clean type solid powder lubricant and its preparation method and application
WO2021100634A1 (en) * 2019-11-19 2021-05-27 Eneos株式会社 Refrigerating machine oil, working fluid composition for refrigerating machine, lubricating method, and method for producing refrigerating machine oil
CN111826226A (en) * 2020-07-16 2020-10-27 常州市九鑫铜业有限公司 Steel pipe drawing oil and preparation method and application thereof
CN113684084A (en) * 2021-09-15 2021-11-23 陈伟民 Functional lubricating oil and preparation method thereof

Also Published As

Publication number Publication date
JP5398708B2 (en) 2014-01-29
JPWO2009148110A1 (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5398708B2 (en) Lubricating oil composition and use thereof
JP6619011B2 (en) Copolymer and lubricating oil composition
JP5350583B2 (en) Lubricating oil composition and method for improving metal fatigue of automobile transmission using the same
JP5646859B2 (en) Lubricating oil composition for continuously variable transmission
US11041137B2 (en) Lubricant composition comprising hydroxycarboxylic acid derived friction modifier
EP2392637B1 (en) Lubricating oil composition for automatic transmission
EP3409751B1 (en) Lubricant composition
JP6100769B2 (en) Natural and synthetic ester-containing lubricants with improved hydrolytic stability
JP5638256B2 (en) Lubricating oil composition
JP6669343B2 (en) Biodegradable lubricating oil composition
US8669215B2 (en) Gear oil additive
WO2013031894A1 (en) Biodegradable lubricating oil composition
JP2016525623A (en) Lubricant composition for transmission
WO2013062008A1 (en) Lubrication oil composition
JP2012062349A (en) Additive composition for lubricant and lubricant composition containing the same
JP2015172165A (en) Lubricant composition for agricultural machinery
JP2019517612A (en) Lubricant composition
JP2016050226A (en) Lubricant and lubricant composition
US11739281B2 (en) Use of a lubricant composition for transmission
JP6512683B2 (en) Industrial hydraulic oil composition
JP2008106167A (en) Lubricant additive and lubricant composition
JP6512684B2 (en) Industrial hydraulic oil composition
JP2020502339A (en) Ether-based lubricant compositions, processes and uses
JP2020502338A (en) Ether based lubricant compositions, methods and uses
JP2019038982A (en) Grease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515908

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758377

Country of ref document: EP

Kind code of ref document: A1