WO2009146952A1 - Electrical energy store - Google Patents

Electrical energy store Download PDF

Info

Publication number
WO2009146952A1
WO2009146952A1 PCT/EP2009/050153 EP2009050153W WO2009146952A1 WO 2009146952 A1 WO2009146952 A1 WO 2009146952A1 EP 2009050153 W EP2009050153 W EP 2009050153W WO 2009146952 A1 WO2009146952 A1 WO 2009146952A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
strands
parallel
energy store
memory elements
Prior art date
Application number
PCT/EP2009/050153
Other languages
German (de)
French (fr)
Inventor
Volker Doege
Mario Roessler
Markus Backes
Philipp Kohlrausch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009146952A1 publication Critical patent/WO2009146952A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy storage device comprising a plurality of nominally identical storage elements, wherein at least two strings of serially interconnected storage elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two storage elements.
  • Energy storage of the type mentioned are used for example for driving wireless tools, portable data processing equipment or electric vehicles.
  • nominally identical storage elements also have a production-related variance with respect to their internal resistance and their capacity.
  • the parameters of the storage elements can vary as a result of the different temperatures of the individual storage elements which are set during the operation of a network. This relates in particular to the internal resistance of the memory element. This scattering causes individual storage elements to be discharged at different depths under load and the current intensity to vary between several parallel lines.
  • WO 06/03080 A2 From WO 06/03080 A2 it is known to provide the parallel connection at several points of the strands.
  • the parallel connection is carried out as low as possible, i. by an ohmic line connection.
  • the multiple parallel connection makes it possible, once the charge or discharge has been completed, to equalize the charge between differently discharged storage elements to the same desired voltage level. As a result, variations in the capacity of individual memory elements can be compensated.
  • the object of the present invention is to reduce or avoid an uneven current load on individual storage elements of an energy store and at the same time to enable a charge equalization of differently deeply discharged storage elements.
  • an energy storage device containing a plurality, in particular identical, memory elements, wherein at least two strands of series-connected memory elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two memory elements, wherein for the parallel connection of the strands at least one active or passive component is provided.
  • the solution proposed according to the invention is based on the principle of controlling the cross-currents via the bridges used for parallel connection by means of at least one active or passive component.
  • the cross-currents can be kept low during the load, on the other hand, however, a charge balance between individual memory elements are made possible in the resting phases without stress of the energy storage. This can be done for example by means of a switching element, for example a field effect transistor. This can take on a higher resistance during the charge or discharge of the electrical energy storage and have a lower electrical resistance during the resting phases of the energy storage.
  • the parallel connection of at least two memory elements for charge equalization can have an electrical resistance as a passive component.
  • Such an electrical resistance limits the cross-currents across the bridges particularly advantageous when the electrical resistance is greater than the internal resistance of the Storage elements. Nevertheless, such a resistance in the resting phases can allow a substantial charge equalization between different memory elements when the time required for the charge equalization is short against the average duration of the rest period.
  • the electrical resistance can be formed from one or more discrete components. Alternatively, a line connection with a desired increased electrical resistance can be used.
  • the energy store according to the invention can be used particularly advantageously for accumulator-operated or battery-operated power tools and vehicle batteries, in particular for electric drives.
  • individual storage elements may comprise a lithium ion accumulator, a lithium polymer accumulator, a nickel metal hydride accumulator, a nickel cadmium accumulator, a nickel / zinc accumulator or a double layer capacitor.
  • the invention does not teach the use of a special memory element. Rather, the skilled person will select the memory element according to the required capacity, the necessary current carrying capacity, the required voltage and the number of serially and in parallel interconnected memory elements.
  • FIG. 1 shows a first embodiment of a
  • FIG. 2 shows another embodiment of an energy storage device, wherein the parallel connection is performed with at least one active device.
  • 1 shows an energy storage device 1.
  • the energy storage device 1 consists of eight individual storage elements 10, 11,
  • the individual storage elements include, for example, lithium-ion batteries or nickel-metal hydride batteries. In some cases, the person skilled in the art can also provide for any other storage element which fulfills its requirements in terms of capacity, voltage and power supply capability.
  • the memory elements 10, 11, 12, 13, 20, 21, 22 and 23 include, for example, lithium-ion batteries or nickel-metal hydride batteries. In some cases, the person skilled in the art can also provide for any other storage element which fulfills its requirements in terms of capacity, voltage and power supply capability.
  • a first strand A consists of the memory elements 10, 11, 12 and 13.
  • a second strand B consists of the memory elements 20, 21, 22 and 23.
  • each strand has four times the electrical voltage of the rated voltage of a single memory element 10, 11, 12, 13, 20, 21, 22 and 23.
  • Both strands A and B, each with four memory elements 10, 11, 12, 13 and 20, 21, 22, 23 are connected in parallel with each other. This causes a doubling of capacity and power delivery capability compared to the values of a single memory element.
  • the invention is not limited to the use of 8 memory elements 10, 11, 12, 13, 20, 21, 22 and 23 or two parallel strands A and B.
  • the person skilled in the art will provide a larger or smaller number of memory elements and / or a greater number of strings connected in parallel. The exact number is determined based on the requirement profile of the energy storage 1.
  • the two strands A and B are connected in parallel not only via the respective connection contacts 60, 61 of the energy store. Rather, the energy storage 1 has a parallel connection at several points of the strands A and B.
  • a parallel connection by means of three resistive elements 40, 41 and 42 between each two adjacent memory elements 10, 11, 20, 21 and 11, 12, 21, 22 and 12, 13, 22, 23 is provided.
  • the value of the resistance elements 40, 41 and 42 is so great that during the load of the energy storage, i. during a charging or discharging process, the current through the resistive elements 40, 41 and 42 remains as low as possible.
  • the resistance of the resistive elements 40, 41 and 42 chosen so small that in the resting phases between individual load cycles as complete as possible charge balance between individual, parallel-connected memory elements.
  • each memory element 10, 11, 13, 20, 21, 22 and 23 of the energy store 1 should have an identical cell voltage U within a typical idle time, ie ⁇ U P soll 0.
  • the amount of charge required for this purpose can be calculated from the inverse function of U (Q), the extracted charge Q and the respective individual capacities, the initial charge state and the final charge state of the storage elements. In the exemplary embodiment considered here, it is assumed that the
  • Time interval tL must be a compensation current flow.
  • this compensating current I A also results from the quotient of the voltage difference .DELTA.U P and the resistance R of the resistive elements 40, 41 and 42.
  • the energy storage device 1 is to be composed of lithium-ion storage elements. These have an internal resistance R 1 of about 0.04 to 0.07 ⁇ . Due to the scattering ⁇ (C) of the capacitances C of the individual memory elements 10, 11, 13, 20, 21, 22 and 23 of about 0.1 Ah (corresponding to 360 As), a voltage difference between parallel memory elements of approximately results after completion of a load phase 0.1 to 0.5 volts.
  • each resistive element 40, 41 and 42 be less than 0.8 ⁇ . At the same time, this value corresponds approximately to 10 to 20 times the internal resistance of the storage elements. As a result, the current flow through the resistance elements 40, 41 and 42 during the load, ie during a charging or discharging process of the energy storage device 1, negligible.
  • FIG. 2 shows a further embodiment of an energy store 1 according to the invention.
  • the energy store 1 according to FIG. 2 has a total of 6 storage elements 10, 11, 12, 20, 21 and 22.
  • the memory elements 10, 11, 12, 20, 21 and 22 are nominally identical, but have differences in their storage capacity C and their internal resistance R 1 due to manufacturing tolerances.
  • the six memory elements from FIG. 2 are again divided into two strands A and B.
  • the strand A contains three serially interconnected memory elements 10, 11 and 12.
  • the strand B contains another three serially interconnected memory elements 20, 21 and 22.
  • Both strands A and B are connected in parallel with each other to form an energy storage 1.
  • the parallel connection is carried out not only at the start and end contacts 60 and 61 of the strands A and B, but at least at a further point.
  • the parallel connection is carried out in the embodiment of Figure 2 by means of a respective field effect transistor 50 and 51.
  • the channel region of a field effect transistor 50, 51 serves as a variable resistor, with which the Resistor of the parallel connection during operation of the energy storage can be changed.
  • the resistance of a channel of a field effect transistor 50, 51 can be so large that it can be regarded as a switch which completely separates the parallel connection between two adjacent strands, A and B. This resistance change takes place as a function of the applied voltage at the gate terminal 5.
  • both such field effect transistors are known, which when applied an electrical voltage to the gate terminal 5 the
  • each field effect transistor 50, 51 has a low electrical resistance, when no voltage is applied to the gate electrode 5. This is for example always the case when the electrical energy storage is not used in an electrical appliance or a charger.
  • the gate electrode 5 is coupled to the connection of an electric motor of a power tool, in which the energy storage 1 is used.
  • the electric motor is switched on, ie when the energy store 1 is discharged, a voltage is always applied to the gate electrode 5.
  • Gate electrodes 5 are disconnected from the power supply again. This reduces the resistance again so that equalizing currents can flow between the storage elements.
  • the electrical resistance of the parallel connections of the two strands A and B can be adjusted in each case to the operating state of the energy storage device 1. This allows shorter compensation times of the charge differences, without the

Abstract

The invention relates to an energy store containing a plurality of identical storage elements, wherein there are at least two strands of storage elements connected in series and the strands are connected in parallel, wherein the parallel connection is present at a plurality of points in the strands and each strand has at least two storage elements, wherein at least one active or passive component is provided for the purpose of connecting the strands in parallel.

Description

BeSchreibungDescription
Titel Elektrischer EnergiespeicherTitle Electric Energy Storage
Die Erfindung betrifft einen Energiespeicher, enthaltend mehrere nominell identische Speicherelemente, wobei wenigstens zwei Stränge von seriell verschalteten Speicher- elementen vorliegen und die Stränge parallel verschaltet sind, wobei die Parallelverschaltung an mehreren Stellen der Stränge vorliegt und jeder Strang zumindest zwei Speicherelemente aufweist. Energiespeicher der eingangs genannten Art werden beispielsweise zum Antrieb von kabellosen Werkzeugen, von tragbaren Datenverarbeitungsgeräten oder von Elektrofahr- zeugen verwendet.The invention relates to an energy storage device comprising a plurality of nominally identical storage elements, wherein at least two strings of serially interconnected storage elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two storage elements. Energy storage of the type mentioned are used for example for driving wireless tools, portable data processing equipment or electric vehicles.
Aus dem Stand der Technik ist bekannt, Energiespeicher aus mehreren identischen Speicherelementen zusammenzusetzen. Als Speicherelemente kommen dabei insbesondere wiederaufladbare elektrochemische Zellen oder Kondensatoren in Betracht. Sofern der Energiespeicher eine höhere Spannung aufweisen soll, als ein einzelnes Speicherelement, so wird die Spannung des Energiespeichers durch Serienschaltung einzelner Speicherelemente erhöht. Sofern der Energiespeicher eine höhere Gesamtkapazität oder eine höhere Stromlieferfähigkeit aufweisen soll, als ein einzelnes Speicherelement, so werden mehrere Speicherelemente parallel miteinander verschaltet. Weiterhin sind Kombinationen aus Serien- und Parallelverschaltung, gebräuchlich, bei welchen beispielsweise drei seriell miteinander verschaltete Elemente zu drei weiteren seriell miteinander verschalteten Elementen parallel geschaltet sind (3s2p-Konfiguration) . Ein solcher Energiespeicher weist die dreifache Spannung und die doppelte Kapazität eines einzelnen Speicherelementes auf. In dieser Weise können die bereitgestellte Kapazität, die Stromlieferfähigkeit und die elektrische Spannung des Energiespeichers für die jeweilige Anwendung optimiert werden .It is known from the prior art to assemble energy stores from a plurality of identical storage elements. In particular, rechargeable electrochemical cells or capacitors come into consideration as memory elements. If the energy store should have a higher voltage than a single memory element, the voltage of the energy store is increased by series connection of individual memory elements. If the energy storage device should have a higher total capacity or a higher power supply capability than a single storage element, several storage elements are interconnected in parallel. Furthermore, combinations of series and parallel connection, are common, in which, for example, three elements connected in series with each other are connected in parallel to three other elements connected in series with each other (3s2p configuration). Such an energy storage device has three times the voltage and twice the capacity of a single storage element. In this way, the provided capacity, the power supply capability and the electrical voltage of the energy storage for each application can be optimized.
Jedoch weisen auch nominell identische Speicherelemente eine produktionsbedingte Streuung bezüglich ihres Innenwiderstandes und ihrer Kapazität auf. Weiterhin können durch unterschiedliche Temperaturen der einzelnen Speicherelemente, die sich im Betrieb eines Verbundes einstellen, die Parameter der Speicherelemente variieren. Dies betrifft insbesondere den Innenwiderstand des Speicherelementes. Diese Streuung führt dazu, dass einzelne Speicherelemente unter Belastung unterschiedlich tief entladen werden und die Stromstärke zwischen mehreren parallelen Strängen variiert.However, nominally identical storage elements also have a production-related variance with respect to their internal resistance and their capacity. Furthermore, the parameters of the storage elements can vary as a result of the different temperatures of the individual storage elements which are set during the operation of a network. This relates in particular to the internal resistance of the memory element. This scattering causes individual storage elements to be discharged at different depths under load and the current intensity to vary between several parallel lines.
Aus der WO 06/03080 A2 ist bekannt, die Parallelverschaltung an mehreren Stellen der Stränge vorzusehen. Die Parallelverschaltung erfolgt dabei möglichst niederohmig, d.h. durch eine ohmsche Leitungsverbindung. Die mehrfache Parallelverschaltung ermöglicht nach Abschluss der Ladung bzw. Entladung einen Ladungsausgleich zwischen unterschiedlich tief entladenen Speicherelementen auf ein gleiches Spannungs-Soll- niveau. Dadurch können Streuungen in der Kapazität einzelner Speicherelemente ausgeglichen werden.From WO 06/03080 A2 it is known to provide the parallel connection at several points of the strands. The parallel connection is carried out as low as possible, i. by an ohmic line connection. The multiple parallel connection makes it possible, once the charge or discharge has been completed, to equalize the charge between differently discharged storage elements to the same desired voltage level. As a result, variations in the capacity of individual memory elements can be compensated.
Nachteilig ist an einer solchen Konfiguration jedoch, dass sich Streuungen der Innenwiderstände stärker bemerkbar machen. Während der Ladung bzw. Entladung des Energie- Speichers teilt sich der Strom an jedem Knotenpunkt gemäß dem inversen Verhältnis der Innenwiderstände auf. Dies führt dazu, dass der Strom sich den Weg des geringsten Widerstandes durch den Energiespeicher sucht. Dadurch variieren die Ströme in den einzelnen Speicherelementen des Energiespeichers. Diese unterschiedliche Strombelastung führt zu einer unterschiedlichen thermischen Belastung und damit zu einer zusätzlichen Alterung einzelner Speicherelemente. Demnach besteht die Aufgabe der vorliegenden Erfindung darin, eine ungleichmäßige Strombelastung einzelner Speicherelemente eines Energiespeichers zu verringern oder zu vermeiden und gleichzeitig einen Ladungsausgleich unterschiedlich tief entladener Speicherelemente zu ermöglichen.A disadvantage of such a configuration, however, that make the scattering of internal resistances more noticeable. During the charging or discharging of the energy storage, the current at each node splits according to the inverse ratio of the internal resistances. This causes the current to seek the path of least resistance through the energy store. As a result, the currents in the individual storage elements of the energy store vary. This different current load leads to a different thermal load and thus to an additional aging of individual storage elements. Accordingly, the object of the present invention is to reduce or avoid an uneven current load on individual storage elements of an energy store and at the same time to enable a charge equalization of differently deeply discharged storage elements.
Die Aufgabe wird erfindungsgemäß gelöst durch einen Energiespeicher, enthaltend mehrere, insbesondere identische, Speicherelemente, wobei wenigstens zwei Stränge von seriell verschalteten Speicherelementen vorliegen und die Stränge parallel verschaltet sind, wobei die Parallelverschaltung an mehreren Stellen der Stränge vorliegt und jeder Strang zumindest zwei Speicherelemente aufweist, wobei zur Parallelverschaltung der Stränge zumindest ein aktives oder passive Bauelement vorgesehen ist.The object is achieved by an energy storage device containing a plurality, in particular identical, memory elements, wherein at least two strands of series-connected memory elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two memory elements, wherein for the parallel connection of the strands at least one active or passive component is provided.
Die erfindungsgemäß vorgeschlagene Lösung beruht auf dem Grundsatz, mittels mindestens einem aktiven oder passiven Bauelement die Querströme über die zur Parallelverschaltung verwendeten Brücken zu kontrollieren. Einerseits können die Querströme während der Belastung gering gehalten werden, andererseits jedoch in den Ruhephasen ohne Belastung des Energiespeichers ein Ladungsausgleich zwischen einzelnen Speicherelementen ermöglicht werden. Dies kann beispielsweise mittels einem Schaltelement erfolgen, beispielsweise einem Feldeffekttransistor. Dieser kann während der Ladung bzw. Entladung des elektrischen Energiespeichers einen höheren Widerstand annehmen und während der Ruhephasen des Energie- Speichers einen geringeren elektrischen Widerstand aufweisen.The solution proposed according to the invention is based on the principle of controlling the cross-currents via the bridges used for parallel connection by means of at least one active or passive component. On the one hand, the cross-currents can be kept low during the load, on the other hand, however, a charge balance between individual memory elements are made possible in the resting phases without stress of the energy storage. This can be done for example by means of a switching element, for example a field effect transistor. This can take on a higher resistance during the charge or discharge of the electrical energy storage and have a lower electrical resistance during the resting phases of the energy storage.
In besonders einfacher Weise kann die Parallelverschaltung von mindestens zwei Speicherelementen zum Ladungsausgleich einen elektrische Widerstand als passives Bauelement aufweisen. Ein solcher elektrischer Widerstand begrenzt die Querströme über die Brücken besonders vorteilhaft, wenn der elektrische Widerstand größer ist als der Innenwiderstand der Speicherelemente . Dennoch kann ein solcher Widerstand in den Ruhephasen einen weitgehenden Ladungsausgleich zwischen verschiedenen Speicherelementen ermöglichen, wenn die für den Ladungsausgleich benötigte Zeit kurz gegen die durchschnitt- liehe Dauer der Ruhepause ist. Der elektrische Widerstand kann dabei aus einem oder mehreren diskreten Bauelementen gebildet werden. Alternativ kann eine Leitungsverbindung mit einem wunschgemäß erhöhten elektrischen Widerstand eingesetzt werden .In a particularly simple manner, the parallel connection of at least two memory elements for charge equalization can have an electrical resistance as a passive component. Such an electrical resistance limits the cross-currents across the bridges particularly advantageous when the electrical resistance is greater than the internal resistance of the Storage elements. Nevertheless, such a resistance in the resting phases can allow a substantial charge equalization between different memory elements when the time required for the charge equalization is short against the average duration of the rest period. The electrical resistance can be formed from one or more discrete components. Alternatively, a line connection with a desired increased electrical resistance can be used.
Der erfindungsgemäße Energiespeicher kann besonders vorteilhaft für akkumulatorbetriebene bzw. batteriebetriebene Elektrowerkzeuge und Fahrzeugbatterien, insbesondere für Elektroantriebe, verwendet werden. Beispielsweise können einzelne Speicherelemente einen Lithium-Ionen-Akkumulator, einen Lithium-Polymer-Akkumulator, einen Nickel-Metallhydrid- Akkumulator, einen Nickel-Cadmium-Akkumulator, einen Nickel/Zink-Akkumulator oder einen Doppelschichtkondensator aufweisen. Die Erfindung lehrt nicht die Verwendung eines speziellen Speicherelementes. Vielmehr wird der Fachmann das Speicherelement entsprechend der geforderten Kapazität, der notwendigen Strombelastbarkeit, der erforderlichen Spannung und der Anzahl der seriell und parallel verschalteten Speicherelemente auswählten.The energy store according to the invention can be used particularly advantageously for accumulator-operated or battery-operated power tools and vehicle batteries, in particular for electric drives. For example, individual storage elements may comprise a lithium ion accumulator, a lithium polymer accumulator, a nickel metal hydride accumulator, a nickel cadmium accumulator, a nickel / zinc accumulator or a double layer capacitor. The invention does not teach the use of a special memory element. Rather, the skilled person will select the memory element according to the required capacity, the necessary current carrying capacity, the required voltage and the number of serially and in parallel interconnected memory elements.
Nachfolgend soll die Erfindung anhand von Ausführungs- bespielen und Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens erläutert werden.The invention will be explained with reference to exemplary embodiments and figures without limiting the general inventive concept.
Dabei zeigt Figur 1 ein erstes Ausführungsbeispiel eines1 shows a first embodiment of a
Energiespeichers, bei welchem zur Parallelverschaltung zweier Stränge drei passive Bauelemente eingesetzt werden.Energy storage device in which three passive components are used for parallel connection of two strands.
Figur 2 zeigt ein weiteres Ausführungsbeispiel eines Energie- Speichers, bei welchem die Parallelverschaltung mit mindestens einem aktiven Bauelement ausgeführt ist. Figur 1 zeigt einen Energiespeicher 1. Der Energiespeicher 1 besteht dabei aus acht einzelnen Speicherelementen 10, 11,Figure 2 shows another embodiment of an energy storage device, wherein the parallel connection is performed with at least one active device. 1 shows an energy storage device 1. The energy storage device 1 consists of eight individual storage elements 10, 11,
12, 13, 20, 21, 22 und 23. Die einzelnen Speicherelemente umfassen dabei beispielsweise Lithium-Ionen-Akkumulatoren oder Nickel-Metallhydrid-Akkumulatoren. Fallweise kann der Fachmann auch jedes andere Speicherelement vorsehen, welches seine Anforderungen an Kapazität, Spannung und Stromlieferfähigkeit erfüllt. Obgleich die Speicherelemente 10, 11, 12,12, 13, 20, 21, 22 and 23. The individual storage elements include, for example, lithium-ion batteries or nickel-metal hydride batteries. In some cases, the person skilled in the art can also provide for any other storage element which fulfills its requirements in terms of capacity, voltage and power supply capability. Although the memory elements 10, 11, 12,
13, 20, 21, 22 und 23 nominell identische Speicherelemente sind, weisen diese Fertigungstoleranzen auf, welche zur13, 20, 21, 22 and 23 are nominally identical storage elements, have these manufacturing tolerances, which for
Streuung der elektrischen Kapazität und des Innenwiderstandes führen .Scattering of the electrical capacitance and the internal resistance lead.
Jeweils vier der acht Speicherelemente sind seriell miteinander verschaltet. So besteht ein erster Strang A aus den Speicherelementen 10, 11, 12 und 13. Ein zweiter Strang B besteht aus den Speicherelementen 20, 21, 22 und 23. Hierdurch weist jeder Strang die vierfache elektrische Spannung der Nennspannung eines einzelnen Speicherelementes 10, 11, 12, 13, 20, 21, 22 und 23 auf. Beide Stränge A und B mit jeweils vier Speicherelementen 10, 11, 12, 13 und 20, 21, 22, 23 sind parallel miteinander verschaltet. Dies bewirkt eine Verdoppelung der Kapazität und der Stromlieferfähigkeit im Vergleich zu den Werten eines einzelnen Speicherelementes.Four of the eight memory elements are connected in series with each other. Thus, a first strand A consists of the memory elements 10, 11, 12 and 13. A second strand B consists of the memory elements 20, 21, 22 and 23. In this way, each strand has four times the electrical voltage of the rated voltage of a single memory element 10, 11, 12, 13, 20, 21, 22 and 23. Both strands A and B, each with four memory elements 10, 11, 12, 13 and 20, 21, 22, 23 are connected in parallel with each other. This causes a doubling of capacity and power delivery capability compared to the values of a single memory element.
Es ist darauf hinzuweisen, dass die Erfindung nicht auf die Verwendung von 8 Speicherelementen 10, 11, 12, 13, 20, 21, 22 und 23 oder zwei parallelen Strängen A und B beschränkt ist. Fallweise wird der Fachmann eine größere oder geringere Anzahl von Speicherelementen und/oder eine größere Anzahl parallel verschalteter Stränge vorsehen. Die genaue Anzahl wird anhand des Anforderungsprofils des Energiespeichers 1 festgelegt. Die beiden Stränge A und B sind erfindungsgemäß nicht nur über die jeweiligen Anschlusskontakte 60, 61 des Energiespeichers parallel miteinander verschaltet. Vielmehr weist der Energiespeicher 1 eine Parallelverschaltung an mehreren Stellen der Stränge A und B auf. Im Ausführungsbeispiel nach Figur 1 ist eine Parallelverschaltung mittels dreier Widerstandselemente 40, 41 und 42 zwischen jeweils zwei benachbarten Speicherelementen 10, 11, 20, 21 und 11, 12, 21, 22 und 12, 13, 22, 23 vorgesehen. Dies erlaubt einen Ladungsausgleich zwischen allen beteiligten Speicherelementen 10, 11, 12, 13, 20, 21, 22 und 23. Dabei ist darauf hinzuweisen, dass der Fachmann fallweise auch eine geringere Anzahl von Parallelverschaltungen oder auch zusätzliche Parallelverschaltungen ohne Widerstandselement 40, 41, 42 vorsehen kann. Insbesondere wird der Fachmann dabei den verschlechterten Ladungsausgleich zwischen einzelnen Speicherzellen 10, 11, 12, 13, 20, 21, 22 und 23 und den geringeren Herstellaufwand des Energiespeichers 1 gegeneinander abwägen.It should be noted that the invention is not limited to the use of 8 memory elements 10, 11, 12, 13, 20, 21, 22 and 23 or two parallel strands A and B. In some cases, the person skilled in the art will provide a larger or smaller number of memory elements and / or a greater number of strings connected in parallel. The exact number is determined based on the requirement profile of the energy storage 1. According to the invention, the two strands A and B are connected in parallel not only via the respective connection contacts 60, 61 of the energy store. Rather, the energy storage 1 has a parallel connection at several points of the strands A and B. In the embodiment of Figure 1, a parallel connection by means of three resistive elements 40, 41 and 42 between each two adjacent memory elements 10, 11, 20, 21 and 11, 12, 21, 22 and 12, 13, 22, 23 is provided. This allows a charge balance between all the memory elements 10, 11, 12, 13, 20, 21, 22 and 23. It should be noted that the expert from time to time a smaller number of parallel connections or additional parallel connections without resistance element 40, 41, 42nd can provide. In particular, the person skilled in the art will weigh up the deteriorated charge balance between individual memory cells 10, 11, 12, 13, 20, 21, 22 and 23 and the lower production costs of the energy store 1.
Der Wert der Widerstandselemente 40, 41 und 42 ist dabei so groß, dass während der Belastung des Energiespeichers, d.h. während eines Lade- oder Entladevorgangs, der Strom durch die Widerstandselemente 40, 41 und 42 möglichst gering bleibt.The value of the resistance elements 40, 41 and 42 is so great that during the load of the energy storage, i. during a charging or discharging process, the current through the resistive elements 40, 41 and 42 remains as low as possible.
Andererseits ist der Widerstandswert der Widerstandselemente 40, 41 und 42 so klein gewählt, dass in den Ruhephasen zwischen einzelnen Belastungszyklen ein möglichst vollständiger Ladungsausgleich zwischen einzelnen, parallel verschalteten Speicherelementen erfolgt.On the other hand, the resistance of the resistive elements 40, 41 and 42 chosen so small that in the resting phases between individual load cycles as complete as possible charge balance between individual, parallel-connected memory elements.
Zur Abschätzung der für den Ladungsausgleich benötigten Zeit kann davon ausgegangen werden, dass für jedes einzelne Speicherelement ein Zusammenhang zwischen seiner Zellspannung U, der entnommenen Ladung Q und der Kapazität des Speicherelementes C besteht. Dieser Zusammenhang führt dazu, dass die Zellspannung U monoton mit der entnommenen Ladungsmenge Q fällt und der Betrag der Steigung der Funktion U(Q) um so größer ist, je kleiner die Kapazität des Speicherelementes ist. Da auch nominell identische Speicherelemente eine unterschiedliche Kapazität C aufweisen, ändert sich die Zellspannung U bei gleicher entnommener Ladung Q für jedes Speicherelement 10, 11, 13, 20, 21, 22 und 23 des Energie- Speichers 1 unterschiedlich.In order to estimate the time required for the charge equalization, it can be assumed that there is a relationship between its cell voltage U, the discharged charge Q and the capacitance of the storage element C for each individual storage element. This relationship causes the cell voltage U to fall monotonically with the amount of charge Q taken out, and the smaller the capacitance of the storage element, the greater the magnitude of the slope of the function U (Q). Since nominally identical storage elements also have a different capacitance C, the cell voltage U changes differently for the same discharged charge Q for each storage element 10, 11, 13, 20, 21, 22 and 23 of the energy store 1.
Zur vereinfachten Betrachtung des Lade- bzw. Entladevorgangs des Energiespeichers 1 sei angenommen, dass durch die Widerstandselemente 40, 41 und 42 während des Lade- bzw. Entladevorgangs kein Strom fließt und somit keine Ladung Q zwischen den einzelnen Speicherelementen 10, 11, 13, 20, 21, 22 und 23 ausgeglichen wird. In diesem Fall werden bei einer Ladung oder Entladung von einem anfänglich identischen Spannungsniveau bei gleichem Stromfluss I für eine Zeitdauer t durch jeden der parallelen Stränge A und B die Speicherelemente 10, 11, 13, 20, 21, 22 und 23 am Ende eine unterschiedliche Spannung U aufweisen, welche für jedes Speicherelement 10, 11, 13, 20, 21, 22 und 23 durch die Funktion U(Q) gegeben ist, wobei die Ladungsmenge Q ausgehend von einer Anfangsladung Qo linear mit der Zeitdauer t abnimmt, d.h.For a simplified consideration of the charging or discharging process of the energy accumulator 1, it is assumed that no current flows through the resistance elements 40, 41 and 42 during the charging or discharging process and thus no charge Q between the individual storage elements 10, 11, 13, 20 , 21, 22 and 23. In this case, upon charging or discharging from an initially identical voltage level at the same current flow I for a period of time t through each of the parallel strands A and B, the memory elements 10, 11, 13, 20, 21, 22 and 23 will end up with a different voltage U, which is given for each memory element 10, 11, 13, 20, 21, 22 and 23 by the function U (Q), the amount of charge Q starting from an initial charge Qo decreases linearly with the time t, ie
Q = Q0 + i*t,Q = Q 0 + i * t,
Wobei das Vorzeichen des Stromes für eine Lade- und eine Entladesituation wechselt. Die Spannungsdifferenz zwischen parallelen Speicherelementen wird im Folgenden mit ΔUP bezeichnet. Nach dem Lade- bzw. Entladevorgang soll jedes Speicherelement 10, 11, 13, 20, 21, 22 und 23 des Energiespeichers 1 innerhalb einer typischen Ruhezeit eine identische Zellenspannung U aufweisen, d.h. ΔUP soll 0 werden. Die dafür notwendige Ladungsmenge kann aus der Umkehrfunktion von U(Q), der entnommenen Ladung Q sowie den jeweiligen Einzelkapazitäten, dem Anfangsladezustand und dem Endladezustand der Speicherelemente berechnet werden. Im hier betrachteten Ausführungsbeispiel sei angenommen, dass dieThe sign of the current changes for a loading and unloading situation. The voltage difference between parallel memory elements will be referred to below as ΔU P. After the charging or discharging process, each memory element 10, 11, 13, 20, 21, 22 and 23 of the energy store 1 should have an identical cell voltage U within a typical idle time, ie ΔU P soll 0. The amount of charge required for this purpose can be calculated from the inverse function of U (Q), the extracted charge Q and the respective individual capacities, the initial charge state and the final charge state of the storage elements. In the exemplary embodiment considered here, it is assumed that the
Streuung σ (C) der Kapazitäten C der Speicherelemente 10, 11, 13, 20, 21, 22 und 23 mit einer Normalverteilung um einen Mittelwert μ(C) liegen. Dies bedeutet, dass 67 % der Kapazitätswerte C der Speicherelemente 10, 11, 13, 20, 21, 22 und 23 in einem Bereich μ(C)-σ(C)<C<μ(C) +σ(0 liegen. Somit beträgt die benötigte Ladungsmenge ΔQ zum Ausgleich der Spannungsunterschiede ΔUP in etwa σ (C) .Scattering σ (C) of the capacitances C of the memory elements 10, 11, 13, 20, 21, 22 and 23 with a normal distribution around one Mean value μ (C). This means that 67% of the capacitance values C of the memory elements 10, 11, 13, 20, 21, 22 and 23 lie in a range μ (C) -σ (C) <C <μ (C) + σ (0) is the required amount of charge ΔQ to compensate for the voltage differences ΔU P in about σ (C).
Um den Ausgleich der Spannungsdifferenz ΔUP innerhalb einerTo compensate for the voltage difference ΔU P within a
Zeitspanne tL durchzuführen, muss ein Ausgleichsstrom
Figure imgf000010_0001
fließen .
Time interval tL must be a compensation current
Figure imgf000010_0001
flow.
Gemäß dem ohmschen Gesetz ergibt sich dieser Ausgleichsstrom IA auch aus dem Quotient der Spannungsdifferenz ΔUP und dem Widerstand R der Widerstandselemente 40, 41 und 42. Somit folgt, dassAccording to Ohm's law, this compensating current I A also results from the quotient of the voltage difference .DELTA.U P and the resistance R of the resistive elements 40, 41 and 42. Thus it follows that
R o(C) tL=- AUC beträgt .R o (C) t L = - AU C is.
In einem Ausführungsbeispiel soll ein Energiespeicher 1 zurIn one embodiment, an energy storage 1 to
Verwendung in einem akkubetriebenen Bohr- und Schraubwerkzeug betrachtet werden. Ein solches Gerät zeichnet sich insbesondere dadurch aus, dass dieses für jeweils wenige Sekunden betrieben und anschließend für mehrere Minuten bis Stunden nicht betrieben wird. Beispielhaft soll der Energiespeicher 1 aus Lithium-Ionen-Speicherelementen zusammengesetzt werden. Diese haben einen Innenwiderstand R1 von etwa 0,04 bis 0,07 Ω. Aufgrund der Streuung σ (C) der Kapazitäten C der einzelnen Speicherelemente 10, 11, 13, 20, 21, 22 und 23 von etwa 0,1 Ah (entsprechend 360 As) ergibt sich nach Abschluss einer Belastungsphase eine Spannungsdifferenz zwischen parallelen Speicherelementen von etwa 0,1 bis 0,5 Volt.Use can be considered in a battery-powered drilling and screwing tool. Such a device is characterized in particular by the fact that this is operated for a few seconds and then not operated for several minutes to hours. By way of example, the energy storage device 1 is to be composed of lithium-ion storage elements. These have an internal resistance R 1 of about 0.04 to 0.07 Ω. Due to the scattering σ (C) of the capacitances C of the individual memory elements 10, 11, 13, 20, 21, 22 and 23 of about 0.1 Ah (corresponding to 360 As), a voltage difference between parallel memory elements of approximately results after completion of a load phase 0.1 to 0.5 volts.
Sofern die Spannungsdifferenz nach Abschluss der Belastungsphase innerhalb von 10 Minuten ausgeglichen sein soll, muss demnach der elektrische Widerstand eines jeden Widerstandselementes 40, 41 und 42 kleiner als 0,8 Ω sein. Gleichzeitig entspricht dieser Wert etwa dem 10- bis 20-fachen des Innenwiderstandes der Speicherelemente. Dadurch wird der Stromfluss durch die Widerstandselemente 40, 41 und 42 während der Belastung, d.h. während eines Lade- oder Entladevorgangs des Energiespeichers 1, vernachlässigbar gering.If the voltage difference after completion of the loading phase should be balanced within 10 minutes, must Accordingly, the electrical resistance of each resistive element 40, 41 and 42 be less than 0.8 Ω. At the same time, this value corresponds approximately to 10 to 20 times the internal resistance of the storage elements. As a result, the current flow through the resistance elements 40, 41 and 42 during the load, ie during a charging or discharging process of the energy storage device 1, negligible.
Figur 2 zeigt eine weitere Ausführungsform eines erfindungsgemäßen Energiespeichers 1. Der Energiespeicher 1 gemäß Figur 2 weist insgesamt 6 Speicherelemente 10, 11, 12, 20, 21 und 22 auf. Auch die Speicherelemente 10, 11, 12, 20, 21 und 22 sind nominell identisch, weisen jedoch aufgrund von Fertigungstoleranzen Unterschiede in ihrer Speicherkapazität C und ihrem Innenwiderstand R1 auf.FIG. 2 shows a further embodiment of an energy store 1 according to the invention. The energy store 1 according to FIG. 2 has a total of 6 storage elements 10, 11, 12, 20, 21 and 22. The memory elements 10, 11, 12, 20, 21 and 22 are nominally identical, but have differences in their storage capacity C and their internal resistance R 1 due to manufacturing tolerances.
Beispielhaft sind die sechs Speicherelemente aus Figur 2 wieder in zwei Stränge A und B aufgeteilt. Der Strang A enthält dabei drei seriell verschaltete Speicherelemente 10, 11 und 12. Der Strang B enthält weitere drei seriell verschaltete Speicherelemente 20, 21 und 22. Beide Stränge A und B sind parallel miteinander verschaltet um einen Energiespeicher 1 zu bilden. Die Parallelverschaltung ist dabei nicht nur an den Anfangs- und Endkontakten 60 und 61 der Stränge A und B ausgeführt, sondern zumindest an einer weiteren Stelle. Bevorzugt befindet sich zwischen jedem Speicherelement 10, 11, 12, 20, 21 und 22 eine Parallelverschaltung. Bezüglich der Auswahl der Speicherelemente, deren Anzahl, der Anzahl der parallelen Stränge und der Anzahl der Parallelverschaltungen gelten die obigen Ausführungen in Hinblick auf Figur 1 unverändert.By way of example, the six memory elements from FIG. 2 are again divided into two strands A and B. The strand A contains three serially interconnected memory elements 10, 11 and 12. The strand B contains another three serially interconnected memory elements 20, 21 and 22. Both strands A and B are connected in parallel with each other to form an energy storage 1. The parallel connection is carried out not only at the start and end contacts 60 and 61 of the strands A and B, but at least at a further point. Preferably, there is a parallel connection between each memory element 10, 11, 12, 20, 21 and 22. With respect to the selection of the memory elements, their number, the number of parallel strands and the number of parallel connections, the above statements with respect to Figure 1 apply unchanged.
Die Parallelverschaltung wird im Ausführungsbeispiel nach Figur 2 mittels jeweils eines Feldeffekttransistors 50 und 51 ausgeführt. Der Kanalbereich eines Feldeffekttransistors 50, 51 dient dabei als variabler Widerstand, mit welchem der Widerstand der Parallelverschaltung während des Betriebs des Energiespeichers geändert werden kann. Im Grenzfall kann der Widerstand eines Kanals eines Feldeffekttransistors 50, 51 so groß werden, dass dieser als Schalter angesehen werden kann, welcher die Parallelverschaltung zwischen zwei benachbarten Strängen, A und B vollständig auftrennt. Diese Widerstandsänderung erfolgt in Abhängigkeit der anliegenden Spannung am Gate-Anschluss 5. Dabei sind sowohl solche Feldeffekttransistoren bekannt, welche bei Anlegen einer elektrischen Spannung an den Gate-Anschluss 5 denThe parallel connection is carried out in the embodiment of Figure 2 by means of a respective field effect transistor 50 and 51. The channel region of a field effect transistor 50, 51 serves as a variable resistor, with which the Resistor of the parallel connection during operation of the energy storage can be changed. In the limiting case, the resistance of a channel of a field effect transistor 50, 51 can be so large that it can be regarded as a switch which completely separates the parallel connection between two adjacent strands, A and B. This resistance change takes place as a function of the applied voltage at the gate terminal 5. In this case, both such field effect transistors are known, which when applied an electrical voltage to the gate terminal 5 the
Widerstand im Kanal erniedrigen, als auch solche, bei welchen der Widerstand durch Anlegen einer Spannung an den Gate- Anschluss 5 erhöht wird.Decrease resistance in the channel, as well as those in which the resistance is increased by applying a voltage to the gate terminal 5.
Als Ausführungsbeispiel sei eine Ausführungsform einesAs an embodiment, an embodiment of a
Energiespeichers 1 betrachtet, bei welcher jeder Feldeffekttransistor 50, 51 einen niedrigen elektrischen Widerstand aufweist, wenn an der Gate-Elektrode 5 keine elektrische Spannung angelegt ist. Dies ist beispielsweise immer dann der Fall, wenn der elektrische Energiespeicher nicht in einem Elektrogerät oder einem Ladegerät eingesetzt ist.Considered energy storage device 1, in which each field effect transistor 50, 51 has a low electrical resistance, when no voltage is applied to the gate electrode 5. This is for example always the case when the electrical energy storage is not used in an electrical appliance or a charger.
Während einer solchen Lagerzeit können dann Ausgleichsströme, beispielsweise von der Speicherzelle 12 über den Feldeffekt- transistor 50 zur Speicherzelle 22 fließen. In gleicher Weise fließen Ausgleichsströme von der Speicherzelle 11 über den Feldeffekttransistor 51 zur Speicherzelle 21 und von dort über den Feldeffettransistor 50 zur Speicherzelle 11 zurück. Diese Ausgleichsströme bewirken eine Entladung eines Speicherelementes, welches eine größere Ladungsmenge Q aufweist und eine Ladung eines weiteren Speicherelementes mit geringerer Ladungsmenge Q. Die Ausgleichesströme kommen zum erliegen, wenn die Spannungsdifferenz AUP = 0 geworden ist. Zur Zeitdauer, innerhalb derer der Ladungsausgleich erfolgt ist, gilt die in Hinblick auf Figur 1 gegebene Erklärung weiter . Beim Lade- bzw. Entladevorgang wird an die Gate-Elektrode 5 eine elektrische Spannung angelegt. Dies kann beispielsweise dadurch geschehen, dass die Gate-Elektrode 5 mit dem Anschluss eines Elektromotors eines Elektrowerkzeuges gekoppelt wird, in welches der Energiespeicher 1 eingesetzt ist. Beim Einschalten des Elektromotors, d.h. beim Entladen des Energiespeichers 1, liegt dann auch stets eine Spannung an der Gate-Elektrode 5 an.During such a storage time compensation currents, for example, from the memory cell 12 via the field effect transistor 50 to the memory cell 22 can flow. In the same way, equalizing currents flow from the memory cell 11 via the field effect transistor 51 to the memory cell 21 and from there via the field effect transistor 50 to the memory cell 11. These equalizing currents cause a discharge of a storage element which has a larger charge quantity Q and a charge of a further storage element with a smaller charge quantity Q. The equalizing currents come to a standstill when the voltage difference AU P = 0 has become. At the time period during which the charge equalization has taken place, the explanation given with respect to FIG. 1 applies further. During the charging or discharging process, an electrical voltage is applied to the gate electrode 5. This can for example be done by the gate electrode 5 is coupled to the connection of an electric motor of a power tool, in which the energy storage 1 is used. When the electric motor is switched on, ie when the energy store 1 is discharged, a voltage is always applied to the gate electrode 5.
Das Anlegen einer elektrischen Spannung an die Gate-Elektrode 5 bewirkt dabei eine Widerstandsänderung der Feldeffekttransistoren 50 und 51. Durch den erhöhten Widerstand während des Lade- bzw. Entladevorgangs fließen nun keine Ausgleichsströme zwischen den parallel verschalteten Strängen A und B. Somit wird jeder Strang und jedes Speicherelement innerhalb des Stranges mit demselben Lade- bzw. Entladestrom belastet. Dadurch wird zuverlässig vermieden, dass ein einzelnes Speicherelement innerhalb des Energiespeichers mit einem größeren Strom belastet wird und damit eine größere thermische Last aufnehmen muss.The application of an electrical voltage to the gate electrode 5 causes a change in resistance of the field effect transistors 50 and 51. Due to the increased resistance during the charging or discharging process, no equalizing currents flow between the parallel connected strands A and B. Thus, each strand and each storage element within the strand is loaded with the same charge or discharge current. As a result, it is reliably avoided that a single storage element within the energy store is loaded with a larger current and thus has to absorb a larger thermal load.
Die durch Belastung mit gleichem Entladestrom entstehenden unterschiedlichen Ladungsmengen ΔQ in den einzelnen Speicherelementen 10, 11, 12, 20, 21 und 22 werden in der nachfolgenden Betriebspause wieder ausgeglichen, indem dieThe different charge quantities .DELTA.Q in the individual memory elements 10, 11, 12, 20, 21 and 22 which are produced by loading with the same discharge current are compensated again in the subsequent service break by the
Gate-Elektroden 5 wieder von der Spannungsversorgung getrennt werden. Dadurch wird der Widerstand wieder verringert, so dass Ausgleichsströme zwischen den Speicherelementen fließen können .Gate electrodes 5 are disconnected from the power supply again. This reduces the resistance again so that equalizing currents can flow between the storage elements.
Durch solche aktiven, d. h. geschalteten, Bauelemente kann der elektrische Widerstand der Parallelverschaltungen der beiden Stränge A und B jeweils an den Betriebszustand des Energiespeichers 1 angepasst werden. Dies erlaubt kürzere Ausgleichszeiten der Ladungsdifferenzen, ohne dass dieBy such active, d. H. switched, components, the electrical resistance of the parallel connections of the two strands A and B can be adjusted in each case to the operating state of the energy storage device 1. This allows shorter compensation times of the charge differences, without the
Strombelastbarkeit oder die Gesamtkapazität des Energiespeichers leidet. Weiterhin wird eine unterschiedliche thermische Erwärmung der einzelnen Speicherelemente 10, 11, 12, 20, 21 und 22 aufgrund unterschiedlicher Strombelastung während des Lade- bzw. Entladevorgangs zuverlässig verhindert . Current capacity or the total capacity of the energy storage suffers. Furthermore, a different thermal heating of the individual memory elements 10, 11, 12, 20, 21 and 22 reliably prevented due to different current load during the charging and discharging process.

Claims

Ansprüche claims
1. Energiespeicher (1), enthaltend mehrere, insbesondere identische, Speicherelemente, wobei wenigstens zwei Stränge (A, B) von seriell verschalteten Speicherelementen (10, 11, 12, 13, 20, 21, 22, 23) vorliegen und die Stränge parallel verschaltet sind, wobei die Parallelverschaltung an mehreren Stellen der Stränge (A, B) vorliegt und jeder Strang (A, B) zumindest zwei Speicherelemente aufweist, dadurch gekennzeichnet, dass zur Parallelverschaltung der Stränge (A, B) zumindest ein aktives oder passives Bauelement (40, 41, 42) vorgesehen ist.1. Energy storage (1), containing a plurality, in particular identical, storage elements, wherein at least two strands (A, B) of serially interconnected memory elements (10, 11, 12, 13, 20, 21, 22, 23) are present and the strands parallel wherein the parallel connection is present at several points of the strands (A, B) and each strand (A, B) has at least two memory elements, characterized in that for parallel connection of the strands (A, B) at least one active or passive component ( 40, 41, 42) is provided.
2. Energiespeicher nach Anspruch 1, dadurch gekennzeichnet, dass eine jede Speicherzelle (10, 11 bzw. 11, 12 bzw. 12, 13) des einen Strangs (A) mit der Speicherzelle (20, 21 bzw. 21, 22 bzw. 23, 24) des anderen Strangs (B) über das Bauelement (40, 41, 42) verbunden ist.2. Energy storage according to claim 1, characterized in that each memory cell (10, 11 or 11, 12 or 12, 13) of the one strand (A) with the memory cell (20, 21 or 21, 22 and 23 , 24) of the other strand (B) is connected via the component (40, 41, 42).
3. Energiespeicher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Bauelement (40, 41, 42) einen Widerstand umfasst.3. Energy store according to claim 1 or 2, characterized in that the component (40, 41, 42) comprises a resistor.
4. Energiespeicher nach Anspruch 3, dadurch gekennzeichnet, dass der Widerstand einen Wert von etwa 0.5 Ohm bis etwa 500 Ohm aufweist.4. Energy storage according to claim 3, characterized in that the resistor has a value of about 0.5 ohms to about 500 ohms.
5. Energiespeicher nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der Widerstandswert der Formel tL AUn 5. Energy store according to one of claims 3 or 4, characterized in that the resistance value of the formula t L AU n
R «R< p- σ (C) gehorcht, mitR «R < p - σ (C) obey, with
R1: Innenwiderstand eines Speicherelementes, tL: Zeitbedarf für den Ladungsausgleich AUP: Spannungsdifferenz zwischen parallelen Speicherelementen σ(C) : Streuung der Kapazität der SpeicherelementeR 1 : internal resistance of a memory element, t L : time required for charge equalization AU P : voltage difference between parallel memory elements σ (C): dispersion of the capacitance of the memory elements
6. Energiespeicher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Bauelement (40, 41, 42) einen variablen Widerstand aufweist.6. Energy store according to one of claims 1 to 5, characterized in that the component (40, 41, 42) has a variable resistor.
7. Energiespeicher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Speicherelemente ausgewählt sind aus Lithium-Ionenzellen oder Lithium-Polymerzellen oder Nickel- Metallhydrid-Zellen oder Nickel-Cadmium-Zellen oder7. Energy store according to one of claims 1 to 6, characterized in that the storage elements are selected from lithium-ion cells or lithium polymer cells or nickel metal hydride cells or nickel-cadmium cells or
Nickel/Zink-Sekundärzellen oder Doppelschichtkondensatoren oder BatCaps .Nickel / zinc secondary cells or double-layer capacitors or BatCaps.
8. Elektrowerkzeug mit einem Energiespeicher nach einem der Ansprüche 1 bis 7. 8. Power tool with an energy store according to one of claims 1 to 7.
PCT/EP2009/050153 2008-06-03 2009-01-08 Electrical energy store WO2009146952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002179.2 2008-06-03
DE102008002179A DE102008002179A1 (en) 2008-06-03 2008-06-03 Electric energy storage

Publications (1)

Publication Number Publication Date
WO2009146952A1 true WO2009146952A1 (en) 2009-12-10

Family

ID=40436440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050153 WO2009146952A1 (en) 2008-06-03 2009-01-08 Electrical energy store

Country Status (2)

Country Link
DE (1) DE102008002179A1 (en)
WO (1) WO2009146952A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060319A3 (en) * 2012-10-19 2014-09-18 H-Tech Ag Energy storage device and method for the operation thereof
CN112164833A (en) * 2020-09-28 2021-01-01 珠海市科宏电子科技有限公司 Storage battery online monitoring management system with data model

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002673A1 (en) 2011-01-13 2012-07-19 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Energy-storage system for providing electrical power to e.g. vehicle, has energy store connected parallel to another energy store, charge transfer unit connected parallel to latter store, and switching device switched between energy stores
DE102012205957A1 (en) 2012-04-12 2013-10-17 Robert Bosch Gmbh Lithium ion battery system for use in drive system of motor car, has fuse and/or switching unit switched in series to battery modules in strands and adapted to uncouple strand or portion of strand from parallely connected strands
DE102012212645A1 (en) 2012-07-19 2014-01-23 Robert Bosch Gmbh Battery system of battery e.g. lithium-ion battery mounted in propulsion system of motor car, has battery module that is adapted to be hooked-up with battery string at frequency in kilohertz range, or disconnected
DE102012214956A1 (en) 2012-08-23 2014-02-27 Robert Bosch Gmbh Half bridge circuit for battery of motor car, has two switching units for connecting or disconnecting battery cell with respect to battery line, which measure current flowing through battery cell
DE102013207187B4 (en) 2013-04-22 2023-09-28 Robert Bosch Gmbh Time-controlled charge equalization in battery systems
DE102015200406A1 (en) * 2015-01-14 2016-07-14 Robert Bosch Gmbh Forecast of internal short circuits of a battery module
DE102016218505A1 (en) 2016-09-27 2018-03-29 Robert Bosch Gmbh Electrical energy storage unit with a further electrical interface for exchanging electrical charges and electrical energy storage system with a plurality of electrical energy storage units

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054877A1 (en) * 2000-06-23 2001-12-27 Honda Giken Kogyo Kabushiki Kaisha Charge equalizing device for power storage unit
EP1315227A2 (en) * 2001-11-22 2003-05-28 Hitachi, Ltd. Power supply unit, distributed power supply system and electric vehicle loaded therewith
WO2004057723A2 (en) * 2002-12-19 2004-07-08 Ilion Technology Electrical connecting device for rechargeable electrochemical energy storage system
US20080090139A1 (en) * 2006-10-12 2008-04-17 Aeron Hurst Precision battery pack circuits
WO2009021762A1 (en) * 2007-08-10 2009-02-19 Robert Bosch Gmbh Energy storage unit, particularly accumulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032535A1 (en) 2004-07-06 2006-02-02 Robert Bosch Gmbh battery Pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054877A1 (en) * 2000-06-23 2001-12-27 Honda Giken Kogyo Kabushiki Kaisha Charge equalizing device for power storage unit
EP1315227A2 (en) * 2001-11-22 2003-05-28 Hitachi, Ltd. Power supply unit, distributed power supply system and electric vehicle loaded therewith
WO2004057723A2 (en) * 2002-12-19 2004-07-08 Ilion Technology Electrical connecting device for rechargeable electrochemical energy storage system
US20080090139A1 (en) * 2006-10-12 2008-04-17 Aeron Hurst Precision battery pack circuits
WO2009021762A1 (en) * 2007-08-10 2009-02-19 Robert Bosch Gmbh Energy storage unit, particularly accumulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060319A3 (en) * 2012-10-19 2014-09-18 H-Tech Ag Energy storage device and method for the operation thereof
US10008865B2 (en) 2012-10-19 2018-06-26 H-Tech Ag Energy storage device and method for operating it
CN112164833A (en) * 2020-09-28 2021-01-01 珠海市科宏电子科技有限公司 Storage battery online monitoring management system with data model

Also Published As

Publication number Publication date
DE102008002179A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2009146952A1 (en) Electrical energy store
EP2539957B1 (en) Method for balancing states of charge of a battery having a plurality of battery cells as well as a corresponding battery management system and a battery
EP2611646B1 (en) Method for balancing out states of charge of a battery having a plurality of battery cells, and a corresponding battery management system and battery
DE102011054790A1 (en) Battery with multiple accumulator cells and method of operating such
WO2014184338A1 (en) Method and apparatus for charging rechargeable cells
EP2601721A2 (en) Battery system and method for charging a large number of battery cells which are connected in series
DE102007041526A1 (en) Energy storage, in particular accumulator
DE102015002072A1 (en) Adjusting charge states of battery cells
DE10297088T5 (en) Multi-plateau battery charging process and system for charging to the second plateau
WO2015110595A1 (en) Method and circuit arrangement for determining the coulombic efficiency of battery modules
DE102013204885A1 (en) Method for reducing the total charge loss of batteries
DE102014201365A1 (en) Method and circuit arrangement for determining the Coulomb efficiency of battery modules
EP2617115B1 (en) Method for charging a battery of a motor vehicle
DE102007035329A1 (en) Charge distribution by charge transfer within battery pack
DE10297404T5 (en) Multi-deck battery charging procedure and system to fully charge the first plateau
DE102019201606A1 (en) Method for electrically precharging an intermediate circuit capacitor in the high-voltage system of an at least partially electrically driven motor vehicle and such a high-voltage system
DE102007004569A1 (en) Battery, particularly for lithium-ion battery, has multiple cells, which are connected in series and multiple voltage limiting devices are made up of one or multiple cells
DE102015120285B4 (en) Battery, vehicle with such a battery and use of such a battery
WO2010133392A1 (en) Method and circuit arrangement for heating an electric energy store
WO2016155962A1 (en) Method for operating a battery unit
DE102015003122A1 (en) Motor vehicle with a battery assembly and method for operating a battery assembly
DE102018206822A1 (en) An electrical energy storage device, method and system for operating an electrical energy storage device and vehicle
DE102015202601A1 (en) Accumulator with serially interconnected energy storage and method for equalizing the state of charge of this energy storage
WO2010148522A1 (en) Method and device for charging lithium-cobalt cells
DE102020205951A1 (en) Method for operating a battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757335

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09757335

Country of ref document: EP

Kind code of ref document: A1