EP2601721A2 - Battery system and method for charging a large number of battery cells which are connected in series - Google Patents

Battery system and method for charging a large number of battery cells which are connected in series

Info

Publication number
EP2601721A2
EP2601721A2 EP11728794.6A EP11728794A EP2601721A2 EP 2601721 A2 EP2601721 A2 EP 2601721A2 EP 11728794 A EP11728794 A EP 11728794A EP 2601721 A2 EP2601721 A2 EP 2601721A2
Authority
EP
European Patent Office
Prior art keywords
battery
electrical component
battery cells
battery system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11728794.6A
Other languages
German (de)
French (fr)
Inventor
Christian Kluthe
Francois Mothais
Frank Heitkaemper
Robert Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Samsung SDI Co Ltd
Original Assignee
Robert Bosch GmbH
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Samsung SDI Co Ltd filed Critical Robert Bosch GmbH
Publication of EP2601721A2 publication Critical patent/EP2601721A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system, a motor vehicle with the battery system according to the invention and a method for charging a
  • Overvoltage deposits metallic lithium at the anode, making the cathode material an oxidizing element and losing its stability.
  • the battery cell heats up more and more and in extreme cases can catch fire (so-called thermal runaway).
  • Battery pack which is constructed in applications in an electric vehicle of about a hundred series-connected single cells need
  • a control circuit can monitor up to twelve battery cells. Occurs in the course of charging the battery pack an overvoltage on one of the battery cells, of which the
  • Control circuits comprehensive battery management system instantly opened a high-voltage contactor and charging for the entire
  • Electric motor of the electric vehicle caused pull a shutdown of the battery after, which may, for example, cause the electric vehicle can not continue.
  • the previous concept is not suitable when using low-cost, single-phase chargers, as they generate a high sinusoidal current ripple and thus also a corresponding voltage ripple, which can lead to a shutdown of the battery before it is fully charged.
  • the conventional method it comes to a
  • the cell voltage is higher than the rest voltage, the latter defines the relevant state of charge. If the charge is due to a
  • the control circuits In addition to monitoring the cell voltage, the control circuits have the task of adjusting the voltages of the battery cells. This is necessary to avoid that some battery cells are already at a state of charge of 100% and thus close to the overvoltage shutdown limit, while the majority of the remaining battery cells still have charge states of well below 100%. Thus, without charge balance phases between the charge phases, the usable capacity of the battery pack would be much lower than the sum of the usable capacities of the single cells. So far, therefore, a charge equalization (so-called cell balancing) of the cells is carried out before or between charging phases, in each case the most highly charged battery cells via a resistor to the
  • a battery system with a plurality of battery cells connected in series is made available, in which at least one battery cell, an electrical component is connected in parallel.
  • the resistance of the electrical component decreases when one of the electrical
  • Component and voltage applied to the battery cell voltage exceeds a predetermined voltage threshold.
  • the battery system is preferably a
  • Lithium-ion battery system Lithium-ion battery system.
  • a charging process carried out in the battery system according to the invention is robust against voltage spikes, so that it can be carried out without problems even using single-phase chargers. Since heat is generated by all the electrical components used during the charging process, the temperature distribution is in the battery system
  • the duration of the charging process and the charge balance is relatively short, as a charge balance for all battery cells, where a
  • an electrical component is connected in parallel to each of the plurality of battery cells, the resistance of which decreases when a voltage applied to the electrical component and to the battery cell connected in parallel to this voltage exceeds the predetermined voltage threshold.
  • the resistance of the electrical device may decrease exponentially with increasing applied voltage above the predetermined voltage threshold.
  • the electrical component may be a Zener diode.
  • a Zener diode may be any suitable electrical component.
  • other implementations are possible, for example using a
  • Suppressor diode also known as TVS (Transient Voltage Suppressor) diode, or a metal oxide varistor. These components have similar characteristics with respect to their characteristics as the Zener diode. Combinations of the mentioned components and transistors are possible.
  • Another aspect of the invention relates to a motor vehicle, which comprises the battery system according to the invention, wherein the battery system is connected to a drive system of the motor vehicle.
  • Another aspect of the invention relates to a method of charging a plurality of battery cells connected in series, wherein the plurality of battery cells connected in series is supplied with a charging current during a charging process and in which a current flowing through one of the plurality of battery cells is suppressed, if a voltage applied to the battery cell
  • Voltage exceeds a predetermined voltage threshold. It is envisaged that, when the voltage threshold value is exceeded, the resistance of an electrical cell connected in parallel with the battery cell is exceeded
  • the plurality of battery cells with a constant
  • Charging current can be fully charged in a so-called CC (constant current) charging phase, without overvoltages can occur in the battery cells, while at the same time takes place a charge balance between the battery cells.
  • the charging process proceeds as follows: First, battery cells are charged with slightly different states of charge until those battery cells with the highest state of charge have reached the voltage threshold value (for example, the breakdown voltage of a zener diode). In these battery cells then rapidly reduces the resistance of the electrical component, which is an increasing proportion of the charging current to the
  • Bridging circuits prevent another charge. When charging is complete, all battery cells are fully charged, without the need for further charge balancing between them.
  • FIG. 1 shows a battery system according to a first embodiment
  • FIG. 2 shows a characteristic of a Zener diode which is arranged in the battery system according to a first embodiment.
  • FIG. 1 shows a battery system 100 according to a first embodiment of the invention.
  • the battery system 100 includes a plurality of battery cells 10 connected in series, each having an internal resistance 14.
  • a Zener diode 12 is connected in parallel, wherein the Zener diode 12 with respect to a shown in Figure 1
  • Polarity of the battery cells 10 is connected in the reverse direction.
  • the Zener diode 12 connected in parallel to a specific battery cell 10 assumes the function of a bridging circuit, which is activated as soon as the cell voltage of the battery cell 10 exceeds a certain voltage threshold during a charging process. Is this
  • the resistance of the Zener diode 12 drops exponentially with increasing voltage.
  • the ratio of the resistance of the zener diode 12 to the internal resistance 14 of the battery cell 10 flows with increasing voltage an increasing proportion of a Charging current through the Zener diode 12 and is thereby passed to the battery cell 1 0.
  • FIG. 2 shows a characteristic curve of one of the zener diodes 12 illustrated in FIG. 1.
  • the zener diode 12 has a very high resistance in a working region 16 of the cell voltage, so that there is only a negligibly small leakage current (typically less than 1 ⁇ ) the Zener diode 12 flows.
  • the working area 16 which lies below a breakdown voltage U B R of the Zener diode 12, the resistance of the Zener diode 12 is thus so high that practically the entire charging current is conducted via the battery cell 10 and charges it.
  • the breakdown voltage U B R of the Zener diode 12 is selected so that it corresponds approximately to an overvoltage limit of the battery cell 14.
  • Breakdown voltage U B R of the zener diode 12 flows a current ⁇ i.
  • the resistance of the zener diode 12 decreases exponentially as the voltage increases further. The lower the resistance of the Zener diode 12, the more current is conducted over it and the less power is available to continue to charge the associated battery cell 10.
  • the current flowing through the Zener diode 12 rises abruptly when the breakdown voltage U B R is exceeded, so that, at a voltage U 2, virtually the entire charging current I 2 is formed across the bridging circuit formed by the Zener diode 12 on the battery cell 1 0 is passed, whereby the battery cell 10 is protected from an overvoltage.
  • the resistance of the zener diode 12 is so high in comparison with the internal resistance 14 of the battery cell 10 that a discharge current flows completely across the battery cell 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention describes a battery system (100) having a large number of battery cells (10) which are connected in series, in which battery system at least one of the large number of battery cells (10) is connected in parallel with an electrical component (12), the resistance of this electrical component being reduced when a voltage which is applied to the electrical component (12) and to the battery cell (10) exceeds a predetermined voltage threshold value (UBR). The invention also describes a method for charging a large number of battery cells (10) which are connected in series, which method can be executed using the battery system (100) according to the invention.

Description

Beschreibung  description
Titel title
Batteriesvstem sowie Verfahren zur Ladung einer Vielzahl von in Reihe geschalteten Batteriezellen  Batteriesvstem and method for charging a plurality of series-connected battery cells
Die vorliegende Erfindung betrifft ein Batteriesystem, ein Kraftfahrzeug mit dem erfindungsgemäßen Batteriesystem sowie ein Verfahren zur Ladung einer The present invention relates to a battery system, a motor vehicle with the battery system according to the invention and a method for charging a
Vielzahl von in Reihe geschalteten Batteriezellen. Variety of series connected battery cells.
Stand der Technik State of the art
Mithilfe der Lithium-Ionen-Technologie ist es möglich, sehr leistungsstarke With the help of lithium-ion technology, it is possible to do very powerful
Batterien herzustellen, welche höhere Energiedichten aufweisen als solche, die mithilfe anderer Batterietechnologien hergestellt werden. Außerdem leiden Making batteries that have higher energy densities than those produced using other battery technologies. In addition, suffer
Lithium-Ionen-Batterien nicht unter einem als Memory-Effekt bekannten Lithium-ion batteries are not under a known as memory effect
Kapazitätsverlust. Einer der wenigen Nachteile der Lithium-Ionen-Batteriezellen ist hingegen die Anfälligkeit gegen Überspannung, welche bei Loss of capacity. One of the few disadvantages of the lithium-ion battery cells, however, is the susceptibility to overvoltage, which at
Zellspannungswerten von typischerweise mehr als 4,2 V auftritt. Bei Cell voltage values of typically more than 4.2V occurs. at
Überspannung lagert sich metallisches Lithium an der Anode ab, wodurch das Kathodenmaterial zum oxidierenden Element wird und seine Stabilität verliert. Overvoltage deposits metallic lithium at the anode, making the cathode material an oxidizing element and losing its stability.
Die Batteriezelle heizt sich dadurch immer weiter auf und kann im Extremfall in Brand geraten (so genanntes thermisches Durchgehen). Gerade bei einem As a result, the battery cell heats up more and more and in extreme cases can catch fire (so-called thermal runaway). Especially with one
Batteriepack, welcher bei Anwendungen in einem elektrischen Fahrzeug aus etwa hundert in Reihe geschalteten Einzelzellen aufgebaut ist, müssen Battery pack, which is constructed in applications in an electric vehicle of about a hundred series-connected single cells need
Überspannungen zwingend vermieden werden, da ein thermisches Durchgehen einer einzelnen Zelle eine Kaskadenreaktion innerhalb des gesamten Overvoltages must be avoided as a thermal run through a single cell is a cascade reaction within the entire
Batteriepacks auslösen würde. Battery pack would trigger.
Um ein thermisches Durchgehen zu vermeiden, werden die Spannungen der in den Lithium-Ionen-Batteriepacks enthaltenen Einzelzellen über spezielle Kontrollschaltkreise überwacht. Dabei kann ein Kontrollschaltkreis bis zu zwölf Batteriezellen überwachen. Tritt im Zuge des Ladens des Batteriepacks eine Überspannung an einer der Batteriezellen auf, wird von dem die In order to avoid thermal runaway, the voltages of the individual cells contained in the lithium-ion battery packs become special Control circuits monitored. A control circuit can monitor up to twelve battery cells. Occurs in the course of charging the battery pack an overvoltage on one of the battery cells, of which the
Kontrollschaltkreise umfassenden Batterie-Management-System augenblicklich eine Hochvoltschütze geöffnet und der Ladevorgang für das gesamte Control circuits comprehensive battery management system instantly opened a high-voltage contactor and charging for the entire
Batteriepack unterbrochen. Dieses Vorgehen gewährleistet zwar die Sicherheit des Batteriepacks, weist aber eine Anzahl von Nachteilen auf.  Battery pack interrupted. Although this procedure ensures the safety of the battery pack, it has a number of disadvantages.
So ist die Bereitstellung einer Auswerteelektronik auf den Kontrollschaltkreisen mit relativ hohen Kosten verbunden. Außerdem wird der Ladevorgang für die Gesamtheit der Batteriezellen unterbrochen und nicht nur für diejenige Thus, the provision of an evaluation on the control circuits is associated with relatively high costs. In addition, the charging process is interrupted for the whole of the battery cells and not just for the one
Batteriezelle, welche eine überhöhte Spannung aufweist. Bereits kurze, unkritische Spannungsspitzen, welche beispielsweise durch An- oder Battery cell, which has an excessive voltage. Even short, uncritical voltage spikes, which for example by on or
Abschaltung eines Gleichstromstellers, eines Ladegeräts oder eines Shutdown of a DC actuator, a charger or a
Elektromotors des elektrischen Fahrzeugs verursacht werden, ziehen eine Abschaltung der Batterie nach sich, was beispielsweise dazu führen kann, dass das elektrische Fahrzeug nicht weiterfahren kann. Weiterhin ist das bisherige Konzept nicht geeignet bei Verwendung von kostengünstigen, einphasigen Ladegeräten, da diese einen hohen sinusförmigen Stromrippel und somit auch einen entsprechenden Spannungsrippel erzeugen, welcher zu einer Abschaltung der Batterie führen kann, bevor diese vollständig aufgeladen ist. Schließlich kommt es bei Anwendung des herkömmlichen Verfahrens zu einer Electric motor of the electric vehicle caused pull a shutdown of the battery after, which may, for example, cause the electric vehicle can not continue. Furthermore, the previous concept is not suitable when using low-cost, single-phase chargers, as they generate a high sinusoidal current ripple and thus also a corresponding voltage ripple, which can lead to a shutdown of the battery before it is fully charged. Finally, when using the conventional method, it comes to a
Einschränkung der nutzbaren Kapazität des Batteriepacks, da für die Dauer des Ladevorgangs die Zellspannung höher als die Ruhespannung ist, wobei letztere den relevanten Ladezustand definiert. Wird die Ladung aufgrund einer Restricting the usable capacity of the battery pack, as for the duration of the charging process, the cell voltage is higher than the rest voltage, the latter defines the relevant state of charge. If the charge is due to a
Überspannungsverletzung abgebrochen, ist die Batteriezelle zu diesem Zeitpunkt immer noch nicht entsprechend ihrer Gesamtkapazität aufgeladen. Overvoltage violation aborted, the battery cell is still not charged according to their total capacity at this time.
Neben der Überwachung der Zellspannung haben die Kontrollschaltkreise die Aufgabe, die Spannungen der Batteriezellen anzugleichen. Dies ist notwendig, um zu vermeiden, dass sich einige Batteriezellen bereits bei einem Ladezustand von 100 % und somit nahe der Überspannungsabschaltungsgrenze befinden, während der Großteil der übrigen Batteriezellen noch Ladezustände von deutlich unter 100 % aufweist. Ohne Phasen des Ladungsausgleichs zwischen den Ladungsphasen würde die nutzbare Kapazität des Batteriepacks daher sehr viel niedriger als die Summe der nutzbaren Kapazitäten der Einzelzellen liegen. Bisher wird daher vor oder zwischen Ladephasen ein Ladungsausgleich (so genanntes Cell Balancing) der Zellen durchgeführt, bei dem jeweils die höchstgeladenen Batteriezellen über einen Widerstand auf den In addition to monitoring the cell voltage, the control circuits have the task of adjusting the voltages of the battery cells. This is necessary to avoid that some battery cells are already at a state of charge of 100% and thus close to the overvoltage shutdown limit, while the majority of the remaining battery cells still have charge states of well below 100%. Thus, without charge balance phases between the charge phases, the usable capacity of the battery pack would be much lower than the sum of the usable capacities of the single cells. So far, therefore, a charge equalization (so-called cell balancing) of the cells is carried out before or between charging phases, in each case the most highly charged battery cells via a resistor to the
Kontrollschaltkreisen entladen werden, bis sich alle Batteriezellen dem Control circuits are discharged until all battery cells the
Ladezustand der am niedrigsten geladenen Zelle angenähert haben. Obwohl diese bisher eingesetzte Strategie einen Ladungsausgleich der Zellen Charge state of the lowest charged cell approximated. Although this strategy used so far, a charge balance of the cells
sicherstellt, ist auch diese mit einigen Nachteilen verbunden. ensures, this is associated with some disadvantages.
Neben den wiederum zu bemängelnden relativ hohen Kosten für die In addition to the again to complain about relatively high costs for the
Auswerteelektronik auf den Kontrollschaltkreisen ist die inhomogene Evaluation electronics on the control circuits is the inhomogeneous
Temperaturverteilung im Batteriepack nachteilhaft, die darauf zurückzuführen ist, dass die entstehende Wärme zentral an die Kontrollschaltkreise abgeleitet wird. Außerdem nimmt der Ladungsausgleich eine relativ lange Zeitdauer in Anspruch, da er immer nur bei einer kleinen Anzahl von Batteriezellen des Batteriepacks gleichzeitig (typischerweise kann nur eine von zwölf Batteriezellen zu einem gegebenen Zeitpunkt über einen Widerstand an einem Kontrollschaltkreis entladen werden) und nur im Wechsel mit Ruhephasen für die  Temperature distribution in the battery pack disadvantageous, which is due to the fact that the resulting heat is derived centrally to the control circuits. In addition, the charge balance takes a relatively long period of time, since it always at a small number of battery cells of the battery pack simultaneously (typically only one of twelve battery cells can be discharged at a given time via a resistor on a control circuit) and only in alternation with Rest periods for the
Batteriezustandserkennung stattfinden kann. Offenbarung der Erfindung Battery status detection can take place. Disclosure of the invention
Erfindungsgemäß wird ein Batteriesystem mit einer Vielzahl von in Reihe geschalteten Batteriezellen zur Verfügung gestellt, bei welchem zumindest einer Batteriezelle ein elektrisches Bauelement parallel geschaltet ist. Der Widerstand des elektrischen Bauelements verringert sich, wenn eine an dem elektrischenAccording to the invention, a battery system with a plurality of battery cells connected in series is made available, in which at least one battery cell, an electrical component is connected in parallel. The resistance of the electrical component decreases when one of the electrical
Bauelement und an der Batteriezelle gemeinsam anliegende Spannung einen vorbestimmten Spannungsschwellenwert überschreitet. Component and voltage applied to the battery cell voltage exceeds a predetermined voltage threshold.
Bei dem Batteriesystem handelt es sich bevorzugt um ein The battery system is preferably a
Lithium-Ionen-Batteriesystem. Lithium-ion battery system.
Das erfindungsgemäße Batteriesystem hat den Vorteil, dass keinerlei Intelligenz beziehungsweise Software erforderlich ist, um die an der Batteriezelle The battery system according to the invention has the advantage that no intelligence or software is required to those at the battery cell
anliegende Spannung zu bewerten. Unter Verwendung kostengünstiger elektrischer Bauelemente mit den gewünschten Eigenschaften kann im erfindungsgemäßen Batteriesystem eine robuste Methode zum Ladungsausgleich zwischen den Batteriezellen bei gleichzeitiger Vermeidung von deren Überspannungen durchgeführt werden. Die nutzbare Kapazität der in Reihe geschalteten Batteriezellen ist gleich der Summe der einzelnen to assess the applied voltage. Using cost-effective electrical components with the desired properties, a robust method for the battery system according to the invention Charge balance between the battery cells while avoiding their overvoltages are performed. The usable capacity of the series-connected battery cells is equal to the sum of the individual
Zellkapazitäten. Außerdem ist ein im erfindungsgemäßen Batteriesystem durchgeführter Ladevorgang robust gegen Spannungsspitzen, so dass dieser auch unter Verwendung von einphasigen Ladegeräten problemlos durchgeführt werden kann. Da beim Ladevorgang Wärme über alle verwendeten elektrischen Bauelemente anfällt, ist die Temperaturverteilung im Batteriesystem Cell capacity. In addition, a charging process carried out in the battery system according to the invention is robust against voltage spikes, so that it can be carried out without problems even using single-phase chargers. Since heat is generated by all the electrical components used during the charging process, the temperature distribution is in the battery system
gleichmäßiger als in den aus dem Stand der Technik bekannten Systemen. Schließlich ist die Dauer des Ladevorgangs und des Ladungsausgleichs relativ kurz, da ein Ladungsausgleich für alle Batteriezellen, bei denen ein more uniform than in the systems known from the prior art. Finally, the duration of the charging process and the charge balance is relatively short, as a charge balance for all battery cells, where a
entsprechendes elektrisches Bauelement mit den gewünschten Eigenschaften parallel geschaltet ist, gleichzeitig stattfinden kann. corresponding electrical component with the desired properties is connected in parallel, can take place simultaneously.
Bevorzugt ist, dass zu jeder der Vielzahl von Batteriezellen jeweils ein elektrisches Bauelement parallel geschaltet ist, dessen Widerstand sich verringert, wenn eine an dem elektrischen Bauelement und an der zu diesem parallel geschalteten Batteriezelle anliegende Spannung den vorbestimmten Spannungsschwellenwert überschreitet. It is preferred that in each case an electrical component is connected in parallel to each of the plurality of battery cells, the resistance of which decreases when a voltage applied to the electrical component and to the battery cell connected in parallel to this voltage exceeds the predetermined voltage threshold.
Der Widerstand des elektrischen Bauelements kann oberhalb des vorbestimmten Spannungsschwellenwerts exponentiell mit steigender anliegender Spannung abnehmen. The resistance of the electrical device may decrease exponentially with increasing applied voltage above the predetermined voltage threshold.
Das elektrische Bauelement kann eine Zener-Diode sein. Allerdings sind auch andere Realisierungen möglich, beispielsweise unter Verwendung einer The electrical component may be a Zener diode. However, other implementations are possible, for example using a
Suppressordiode, auch als TVS (Transient Voltage Suppressor)-Diode bekannt, oder eines Metalloxid-Varistors. Diese Bauteile weisen bezüglich ihrer Kennlinien ähnliche Eigenschaften auf wie die Zener-Diode. Auch Kombinationen aus den genannten Bauteilen und Transistoren sind möglich. Suppressor diode, also known as TVS (Transient Voltage Suppressor) diode, or a metal oxide varistor. These components have similar characteristics with respect to their characteristics as the Zener diode. Combinations of the mentioned components and transistors are possible.
Ein weiterer Aspekt der Erfindung betrifft ein Kraftfahrzeug, welches das erfindungsgemäße Batteriesystem umfasst, wobei das Batteriesystem mit einem Antriebssystem des Kraftfahrzeugs verbunden ist. Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Ladung einer Vielzahl von in Reihe geschalteten Batteriezellen, bei welchem die Vielzahl von in Reihe geschalteten Batteriezellen während eines Ladevorgangs mit einem Ladestrom versorgt wird und bei welchem ein durch eine der Vielzahl von Batteriezellen fließender Strom unterdrückt wird, wenn eine an der Batteriezelle anliegendeAnother aspect of the invention relates to a motor vehicle, which comprises the battery system according to the invention, wherein the battery system is connected to a drive system of the motor vehicle. Another aspect of the invention relates to a method of charging a plurality of battery cells connected in series, wherein the plurality of battery cells connected in series is supplied with a charging current during a charging process and in which a current flowing through one of the plurality of battery cells is suppressed, if a voltage applied to the battery cell
Spannung einen vorbestimmten Spannungsschwellenwert überschreitet. Es ist vorgesehen, dass sich bei Überschreiten des Spannungsschwellenwerts der Widerstand eines zu der Batteriezelle parallel geschalteten elektrischen Voltage exceeds a predetermined voltage threshold. It is envisaged that, when the voltage threshold value is exceeded, the resistance of an electrical cell connected in parallel with the battery cell is exceeded
Bauelements verringert, so dass ein Teil des Ladestroms durch das elektrische Bauelement fließt. Reduced component so that a portion of the charging current flows through the electrical component.
Das erfindungsgemäße Verfahren hat den Vorteil, dass eine Ladung der The inventive method has the advantage that a charge of the
Batteriezellen im Vergleich zum Stand der Technik vereinfacht wird. Battery cells is simplified compared to the prior art.
Insbesondere kann die Vielzahl von Batteriezellen mit einem konstanten In particular, the plurality of battery cells with a constant
Ladestrom in einer so genannten CC (constant current)-Ladephase vollständig aufgeladen werden, ohne dass Überspannungen in den Batteriezellen auftreten können, während zugleich ein Ladungsausgleich zwischen den Batteriezellen stattfindet. Der Ladevorgang verläuft hierbei wie folgt: Zunächst werden Batteriezellen mit leicht unterschiedlichen Ladezuständen geladen, bis diejenigen Batteriezellen mit dem höchstem Ladezustand den Spannungsschwellenwert (beispielsweise die Durchbruchspannung einer Zener-Diode) erreicht haben. In diesen Batteriezellen verringert sich sodann rasch der Widerstand des elektrischen Bauelements, welches einen immer größer werdenden Anteil des Ladestroms an den Charging current can be fully charged in a so-called CC (constant current) charging phase, without overvoltages can occur in the battery cells, while at the same time takes place a charge balance between the battery cells. The charging process proceeds as follows: First, battery cells are charged with slightly different states of charge until those battery cells with the highest state of charge have reached the voltage threshold value (for example, the breakdown voltage of a zener diode). In these battery cells then rapidly reduces the resistance of the electrical component, which is an increasing proportion of the charging current to the
Batteriezellen mit hohem Ladezustand vorbeileitet, wodurch diese weniger geladen werden als solche mit niedrigerem Ladezustand. Die Parallelschaltung des elektrischen Bauelements hat somit die Wirkung einer  Battery cells with high state of charge bypassed, whereby these are charged less than those with lower state of charge. The parallel connection of the electrical component thus has the effect of a
Überbrückungsschaltung. Bypass circuit.
Bei weiterer Ladung kommt der Ladestrom in den Batteriezellen mit fast 100 % Ladezustand zum Erliegen, da der Ladestrom fast vollständig durch die durch das elektrische Bauelement hergestellte Überbrückungsschaltung geleitet wird, während die übrigen Batteriezellen weiter geladen werden, bis deren Upon further charge of the charging current in the battery cells with almost 100% state of charge comes to a standstill, since the charging current is almost completely passed through the bridging circuit made by the electrical component, while the remaining battery cells continue to charge until their
Überbrückungsschaltungen eine weitere Ladung unterbinden. Bei Abschluss des Ladevorgangs sind alle Batteriezellen vollständig aufgeladen, ohne dass ein weiterer Ladungsausgleich zwischen ihnen erforderlich ist. Bridging circuits prevent another charge. When charging is complete, all battery cells are fully charged, without the need for further charge balancing between them.
Während des gesamten Ladevorgangs können keine Überspannungen in einer Batteriezelle auftreten, da der Widerstand der Überbrückungsschaltung mit zunehmender Spannung exponentiell kleiner wird und somit den gesamten Ladestrom umleitet. During the entire charging process, no overvoltages can occur in a battery cell, because the resistance of the bypass circuit decreases exponentially with increasing voltage and thus diverts the entire charging current.
Zeichnungen drawings
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen: Embodiments of the invention will be explained in more detail with reference to the drawings and the description below. Show it:
Figur 1 ein Batteriesystem gemäß einer ersten Ausführungsform, und 1 shows a battery system according to a first embodiment, and
Figur 2 eine Kennlinie einer Zener-Diode, welche in dem Batteriesystem gemäß einer ersten Ausführungsform angeordnet ist. FIG. 2 shows a characteristic of a Zener diode which is arranged in the battery system according to a first embodiment.
Ausführungsformen der Erfindung Embodiments of the invention
Figur 1 zeigt ein Batteriesystem 100 gemäß einer ersten Ausführungsform der Erfindung. Das Batteriesystem 100 umfasst eine Vielzahl von in Reihe geschalteten Batteriezellen 10, welche jeweils einen Innenwiderstand 14 aufweisen. Zu jeder Batteriezelle 10 ist jeweils eine Zener-Diode 12 parallel geschaltet, wobei die Zener-Diode 12 bezüglich einer in Figur 1 dargestelltenFIG. 1 shows a battery system 100 according to a first embodiment of the invention. The battery system 100 includes a plurality of battery cells 10 connected in series, each having an internal resistance 14. To each battery cell 10, a Zener diode 12 is connected in parallel, wherein the Zener diode 12 with respect to a shown in Figure 1
Polarität der Batteriezellen 10 in Sperrrichtung geschaltet ist. Polarity of the battery cells 10 is connected in the reverse direction.
Die zu einer bestimmten Batteriezelle 10 parallel geschaltete Zener-Diode 12 übernimmt die Funktion einer Überbrückungsschaltung, welche aktiviert wird, sobald die Zellspannung der Batteriezelle 10 während eines Ladevorgangs einen gewissen Spannungsschwellenwert überschreitet. Ist dieser The Zener diode 12 connected in parallel to a specific battery cell 10 assumes the function of a bridging circuit, which is activated as soon as the cell voltage of the battery cell 10 exceeds a certain voltage threshold during a charging process. Is this
Spannungsschwellenwert überschritten, fällt der Widerstand der Zener-Diode 12 exponentiell mit weiter steigender Spannung ab. In Abhängigkeit vom Verhältnis des Widerstands der Zener-Diode 12 zum Innenwiderstand 14 der Batteriezelle 10 fließt mit zunehmender Spannung ein immer größerer Anteil eines Ladestroms über die Zener-Diode 12 und wird dadurch an der Batteriezelle 1 0 vorbeigeführt. Voltage threshold exceeded, the resistance of the Zener diode 12 drops exponentially with increasing voltage. Depending on the ratio of the resistance of the zener diode 12 to the internal resistance 14 of the battery cell 10 flows with increasing voltage an increasing proportion of a Charging current through the Zener diode 12 and is thereby passed to the battery cell 1 0.
Figur 2 zeigt eine Kennlinie einer der in Figur 1 dargestellten Zener-Dioden 12. Die Zener-Diode 12 weist in einem Arbeitsbereich 16 der Zellspannung einen sehr hohen Widerstand auf, so dass dort nur ein vernachlässigbar kleiner Leckstrom (typischerweise kleiner als 1 μΑ) über die Zener-Diode 12 fließt. In dem Arbeitsbereich 16, welcher unterhalb einer Durchbruchspannung UBR der Zener-Diode 12 liegt, ist somit der Widerstand der Zener-Diode 12 so hoch, dass praktisch der gesamte Ladestrom über die Batteriezelle 10 geleitet wird und diese auflädt. FIG. 2 shows a characteristic curve of one of the zener diodes 12 illustrated in FIG. 1. The zener diode 12 has a very high resistance in a working region 16 of the cell voltage, so that there is only a negligibly small leakage current (typically less than 1 μΑ) the Zener diode 12 flows. In the working area 16, which lies below a breakdown voltage U B R of the Zener diode 12, the resistance of the Zener diode 12 is thus so high that practically the entire charging current is conducted via the battery cell 10 and charges it.
Die Durchbruchspannung UBR der Zener-Diode 12 ist so gewählt, dass sie etwa einer Überspannungsgrenze der Batteriezelle 14 entspricht. Bei der The breakdown voltage U B R of the Zener diode 12 is selected so that it corresponds approximately to an overvoltage limit of the battery cell 14. In the
Durchbruchspannung UBR der Zener-Diode 12 fließt ein Strom \ i . Bei weiterer Erhöhung der Spannung (in Figur 2 in Richtung der negativen U[V]-Achse) fällt der Widerstand der Zener-Diode 12 mit weiter zunehmender Spannung exponentiell ab. Je niedriger der Widerstand der Zener-Diode 12 ist, desto mehr Strom wird über diese geleitet und umso weniger Strom steht zur Verfügung, um die dazugehörige Batteriezelle 10 weiterzuladen. Breakdown voltage U B R of the zener diode 12 flows a current \ i. When the voltage is further increased (in the direction of the negative U [V] axis in FIG. 2), the resistance of the zener diode 12 decreases exponentially as the voltage increases further. The lower the resistance of the Zener diode 12, the more current is conducted over it and the less power is available to continue to charge the associated battery cell 10.
Der Strom, der durch die Zener-Diode 12 fließt, steigt bei Überschreitung der Durchbruchspannung UBR abrupt an, so dass bei einer Spannung U2 praktisch der gesamte Ladestrom l2 über den durch die Zener-Diode 12 gebildeten Überbrückungsschaltkreis an der Batteriezelle 1 0 vorbeigeführt wird, wodurch die Batteriezelle 10 vor einer Überspannung geschützt wird. The current flowing through the Zener diode 12 rises abruptly when the breakdown voltage U B R is exceeded, so that, at a voltage U 2, virtually the entire charging current I 2 is formed across the bridging circuit formed by the Zener diode 12 on the battery cell 1 0 is passed, whereby the battery cell 10 is protected from an overvoltage.
Bei einem Entladevorgang ist der Widerstand der Zener-Diode 12 im Vergleich zum Innenwiderstand 14 der Batteriezelle 10 so hoch, dass ein Entladestrom vollständig über die Batteriezelle 10 fließt. In a discharging process, the resistance of the zener diode 12 is so high in comparison with the internal resistance 14 of the battery cell 10 that a discharge current flows completely across the battery cell 10.

Claims

Ansprüche claims
1 . Batteriesystem (100) mit einer Vielzahl von in Reihe geschalteten 1 . Battery system (100) with a plurality of series connected
Batteriezellen (10), dadurch gekennzeichnet, dass zumindest einer der Vielzahl von Batteriezellen (10) ein elektrisches Bauelement (12) parallel geschaltet ist, dessen Widerstand sich verringert, wenn eine an dem elektrischen Bauelement (12) und an der Batteriezelle (10) anliegende Spannung einen vorbestimmten Spannungsschwellenwert (UBR) Battery cell (10), characterized in that at least one of the plurality of battery cells (10), an electrical component (12) is connected in parallel, whose resistance decreases when a voltage applied to the electrical component (12) and to the battery cell (10) Voltage a predetermined voltage threshold (U B R)
überschreitet.  exceeds.
2. Batteriesystem (100) nach Anspruch 1 , wobei zu jeder der Vielzahl von Batteriezellen (10) jeweils ein elektrisches Bauelement (12) parallel geschaltet ist, dessen Widerstand sich verringert, wenn eine an dem elektrischen Bauelement (12) und an der zu diesem parallel geschalteten Batteriezelle (10) anliegende Spannung den vorbestimmten 2. Battery system (100) according to claim 1, wherein to each of the plurality of battery cells (10) each have an electrical component (12) is connected in parallel, the resistance of which decreases when one of the electrical component (12) and on to this parallel connected battery cell (10) voltage applied to the predetermined
Spannungsschwellenwert (UBR) überschreitet. Voltage threshold (U B R) exceeds.
3. Batteriesystem (100) nach Anspruch 1 oder 2, wobei der Widerstand des elektrischen Bauelements (12) oberhalb des vorbestimmten 3. Battery system (100) according to claim 1 or 2, wherein the resistance of the electrical component (12) above the predetermined
Spannungsschwellenwerts (UBR) exponentiell mit steigender anliegender Spannung abnimmt. Voltage threshold (U B R) decreases exponentially with increasing applied voltage.
4. Batteriesystem (100) nach einem der vorangehenden Ansprüche, wobei das elektrische Bauelement eine Zener-Diode (12) ist. 4. Battery system (100) according to one of the preceding claims, wherein the electrical component is a Zener diode (12).
5. Batteriesystem (100) nach einem der Ansprüche 1 bis 3, wobei das 5. Battery system (100) according to one of claims 1 to 3, wherein the
elektrische Bauelement eine Suppressordiode ist.  electrical component is a suppressor diode.
6. Batteriesystem (100) nach einem der Ansprüche 1 bis 3, wobei das 6. Battery system (100) according to one of claims 1 to 3, wherein the
elektrische Bauelement ein Metalloxid-Varistor ist. Kraftfahrzeug mit einem Batteriesystem (100) nach einem der electrical component is a metal oxide varistor. Motor vehicle with a battery system (100) according to one of
vorangehenden Ansprüche, wobei das Batteriesystem (100) mit einem Antriebssystem des Kraftfahrzeugs verbunden ist. preceding claims, wherein the battery system (100) is connected to a drive system of the motor vehicle.
Verfahren zur Ladung einer Vielzahl von in Reihe geschalteten Batteriezellen (10), wobei die Vielzahl von in Reihe geschalteten Batteriezellen während eines Ladevorgangs mit einem Ladestrom versorgt wird und wobei ein durch eine der Vielzahl von Batteriezellen (10) fließender Strom unterdrückt wird, wenn eine an der Batteriezelle (10) anliegende Spannung einen A method of charging a plurality of serially connected battery cells (10), wherein the plurality of serially connected battery cells are supplied with a charging current during a charging process and wherein a current flowing through one of the plurality of battery cells (10) is suppressed, if any the voltage applied to the battery cell (10)
vorbestimmten Spannungsschwellenwert (UBR) überschreitet, dadurch gekennzeichnet, dass sich bei Überschreiten des Spannungsschwellenwerts (UBR) der Widerstand eines zu der Batteriezelle (10) parallel geschalteten elektrischen Bauelements (12) verringert, so dass ein Teil des Ladestroms durch das elektrische Bauelement (12) fließt. predetermined voltage threshold (U B R) exceeds, characterized in that on exceeding the voltage threshold value (U B R) connected in parallel with the resistance of a to the battery cell (10) the electrical component (12) is reduced, so that a part of the charging current by the electric Component (12) flows.
EP11728794.6A 2010-08-04 2011-06-07 Battery system and method for charging a large number of battery cells which are connected in series Withdrawn EP2601721A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038882A DE102010038882A1 (en) 2010-08-04 2010-08-04 Battery system and method for charging a plurality of series-connected battery cells
PCT/EP2011/059361 WO2012016736A2 (en) 2010-08-04 2011-06-07 Battery system and method for charging a large number of battery cells which are connected in series

Publications (1)

Publication Number Publication Date
EP2601721A2 true EP2601721A2 (en) 2013-06-12

Family

ID=44627722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11728794.6A Withdrawn EP2601721A2 (en) 2010-08-04 2011-06-07 Battery system and method for charging a large number of battery cells which are connected in series

Country Status (7)

Country Link
US (1) US20130193926A1 (en)
EP (1) EP2601721A2 (en)
JP (1) JP2013534399A (en)
KR (1) KR20130070630A (en)
CN (1) CN103155339A (en)
DE (1) DE102010038882A1 (en)
WO (1) WO2012016736A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704287A1 (en) 2012-08-27 2014-03-05 Magna E-Car Systems GmbH & Co OG Charge compensation circuit which can be activated
DE102013008359A1 (en) * 2013-05-16 2014-11-20 Sew-Eurodrive Gmbh & Co Kg Energy storage, which is constructed of series-connected energy storage cells, and circuit arrangement for the passive balancing of a series circuit of capacitors
EP2810815A1 (en) * 2013-06-07 2014-12-10 Flextronics International Kft. Energy storage system and method for the voltage adjustment of an energy store
CN103475082A (en) * 2013-08-16 2013-12-25 广州泓淮电子科技有限公司 Storage battery monomer displacement method
EP2879266A1 (en) * 2013-11-28 2015-06-03 Dialog Semiconductor GmbH Power management method for a stacked cell rechargeable energy storage and stacked cell rechargeable energy storage device
DE102014215849A1 (en) * 2014-08-11 2016-02-11 Robert Bosch Gmbh Control and / or regulation for a secondary battery having at least two battery cells which can be electrically connected in series with one another
CN106130132A (en) * 2016-08-18 2016-11-16 郑州宇通客车股份有限公司 Charging protection circuit for storage battery and use battery system and the motor vehicles of this circuit
DE102017206696A1 (en) * 2017-04-20 2018-10-25 Volkswagen Aktiengesellschaft battery
WO2019079330A2 (en) * 2017-10-16 2019-04-25 Ardent Edge, LLC Cell protection system
CN108232340B (en) * 2017-12-14 2021-05-11 合肥国轩高科动力能源有限公司 Waste battery discharging device
CN110682831B (en) * 2018-06-19 2021-05-14 广州汽车集团股份有限公司 Vehicle-mounted power battery equalization method and device and automobile
DE102018009391A1 (en) * 2018-11-29 2020-06-04 Daimler Ag Circuit arrangement for a battery
CN114361617B (en) * 2021-12-31 2023-07-21 深蓝汽车科技有限公司 Power battery thermal runaway risk early warning method and early warning system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696849U (en) * 1979-12-26 1981-07-31
US4719401A (en) * 1985-12-04 1988-01-12 Powerplex Technologies, Inc. Zener diode looping element for protecting a battery cell
JP2640641B2 (en) * 1995-04-24 1997-08-13 西芝電機株式会社 AC generator voltage droop control device
JP3716618B2 (en) * 1998-05-14 2005-11-16 日産自動車株式会社 Battery control device
CN1622419A (en) * 2003-11-26 2005-06-01 元鸿电子股份有限公司 Charging system
US20060046104A1 (en) * 2004-08-30 2006-03-02 Zimmerman Albert H Balanced lithium ion battery
US20080048613A1 (en) * 2006-08-09 2008-02-28 Honeywell International Inc. Voltage regulator in a battery block
JP2010045963A (en) * 2008-07-14 2010-02-25 Panasonic Corp Battery circuit and battery pack
JP4771180B2 (en) * 2008-08-28 2011-09-14 トヨタ自動車株式会社 Battery pack and battery pack control system
DE102008057573A1 (en) * 2008-11-15 2010-05-20 Bayerische Motoren Werke Aktiengesellschaft Capacitor arrangement e.g. lithium-ion capacitor arrangement, for use in capacitor-based energy storage, has evaluation circuit monitoring voltage lying at switch series and delivering output signal based on value of voltage

Also Published As

Publication number Publication date
DE102010038882A1 (en) 2012-02-09
CN103155339A (en) 2013-06-12
WO2012016736A2 (en) 2012-02-09
KR20130070630A (en) 2013-06-27
WO2012016736A3 (en) 2012-07-26
US20130193926A1 (en) 2013-08-01
JP2013534399A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
EP2601721A2 (en) Battery system and method for charging a large number of battery cells which are connected in series
DE102004006022B4 (en) Devices for discharging a battery composite, which consists of a plurality of secondary batteries
DE102011054790A1 (en) Battery with multiple accumulator cells and method of operating such
EP3092150A1 (en) Electrochemical energy accumulator and balancing method
DE102015219589A1 (en) Vehicle battery device
DE102008002179A1 (en) Electric energy storage
DE102010061025A1 (en) Apparatus for parallel connection of two energy units of motor vehicle, has electrical switching apparatus that connects energy units in parallel and connects to electrical consumer unit
DE102014214984A1 (en) Short-circuit protection device
DE102007035329A1 (en) Charge distribution by charge transfer within battery pack
DE102009045519A1 (en) Battery system and method for balancing the battery cells of a battery system
EP2058917A2 (en) Method for loading rechargeable lithium batteries, charger and lithium battery
WO2013113585A2 (en) Charge equalization method for battery elements, battery system and motor vehicle having said battery system
WO2008092756A2 (en) Battery comprising a zener diode voltage clamp circuit
DE102013204538A1 (en) Battery cell module and method of operating a battery cell module
DE102012201359A1 (en) Lithium ion battery system for use in e.g. electric car, has charge equalization module for autonomously balancing charge of adjacent battery cells, and comprising potential dividers for producing electrical potential
EP3676933B1 (en) Device for electropolishing an energy storage device comprising at least one lithium ion cell, charger, and method for operating the charger
WO2012069388A2 (en) Method for charging a battery
DE102012204962A1 (en) Vehicle with lithium-ion battery
DE60222767T2 (en) POWER SUPPLY DEVICE
DE102013009991A1 (en) Externally launchable integration of a battery in a motor vehicle electrical system
DE102015003122A1 (en) Motor vehicle with a battery assembly and method for operating a battery assembly
WO2016155962A1 (en) Method for operating a battery unit
DE102019214078A1 (en) Electrical energy storage system with a charge limiting device and a method for operating an electrical energy storage system
DE102013221113A1 (en) Electrical energy storage device
EP2550701B1 (en) Rechargeable battery unit and charging method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130304

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105