WO2009145224A1 - Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board - Google Patents

Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board Download PDF

Info

Publication number
WO2009145224A1
WO2009145224A1 PCT/JP2009/059692 JP2009059692W WO2009145224A1 WO 2009145224 A1 WO2009145224 A1 WO 2009145224A1 JP 2009059692 W JP2009059692 W JP 2009059692W WO 2009145224 A1 WO2009145224 A1 WO 2009145224A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
printed wiring
resin
resin composition
wiring board
Prior art date
Application number
PCT/JP2009/059692
Other languages
French (fr)
Japanese (ja)
Inventor
高好 小関
陽介 石川
真司 奥野
義昭 江崎
克彦 伊藤
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to JP2010514513A priority Critical patent/JPWO2009145224A1/en
Priority to CN200980119418.1A priority patent/CN102046726B/en
Publication of WO2009145224A1 publication Critical patent/WO2009145224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Definitions

  • the present invention relates to an epoxy resin composition for a printed wiring board, a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-coated metal foil (resin sheet with a metal foil) used in the production of a printed wiring board such as a flexible printed wiring board. ) And coverlays and flexible printed wiring boards formed using these.
  • bonding sheets and coverlays are known as multilayered materials for flexible printed wiring boards. These bonding sheets and coverlays used as insulating build-up materials have not only storage stability, press-formability such as through-holes and circuit fillability, but also flexibility, heat resistance, and chemical resistance as flexible printed wiring boards. Electrical insulation is required. Accordingly, a resin composition obtained by blending NBR or acrylic rubber having excellent flexibility with an epoxy resin having excellent insulation, heat resistance, and chemical resistance is used for bonding sheets and coverlays.
  • the varnish and sheet storage stability of such a resin composition is insufficient, and the electric insulation, heat resistance, and chemical resistance of the flexible printed wiring board obtained using the resin composition are not satisfactory.
  • a resin composition obtained by blending an epoxy resin with polyamideimide or polyamide which is superior in chemical resistance, heat resistance, insulation, flame retardancy and flexibility than synthetic rubber such as NBR and acrylic rubber.
  • the press formability such as varnish storage stability, sheet storage stability, through-hole and circuit filling properties is still not sufficient.
  • the storage stability and press formability are improved, other characteristics that have been favorable are deteriorated.
  • halogen-free flame retardants that can replace halogen-based compounds are organic phosphorus compounds represented by phosphate esters (see, for example, Patent Document 2).
  • organic phosphorus compounds represented by phosphate esters
  • Tg glass transition temperature
  • an epoxy resin composition for a printed wiring board and a solder resist composition that can improve storage stability, adhesion, flexibility, and filling properties.
  • An object of the present invention is to provide a prepreg, a metal foil with resin, a coverlay, and a flexible printed wiring board.
  • the epoxy resin composition for a printed wiring board according to claim 1 of the present invention contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) a carbodiimide-modified soluble polyamide as essential components. It is what.
  • the invention according to claim 2 is characterized in that, in claim 1, the content of component (C) is 20 to 70% by mass with respect to the total amount of components (A), (B) and (C). It is.
  • the invention according to claim 3 is characterized in that, in claim 1 or 2, an epoxy resin having a naphthalene skeleton is used as the component (A).
  • the invention according to claim 4 is characterized in that, in claim 3, as the epoxy resin having a naphthalene skeleton, at least one of those represented by the following structural formulas (1) to (3) is used. To do.
  • At least one of aminotriazine novolak resin and dicyandiamide represented by the following structural formula (4) is used as the component (B). It is characterized by being.
  • the invention according to claim 6 is the reaction product according to any one of claims 1 to 5, wherein 0.5 to 20 parts by mass of a carbodiimide compound is added as a component (C) to 100 parts by mass of the soluble polyamide. What was obtained is used, It is characterized by the above-mentioned.
  • the invention according to claim 7 is characterized in that, in any one of claims 1 to 6, a phenoxy resin is contained.
  • the invention according to claim 8 is characterized in that in any one of claims 1 to 7, at least one of a phosphorus-modified epoxy resin, a phosphorus-modified phenoxy resin, and a phosphorus-based flame retardant is contained. Is.
  • the invention according to claim 9 is the invention according to claim 8, characterized in that an aluminum alkylphosphinate represented by the following structural formula (5) is used as the phosphorus-based flame retardant.
  • the invention according to claim 10 is the invention according to claim 9, wherein the content of aluminum alkylphosphinate represented by the structural formula (5) is 5 to 20 with respect to the total amount of components (A), (B) and (C). It is characterized by being mass%.
  • a solder resist composition according to an eleventh aspect of the present invention comprises the epoxy resin composition for a printed wiring board according to any one of the first to tenth aspects.
  • the resin film according to claim 12 of the present invention is characterized in that the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 is formed into a film shape.
  • a resin sheet according to claim 13 of the present invention is characterized in that the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is formed into a sheet shape.
  • a prepreg according to claim 14 of the present invention is characterized in that the substrate is impregnated with the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 and is in a semi-cured state. To do.
  • the metal foil with resin according to claim 15 of the present invention is in a semi-cured state by applying the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 to the metal foil. It is characterized by.
  • the metal foil with resin according to claim 16 of the present invention is the epoxy resin composition 1 for printed wiring board according to any one of claims 1 to 10, wherein the coated resin 2 and the film-like material 3 It is characterized in that it is applied to the metal foil 5 through at least one insulating layer 4 and is in a semi-cured state.
  • a coverlay according to claim 17 of the present invention is characterized in that the epoxy resin composition for printed wiring boards according to any one of claims 1 to 10 is applied to a plastic sheet and is in a semi-cured state. It is what.
  • a coverlay according to claim 18 of the present invention is characterized by comprising the resin-attached metal foil according to claim 15 or 16.
  • a flexible printed wiring board according to claim 19 of the present invention is a solder resist composition according to claim 11, a resin film according to claim 12, a resin sheet according to claim 13, and a prepreg according to claim 14.
  • a metal foil with resin according to claim 15 a metal foil with resin according to claim 16, a cover lay according to claim 17, and a cover lay according to claim 18. It is characterized by being.
  • the storage stability, adhesion, flexibility, and filling properties can be improved by the carbodiimide-modified soluble polyamide.
  • the flexibility and chemical resistance can be improved.
  • heat resistance, migration resistance, and chemical resistance can be improved.
  • the heat resistance, migration resistance, and chemical resistance can be further improved.
  • flame retardancy and chemical resistance can be enhanced, and long-term product storage stability (B-stage storage stability) can be improved.
  • the flexibility can be further improved.
  • the flame retardancy can be further enhanced.
  • the aluminum alkylphosphinate represented by the structural formula (5) has a high phosphorus content, it can exhibit an excellent flame retardant effect even if the blending amount is small.
  • the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed.
  • Tg glass transition temperature
  • the insulating property of the epoxy resin composition for printed wiring boards is improved, and the flame retardancy, heat resistance and chemical resistance are further improved, and in addition to the inorganic filler.
  • the epoxy resin composition for printed wiring board is imparted with excellent flexibility and can maintain high flexibility.
  • the flame retardancy can be further enhanced as compared with the case of using other phosphorus flame retardants.
  • the epoxy resin composition for a printed wiring board can exhibit particularly excellent flame retardancy, and further the reduction of the glass transition temperature (Tg) is further suppressed, and the printed wiring board.
  • Tg glass transition temperature
  • the high flexibility of the epoxy resin composition can be sufficiently maintained. That is, flame retardancy and flexibility can be further improved.
  • solder resist composition according to the eleventh aspect of the present invention it is possible to improve all of adhesiveness, flexibility and fillability.
  • the resin film of the twelfth aspect of the present invention it is possible to improve all of adhesion, flexibility, and fillability.
  • the metal foil with a resin according to the fifteenth aspect of the present invention it is possible to improve all of adhesion, flexibility, and fillability.
  • the metal foil with a resin according to claim 16 of the present invention it is possible to improve all of adhesion, flexibility, filling property and dimensional stability.
  • coverlay according to claim 17 of the present invention it is possible to improve all of adhesion, flexibility and filling properties.
  • coverlay according to claim 18 of the present invention it is possible to improve all of adhesion, flexibility and filling properties.
  • the flexible printed wiring board of the nineteenth aspect of the present invention it is possible to improve all of adhesion, flexibility, and filling properties.
  • the epoxy resin composition for a printed wiring board contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) a carbodiimide-modified soluble polyamide as essential components.
  • glycidyl ether type epoxy resin for example, glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, oxidation type epoxy resin and the like can be used.
  • examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alcohol type epoxy resin and the like.
  • examples of the glycidyl ester type epoxy resin include hydrophthalic acid type epoxy resins and dimer acid type epoxy resins.
  • the glycidylamine type epoxy resin include aromatic amine type epoxy resins and aminophenol type epoxy resins.
  • an oxidation type epoxy resin an alicyclic epoxy resin etc.
  • an epoxy resin having a naphthalene skeleton a novolac type epoxy resin having a phenol skeleton and a biphenyl skeleton (biphenyl novolac epoxy resin), a phosphorus-modified epoxy resin (described later), etc.
  • an epoxy resin having a naphthalene skeleton a novolac type epoxy resin having a phenol skeleton and a biphenyl skeleton (biphenyl novolac epoxy resin), a phosphorus-modified epoxy resin (described later), etc.
  • the component (A) it is preferable to use an epoxy resin having a naphthalene skeleton.
  • the heat resistance, migration resistance, and chemical resistance of the flexible printed wiring board can be improved.
  • the epoxy resin having a naphthalene skeleton it is preferable to use at least one of those represented by the structural formulas (1) to (3).
  • the heat resistance, migration resistance, and chemical resistance of the flexible printed wiring board can be further enhanced as compared with the case of using other epoxy resins.
  • epoxy resin curing agent for example, polyamines, modified polyamines, acid anhydrides, hydrazine derivatives, polyphenols, and the like can be used.
  • examples of the polyamine-based curing agent include aliphatic polyamines, alicyclic polyamines, and aromatic polyamines.
  • examples of the aliphatic polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, and diethylaminopropylamine.
  • alicyclic polyamines examples include isophorone diamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornene diamine, 1,2-diaminocyclohexane, and laromine.
  • aromatic polyamines include diaminodiphenylmethane, metaphenylenediamine, and diaminodiphenylsulfone.
  • acid anhydrides examples include hexahydrophthalic anhydride, methyl tetrahydro anhydride, methyl hexahydrophthalic anhydride, methyl nadic acid anhydride, hydrogenated methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene tetracarboxylic acid.
  • acid anhydrides include hexahydrophthalic anhydride, methyl tetrahydro anhydride, methyl hexahydrophthalic anhydride, methyl nadic acid anhydride, hydrogenated methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene tetracarboxylic acid.
  • examples include dianhydride, trimellitic anhydride, pyromellitic acid free, benzophenone tetracarboxylic dianhydride, aliphatic dibasic acid polyanhydr
  • polyphenol-based curing agent examples include phenol novolak, xylene novolak, bis A novolak, triphenylmethane novolak, biphenyl novolak, dicyclopentadienephenol novolak, and terpene phenol novolak.
  • aminotriazine novolac resins, novolac-type phenol resins and the like can be used.
  • component (B) it is preferable to use at least one of aminotriazine novolak resin and dicyandiamide represented by the structural formula (4).
  • component (B) is preferably 10 to 45% by mass with respect to the total amount of components (A), (B) and (C).
  • carbodiimide-modified soluble polyamide as component (C), it is possible to use a product obtained by reacting a soluble polyamide and a carbodiimide compound at a reaction temperature of 50 to 250 ° C. in the presence or absence of a solvent. it can.
  • the soluble polyamide is completely dissolved in an amount of 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of a mixture of alcohol and aromatic and / or ketone organic solvents. It is possible.
  • Examples of the alcohol include methanol, ethanol, isopropyl alcohol and the like.
  • Examples of the aromatic solvent include benzene and toluene.
  • Examples of the ketone solvent include cyclohexanone. , 2-butanone, cyclopentanone and the like. These alcohols, aromatic solvents and ketone solvents preferably have a boiling point of 130 ° C. or lower.
  • Soluble polyamide can be obtained by solubilizing polyamide.
  • the solubilization method for example, a method in which hydrogen atoms of amide bonds of various polyamides are partially substituted with methoxymethyl groups can be exemplified. When a methoxy group is introduced into a polyamide, the hydrogen bonding ability of the amide group is lost, and the crystallinity of the polyamide is inhibited, so that the solubility in a solvent is increased.
  • Examples of the solubilization method include a method of introducing a polyether or polyester into a polyamide molecule before solubilization to obtain a copolymer.
  • the polyamide before solubilization include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, and nylon 46.
  • soluble polyamide examples include “Zytel 61” (manufactured by DuPont), “Versalon” (manufactured by General Mills), “Amilan CM4000” (manufactured by Toray Industries, Inc.), and “Amilan CM8000” (manufactured by Toray Industries, Inc.). , “PA-100” (manufactured by Fuji Kasei Kogyo Co., Ltd.), “Toresin” (manufactured by Nagase ChemteX Corporation), and the like.
  • the carbodiimide compound is a compound having one or more carbodiimide groups in the molecule, and examples thereof include a monocarbodiimide compound and a polycarbodiimide compound.
  • a monocarbodiimide compound and a polycarbodiimide compound.
  • an organic phosphorus compound or an organometallic compound is used as a catalyst.
  • Isocyanates can be synthesized by a decarboxylation condensation reaction at a temperature of about 70 ° C. or higher in a solvent-free or inert solvent.
  • Examples of the monocarbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide and the like.
  • dicyclohexylcarbodiimide or diisopropylcarbodiimide is preferable from the viewpoint of industrial availability.
  • polycarbodiimide compound those produced by various methods can be used, but basically, a conventional method for producing polycarbodiimide (for example, US Pat. No. 2,941,956, J. Org). Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81 No. 4, p619-621) can be used.
  • organic diisocyanate that is a synthetic raw material for producing the polycarbodiimide compound
  • aromatic diisocyanates aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof.
  • Mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophor Diisocyanate, dicyclohexylmethane-4,4′-diiso
  • aliphatic (including alicyclic) organic diisocyanates are preferable from the viewpoint of improving flexibility and moisture resistance, and particularly ilophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, tetramethylxylylene diene. Isocyanates and mixtures thereof are more preferred.
  • the polymerization reaction can be stopped halfway by cooling or the like to control the polymerization degree to an appropriate level.
  • the terminal is an isocyanate group.
  • compatibility with soluble polyamide and storage stability can be enhanced, which is preferable in terms of quality improvement.
  • Examples of the monoisocyanate compound for sealing the end of such a polycarbodiimide compound and controlling the degree of polymerization thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like. be able to.
  • the decarboxylation condensation reaction of the organic diisocyanate is performed in the presence of a suitable carbodiimidization catalyst.
  • the carbodiimidization catalyst that can be used include organic phosphorus compounds, organometallic compounds [general formula M- (OR) n [M is titanium (Ti), sodium (Na), potassium (K), vanadium (V), tungsten (W), hafnium (Hf), zirconium (Zr), lead (Pb), manganese (Mn), nickel (Ni), calcium (Ca), barium (Ba), etc., R represents an alkyl group or aryl group having 1 to 20 carbon atoms, and n represents a valence of M] From the viewpoint of activity, phospholene oxides are preferable for organophosphorus compounds, and titanium, hafnium and zirconium are preferred for organometallic compounds. Rukokishido are preferred.
  • phosphorene oxides include 3-methyl-1-phenyl-2-phospholene-1-oxide, 3-methyl-1-ethyl-2-phospholene-1-oxide, 1,3- Dimethyl-2-phospholene-1-oxide, 1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 1-methyl-2-phospholene-1-oxide or a double thereof
  • bonding isomers are 3-methyl-1-phenyl-2-phospholene-1-oxide, which is easily available industrially.
  • the carbodiimide compound is not particularly limited as long as it has one or more carbodiimide groups in the molecule having the functions as described above.
  • polycarbodiimide compounds having two or more carbodiimide groups in the molecule such as 4,4′-dicyclohexylmethanecarbodiimide, are preferred, and aliphatic or alicyclic polycarbodiimide compounds are more preferred.
  • the degree of polymerization is preferably 2 to 30, and more preferably 2 to 20. A polymerization degree of 2 or more is preferable from the viewpoint of heat resistance, and a polymerization degree of 20 or less is preferable from the viewpoint of compatibility.
  • the carbodiimide-modified soluble polyamide as component (C) is obtained by reacting the soluble polyamide with a carbodiimide compound in the presence or absence of a solvent, and reactive functional groups such as a carboxyl group and an amino group that the soluble polyamide has, and It can be obtained by reacting a carbodiimide group or an isocyanate group of a carbodiimide compound that can react with the carboxylic acid.
  • the method of reacting the soluble polyamide and the carbodiimide compound is not particularly limited, but can be performed in the presence or absence of a solvent.
  • Examples of the method of reacting in the presence of a solvent include a method of reacting after dissolving a soluble polyamide and a carbodiimide compound in a solvent, and a method of reacting by heating and stirring the soluble polyamide and the carbodiimide compound is preferable.
  • a method in which a carbodiimide compound is added to a solution obtained by dissolving a soluble polyamide in a solvent and reacted by heating and stirring under reflux is more preferable.
  • the carbodiimide-modified soluble polyamide can be obtained by removing the solvent from the solution thus obtained under normal pressure or reduced pressure.
  • a method of reacting in the absence of a solvent for example, a method in which a soluble polyamide is melted to a melting point or higher and then mixed and reacted, or a soluble polyamide and a carbodiimide compound are melted and kneaded by a twin screw extruder.
  • the method of making it react can be mentioned.
  • the reaction system does not contain a compound that inhibits carbodiimide modification, and the reaction system contains only a carbodiimide compound, a soluble polyamide, and a solvent used as necessary. Is more preferable.
  • Specific examples of the compound that inhibits the carbodiimide modification include an epoxy resin, an amine resin, a melamine resin, and a phenol resin.
  • the time for reacting the soluble polyamide with the carbodiimide compound varies depending on the type of the soluble polyamide and carbodiimide compound used, the reaction method, the reaction temperature, etc., but is, for example, about 1 to 500 minutes, and 5 to 200 minutes. preferable.
  • the temperature at which the soluble polyamide reacts with the carbodiimide compound also varies depending on the type of soluble polyamide or carbodiimide compound used, the reaction method, the reaction temperature, etc., but is, for example, 50 to 250 ° C. When the reaction is carried out in the presence, it is preferably 50 to 150 ° C, more preferably 70 to 130 ° C. In addition, when the soluble polyamide and the carbodiimide compound are reacted in the absence of a solvent, the temperature is preferably 130 to 250 ° C, more preferably 150 to 220 ° C.
  • reaction temperature is less than 50 ° C, the reaction between the soluble polyamide and the carbodiimide compound is slow, and it takes time to modify the soluble polyamide, which is not industrially preferable. If the reaction temperature exceeds 250 ° C, deterioration due to decomposition of the resin is likely to occur. Become.
  • the soluble polyamide is modified to become a carbodiimide-modified soluble polyamide.
  • the carbodiimide group of the carbodiimide compound decreases, so when comparing the reaction product with the product by infrared measurement, the peak of the carbodiimide group observed in the reaction product decreases. is doing.
  • differential thermogravimetric measurement is performed on the reactant and product, multiple endothermic peaks of the reactant, such as amide resin and carbodiimide resin, are observed, but the endothermic peaks of the product are aggregated into one. The From the above, it can be confirmed that the soluble polyamide has been modified.
  • the carbodiimide-modified soluble polyamide obtained as described above is excellent in storage stability as compared with a composition comprising a soluble polyamide and a carbodiimide compound. That is, in the case of the above composition, thickening of the solution occurs when it is made into a solution, and further gelation is achieved, whereas the modified one shows no change such as thickening even in the solution state. And can be stored for a long time.
  • the amount of the carbodiimide compound added is preferably 0.5 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the soluble polyamide. Thereby, while being able to fully improve moisture resistance and heat resistance, it can prevent that plasticity becomes high too much or impact resistance is impaired. If the addition amount is less than 0.5 parts by mass, the moisture resistance and heat resistance may not be sufficiently improved, and if it exceeds 20 parts by mass, the plasticity may become too high or the impact resistance may be impaired. is there.
  • the content of the carbodiimide-modified soluble polyamide as the component (C) is preferably 20 to 70% by mass with respect to the total amount of the components (A), (B), and (C).
  • the content of the component (C) is within this range, the flexibility and chemical resistance of the flexible printed wiring board can be improved.
  • the content of the component (C) is less than 20% by mass, the flexibility may be lowered.
  • the content of the component (C) exceeds 70% by mass, flame retardancy and heat resistance are likely to occur. May decrease.
  • the epoxy resin composition for printed wiring boards preferably contains a phenoxy resin.
  • a phenoxy resin bisphenol A type phenoxy resin, bisphenol A / bisphenol F type copolymer phenoxy resin, phosphorus-modified phenoxy resin (described later), and the like can be used.
  • This phenoxy resin can further enhance the flexibility of the flexible printed wiring board.
  • the content of the phenoxy resin is preferably 5 to 30% by mass with respect to the total amount of the epoxy resin composition for printed wiring boards.
  • the epoxy resin composition for printed wiring boards contains at least one of phosphorus-based flame retardants such as phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, and phosphazene.
  • phosphorus-modified epoxy resin for example, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 1,4-naphthoquinone are reacted, and cresol novolac resin is further reacted. What was obtained can be used.
  • the phosphorus-modified phenoxy resin one having a molecular skeleton mainly composed of phenoxy resin and containing several phosphorus elements (for example, about 1 to 5) in 1 mol of phosphorus-containing phenoxy resin is used.
  • the phosphorus-based flame retardant in addition to phosphazene, for example, monomeric phosphate ester, condensed phosphate ester, reactive phosphorus flame retardant, phosphate, phosphazene compound, and the like can be used.
  • the monomeric phosphate esters include triphenyl phosphate, tricresyl phosphate, trixinyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylyl diphenyl phosphate, cresyl bis (di-2,6-xylenyl) phosphate, 2- Examples thereof include ethylhexyl diphenyl phosphate.
  • condensed phosphate ester examples include resorcinol bis (diphenyl) phosphate, bisphenol A bis (diphenyl) phosphate, bisphenol A bis (dicresyl) phosphate, resorcinol bis (di-2,6-xylenyl) phosphate, and the like. it can.
  • reactive phosphorus flame retardants include bisphenol A bisphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphenanthrene-10-oxide, and 2- (diphenylphosphinyl) hydroquinone. can do.
  • Examples of the phosphate include melamine phosphate, dimelamine phosphate, melamine pyrophosphate, dimelamine pyrophosphate, melamine polyphosphate, and ethylenediamine phosphate.
  • Examples of the phosphazene compound include phosphonitrile phenyl ester, cyanophenol / phenol mixed substituted cyclophosphazene, phosphonitrile chloride / hydroquinone / phenol condensate, and the like. By using such a thing, a flame retardance can further be improved.
  • the total content of the phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, and phosphorus flame retardant is preferably 10 to 40% by mass with respect to the total amount of the epoxy resin composition for printed wiring boards.
  • the phosphorus-based flame retardant it is preferable to use aluminum alkylphosphinate represented by the above structural formula (5).
  • This aluminum alkylphosphinate is halogen-free and has a high phosphorus content, so that it can exhibit an excellent flame retardant effect even if the blending amount is small.
  • the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, thereby suppressing the decrease in glass transition temperature (Tg). is there.
  • the epoxy resin composition for printed wiring boards also contains a carbodiimide-modified soluble polyamide at the same time.
  • a decrease in flexibility of the resin composition is suppressed, and high flexibility is maintained.
  • the carbon number of the alkyl group represented by R 1 and R 2 in the structural formula (5) is preferably in the range of 1-6.
  • the content thereof is preferably 5 to 20% by mass with respect to the total amount of the components (A), (B) and (C).
  • the content of the aluminum alkylphosphinate is within this range, the flame retardancy and flexibility of the flexible printed wiring board can be further enhanced. That is, if the content of the aluminum alkylphosphinate is 5% by mass or more, even if the epoxy resin composition for a printed wiring board contains only the aluminum alkylphosphinate as a flame retardant, the printed wiring Particularly excellent flame retardancy is imparted to the epoxy resin composition for boards.
  • content of the said aluminum alkylphosphinate is 20 mass% or less, the high softness
  • the flame retardant compounded in the epoxy resin composition for printed wiring boards is only the above-mentioned aluminum alkylphosphinate, the action of suppressing the decrease in glass transition temperature (Tg) is remarkable.
  • the epoxy resin composition for printed wiring boards may contain organic phosphorus compounds, such as phosphate ester, as flame retardants other than the said alkylphosphinic acid aluminum.
  • the organophosphorus compound causes a decrease in the glass transition temperature (Tg) of the epoxy resin composition for a printed wiring board, but the decrease in the glass transition temperature (Tg) is alleviated by using the above aluminum alkylphosphinate together. It is desirable that the amount of the flame retardant other than the aluminum alkylphosphinate is appropriately adjusted so that sufficient flame retardancy is ensured and a decrease in the glass transition temperature (Tg) is sufficiently suppressed.
  • the epoxy resin composition for printed wiring boards contains the components (A), (B), and (C) as essential components, and further includes phenoxy resin, phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, phosphorus flame retardant, 2- It can be prepared by blending a curing accelerator such as ethyl-4-methylimidazole as an optional component.
  • the carbodiimide-modified soluble polyamide obtained by reacting an unreacted group (amino group or carboxyl group) of polyamide with carbodiimide is used as an epoxy resin or epoxy.
  • a resin curing agent By blending with a resin curing agent, storage stability, adhesion, flexibility, and filling properties can all be improved. That is, by reacting unreacted groups (amino group and carboxyl group) originating from the raw material of polyamide with carbodiimide, the reaction between the polyamide resin and the epoxy resin is prevented from being promoted at a low temperature, the varnish storage stability is maintained, and the coating is performed.
  • the epoxy resin composition for printed wiring boards containing the aluminum alkylphosphinate represented by the structural formula (5) excellent flame retardancy can be imparted without containing halogen. Is something that can be done. Moreover, since this aluminum alkylphosphinate has a high phosphorus content, it can exhibit an excellent flame retardant effect even if the blending amount is small. In addition, when the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed. The high heat resistance and chemical resistance of the epoxy resin composition for boards are maintained.
  • Tg glass transition temperature
  • the insulating property of the epoxy resin composition for printed wiring boards is improved, and the flame retardancy, heat resistance and chemical resistance are further improved, and in addition to the inorganic filler.
  • the epoxy resin composition for printed wiring board is imparted with excellent flexibility and can maintain high flexibility.
  • a sheet of a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-attached metal foil, a coverlay, etc. can be produced. It is possible to manufacture a flexible printed wiring board.
  • an epoxy resin composition whose viscosity is adjusted by blending an appropriate organic solvent as required can be used as a solder resist composition.
  • the resin film can be produced by forming an epoxy resin composition for a printed wiring board into a film and drying it by heating until it is in a semi-cured state (B stage state).
  • the resin sheet can be produced by molding the epoxy resin composition for a printed wiring board into a sheet shape and heating and drying it until it is in a semi-cured state (B stage state).
  • the prepreg can be produced by impregnating a substrate such as a glass cloth with an epoxy resin composition for a printed wiring board and heating and drying it until it is in a semi-cured state.
  • the metal foil with resin can be produced by applying an epoxy resin composition for a printed wiring board to a metal foil such as a copper foil and heating and drying it to form a semi-cured adhesive resin layer. .
  • the metal foil with resin is obtained by applying the epoxy resin composition 1 for a printed wiring board to a copper foil through an insulating layer 4 composed of at least one of a coated product 2 and a film-like product 3. It can also be manufactured by applying to a metal foil 5 such as the like and heating and drying to form a semi-cured adhesive resin layer 6.
  • the resin-attached metal foil shown in FIG. 1A is obtained by applying a liquid polyimide resin or the like as the coated product 2 to the surface of the metal foil 5 such as a copper foil, and further, an epoxy resin composition for a printed wiring board. It can manufacture by apply
  • the resin-attached metal foil shown in FIG. 1A is, for example, “R-F552” (manufactured by Panasonic Electric Works Co., Ltd.).
  • the 1A is used for a printed wiring board on the surface of the film-like material 3 after pressure-bonding a polyimide film or the like as the film-like material 3 on the surface of the metal foil 5 such as a copper foil. It can also be produced by applying the epoxy resin composition 1 and drying it by heating. And the insulating layer 4 is formed with the film-form thing 3, and the adhesive resin layer 6 is formed with the epoxy resin composition 1 for printed wiring boards in a semi-hardened state.
  • the resin-coated metal foil shown in FIG. 1 (b) is obtained by applying a liquid polyimide resin or the like as the coated product 2 to the surface of the metal foil 5 such as a copper foil, and forming a polyimide film as the film-like product 3 on the coated surface. It can be manufactured by applying the epoxy resin composition 1 for a printed wiring board on the surface of the film-like product 3 and drying it by heating. Then, the insulating layer 4 is formed by the coated product 2 and the film-like product 3 in the cured or semi-cured state, and the adhesive resin layer 6 is formed by the epoxy resin composition 1 for a printed wiring board in the semi-cured state.
  • the adhesive resin layer 6 is formed of the epoxy resin composition for printed wiring boards, all of adhesion, flexibility and fillability are improved. Further, since the insulating layer 4 composed of at least one of the coated material 2 and the film-like material 3 is interposed between the adhesive resin layer 6 and the metal foil 5, this insulation The layer 4 can enhance dimensional stability.
  • a liquid polyetherimide resin and a polyether sulfone resin can be used as the coated product 2, and the film-like product 3 includes a polyether film and a polyether. An imide film and a polyether sulfone film can also be used.
  • the number of layers and the order of the coated product 2 and the film-like product 3 that form the insulating layer 4 are not particularly limited.
  • a coverlay can be manufactured by apply
  • the metal foil with resin can be used as a coverlay having a shielding function.
  • the flexible printed wiring board is formed using at least one of a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-attached metal foil, and a coverlay.
  • a flexible printed wiring board is manufactured by forming a circuit on one side or both sides of a polyimide film or the like, and a solder resist composition is applied to the circuit forming surface of the flexible printed wiring board in a pattern.
  • a solder resist composition is applied to the circuit forming surface of the flexible printed wiring board in a pattern.
  • a flexible printed wiring board can be manufactured.
  • a multilayer flexible printed wiring board can also be manufactured by sequentially repeating the lamination of these resin films, resin sheets, prepregs, or resin-attached metal foils, circuit formation, interlayer connection, and the like.
  • a flexible printed wiring board having a cover lay can be manufactured by overlaying an adhesive resin layer of a cover lay on the circuit forming surface of the flexible printed wiring board and heating and curing the adhesive resin layer as necessary. it can.
  • any of the above epoxy resin compositions for printed wiring boards is used as a material. Therefore, it is possible to improve adhesion, flexibility, and filling properties. Furthermore, since the reaction between the epoxy group and the carbodiimide group also proceeds during high-temperature press molding, a flexible printed wiring board having excellent heat resistance and chemical resistance can be obtained.
  • the metal foil with resin can be used as a build-up insulating sheet similarly to a bonding sheet or a cover lay, and can also be used as a cover lay having a shielding function.
  • a solder resist composition, a resin film, a resin sheet, a prepreg, and a resin formed using, as a material, an epoxy resin composition for a printed wiring board containing the aluminum alkylphosphinate represented by the structural formula (5) above In the case of metal foils, coverlays, and flexible printed wiring boards, excellent flame retardancy can be imparted without using halogen. Further, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed, and high heat resistance and chemical resistance are maintained.
  • Tg glass transition temperature
  • the insulating properties are improved, and the flame retardant, heat resistance, and chemical resistance are further improved, and the above-described aluminum alkylphosphinate that behaves like an inorganic filler is used. Nevertheless, excellent flexibility is imparted and high flexibility can be maintained.
  • the carbodiimide-modified soluble polyamide can improve all of adhesion, flexibility, and fillability, and further the reaction between the epoxy group and the carbodiimide group during high-temperature press molding, A flexible printed wiring board having excellent chemical resistance and the like can be obtained.
  • (C) Synthesis of carbodiimide-modified soluble polyamide In a 1-liter separable flask, 50.0 g of ester copolymerized amide resin (trade name: “CM8000”, manufactured by Toray Industries, Inc.) and 450.0 g of a mixed solvent of isopropyl alcohol and toluene (mass mixing ratio 4: 6) are added. In addition, it was dissolved by stirring. To the solution thus obtained, 5.0 g of the above carbodiimide compound (4,4′-dicyclohexylmethanecarbodiimide resin) was added, the flask was immersed in an oil bath at 120 ° C., heated and stirred for 3 hours under reflux, and then dried under reduced pressure. Then, by removing the solvent, a carbodiimide-modified soluble polyamide serving as component (C) was obtained.
  • CM8000 isopropyl alcohol and toluene
  • the (C) carbodiimide-modified soluble polyamide had a glass transition temperature (Tg) of 120 ° C., a 5% weight loss temperature of 320 ° C., and a solution viscosity of 860 mPa ⁇ s.
  • varnishes of the epoxy resin compositions for printed wiring boards of Examples 1 to 14 and Comparative Examples 1 and 2 were prepared according to the composition shown in Table 1 below.
  • blendings of following Table 1 are solid content ratios.
  • Example 1 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 33% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • Example 2 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 33% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 3 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 4 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 25% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 5 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 19% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus flame retardant (phosphazene) in a container.
  • a varnish of an epoxy resin composition for a printed wiring board having a solid content of 19% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus flame retardant (phosphazene) in a container.
  • Example 6 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 7 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for printed wiring boards having a solid content of 29% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a phenoxy resin, a curing accelerator, and a phosphorus flame retardant (phosphazene) in a container.
  • Example 8 (A) epoxy resin (biphenyl novolac epoxy resin), (B) epoxy resin curing agent (aminotriazine novolac resin represented by the above structural formula (4)), (C) carbodiimide-modified soluble polyamide, curing accelerator, phosphorus-based A varnish of an epoxy resin composition for printed wiring boards having a solid content of 27% by mass was prepared by mixing a flame retardant (phosphazene) in a container.
  • phosphazene flame retardant
  • Example 9 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (novolak type phenol resin), (C) carbodiimide-modified soluble polyamide, curing accelerator, A phosphorus flame retardant (phosphazene) was put in a container and mixed to prepare a varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass.
  • epoxy resin epoxy resin having a naphthalene skeleton represented by the above structural formula (1)
  • B epoxy resin curing agent
  • C carbodiimide-modified soluble polyamide, curing accelerator,
  • a phosphorus flame retardant (phosphazene) was put in a container and mixed to prepare a varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass.
  • Example 10 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (2)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 22% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 11 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (3)), (B) epoxy resin curing agent (aminotriazine novolac resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 22% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
  • phosphazene phosphorus-based flame retardant
  • Example 12 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) Prepare varnish of epoxy resin composition for printed wiring board with a solid content of 26% by mass by mixing carbodiimide-modified soluble polyamide, curing accelerator, phosphorus flame retardant (phosphazene) and phosphorus-modified epoxy resin in a container. did.
  • Example 13 (A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) Prepare varnish of epoxy resin composition for printed wiring board having a solid content of 26 mass% by mixing carbodiimide-modified soluble polyamide, curing accelerator, phosphorus flame retardant (phosphazene), and phosphorus-modified phenoxy resin in a container. did.
  • Example 14 (A) Epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (dicyandiamide), (C) carbodiimide-modified soluble polyamide, curing accelerator, phosphorus-based difficulty A varnish of an epoxy resin composition for printed wiring boards having a solid content of 28% by mass was prepared by mixing a flame retardant (phosphazene) in a container.
  • a flame retardant phosphazene
  • Novolak type phenol resin phenol novolak resin (manufactured by DIC Corporation, “TD-2090-60M”) dissolved in methyl ethyl ketone, and the resin solid content was 60% by weight.
  • Soluble polyamide ester copolymer amide resin (“CM-8000” manufactured by Toray Industries, Inc.), which is dissolved in a mixed solvent of isopropyl alcohol and toluene (mass mixing ratio 4: 6). The solid content concentration was 10% by mass.
  • Phenoxy resin Phenoxy resin (“YP-50” manufactured by Toto Kasei Co., Ltd.), which was dissolved in methyl ethyl ketone, and the resin solid content was 65% by mass.
  • Curing accelerator 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Chemicals Co., Ltd.)
  • Phosphazene Phosphazene (“SPB-100” manufactured by Otsuka Chemical Co., Ltd., represented by the following structural formula (6))
  • Phosphorus-modified phenoxy resin Phosphorus-modified phenoxy resin (“ERF-001M30” manufactured by Tohto Kasei Co., Ltd.), a mixed solvent of diglyme, xylene, methyl cellosolve, DMF, and toluene (mass mixing ratio 10: 5: 30: 30) 15) and the resin solid content was 30% by mass.
  • the varnish obtained as described above is applied to one side of a copper foil having a thickness of 12 ⁇ m and dried, and the thickness after drying is 50 ⁇ m.
  • a copper foil with resin resin sheet with copper foil
  • the varnish preservability is determined by measuring the initial viscosity and the viscosity after storage for 7 days at 25 ° C., and “pass” the varnish whose viscosity change was less than 10%, and “fail” the varnish changed by 10% or more. It was.
  • Chemical resistance Chemical resistance was evaluated as follows. That is, two copper foils with resin were used, the surfaces on which these adhesive resin layers were formed were bonded together, and a sample was prepared by heating and pressing at 180 ° C. for 1 hour, and then the copper foil of this sample Was removed by etching. Next, this sample was immersed in an aqueous solution of 3% by mass of sodium hydroxide and a temperature of 40 ° C. for 3 minutes and then taken out, washed with water, and sufficiently wiped off moisture with a dry clean cloth. Immediately thereafter, changes in appearance such as discoloration, swelling, and peeling of the sample were visually observed. And the thing without an external appearance change was set as "pass”, and the thing with an external appearance change was set as "fail".
  • the copper foil peel strength was prepared by attaching a surface on which an adhesive resin layer of a copper foil with resin was formed on both sides of a polyimide film having a thickness of 25 ⁇ m, and heating and pressing at 180 ° C. for 1 hour, The copper foil of this sample was evaluated by the peel strength when peeled off in the 90 ° direction.
  • solder heat resistance For solder heat resistance, a sample was prepared by laminating a surface of an adhesive resin layer of a resin-coated copper foil on both sides of a polyimide film having a thickness of 25 ⁇ m, and heating and pressing at 180 ° C. for 1 hour. After immersing in a solder bath heated to 260 ° C. and 288 ° C. for 60 seconds, the appearance was evaluated. Those having no appearance abnormality such as blistering or peeling were evaluated as “pass”, and those other than this were defined as “fail”.
  • circuit filling property is obtained by laminating the surface on which the adhesive resin layer of the copper foil with resin is formed on a test piece formed by providing a comb-shaped pattern on a flexible printed wiring board of rolled copper foil having a thickness of 35 ⁇ m on one side, at 180 ° C. A sample was prepared by heating and pressing for 1 hour, and the appearance of this sample was visually observed and evaluated. The pattern filled with resin was regarded as “pass”, and the other pattern was defined as “fail”.
  • Migration resistance is achieved by bonding the surface on which the adhesive resin layer of the copper foil with resin is formed to a test piece in which a comb-shaped electrode is provided on a single-sided flexible printed wiring board, and heating and pressing at 180 ° C. for 1 hour. A sample was prepared and evaluated by performing a test using a voltage of 10 V for 250 hours in an environment of 85 ° C./85% RH. And the migration degree after this test was evaluated visually. Those in which no migration occurred were defined as “pass”, and those other than this were defined as “fail”.
  • Product storage stability was evaluated as follows. First, a copper foil with resin was produced and stored at 5 ° C. for 6 months. And the surface in which the adhesive resin layer of the copper foil with resin after the said preservation
  • each of the examples has good varnish preservability and copper foil peel strength, high flexibility, and satisfactory flexibility required for flexible printed wiring boards and the like.
  • the circuit filling property was excellent.
  • no halogen-based flame retardant is used, it is a material with little toxic gas and fuming.
  • varnishes of the epoxy resin compositions for printed wiring boards of Examples 15 to 26 and Comparative Examples 3 to 5 were prepared according to the composition shown in Table 2 below.
  • Example 15 to 26 and Comparative Examples 3 to 5 For Examples 15 to 26 and Comparative Examples 3 to 5, the components shown in Table 2 below were mixed in a container to prepare a varnish of an epoxy resin composition for a printed wiring board. The amount of each component used in Table 2 below is shown as a solid content ratio, the components (A), (B) and (C) are used in the mass ratio shown in Table 2 below, and the other components are (A). (B) (C) It used so that the mixture ratio with respect to the total amount of a component might become what is shown in following Table 2.
  • Novolak type phenol resin phenol novolak resin (manufactured by DIC Corporation, “TD-2090-60M”) dissolved in methyl ethyl ketone, and the resin solid content was 60% by mass.
  • Carbodiimide-modified soluble polyamide used was synthesized as described above. In addition, this was melt
  • Curing accelerator 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Chemicals Co., Ltd.)
  • Phosphazene Phosphazene (“SPB-100” manufactured by Otsuka Chemical Co., Ltd., represented by the above structural formula (6))
  • the varnish obtained as described above is applied to one side of a copper foil having a thickness of 12 ⁇ m and dried, and the thickness after drying is 50 ⁇ m.
  • a copper foil with resin resin sheet with copper foil
  • Glass transition temperature (Tg) The glass transition temperature (Tg) was determined from the loss tangent peak by the DMA method (tensile method).
  • each of the examples has good varnish preservability and good copper foil peel strength, high flexibility, and satisfactory flexibility required for flexible printed wiring boards and the like.
  • the circuit filling property was excellent.
  • no halogen-based flame retardant is used, it is a material with little toxic gas and fuming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyamides (AREA)

Abstract

Disclosed is an epoxy resin composition for printed wiring boards, which can improve all of storage stability, adhesion, bendability and fillability. The epoxy resin composition for printed wiring boards contains, as essential components, (A) an epoxy resin, (B) an epoxy resin curing agent and (C) a carbodiimide-modified soluble polyamide.

Description

プリント配線板用エポキシ樹脂組成物、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, coverlay, flexible printed wiring board
 本発明は、フレキシブルプリント配線板等のプリント配線板の製造に用いられるプリント配線板用エポキシ樹脂組成物、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔(金属箔付き樹脂シート)及びカバーレイ並びにこれらのものを用いて形成されたフレキシブルプリント配線板に関するものである。 The present invention relates to an epoxy resin composition for a printed wiring board, a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-coated metal foil (resin sheet with a metal foil) used in the production of a printed wiring board such as a flexible printed wiring board. ) And coverlays and flexible printed wiring boards formed using these.
 小型・薄型の電子機器には多くのフレキシブルプリント配線板が使用されているが、最近では更なる高密度化・薄型の要求からフレキシブルプリント配線板にも多層化のニーズが高まると共に、その要求品質・コストが厳しいものとなっている。従来、フレキシブルプリント配線板の多層化材料としては、ボンディングシートやカバーレイが知られている。絶縁性ビルドアップ材料として用いられるこれらのボンディングシートやカバーレイには保存安定性やスルーホール及び回路充填性等のプレス成形性はもちろん、フレキシブルプリント配線板としての屈曲性、耐熱性、耐薬品性、電気絶縁性が求められる。そこで、絶縁性、耐熱性、耐薬品性に優れるエポキシ樹脂に屈曲性に優れるNBRやアクリルゴムをブレンドした樹脂組成物がボンディングシートやカバーレイに用いられている。 Many flexible printed wiring boards are used in small and thin electronic devices. Recently, the demand for multilayered flexible printed wiring boards has increased due to the demand for higher density and lower thickness.・ Cost is severe. Conventionally, bonding sheets and coverlays are known as multilayered materials for flexible printed wiring boards. These bonding sheets and coverlays used as insulating build-up materials have not only storage stability, press-formability such as through-holes and circuit fillability, but also flexibility, heat resistance, and chemical resistance as flexible printed wiring boards. Electrical insulation is required. Accordingly, a resin composition obtained by blending NBR or acrylic rubber having excellent flexibility with an epoxy resin having excellent insulation, heat resistance, and chemical resistance is used for bonding sheets and coverlays.
 しかし、このような樹脂組成物のワニス及びシート保存安定性は不十分であり、これを用いて得られたフレキシブルプリント配線板の電気絶縁性、耐熱性、耐薬品性も満足できるものではなかった。このため、NBRやアクリルゴムなどの合成ゴムよりも、耐薬品性、耐熱性、絶縁性、難燃性、屈曲性に優れるポリアミドイミドやポリアミドをエポキシ樹脂にブレンドした樹脂組成物を用いることも行われているが(例えば、特許文献1参照。)、やはりワニス保存安定性やシート保存安定性、スルーホール及び回路充填性等のプレス成形性は未だ十分ではない。しかも保存安定性やプレス成形性を改善すると、良好であった他の特性が悪化するというジレンマに陥っていた。 However, the varnish and sheet storage stability of such a resin composition is insufficient, and the electric insulation, heat resistance, and chemical resistance of the flexible printed wiring board obtained using the resin composition are not satisfactory. . For this reason, it is also possible to use a resin composition obtained by blending an epoxy resin with polyamideimide or polyamide, which is superior in chemical resistance, heat resistance, insulation, flame retardancy and flexibility than synthetic rubber such as NBR and acrylic rubber. However, the press formability such as varnish storage stability, sheet storage stability, through-hole and circuit filling properties is still not sufficient. Moreover, when the storage stability and press formability are improved, other characteristics that have been favorable are deteriorated.
 また、上記のような樹脂組成物を用いて得られたフレキシブルプリント配線板の電気絶縁性、耐熱性、耐薬品性は満足できるものではなかった。 Moreover, the electrical insulation, heat resistance, and chemical resistance of the flexible printed wiring board obtained by using the resin composition as described above were not satisfactory.
 また、電子機器の安全性に対する要求から、市場から電子部品の難燃性に対する強い要求もある。電子部品の難燃化技術としては、臭素化エポキシに代表されるハロゲン系化合物が従来から広く使用されてきた。その一方では、地球環境保護や人体への悪影響を懸念して、電気製品等への有害物質の使用を禁止もしくは規制する方向にあるが、ハロゲン系化合物は、焼却時に有毒ガスを発生する懸念があるため、ハロゲン系化合物を用いない、ハロゲンフリーでの難燃化技術開発がトレンドとなっている。 There is also a strong demand from the market for the flame retardancy of electronic components due to the demand for safety of electronic equipment. As flame retarding technology for electronic components, halogen compounds represented by brominated epoxy have been widely used. On the other hand, there is a concern to ban or regulate the use of harmful substances in electrical products, etc. because of concerns about the global environment protection and adverse effects on the human body, but halogenated compounds may generate toxic gases during incineration. For this reason, the development of halogen-free flame retardant technology that does not use halogen compounds has become a trend.
 ハロゲン系化合物に代わるハロゲンフリー難燃剤として挙げられるのが、リン酸エステルに代表される有機リン化合物である(例えば、特許文献2参照。)。しかしこの場合、組成物に十分な難燃性を付与するためには、多量の有機リン化合物を用いる必要性があるため、硬化物のガラス転移温度(Tg)が低下してしまい、耐熱性、耐薬品性等を著しく低下させてしまうという問題がある。
特開平11-140164号公報 特開2008-56820号公報
Examples of halogen-free flame retardants that can replace halogen-based compounds are organic phosphorus compounds represented by phosphate esters (see, for example, Patent Document 2). However, in this case, in order to impart sufficient flame retardancy to the composition, it is necessary to use a large amount of an organic phosphorus compound, so that the glass transition temperature (Tg) of the cured product is lowered, and the heat resistance, There is a problem that the chemical resistance and the like are remarkably lowered.
JP 11-14164 A JP 2008-56820 A
 本発明は上記の点に鑑みてなされたものであり、第一に、保存安定性、密着性、屈曲性、充填性をいずれも高めることができるプリント配線板用エポキシ樹脂組成物、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板を提供することを目的とするものであり、第二に、絶縁性、屈曲性が高く、しかもハロゲンを含有することなく高い難燃性を有すると共にガラス転移温度(Tg)の低下が抑制されて耐熱性、耐薬品性が高いプリント配線板用エポキシ樹脂組成物、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板を提供することを目的とするものである。 The present invention has been made in view of the above points. First, an epoxy resin composition for a printed wiring board and a solder resist composition that can improve storage stability, adhesion, flexibility, and filling properties. Products, resin films, resin sheets, prepregs, metal foils with resin, coverlays, flexible printed wiring boards, and secondly, they are highly insulating and flexible and contain halogen Epoxy resin composition for printed wiring boards, solder resist composition, resin film, resin sheet, which has high flame retardancy without deterioration of glass transition temperature (Tg) and has high heat resistance and chemical resistance, An object of the present invention is to provide a prepreg, a metal foil with resin, a coverlay, and a flexible printed wiring board.
 本発明の請求項1に係るプリント配線板用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)カルボジイミド変性可溶性ポリアミドが必須成分として含有されていることを特徴とするものである。 The epoxy resin composition for a printed wiring board according to claim 1 of the present invention contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) a carbodiimide-modified soluble polyamide as essential components. It is what.
 請求項2に係る発明は、請求項1において、(C)成分の含有量が(A)(B)(C)成分の合計量に対して20~70質量%であることを特徴とするものである。 The invention according to claim 2 is characterized in that, in claim 1, the content of component (C) is 20 to 70% by mass with respect to the total amount of components (A), (B) and (C). It is.
 請求項3に係る発明は、請求項1又は2において、(A)成分として、ナフタレン骨格を有するエポキシ樹脂が用いられていることを特徴とするものである。 The invention according to claim 3 is characterized in that, in claim 1 or 2, an epoxy resin having a naphthalene skeleton is used as the component (A).
 請求項4に係る発明は、請求項3において、ナフタレン骨格を有するエポキシ樹脂として、下記構造式(1)~(3)で表されるもののうちの少なくとも1種類が用いられていることを特徴とするものである。 The invention according to claim 4 is characterized in that, in claim 3, as the epoxy resin having a naphthalene skeleton, at least one of those represented by the following structural formulas (1) to (3) is used. To do.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 請求項5に係る発明は、請求項1乃至4のいずれか1項において、(B)成分として、下記構造式(4)で表されるアミノトリアジンノボラック樹脂、ジシアンジアミドのうちの少なくとも1種類が用いられていることを特徴とするものである。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, at least one of aminotriazine novolak resin and dicyandiamide represented by the following structural formula (4) is used as the component (B). It is characterized by being.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 請求項6に係る発明は、請求項1乃至5のいずれか1項において、(C)成分として、可溶性ポリアミド100質量部に対してカルボジイミド化合物を0.5~20質量部添加して反応させて得られたものが用いられていることを特徴とするものである。 The invention according to claim 6 is the reaction product according to any one of claims 1 to 5, wherein 0.5 to 20 parts by mass of a carbodiimide compound is added as a component (C) to 100 parts by mass of the soluble polyamide. What was obtained is used, It is characterized by the above-mentioned.
 請求項7に係る発明は、請求項1乃至6のいずれか1項において、フェノキシ樹脂が含有されていることを特徴とするものである。 The invention according to claim 7 is characterized in that, in any one of claims 1 to 6, a phenoxy resin is contained.
 請求項8に係る発明は、請求項1乃至7のいずれか1項において、リン変性エポキシ樹脂、リン変性フェノキシ樹脂、リン系難燃剤のうちの少なくとも1種類が含有されていることを特徴とするものである。 The invention according to claim 8 is characterized in that in any one of claims 1 to 7, at least one of a phosphorus-modified epoxy resin, a phosphorus-modified phenoxy resin, and a phosphorus-based flame retardant is contained. Is.
 請求項9に係る発明は、請求項8において、リン系難燃剤として、下記構造式(5)で表されるアルキルホスフィン酸アルミニウムが用いられていることを特徴とするものである。 The invention according to claim 9 is the invention according to claim 8, characterized in that an aluminum alkylphosphinate represented by the following structural formula (5) is used as the phosphorus-based flame retardant.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 請求項10に係る発明は、請求項9において、上記構造式(5)で表されるアルキルホスフィン酸アルミニウムの含有量が(A)(B)(C)成分の合計量に対して5~20質量%であることを特徴とするものである。 The invention according to claim 10 is the invention according to claim 9, wherein the content of aluminum alkylphosphinate represented by the structural formula (5) is 5 to 20 with respect to the total amount of components (A), (B) and (C). It is characterized by being mass%.
 本発明の請求項11に係るソルダーレジスト組成物は、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物から成ることを特徴とするものである。 A solder resist composition according to an eleventh aspect of the present invention comprises the epoxy resin composition for a printed wiring board according to any one of the first to tenth aspects.
 本発明の請求項12に係る樹脂フィルムは、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がフィルム状に成形されていることを特徴とするものである。 The resin film according to claim 12 of the present invention is characterized in that the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 is formed into a film shape.
 本発明の請求項13に係る樹脂シートは、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がシート状に成形されていることを特徴とするものである。 A resin sheet according to claim 13 of the present invention is characterized in that the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is formed into a sheet shape.
 本発明の請求項14に係るプリプレグは、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物が基材に含浸されて半硬化状態となっていることを特徴とするものである。 A prepreg according to claim 14 of the present invention is characterized in that the substrate is impregnated with the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 and is in a semi-cured state. To do.
 本発明の請求項15に係る樹脂付き金属箔は、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物が金属箔に塗布されて半硬化状態となっていることを特徴とするものである。 The metal foil with resin according to claim 15 of the present invention is in a semi-cured state by applying the epoxy resin composition for printed wiring board according to any one of claims 1 to 10 to the metal foil. It is characterized by.
 本発明の請求項16に係る樹脂付き金属箔は、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物1が、塗工物2、フィルム状物3のうちの少なくとも1種類からなる絶縁層4を介して、金属箔5に塗布されて半硬化状態となっていることを特徴とするものである。 The metal foil with resin according to claim 16 of the present invention is the epoxy resin composition 1 for printed wiring board according to any one of claims 1 to 10, wherein the coated resin 2 and the film-like material 3 It is characterized in that it is applied to the metal foil 5 through at least one insulating layer 4 and is in a semi-cured state.
 本発明の請求項17に係るカバーレイは、請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がプラスチックシートに塗布されて半硬化状態となっていることを特徴とするものである。 A coverlay according to claim 17 of the present invention is characterized in that the epoxy resin composition for printed wiring boards according to any one of claims 1 to 10 is applied to a plastic sheet and is in a semi-cured state. It is what.
 本発明の請求項18に係るカバーレイは、請求項15又は16に記載の樹脂付き金属箔から成ることを特徴とするものである。 A coverlay according to claim 18 of the present invention is characterized by comprising the resin-attached metal foil according to claim 15 or 16.
 本発明の請求項19に係るフレキシブルプリント配線板は、請求項11に記載のソルダーレジスト組成物、請求項12に記載の樹脂フィルム、請求項13に記載の樹脂シート、請求項14に記載のプリプレグ、請求項15に記載の樹脂付き金属箔、請求項16に記載の樹脂付き金属箔、請求項17に記載のカバーレイ、請求項18に記載のカバーレイのうちの少なくとも1種類を用いて形成されていることを特徴とするものである。 A flexible printed wiring board according to claim 19 of the present invention is a solder resist composition according to claim 11, a resin film according to claim 12, a resin sheet according to claim 13, and a prepreg according to claim 14. A metal foil with resin according to claim 15, a metal foil with resin according to claim 16, a cover lay according to claim 17, and a cover lay according to claim 18. It is characterized by being.
 本発明の請求項1に係るプリント配線板用エポキシ樹脂組成物によれば、カルボジイミド変性可溶性ポリアミドによって、保存安定性、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the epoxy resin composition for a printed wiring board according to claim 1 of the present invention, the storage stability, adhesion, flexibility, and filling properties can be improved by the carbodiimide-modified soluble polyamide.
 請求項2に係る発明によれば、屈曲性、耐薬品性を高めることができるものである。 According to the invention of claim 2, the flexibility and chemical resistance can be improved.
 請求項3に係る発明によれば、耐熱性、耐マイグレーション性、耐薬品性を高めることができるものである。 According to the invention of claim 3, heat resistance, migration resistance, and chemical resistance can be improved.
 請求項4に係る発明によれば、耐熱性、耐マイグレーション性、耐薬品性をさらに高めることができるものである。 According to the invention of claim 4, the heat resistance, migration resistance, and chemical resistance can be further improved.
 請求項5に係る発明によれば、難燃性、耐薬品性を高めることができると共に、長期間の製品保存安定性(Bステージ保存安定性)を高めることができるものである。 According to the invention of claim 5, flame retardancy and chemical resistance can be enhanced, and long-term product storage stability (B-stage storage stability) can be improved.
 請求項6に係る発明によれば、耐湿性及び耐熱性を十分に向上させることができると共に、可塑性が高くなり過ぎたり耐衝撃性が損なわれたりするのを防止することができるものである。 According to the invention of claim 6, it is possible to sufficiently improve the moisture resistance and heat resistance and to prevent the plasticity from becoming too high or the impact resistance from being impaired.
 請求項7に係る発明によれば、屈曲性をさらに高めることができるものである。 According to the invention of claim 7, the flexibility can be further improved.
 請求項8に係る発明によれば、難燃性をさらに高めることができるものである。 According to the invention of claim 8, the flame retardancy can be further enhanced.
 請求項9に係る発明によれば、ハロゲンを含有しなくてもプリント配線板用エポキシ樹脂組成物に優れた難燃性を付与することができるものである。しかも上記構造式(5)で表されるアルキルホスフィン酸アルミニウムはリン含有率が高いため、配合量が少なくても優れた難燃効果を発揮することができるものである。また、上記アルキルホスフィン酸アルミニウムの化学構造中のアルキル基が低分子量であると、このアルキルホスフィン酸アルミニウムは無機フィラーと同様に振る舞い、このためガラス転移温度(Tg)の低下が抑制され、プリント配線板用エポキシ樹脂組成物の高い耐熱性、耐薬品性を維持することができるものである。さらにカルボジイミド変性可溶性ポリアミドも含有することで、プリント配線板用エポキシ樹脂組成物の絶縁性が向上すると共に、難燃性、耐熱性、耐薬品性がさらに優れたものとなり、しかも無機フィラーと同様に振る舞う上記アルキルホスフィン酸アルミニウムを含有するにもかかわらず、プリント配線板用エポキシ樹脂組成物に優れた柔軟性が付与され、高い屈曲性を維持することができるものである。このように、その他のリン系難燃剤を用いる場合に比べて、難燃性をさらに高めることができるものである。 According to the invention of claim 9, excellent flame retardancy can be imparted to the epoxy resin composition for printed wiring boards without containing halogen. In addition, since the aluminum alkylphosphinate represented by the structural formula (5) has a high phosphorus content, it can exhibit an excellent flame retardant effect even if the blending amount is small. In addition, when the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed. The high heat resistance and chemical resistance of the epoxy resin composition for boards can be maintained. Furthermore, by containing a carbodiimide-modified soluble polyamide, the insulating property of the epoxy resin composition for printed wiring boards is improved, and the flame retardancy, heat resistance and chemical resistance are further improved, and in addition to the inorganic filler. In spite of containing the aluminum aluminum phosphinate that behaves, the epoxy resin composition for printed wiring board is imparted with excellent flexibility and can maintain high flexibility. Thus, the flame retardancy can be further enhanced as compared with the case of using other phosphorus flame retardants.
 請求項10に係る発明によれば、プリント配線板用エポキシ樹脂組成物が特に優れた難燃性を発揮することができると共に、ガラス転移温度(Tg)の低下がさらに抑制され、しかもプリント配線板用エポキシ樹脂組成物の高い柔軟性を十分に維持することができるものである。つまり、難燃性、屈曲性をさらに高めることができるものである。 According to the invention of claim 10, the epoxy resin composition for a printed wiring board can exhibit particularly excellent flame retardancy, and further the reduction of the glass transition temperature (Tg) is further suppressed, and the printed wiring board. The high flexibility of the epoxy resin composition can be sufficiently maintained. That is, flame retardancy and flexibility can be further improved.
 本発明の請求項11に係るソルダーレジスト組成物によれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the solder resist composition according to the eleventh aspect of the present invention, it is possible to improve all of adhesiveness, flexibility and fillability.
 本発明の請求項12に係る樹脂フィルムによれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the resin film of the twelfth aspect of the present invention, it is possible to improve all of adhesion, flexibility, and fillability.
 本発明の請求項13に係る樹脂シートによれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the resin sheet according to claim 13 of the present invention, it is possible to improve all of adhesion, flexibility, and fillability.
 本発明の請求項14に係るプリプレグによれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the prepreg according to claim 14 of the present invention, it is possible to improve all of adhesion, flexibility, and fillability.
 本発明の請求項15に係る樹脂付き金属箔によれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the metal foil with a resin according to the fifteenth aspect of the present invention, it is possible to improve all of adhesion, flexibility, and fillability.
 本発明の請求項16に係る樹脂付き金属箔によれば、密着性、屈曲性、充填性、寸法安定性をいずれも高めることができるものである。 According to the metal foil with a resin according to claim 16 of the present invention, it is possible to improve all of adhesion, flexibility, filling property and dimensional stability.
 本発明の請求項17に係るカバーレイによれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the coverlay according to claim 17 of the present invention, it is possible to improve all of adhesion, flexibility and filling properties.
 本発明の請求項18に係るカバーレイによれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the coverlay according to claim 18 of the present invention, it is possible to improve all of adhesion, flexibility and filling properties.
 本発明の請求項19に係るフレキシブルプリント配線板によれば、密着性、屈曲性、充填性をいずれも高めることができるものである。 According to the flexible printed wiring board of the nineteenth aspect of the present invention, it is possible to improve all of adhesion, flexibility, and filling properties.
本発明に係る樹脂付き金属箔の一例を示すものであり、(a)(b)は断面図である。An example of the metal foil with resin which concerns on this invention is shown, (a) (b) is sectional drawing.
 1 プリント配線板用エポキシ樹脂組成物
 2 塗工物
 3 フィルム状物
 4 絶縁層
 5 金属箔
DESCRIPTION OF SYMBOLS 1 Epoxy resin composition for printed wiring boards 2 Coated material 3 Film-like material 4 Insulating layer 5 Metal foil
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明においてプリント配線板用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)カルボジイミド変性可溶性ポリアミドを必須成分として含有するものである。 In the present invention, the epoxy resin composition for a printed wiring board contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) a carbodiimide-modified soluble polyamide as essential components.
 (A)成分であるエポキシ樹脂としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、酸化型エポキシ樹脂等を用いることができる。このうちグリシジルエーテル型エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、アルコール型エポキシ樹脂等を例示することができる。またグリシジルエステル型エポキシ樹脂としては、ヒドロフタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂等を例示することができる。またグリシジルアミン型エポキシ樹脂としては、芳香族アミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂等を例示することができる。また酸化型エポキシ樹脂としては、脂環型エポキシ樹脂等を例示することができる。さらにナフタレン骨格を有するエポキシ樹脂、フェノール骨格とビフェニル骨格を有するノボラック型エポキシ樹脂(ビフェニルノボラックエポキシ樹脂)、リン変性エポキシ樹脂(後述)等を用いることができるが、ハロゲンは含有しないものを用いるのが好ましい。特に(A)成分としては、ナフタレン骨格を有するエポキシ樹脂を用いるのが好ましい。このようなエポキシ樹脂を用いると、フレキシブルプリント配線板の耐熱性、耐マイグレーション性、耐薬品性を高めることができるものである。中でもナフタレン骨格を有するエポキシ樹脂としては、上記構造式(1)~(3)で表されるもののうちの少なくとも1種類を用いるのが好ましい。このようなエポキシ樹脂を用いると、その他のエポキシ樹脂を用いる場合に比べて、フレキシブルプリント配線板の耐熱性、耐マイグレーション性、耐薬品性をさらに高めることができるものである。 As the epoxy resin as the component (A), for example, glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, oxidation type epoxy resin and the like can be used. Among these, examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alcohol type epoxy resin and the like. Examples of the glycidyl ester type epoxy resin include hydrophthalic acid type epoxy resins and dimer acid type epoxy resins. Examples of the glycidylamine type epoxy resin include aromatic amine type epoxy resins and aminophenol type epoxy resins. Moreover, as an oxidation type epoxy resin, an alicyclic epoxy resin etc. can be illustrated. Furthermore, an epoxy resin having a naphthalene skeleton, a novolac type epoxy resin having a phenol skeleton and a biphenyl skeleton (biphenyl novolac epoxy resin), a phosphorus-modified epoxy resin (described later), etc. can be used, but one containing no halogen is used. preferable. In particular, as the component (A), it is preferable to use an epoxy resin having a naphthalene skeleton. When such an epoxy resin is used, the heat resistance, migration resistance, and chemical resistance of the flexible printed wiring board can be improved. Among these, as the epoxy resin having a naphthalene skeleton, it is preferable to use at least one of those represented by the structural formulas (1) to (3). When such an epoxy resin is used, the heat resistance, migration resistance, and chemical resistance of the flexible printed wiring board can be further enhanced as compared with the case of using other epoxy resins.
 (B)成分であるエポキシ樹脂硬化剤としては、例えば、ポリアミン、変性ポリアミン、酸無水物、ヒドラジン誘導体、ポリフェノール等を用いることができる。このうちポリアミン系の硬化剤としては、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミン等を例示することができる。さらにこのうち脂肪族ポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等を例示することができる。また脂環式ポリアミンとしては、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン等を例示することができる。また芳香族ポリアミンとしては、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン等を例示することができる。また酸無水物としては、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水トリメリット酸、無ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、脂肪族二塩基酸ポリ無水物等を例示することができる。またポリフェノール系の硬化剤としては、フェノールノボラック、キシレンノボラック、ビスAノボラック、トリフェニルメタンノボラック、ビフェニルノボラック、ジシクロペンタジエンフェノールノボラック、テルペンフェノールノボラック等を例示することができる。さらにアミノトリアジンノボラック樹脂、ノボラック型フェノール樹脂等を用いることができる。特に(B)成分としては、上記構造式(4)で表されるアミノトリアジンノボラック樹脂、ジシアンジアミドのうちの少なくとも1種類を用いるのが好ましい。このようなエポキシ樹脂硬化剤を用いると、樹脂フィルム、プリプレグ、樹脂付き金属箔(金属箔付き樹脂シート)の長期間の製品保存安定性(Bステージ保存安定性)を高めることができると共に、フレキシブルプリント配線板の難燃性、耐薬品性を高めることができるものである。なお、(B)成分の含有量は(A)(B)(C)成分の合計量に対して10~45質量%であることが好ましい。 As the epoxy resin curing agent as component (B), for example, polyamines, modified polyamines, acid anhydrides, hydrazine derivatives, polyphenols, and the like can be used. Among these, examples of the polyamine-based curing agent include aliphatic polyamines, alicyclic polyamines, and aromatic polyamines. Of these, examples of the aliphatic polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, and diethylaminopropylamine. Examples of the alicyclic polyamines include isophorone diamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornene diamine, 1,2-diaminocyclohexane, and laromine. Examples of aromatic polyamines include diaminodiphenylmethane, metaphenylenediamine, and diaminodiphenylsulfone. Examples of acid anhydrides include hexahydrophthalic anhydride, methyl tetrahydro anhydride, methyl hexahydrophthalic anhydride, methyl nadic acid anhydride, hydrogenated methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene tetracarboxylic acid. Examples include dianhydride, trimellitic anhydride, pyromellitic acid free, benzophenone tetracarboxylic dianhydride, aliphatic dibasic acid polyanhydride, and the like. Examples of the polyphenol-based curing agent include phenol novolak, xylene novolak, bis A novolak, triphenylmethane novolak, biphenyl novolak, dicyclopentadienephenol novolak, and terpene phenol novolak. Further, aminotriazine novolac resins, novolac-type phenol resins and the like can be used. In particular, as the component (B), it is preferable to use at least one of aminotriazine novolak resin and dicyandiamide represented by the structural formula (4). When such an epoxy resin curing agent is used, long-term product storage stability (B-stage storage stability) of a resin film, prepreg, and resin-attached metal foil (resin sheet with metal foil) can be enhanced and flexible. The flame retardancy and chemical resistance of the printed wiring board can be improved. The content of component (B) is preferably 10 to 45% by mass with respect to the total amount of components (A), (B) and (C).
 (C)成分であるカルボジイミド変性可溶性ポリアミドとしては、可溶性ポリアミドとカルボジイミド化合物とを、溶媒の存在下又は不存在下で、50~250℃の反応温度で反応させて得られたものを用いることができる。 As the carbodiimide-modified soluble polyamide as component (C), it is possible to use a product obtained by reacting a soluble polyamide and a carbodiimide compound at a reaction temperature of 50 to 250 ° C. in the presence or absence of a solvent. it can.
 可溶性ポリアミドは、アルコール及び芳香族系及び/又はケトン系等の有機溶媒の混合物100質量部に対して、1質量部以上、好ましくは5質量部以上、より好ましくは10質量部以上が完全に溶解可能なものである。 The soluble polyamide is completely dissolved in an amount of 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of a mixture of alcohol and aromatic and / or ketone organic solvents. It is possible.
 上記アルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコール等を挙げることができ、上記芳香族系溶媒としては、例えば、ベンゼン、トルエン等を挙げることができ、上記ケトン系溶媒としては、例えば、シクロヘキサノン、2-ブタノン、シクロペンタノン等を挙げることができる。これらのアルコール、芳香族系溶媒及びケトン系溶媒は、沸点が130℃以下であるものが好ましい。 Examples of the alcohol include methanol, ethanol, isopropyl alcohol and the like. Examples of the aromatic solvent include benzene and toluene. Examples of the ketone solvent include cyclohexanone. , 2-butanone, cyclopentanone and the like. These alcohols, aromatic solvents and ketone solvents preferably have a boiling point of 130 ° C. or lower.
 可溶性ポリアミドは、ポリアミドを可溶化することによって得ることができる。この可溶化の方法としては、例えば、各種ポリアミドのアミド結合の水素原子をメトキシメチル基で一部置換する方法を挙げることができる。ポリアミドにメトキシ基を導入するとアミド基が有する水素結合能力が失われ、ポリアミドの結晶性が阻害されるため、溶媒への溶解性が増大する。また、上記可溶化の方法としては、例えば、可溶化前のポリアミドの分子中にポリエーテルやポリエステルを導入して共重合体とする方法も挙げることができる。可溶化前のポリアミドとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12、ナイロン46等を挙げることができる。 Soluble polyamide can be obtained by solubilizing polyamide. As the solubilization method, for example, a method in which hydrogen atoms of amide bonds of various polyamides are partially substituted with methoxymethyl groups can be exemplified. When a methoxy group is introduced into a polyamide, the hydrogen bonding ability of the amide group is lost, and the crystallinity of the polyamide is inhibited, so that the solubility in a solvent is increased. Examples of the solubilization method include a method of introducing a polyether or polyester into a polyamide molecule before solubilization to obtain a copolymer. Examples of the polyamide before solubilization include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, and nylon 46.
 可溶性ポリアミドの具体例としては、「Zytel 61」(デュポン株式会社製)、「Versalon」(ゼネラルミルズ社製)、「アミランCM4000」(東レ株式会社製)、「アミランCM8000」(東レ株式会社製)、「PA-100」(富士化成工業株式会社製)、「トレジン」(ナガセケムテックス株式会社製)等を挙げることができる。 Specific examples of the soluble polyamide include “Zytel 61” (manufactured by DuPont), “Versalon” (manufactured by General Mills), “Amilan CM4000” (manufactured by Toray Industries, Inc.), and “Amilan CM8000” (manufactured by Toray Industries, Inc.). , “PA-100” (manufactured by Fuji Kasei Kogyo Co., Ltd.), “Toresin” (manufactured by Nagase ChemteX Corporation), and the like.
 カルボジイミド化合物とは、分子中に1個以上のカルボジイミド基を有するもので、モノカルボジイミド化合物、ポリカルボジイミド化合物等を挙げることができ、例えば、触媒として有機リン系化合物又は有機金属化合物を用い、各種ポリイソシアネートを約70℃以上の温度で、無溶媒又は不活性溶媒中で、脱炭酸縮合反応により合成することができる。 The carbodiimide compound is a compound having one or more carbodiimide groups in the molecule, and examples thereof include a monocarbodiimide compound and a polycarbodiimide compound. For example, an organic phosphorus compound or an organometallic compound is used as a catalyst. Isocyanates can be synthesized by a decarboxylation condensation reaction at a temperature of about 70 ° C. or higher in a solvent-free or inert solvent.
 上記モノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易であるという面から、ジシクロヘキシルカルボジイミド、あるいはジイソプロピルカルボジイミドが好適である。 Examples of the monocarbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide and the like. Among these, dicyclohexylcarbodiimide or diisopropylcarbodiimide is preferable from the viewpoint of industrial availability.
 また、上記ポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができるが、基本的には、従来のポリカルボジイミドの製造方法(例えば、米国特許第2941956号明細書、J.Org.Chem.28,2069-2075(1963)、Chemical Review 1981,Vol.81No.4、p619-621 参照)により、製造されたものを用いることができる。 In addition, as the polycarbodiimide compound, those produced by various methods can be used, but basically, a conventional method for producing polycarbodiimide (for example, US Pat. No. 2,941,956, J. Org). Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81 No. 4, p619-621) can be used.
 ポリカルボジイミド化合物を製造する際の合成原料である有機ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルジイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等を例示することができる。 Examples of the organic diisocyanate that is a synthetic raw material for producing the polycarbodiimide compound include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5- Naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , Mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophor Diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 2,6-diisopropylphenyl diisocyanate, 1,3,5-triisopropylbenzene-2,4-diisocyanate, etc. be able to.
 中でも、可撓性や耐湿性の向上効果などの観点から、脂肪族系(脂環族を含む)有機ジイソシアネートが好ましく、特にイロホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、テトラメチルキシリレンジイソシアネートやこれらの混合物がより好ましい。 Of these, aliphatic (including alicyclic) organic diisocyanates are preferable from the viewpoint of improving flexibility and moisture resistance, and particularly ilophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, tetramethylxylylene diene. Isocyanates and mixtures thereof are more preferred.
 また、上記ポリカルボジイミド化合物を製造する際には、冷却等により重合反応を途中で停止させて適切な重合度に制御することができる。この場合、末端はイソシアネート基となる。さらに、適切な重合度に制御するには、モノイソシアネート化合物等の、ポリカルボジイミド化合物の末端イソシアネート基と反応する化合物を用いて、残存する末端イソシアネート基の全て又は一部を封止する方法もある。重合度を制御することにより、可溶性ポリアミドとの相溶性や保存安定性を高めることができ、品質向上の点で好ましい。 Also, when the polycarbodiimide compound is produced, the polymerization reaction can be stopped halfway by cooling or the like to control the polymerization degree to an appropriate level. In this case, the terminal is an isocyanate group. Furthermore, in order to control to an appropriate degree of polymerization, there is a method of sealing all or part of the remaining terminal isocyanate groups using a compound that reacts with the terminal isocyanate group of the polycarbodiimide compound, such as a monoisocyanate compound. . By controlling the degree of polymerization, compatibility with soluble polyamide and storage stability can be enhanced, which is preferable in terms of quality improvement.
 このようなポリカルボジイミド化合物の末端を封止してその重合度を制御するためのモノイソシアネート化合物としては、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等を挙げることができる。 Examples of the monoisocyanate compound for sealing the end of such a polycarbodiimide compound and controlling the degree of polymerization thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like. be able to.
 また、ポリカルボジイミド化合物の末端を封止してその重合度を制御する末端封止剤としては、上記モノイソシアネート化合物に限定されるものではなく、イソシアネート基と反応し得る活性水素化合物、例えば、(i)脂肪族、芳香族又は脂環族化合物であって、-OH基を有する、メタノール、エタノール、フェノール、シクロヘキサノール、N-メチルエタノールアミン、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル;(ii)=NH基を有するジエチルアミン、ジシクロヘキシルアミン;(iii)-NH基を有するブチルアミン、シクロヘキシルアミン;(iv)-COOH基を有するコハク酸、安息香酸、シクロヘキサン酸;(v)-SH基を有するエチルメルカプタン、アリルメルカプタン、チオフェノール;(vi)エポキシ基を有する化合物;(vii)無水酢酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸のような酸無水物等を挙げることができる。 Further, the end-capping agent that seals the end of the polycarbodiimide compound and controls the degree of polymerization thereof is not limited to the monoisocyanate compound, but an active hydrogen compound that can react with an isocyanate group, for example, ( i) an aliphatic, aromatic or alicyclic compound having an —OH group, methanol, ethanol, phenol, cyclohexanol, N-methylethanolamine, polyethylene glycol monomethyl ether, polypropylene glycol monomethyl ether; (ii) = Diethylamine having a NH group, dicyclohexylamine; (iii) butylamine having a NH 2 group, cyclohexylamine; (iv) succinic acid, benzoic acid, cyclohexane acid having a -COOH group; (v) ethyl having a SH group Mercaptans, ants Lumercaptan, thiophenol; (vi) compounds having an epoxy group; (vii) acid anhydrides such as acetic anhydride, methyltetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
 上記有機ジイソシアネートの脱炭酸縮合反応は、適当なカルボジイミド化触媒の存在下で行うものであり、使用し得るカルボジイミド化触媒としては、有機リン系化合物、有機金属化合物〔一般式M-(OR)[Mは、チタン(Ti)、ナトリウム(Na)、カリウム(K)、バナジウム(V)、タングステン(W)、ハフニウム(Hf)、ジルコニウム(Zr)、鉛(Pb)、マンガン(Mn)、ニッケル(Ni)、カルシウム(Ca)やバリウム(Ba)等を示し、Rは、炭素数1~20までのアルキル基又はアリール基を示し、nはMの価数を示す]で表されるもの〕が好適であり、特に活性の面から、有機リン系化合物ではフォスフォレンオキシド類が好ましく、また、有機金属化合物ではチタン、ハフニウム、ジルコニウムのアルコキシド類が好ましい。 The decarboxylation condensation reaction of the organic diisocyanate is performed in the presence of a suitable carbodiimidization catalyst. Examples of the carbodiimidization catalyst that can be used include organic phosphorus compounds, organometallic compounds [general formula M- (OR) n [M is titanium (Ti), sodium (Na), potassium (K), vanadium (V), tungsten (W), hafnium (Hf), zirconium (Zr), lead (Pb), manganese (Mn), nickel (Ni), calcium (Ca), barium (Ba), etc., R represents an alkyl group or aryl group having 1 to 20 carbon atoms, and n represents a valence of M] From the viewpoint of activity, phospholene oxides are preferable for organophosphorus compounds, and titanium, hafnium and zirconium are preferred for organometallic compounds. Rukokishido are preferred.
 上記フォスフォレンオキシド類としては、具体的には、3-メチル-1-フェニル-2-フォスフォレン-1-オキシド、3-メチル-1-エチル-2-フォスフォレン-1-オキシド、1,3-ジメチル-2-フォスフォレン-1-オキシド、1-フェニル-2-フォスフォレン-1-オキシド、1-エチル-2-フォスフォレン-1-オキシド、1-メチル-2-フォスフォレン-1-オキシド又はこれらの二重結合異性体を例示することができ、中でも工業的に入手の容易な3-メチル-1-フェニル-2-フォスフォレン-1-オキシドが好ましい。 Specific examples of the phosphorene oxides include 3-methyl-1-phenyl-2-phospholene-1-oxide, 3-methyl-1-ethyl-2-phospholene-1-oxide, 1,3- Dimethyl-2-phospholene-1-oxide, 1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 1-methyl-2-phospholene-1-oxide or a double thereof Examples of the bonding isomers are 3-methyl-1-phenyl-2-phospholene-1-oxide, which is easily available industrially.
 カルボジイミド化合物としては、上記のような機能を有する分子中に1個以上のカルボジイミド基を有するものであれば、特に限定されるものではないが、反応性や耐加水分解安定性の向上効果などの点から、4,4’-ジシクロヘキシルメタンカルボジイミド等の、分子中に2個以上のカルボジイミド基を有するポリカルボジイミド化合物が好ましく、脂肪族系又は脂環族系ポリカルボジイミド化合物がより好ましい。また、重合度は2~30が好ましく、2~20がより好ましい。重合度が2以上であると耐熱性の点で好ましく、重合度が20以下であると相溶性の点で好ましい。 The carbodiimide compound is not particularly limited as long as it has one or more carbodiimide groups in the molecule having the functions as described above. In view of this, polycarbodiimide compounds having two or more carbodiimide groups in the molecule, such as 4,4′-dicyclohexylmethanecarbodiimide, are preferred, and aliphatic or alicyclic polycarbodiimide compounds are more preferred. The degree of polymerization is preferably 2 to 30, and more preferably 2 to 20. A polymerization degree of 2 or more is preferable from the viewpoint of heat resistance, and a polymerization degree of 20 or less is preferable from the viewpoint of compatibility.
 (C)成分であるカルボジイミド変性可溶性ポリアミドは、上記可溶性ポリアミドとカルボジイミド化合物とを溶媒の存在下又は不存在下で反応させ、可溶性ポリアミドが有するカルボキシル基やアミノ基等の反応性官能基と、これらと反応可能なカルボジイミド化合物のカルボジイミド基やイソシアネート基とが反応することにより得られる。 The carbodiimide-modified soluble polyamide as component (C) is obtained by reacting the soluble polyamide with a carbodiimide compound in the presence or absence of a solvent, and reactive functional groups such as a carboxyl group and an amino group that the soluble polyamide has, and It can be obtained by reacting a carbodiimide group or an isocyanate group of a carbodiimide compound that can react with the carboxylic acid.
 上記可溶性ポリアミドとカルボジイミド化合物とを反応させる方法は、特に限定されるものではないが、溶媒の存在下又は不存在下で行うことができる。 The method of reacting the soluble polyamide and the carbodiimide compound is not particularly limited, but can be performed in the presence or absence of a solvent.
 溶媒の存在下で反応させる方法としては、例えば、可溶性ポリアミド及びカルボジイミド化合物を溶媒に溶解させた後に反応させる方法を挙げることができ、可溶性ポリアミドとカルボジイミド化合物とを加熱攪拌して反応させる方法が好ましく、可溶性ポリアミドを溶媒に溶解して得られた溶液にカルボジイミド化合物を添加し、リフラックス下で加熱攪拌して反応させる方法がより好ましい。このようにして得られた溶液から溶媒を常圧下ないし減圧下において除去することによって、カルボジイミド変性可溶性ポリアミドを得ることができる。 Examples of the method of reacting in the presence of a solvent include a method of reacting after dissolving a soluble polyamide and a carbodiimide compound in a solvent, and a method of reacting by heating and stirring the soluble polyamide and the carbodiimide compound is preferable. A method in which a carbodiimide compound is added to a solution obtained by dissolving a soluble polyamide in a solvent and reacted by heating and stirring under reflux is more preferable. The carbodiimide-modified soluble polyamide can be obtained by removing the solvent from the solution thus obtained under normal pressure or reduced pressure.
 溶媒の不存在下で反応させる方法としては、例えば、可溶性ポリアミドを融点以上に溶融させた後にカルボジイミド化合物を混合して反応させる方法や、可溶性ポリアミドとカルボジイミド化合物を二軸押出機により溶融混練させながら反応させる方法を挙げることができる。 As a method of reacting in the absence of a solvent, for example, a method in which a soluble polyamide is melted to a melting point or higher and then mixed and reacted, or a soluble polyamide and a carbodiimide compound are melted and kneaded by a twin screw extruder. The method of making it react can be mentioned.
 可溶性ポリアミドとカルボジイミド化合物とを反応させる際には、反応系にカルボジイミド変性を阻害する化合物が存在しないことが好ましく、反応系にカルボジイミド化合物、可溶性ポリアミド及び必要に応じて用いられる溶媒のみが存在することがより好ましい。上記カルボジイミド変性を阻害する化合物の具体例としては、エポキシ樹脂、アミン系樹脂、メラミン樹脂、フェノール樹脂等を挙げることができる。 When reacting a soluble polyamide and a carbodiimide compound, it is preferable that the reaction system does not contain a compound that inhibits carbodiimide modification, and the reaction system contains only a carbodiimide compound, a soluble polyamide, and a solvent used as necessary. Is more preferable. Specific examples of the compound that inhibits the carbodiimide modification include an epoxy resin, an amine resin, a melamine resin, and a phenol resin.
 上記可溶性ポリアミドをカルボジイミド化合物と反応させる時間は、使用する可溶性ポリアミドやカルボジイミド化合物の種類、反応方法、反応温度等により異なるが、例えば、1~500分程度であり、5~200分であることが好ましい。 The time for reacting the soluble polyamide with the carbodiimide compound varies depending on the type of the soluble polyamide and carbodiimide compound used, the reaction method, the reaction temperature, etc., but is, for example, about 1 to 500 minutes, and 5 to 200 minutes. preferable.
 上記可溶性ポリアミドをカルボジイミド化合物と反応させる温度も、使用する可溶性ポリアミドやカルボジイミド化合物の種類、反応方法、反応温度等により異なるが、例えば、50~250℃であり、可溶性ポリアミドとカルボジイミド化合物とを溶媒の存在下で反応させる場合には、50~150℃であることが好ましく、70~130℃であることがより好ましい。また、可溶性ポリアミドとカルボジイミド化合物とを溶媒の不存在下で反応させる場合には、130~250℃であることが好ましく、150~220℃であることがより好ましい。反応温度が50℃未満であると、可溶性ポリアミドとカルボジイミド化合物との反応が遅く、可溶性ポリアミドの変性に時間がかかって工業的に好ましくなく、250℃を超えると樹脂の分解などによる劣化が起こりやすくなる。 The temperature at which the soluble polyamide reacts with the carbodiimide compound also varies depending on the type of soluble polyamide or carbodiimide compound used, the reaction method, the reaction temperature, etc., but is, for example, 50 to 250 ° C. When the reaction is carried out in the presence, it is preferably 50 to 150 ° C, more preferably 70 to 130 ° C. In addition, when the soluble polyamide and the carbodiimide compound are reacted in the absence of a solvent, the temperature is preferably 130 to 250 ° C, more preferably 150 to 220 ° C. If the reaction temperature is less than 50 ° C, the reaction between the soluble polyamide and the carbodiimide compound is slow, and it takes time to modify the soluble polyamide, which is not industrially preferable. If the reaction temperature exceeds 250 ° C, deterioration due to decomposition of the resin is likely to occur. Become.
 なお、上述のように可溶性ポリアミドとカルボジイミド化合物を反応させることで、可溶性ポリアミドが変性され、カルボジイミド変性可溶性ポリアミドとなる。例えば、上述の反応が進行するのに伴い、カルボジイミド化合物が有するカルボジイミド基が減少するため、赤外線測定によって反応物と生成物を比較すると、反応物で観測されるカルボジイミド基のピークが生成物では減少している。また、反応物と生成物に対して示差熱熱重量測定を行うと、反応物の吸熱ピークはアミド樹脂起因・カルボジイミド樹脂起因など複数観測されるが、生成物の吸熱ピークは1つに集約される。以上により、可溶性ポリアミドが変性されたことを確認することができる。 In addition, by reacting soluble polyamide and a carbodiimide compound as described above, the soluble polyamide is modified to become a carbodiimide-modified soluble polyamide. For example, as the above reaction proceeds, the carbodiimide group of the carbodiimide compound decreases, so when comparing the reaction product with the product by infrared measurement, the peak of the carbodiimide group observed in the reaction product decreases. is doing. In addition, when differential thermogravimetric measurement is performed on the reactant and product, multiple endothermic peaks of the reactant, such as amide resin and carbodiimide resin, are observed, but the endothermic peaks of the product are aggregated into one. The From the above, it can be confirmed that the soluble polyamide has been modified.
 上述のようにして得られたカルボジイミド変性可溶性ポリアミドは、可溶性ポリアミドとカルボジイミド化合物からなる組成物と比較して、保存安定性に優れている。すなわち、上記組成物の場合は、溶液化した際に溶液の増粘が起こり、更にはゲル化に至るのに対し、変性をしたものは溶液状態でも増粘などの変化を示さず、その状態で長期間保管することが可能である。 The carbodiimide-modified soluble polyamide obtained as described above is excellent in storage stability as compared with a composition comprising a soluble polyamide and a carbodiimide compound. That is, in the case of the above composition, thickening of the solution occurs when it is made into a solution, and further gelation is achieved, whereas the modified one shows no change such as thickening even in the solution state. And can be stored for a long time.
 カルボジイミド化合物の添加量は、可溶性ポリアミド100質量部に対して、0.5~20質量部であることが好ましく、1~10質量部であることがより好ましい。これにより、耐湿性及び耐熱性を十分に向上させることができると共に、可塑性が高くなり過ぎたり耐衝撃性が損なわれたりするのを防止することができるものである。添加量が0.5質量部未満であると、耐湿性や耐熱性が十分に向上しないおそれがあり、20質量部を超えると、可塑性が高くなり過ぎたり耐衝撃性が損なわれたりするおそれがある。 The amount of the carbodiimide compound added is preferably 0.5 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the soluble polyamide. Thereby, while being able to fully improve moisture resistance and heat resistance, it can prevent that plasticity becomes high too much or impact resistance is impaired. If the addition amount is less than 0.5 parts by mass, the moisture resistance and heat resistance may not be sufficiently improved, and if it exceeds 20 parts by mass, the plasticity may become too high or the impact resistance may be impaired. is there.
 そして(C)成分であるカルボジイミド変性可溶性ポリアミドの含有量は(A)(B)(C)成分の合計量に対して20~70質量%であることが好ましい。(C)成分の含有量がこの範囲内であると、フレキシブルプリント配線板の屈曲性、耐薬品性を高めることができるものである。しかし、(C)成分の含有量が20質量%未満であると、屈曲性が低下するおそれがあり、逆に(C)成分の含有量が70質量%を超えると、難燃性や耐熱性が低下するおそれがある。 The content of the carbodiimide-modified soluble polyamide as the component (C) is preferably 20 to 70% by mass with respect to the total amount of the components (A), (B), and (C). When the content of the component (C) is within this range, the flexibility and chemical resistance of the flexible printed wiring board can be improved. However, if the content of the component (C) is less than 20% by mass, the flexibility may be lowered. Conversely, if the content of the component (C) exceeds 70% by mass, flame retardancy and heat resistance are likely to occur. May decrease.
 プリント配線板用エポキシ樹脂組成物には、(A)(B)(C)成分のほか、フェノキシ樹脂を含有させるのが好ましい。フェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールA/ビスフェノールF型共重合型フェノキシ樹脂、リン変性フェノキシ樹脂(後述)等を用いることができる。このフェノキシ樹脂によって、フレキシブルプリント配線板の屈曲性をさらに高めることができるものである。なお、フェノキシ樹脂の含有量はプリント配線板用エポキシ樹脂組成物全量に対して5~30質量%であることが好ましい。 In addition to the components (A), (B), and (C), the epoxy resin composition for printed wiring boards preferably contains a phenoxy resin. As the phenoxy resin, bisphenol A type phenoxy resin, bisphenol A / bisphenol F type copolymer phenoxy resin, phosphorus-modified phenoxy resin (described later), and the like can be used. This phenoxy resin can further enhance the flexibility of the flexible printed wiring board. The content of the phenoxy resin is preferably 5 to 30% by mass with respect to the total amount of the epoxy resin composition for printed wiring boards.
 さらにプリント配線板用エポキシ樹脂組成物には、リン変性エポキシ樹脂、リン変性フェノキシ樹脂、ホスファゼン等のリン系難燃剤のうちの少なくとも1種類を含有させるのが好ましい。ここで、リン変性エポキシ樹脂としては、例えば、9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドと1,4-ナフトキノンとを反応させ、さらにクレゾールノボラック樹脂を反応させて得られたものを用いることができる。またリン変性フェノキシ樹脂としては、分子骨格の主体がフェノキシ樹脂からなるもので、かつリン元素を例えばリン含有フェノキシ樹脂1モル中に数個(1~5個程度)含有しているものを用いることができる。リン系難燃剤としては、ホスファゼンのほか、例えば、モノマー型リン酸エステル、縮合型リン酸エステル、反応型リン系難燃剤、リン酸塩、ホスファゼン化合物等を用いることができる。このうちモノマー型リン酸エステルとしては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシニルホスフェート、トリエチルホスフェート、クレジルジフェニルホスフェート、キシリルジフェニルホスフェート、クレジルビス(ジ-2,6-キシレニル)ホスフェート、2-エチルヘキシルジフェニルホスフェート等を例示することができる。また縮合型リン酸エステルとしては、レゾルシノールビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジクレジル)ホスフェート、レゾルシノールビス(ジ-2,6-キシレニル)ホスフェート等を例示することができる。また反応型リン系難燃剤としては、ビスフェノールAビスフェニールホスフェート、9,10-ジヒドロ-9-オキサ-10-ホォスフェナンスレン-10-オキシド、2-(ジフェニルホスフィニル)ハイドロキノン等を例示することができる。またリン酸塩としては、リン酸メラミン、リン酸ジメラミン、ピロリン酸メラミン、ピロリン酸ジメラミン、ポリリン酸メラミン、エチレンジアミンリン酸塩を例示することができる。またホスファゼン化合物としては、ホスホニトリル酸フェニルエステル、シアノフェノール・フェノール混合置換シクロホスファゼン、ホスホニトリルクロリド・ハイドロキノン・フェノール縮合物等を例示することができる。このようなものを用いることによって、難燃性をさらに高めることができるものである。なお、リン変性エポキシ樹脂、リン変性フェノキシ樹脂、リン系難燃剤の含有量の合計はプリント配線板用エポキシ樹脂組成物全量に対して10~40質量%であることが好ましい。 Furthermore, it is preferable that the epoxy resin composition for printed wiring boards contains at least one of phosphorus-based flame retardants such as phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, and phosphazene. Here, as the phosphorus-modified epoxy resin, for example, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 1,4-naphthoquinone are reacted, and cresol novolac resin is further reacted. What was obtained can be used. In addition, as the phosphorus-modified phenoxy resin, one having a molecular skeleton mainly composed of phenoxy resin and containing several phosphorus elements (for example, about 1 to 5) in 1 mol of phosphorus-containing phenoxy resin is used. Can do. As the phosphorus-based flame retardant, in addition to phosphazene, for example, monomeric phosphate ester, condensed phosphate ester, reactive phosphorus flame retardant, phosphate, phosphazene compound, and the like can be used. Among these, the monomeric phosphate esters include triphenyl phosphate, tricresyl phosphate, trixinyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylyl diphenyl phosphate, cresyl bis (di-2,6-xylenyl) phosphate, 2- Examples thereof include ethylhexyl diphenyl phosphate. Examples of the condensed phosphate ester include resorcinol bis (diphenyl) phosphate, bisphenol A bis (diphenyl) phosphate, bisphenol A bis (dicresyl) phosphate, resorcinol bis (di-2,6-xylenyl) phosphate, and the like. it can. Examples of reactive phosphorus flame retardants include bisphenol A bisphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphenanthrene-10-oxide, and 2- (diphenylphosphinyl) hydroquinone. can do. Examples of the phosphate include melamine phosphate, dimelamine phosphate, melamine pyrophosphate, dimelamine pyrophosphate, melamine polyphosphate, and ethylenediamine phosphate. Examples of the phosphazene compound include phosphonitrile phenyl ester, cyanophenol / phenol mixed substituted cyclophosphazene, phosphonitrile chloride / hydroquinone / phenol condensate, and the like. By using such a thing, a flame retardance can further be improved. The total content of the phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, and phosphorus flame retardant is preferably 10 to 40% by mass with respect to the total amount of the epoxy resin composition for printed wiring boards.
 特にリン系難燃剤としては、上記構造式(5)で表されるアルキルホスフィン酸アルミニウムを用いるのが好ましい。このアルキルホスフィン酸アルミニウムは、ハロゲンフリーであり、かつリン含有率が高いため、配合量が少なくても優れた難燃効果を発揮することができるものである。また、上記アルキルホスフィン酸アルミニウムの化学構造中のアルキル基が低分子量であると、このアルキルホスフィン酸アルミニウムは無機フィラーと同様に振る舞い、このためガラス転移温度(Tg)の低下が抑制されるものである。またこのように無機フィラーと同様に振る舞う上記アルキルホスフィン酸アルミニウムを含有するものの、プリント配線板用エポキシ樹脂組成物は同時にカルボジイミド変性可溶性ポリアミドも含有するため、上記アルキルホスフィン酸アルミニウムによるプリント配線板用エポキシ樹脂組成物の柔軟性の低下が抑制され、高い屈曲性が維持されるものである。このアルキルホスフィン酸アルミニウムにおける、上記構造式(5)中のR、Rで示されるアルキル基の炭素数は1~6の範囲であることが好ましい。このようなリン系難燃剤を用いると、その他のリン系難燃剤を用いる場合に比べて、難燃性をさらに高めることができるものである。そして特にリン系難燃剤として上記アルキルホスフィン酸アルミニウムを用いる場合には、その含有量は(A)(B)(C)成分の合計量に対して5~20質量%であることが好ましい。上記アルキルホスフィン酸アルミニウムの含有量がこの範囲内であると、フレキシブルプリント配線板の難燃性、屈曲性をさらに高めることができるものである。すなわち、上記アルキルホスフィン酸アルミニウムの含有量が5質量%以上であれば、プリント配線板用エポキシ樹脂組成物中に難燃剤として上記アルキルホスフィン酸アルミニウムのみが含有される場合であっても、プリント配線板用エポキシ樹脂組成物に特に優れた難燃性が付与されるものである。また、上記アルキルホスフィン酸アルミニウムの含有量が20質量%以下であれば、プリント配線板用エポキシ樹脂組成物の高い柔軟性が十分に維持されるものである。 In particular, as the phosphorus-based flame retardant, it is preferable to use aluminum alkylphosphinate represented by the above structural formula (5). This aluminum alkylphosphinate is halogen-free and has a high phosphorus content, so that it can exhibit an excellent flame retardant effect even if the blending amount is small. In addition, when the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, thereby suppressing the decrease in glass transition temperature (Tg). is there. In addition, although it contains the above-described aluminum aluminum phosphinate that behaves like an inorganic filler, the epoxy resin composition for printed wiring boards also contains a carbodiimide-modified soluble polyamide at the same time. A decrease in flexibility of the resin composition is suppressed, and high flexibility is maintained. In this aluminum alkylphosphinate, the carbon number of the alkyl group represented by R 1 and R 2 in the structural formula (5) is preferably in the range of 1-6. When such a phosphorus flame retardant is used, the flame retardancy can be further enhanced as compared with the case where other phosphorus flame retardants are used. In particular, when the above-mentioned aluminum alkylphosphinate is used as the phosphorus flame retardant, the content thereof is preferably 5 to 20% by mass with respect to the total amount of the components (A), (B) and (C). When the content of the aluminum alkylphosphinate is within this range, the flame retardancy and flexibility of the flexible printed wiring board can be further enhanced. That is, if the content of the aluminum alkylphosphinate is 5% by mass or more, even if the epoxy resin composition for a printed wiring board contains only the aluminum alkylphosphinate as a flame retardant, the printed wiring Particularly excellent flame retardancy is imparted to the epoxy resin composition for boards. Moreover, if content of the said aluminum alkylphosphinate is 20 mass% or less, the high softness | flexibility of the epoxy resin composition for printed wiring boards is fully maintained.
 プリント配線板用エポキシ樹脂組成物中に配合される難燃剤が上記アルキルホスフィン酸アルミニウムのみであれば、ガラス転移温度(Tg)の低下を抑制する作用が著しい。また、プリント配線板用エポキシ樹脂組成物には上記アルキルホスフィン酸アルミニウム以外の難燃剤としてリン酸エステル等の有機リン化合物を含有させてもよい。有機リン化合物はプリント配線板用エポキシ樹脂組成物のガラス転移温度(Tg)の低下を招くが、上記アルキルホスフィン酸アルミニウムを併用することにより、このガラス転移温度(Tg)の低下は緩和される。上記アルキルホスフィン酸アルミニウム以外の難燃剤の使用量は、十分な難燃性が確保されると共に、ガラス転移温度(Tg)の低下が十分に抑制されるように適宜調整されることが望ましい。 If the flame retardant compounded in the epoxy resin composition for printed wiring boards is only the above-mentioned aluminum alkylphosphinate, the action of suppressing the decrease in glass transition temperature (Tg) is remarkable. Moreover, you may make the epoxy resin composition for printed wiring boards contain organic phosphorus compounds, such as phosphate ester, as flame retardants other than the said alkylphosphinic acid aluminum. The organophosphorus compound causes a decrease in the glass transition temperature (Tg) of the epoxy resin composition for a printed wiring board, but the decrease in the glass transition temperature (Tg) is alleviated by using the above aluminum alkylphosphinate together. It is desirable that the amount of the flame retardant other than the aluminum alkylphosphinate is appropriately adjusted so that sufficient flame retardancy is ensured and a decrease in the glass transition temperature (Tg) is sufficiently suppressed.
 そして、プリント配線板用エポキシ樹脂組成物は、(A)(B)(C)成分を必須成分として配合し、さらにフェノキシ樹脂、リン変性エポキシ樹脂、リン変性フェノキシ樹脂、リン系難燃剤、2-エチル-4-メチルイミダゾール等の硬化促進剤を任意成分として配合することによって調製することができる。 The epoxy resin composition for printed wiring boards contains the components (A), (B), and (C) as essential components, and further includes phenoxy resin, phosphorus-modified epoxy resin, phosphorus-modified phenoxy resin, phosphorus flame retardant, 2- It can be prepared by blending a curing accelerator such as ethyl-4-methylimidazole as an optional component.
 このようにして得られたプリント配線板用エポキシ樹脂組成物にあっては、ポリアミドの未反応基(アミノ基やカルボキシル基)をカルボジイミドと反応させて得られたカルボジイミド変性可溶性ポリアミドをエポキシ樹脂、エポキシ樹脂硬化剤にブレンドしてあることによって、保存安定性、密着性、屈曲性、充填性をいずれも高めることができるものである。すなわち、ポリアミドの原料に起因する未反応基(アミノ基やカルボキシル基)をカルボジイミドと反応させることにより、ポリアミド樹脂とエポキシ樹脂との低温での反応促進を防ぎ、ワニス保存安定性を保つと共に、塗工・乾燥で得られる各種シート(後述の樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ等)の保存安定性及びプレス成形性を満足させることができるものである。そして、プリント配線板用エポキシ樹脂組成物のワニス及びシート作業性、加工性(保存安定性やプレス成形性)と、フレキシブルプリント配線板の各種特性(密着性、屈曲性、充填性など)とを両立させることができるものである。 In the epoxy resin composition for a printed wiring board thus obtained, the carbodiimide-modified soluble polyamide obtained by reacting an unreacted group (amino group or carboxyl group) of polyamide with carbodiimide is used as an epoxy resin or epoxy. By blending with a resin curing agent, storage stability, adhesion, flexibility, and filling properties can all be improved. That is, by reacting unreacted groups (amino group and carboxyl group) originating from the raw material of polyamide with carbodiimide, the reaction between the polyamide resin and the epoxy resin is prevented from being promoted at a low temperature, the varnish storage stability is maintained, and the coating is performed. Storage stability and press moldability of various sheets (resin film, resin sheet, prepreg, metal foil with resin, coverlay, etc., described later) obtained by processing and drying can be satisfied. And the varnish and sheet workability and processability (storage stability and press formability) of the epoxy resin composition for printed wiring boards, and various characteristics (adhesion, flexibility, fillability, etc.) of the flexible printed wiring board It can be made compatible.
 また、特に上記構造式(5)で表されるアルキルホスフィン酸アルミニウムが含有されたプリント配線板用エポキシ樹脂組成物にあっては、ハロゲンを含有しなくても優れた難燃性を付与することができるものである。しかもこのアルキルホスフィン酸アルミニウムはリン含有率が高いため、配合量が少なくても優れた難燃効果を発揮することができるものである。また、上記アルキルホスフィン酸アルミニウムの化学構造中のアルキル基が低分子量であると、このアルキルホスフィン酸アルミニウムは無機フィラーと同様に振る舞い、このためガラス転移温度(Tg)の低下が抑制され、プリント配線板用エポキシ樹脂組成物の高い耐熱性、耐薬品性が維持されるものである。さらにカルボジイミド変性可溶性ポリアミドも含有することで、プリント配線板用エポキシ樹脂組成物の絶縁性が向上すると共に、難燃性、耐熱性、耐薬品性がさらに優れたものとなり、しかも無機フィラーと同様に振る舞う上記アルキルホスフィン酸アルミニウムを含有するにもかかわらず、プリント配線板用エポキシ樹脂組成物に優れた柔軟性が付与され、高い屈曲性を維持することができるものである。 In particular, in the epoxy resin composition for printed wiring boards containing the aluminum alkylphosphinate represented by the structural formula (5), excellent flame retardancy can be imparted without containing halogen. Is something that can be done. Moreover, since this aluminum alkylphosphinate has a high phosphorus content, it can exhibit an excellent flame retardant effect even if the blending amount is small. In addition, when the alkyl group in the chemical structure of the aluminum alkylphosphinate has a low molecular weight, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed. The high heat resistance and chemical resistance of the epoxy resin composition for boards are maintained. Furthermore, by containing a carbodiimide-modified soluble polyamide, the insulating property of the epoxy resin composition for printed wiring boards is improved, and the flame retardancy, heat resistance and chemical resistance are further improved, and in addition to the inorganic filler. In spite of containing the aluminum aluminum phosphinate that behaves, the epoxy resin composition for printed wiring board is imparted with excellent flexibility and can maintain high flexibility.
 上記プリント配線板用エポキシ樹脂組成物を適宜ワニスとして用いて、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ等のシートを製造することができ、さらにこのシートを用いて、フレキシブルプリント配線板を製造することができる。 Using the epoxy resin composition for printed wiring boards as a varnish as appropriate, a sheet of a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-attached metal foil, a coverlay, etc. can be produced. It is possible to manufacture a flexible printed wiring board.
 すなわち、必要に応じて適宜の有機溶剤が配合されることで粘度調整されたエポキシ樹脂組成物が、ソルダーレジスト組成物として使用され得る。 That is, an epoxy resin composition whose viscosity is adjusted by blending an appropriate organic solvent as required can be used as a solder resist composition.
 また樹脂フィルムは、プリント配線板用エポキシ樹脂組成物をフィルム状に成形すると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによって製造することができる。 The resin film can be produced by forming an epoxy resin composition for a printed wiring board into a film and drying it by heating until it is in a semi-cured state (B stage state).
 また樹脂シートは、プリント配線板用エポキシ樹脂組成物をシート状に成形すると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによって製造することができる。 The resin sheet can be produced by molding the epoxy resin composition for a printed wiring board into a sheet shape and heating and drying it until it is in a semi-cured state (B stage state).
 またプリプレグは、プリント配線板用エポキシ樹脂組成物をガラスクロス等の基材に含浸させ、これを半硬化状態となるまで加熱乾燥することによって製造することができる。 The prepreg can be produced by impregnating a substrate such as a glass cloth with an epoxy resin composition for a printed wiring board and heating and drying it until it is in a semi-cured state.
 また樹脂付き金属箔は、プリント配線板用エポキシ樹脂組成物を銅箔等の金属箔に塗布し、これを加熱乾燥して半硬化状態の接着性樹脂層を形成することによって製造することができる。 The metal foil with resin can be produced by applying an epoxy resin composition for a printed wiring board to a metal foil such as a copper foil and heating and drying it to form a semi-cured adhesive resin layer. .
 また樹脂付き金属箔は、図1に示すように、塗工物2、フィルム状物3のうちの少なくとも1種類からなる絶縁層4を介して、プリント配線板用エポキシ樹脂組成物1を銅箔等の金属箔5に塗布し、これを加熱乾燥して半硬化状態の接着性樹脂層6を形成することによって製造することもできる。 Further, as shown in FIG. 1, the metal foil with resin is obtained by applying the epoxy resin composition 1 for a printed wiring board to a copper foil through an insulating layer 4 composed of at least one of a coated product 2 and a film-like product 3. It can also be manufactured by applying to a metal foil 5 such as the like and heating and drying to form a semi-cured adhesive resin layer 6.
 すなわち、例えば、図1(a)に示す樹脂付き金属箔は、銅箔等の金属箔5の表面に塗工物2として液状のポリイミド樹脂等を塗布した後、さらにプリント配線板用エポキシ樹脂組成物1を塗布し、これを加熱乾燥することによって製造することができる。そして硬化状態又は半硬化状態の塗工物2によって絶縁層4が形成され、半硬化状態のプリント配線板用エポキシ樹脂組成物1によって接着性樹脂層6が形成される。具体的には、図1(a)に示す樹脂付き金属箔は、例えば、パナソニック電工株式会社製「R-F552」(銅箔の表面に塗工物2として液状のポリイミド樹脂を塗布し、これを加熱乾燥することによって製造された2層キャスティングフレキシブル銅張積層板であって、銅箔の厚みが12μm、硬化状態の塗工物2の厚みが12.5μmであるもの)の硬化状態の塗工物2の表面にプリント配線板用エポキシ樹脂組成物1を塗布し、これを加熱乾燥することによって製造することができる。そして硬化状態の塗工物2によって絶縁層4が形成され、半硬化状態のプリント配線板用エポキシ樹脂組成物1によって厚み50μmの接着性樹脂層6が形成される。また、図1(a)に示す樹脂付き金属箔は、銅箔等の金属箔5の表面にフィルム状物3としてポリイミドフィルム等を圧着した後、このフィルム状物3の表面にプリント配線板用エポキシ樹脂組成物1を塗布し、これを加熱乾燥することによって製造することもできる。そしてフィルム状物3によって絶縁層4が形成され、半硬化状態のプリント配線板用エポキシ樹脂組成物1によって接着性樹脂層6が形成される。 That is, for example, the resin-attached metal foil shown in FIG. 1A is obtained by applying a liquid polyimide resin or the like as the coated product 2 to the surface of the metal foil 5 such as a copper foil, and further, an epoxy resin composition for a printed wiring board. It can manufacture by apply | coating the thing 1 and heat-drying this. Then, the insulating layer 4 is formed by the cured or semi-cured coated product 2, and the adhesive resin layer 6 is formed by the semi-cured epoxy resin composition 1 for a printed wiring board. Specifically, the resin-attached metal foil shown in FIG. 1A is, for example, “R-F552” (manufactured by Panasonic Electric Works Co., Ltd.). A two-layer casting flexible copper-clad laminate produced by heating and drying the coating, wherein the copper foil has a thickness of 12 μm and the cured coating 2 has a thickness of 12.5 μm) It can manufacture by apply | coating the epoxy resin composition 1 for printed wiring boards to the surface of the workpiece 2, and heat-drying this. Then, the insulating layer 4 is formed by the cured coated product 2, and the adhesive resin layer 6 having a thickness of 50 μm is formed by the semi-cured epoxy resin composition 1 for a printed wiring board. Further, the resin-attached metal foil shown in FIG. 1A is used for a printed wiring board on the surface of the film-like material 3 after pressure-bonding a polyimide film or the like as the film-like material 3 on the surface of the metal foil 5 such as a copper foil. It can also be produced by applying the epoxy resin composition 1 and drying it by heating. And the insulating layer 4 is formed with the film-form thing 3, and the adhesive resin layer 6 is formed with the epoxy resin composition 1 for printed wiring boards in a semi-hardened state.
 他方、図1(b)に示す樹脂付き金属箔は、銅箔等の金属箔5の表面に塗工物2として液状のポリイミド樹脂等を塗布し、この塗布面にフィルム状物3としてポリイミドフィルム等を重ねた後、このフィルム状物3の表面にプリント配線板用エポキシ樹脂組成物1を塗布し、これを加熱乾燥することによって製造することができる。そして硬化状態又は半硬化状態の塗工物2及びフィルム状物3によって絶縁層4が形成され、半硬化状態のプリント配線板用エポキシ樹脂組成物1によって接着性樹脂層6が形成される。 On the other hand, the resin-coated metal foil shown in FIG. 1 (b) is obtained by applying a liquid polyimide resin or the like as the coated product 2 to the surface of the metal foil 5 such as a copper foil, and forming a polyimide film as the film-like product 3 on the coated surface. It can be manufactured by applying the epoxy resin composition 1 for a printed wiring board on the surface of the film-like product 3 and drying it by heating. Then, the insulating layer 4 is formed by the coated product 2 and the film-like product 3 in the cured or semi-cured state, and the adhesive resin layer 6 is formed by the epoxy resin composition 1 for a printed wiring board in the semi-cured state.
 このように、図1に示す樹脂付き金属箔にあっては、接着性樹脂層6がプリント配線板用エポキシ樹脂組成物によって形成されているので、密着性、屈曲性、充填性をいずれも高めることができるものであり、また接着性樹脂層6と金属箔5との間に塗工物2、フィルム状物3のうちの少なくとも1種類からなる絶縁層4が介在しているので、この絶縁層4によって寸法安定性を高めることができるものである。なお、塗工物2としては、液状のポリイミド樹脂のほか、液状のポリエーテルイミド樹脂及びポリエーテルサルホン樹脂等も用いることができると共に、フィルム状物3としては、ポリイミドフィルムのほか、ポリエーテルイミドフィルム及びポリエーテルサルホンフィルム等も用いることができる。また、絶縁層4を形成する塗工物2及びフィルム状物3の層数・順番は特に限定されるものではない。 Thus, in the metal foil with resin shown in FIG. 1, since the adhesive resin layer 6 is formed of the epoxy resin composition for printed wiring boards, all of adhesion, flexibility and fillability are improved. Further, since the insulating layer 4 composed of at least one of the coated material 2 and the film-like material 3 is interposed between the adhesive resin layer 6 and the metal foil 5, this insulation The layer 4 can enhance dimensional stability. In addition to the liquid polyimide resin, a liquid polyetherimide resin and a polyether sulfone resin can be used as the coated product 2, and the film-like product 3 includes a polyether film and a polyether. An imide film and a polyether sulfone film can also be used. Moreover, the number of layers and the order of the coated product 2 and the film-like product 3 that form the insulating layer 4 are not particularly limited.
 またカバーレイは、ポリイミドフィルム等のプラスチックシートの表面にプリント配線板用エポキシ樹脂組成物を塗布し、これを加熱乾燥して半硬化状態の接着性樹脂層を形成することによって製造することができる。 Moreover, a coverlay can be manufactured by apply | coating the epoxy resin composition for printed wiring boards to the surface of plastic sheets, such as a polyimide film, and heat-drying this and forming the adhesive resin layer of a semi-hardened state. .
 また、上記樹脂付き金属箔をシールド機能を持ち合わせたカバーレイとして用いることもできる。 Also, the metal foil with resin can be used as a coverlay having a shielding function.
 さらにフレキシブルプリント配線板は、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイのうちの少なくとも1種類を用いて形成されている。 Further, the flexible printed wiring board is formed using at least one of a solder resist composition, a resin film, a resin sheet, a prepreg, a resin-attached metal foil, and a coverlay.
 具体的には、例えば、ポリイミドフィルム等の片面又は両面に回路形成を行うなどしてフレキシブルプリント配線板を製造し、ソルダーレジスト組成物を前記フレキシブルプリント配線板の回路形成面にパターン状に塗布し、加熱成膜することで、ソルダーレジスト被膜を有するフレキシブルプリント配線板を製造することができる。 Specifically, for example, a flexible printed wiring board is manufactured by forming a circuit on one side or both sides of a polyimide film or the like, and a solder resist composition is applied to the circuit forming surface of the flexible printed wiring board in a pattern. By heating and forming a film, a flexible printed wiring board having a solder resist film can be produced.
 また、ポリイミドフィルム等をコア材として用い、このコア材の片面又は両面に樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔のうちのいずれかのものを貼り合わせた後、適宜回路形成及び層間接続を行うことによって、フレキシブルプリント配線板を製造することができる。また、これらの樹脂フィルム、樹脂シート、プリプレグ又は樹脂付き金属箔の積層と回路形成及び層間接続等とを順次繰り返すことで、多層のフレキシブルプリント配線板を製造することもできる。 In addition, using polyimide film or the like as a core material, after laminating any one of resin film, resin sheet, prepreg, and metal foil with resin on one or both sides of this core material, circuit formation and interlayer connection as appropriate By performing this, a flexible printed wiring board can be manufactured. Moreover, a multilayer flexible printed wiring board can also be manufactured by sequentially repeating the lamination of these resin films, resin sheets, prepregs, or resin-attached metal foils, circuit formation, interlayer connection, and the like.
 また、フレキシブルプリント配線板の回路形成面にカバーレイの接着性樹脂層を重ね、必要に応じて接着性樹脂層を加熱硬化するなどして、カバーレイを有するフレキシブルプリント配線板を製造することができる。 In addition, a flexible printed wiring board having a cover lay can be manufactured by overlaying an adhesive resin layer of a cover lay on the circuit forming surface of the flexible printed wiring board and heating and curing the adhesive resin layer as necessary. it can.
 このようにして得られたソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板にあっては、いずれも上記プリント配線板用エポキシ樹脂組成物を材料として形成されているので、密着性、屈曲性、充填性をいずれも高めることができるものである。さらに高温プレス成形時にはエポキシ基とカルボジイミド基との反応も進むために、耐熱性、耐薬品性などに優れるフレキシブルプリント配線板を得ることができる。なお、樹脂付き金属箔はボンディングシートやカバーレイと同様にビルドアップ絶縁シートとして用いることができると共に、シールド機能を持ち合わせたカバーレイとして用いることができる。 In the solder resist composition, resin film, resin sheet, prepreg, resin-attached metal foil, coverlay, and flexible printed wiring board obtained in this manner, any of the above epoxy resin compositions for printed wiring boards is used as a material. Therefore, it is possible to improve adhesion, flexibility, and filling properties. Furthermore, since the reaction between the epoxy group and the carbodiimide group also proceeds during high-temperature press molding, a flexible printed wiring board having excellent heat resistance and chemical resistance can be obtained. In addition, the metal foil with resin can be used as a build-up insulating sheet similarly to a bonding sheet or a cover lay, and can also be used as a cover lay having a shielding function.
 また、特に上記構造式(5)で表されるアルキルホスフィン酸アルミニウムが含有されたプリント配線板用エポキシ樹脂組成物を材料として形成されたソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板にあっては、ハロゲンを使用しなくても優れた難燃性を付与することができるものである。また、上記アルキルホスフィン酸アルミニウムは無機フィラーと同様に振る舞い、このためガラス転移温度(Tg)の低下が抑制され、高い耐熱性、耐薬品性が維持されるものである。さらにカルボジイミド変性可溶性ポリアミドも使用することで、絶縁性が向上すると共に、難燃性、耐熱性、耐薬品性がさらに優れたものとなり、しかも無機フィラーと同様に振る舞う上記アルキルホスフィン酸アルミニウムを使用するにもかかわらず、優れた柔軟性が付与され、高い屈曲性を維持することができるものである。このように、カルボジイミド変性可溶性ポリアミドによって、密着性、屈曲性、充填性をいずれも高めることができるものであり、さらに高温プレス成形時にはエポキシ基とカルボジイミド基との反応も進むために、耐熱性、耐薬品性などに優れるフレキシブルプリント配線板を得ることができるものである。 In addition, a solder resist composition, a resin film, a resin sheet, a prepreg, and a resin formed using, as a material, an epoxy resin composition for a printed wiring board containing the aluminum alkylphosphinate represented by the structural formula (5) above. In the case of metal foils, coverlays, and flexible printed wiring boards, excellent flame retardancy can be imparted without using halogen. Further, the aluminum alkylphosphinate behaves in the same manner as an inorganic filler, and therefore, a decrease in glass transition temperature (Tg) is suppressed, and high heat resistance and chemical resistance are maintained. Furthermore, by using a carbodiimide-modified soluble polyamide, the insulating properties are improved, and the flame retardant, heat resistance, and chemical resistance are further improved, and the above-described aluminum alkylphosphinate that behaves like an inorganic filler is used. Nevertheless, excellent flexibility is imparted and high flexibility can be maintained. Thus, the carbodiimide-modified soluble polyamide can improve all of adhesion, flexibility, and fillability, and further the reaction between the epoxy group and the carbodiimide group during high-temperature press molding, A flexible printed wiring board having excellent chemical resistance and the like can be obtained.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 (カルボジイミド化合物の合成)
 4,4’-ジシクロヘキシルメタンジイソシアネート590g、シクロヘキシルイソシアネート62.6g及びカルボジイミド化触媒(3-メチル-1-フェニル-2-ホスホレン-1-オキシド)6.12gを180℃で48時間反応させることによって、カルボジイミド化合物として4,4’-ジシクロヘキシルメタンカルボジイミド樹脂(重合度=10)を得た。
(Synthesis of carbodiimide compounds)
By reacting 590 g of 4,4′-dicyclohexylmethane diisocyanate, 62.6 g of cyclohexyl isocyanate and 6.12 g of carbodiimidization catalyst (3-methyl-1-phenyl-2-phospholene-1-oxide) at 180 ° C. for 48 hours, As a carbodiimide compound, 4,4′-dicyclohexylmethane carbodiimide resin (degree of polymerization = 10) was obtained.
 ((C)カルボジイミド変性可溶性ポリアミドの合成)
 1リットルのセパラブルフラスコにエステル共重合アミド樹脂(商品名:「CM8000」、東レ株式会社製)50.0gとイソプロピルアルコールとトルエンとの混合溶媒(質量混合比4:6)450.0gとを加えて撹拌することにより溶解させた。こうして得られた溶液に上記カルボジイミド化合物(4,4’-ジシクロヘキシルメタンカルボジイミド樹脂)5.0gを加え、フラスコを120℃のオイルバスに浸漬させてリフラックス下で3時間加熱撹拌した後に、減圧乾燥して溶媒を除去することにより、(C)成分となるカルボジイミド変性可溶性ポリアミドを得た。
((C) Synthesis of carbodiimide-modified soluble polyamide)
In a 1-liter separable flask, 50.0 g of ester copolymerized amide resin (trade name: “CM8000”, manufactured by Toray Industries, Inc.) and 450.0 g of a mixed solvent of isopropyl alcohol and toluene (mass mixing ratio 4: 6) are added. In addition, it was dissolved by stirring. To the solution thus obtained, 5.0 g of the above carbodiimide compound (4,4′-dicyclohexylmethanecarbodiimide resin) was added, the flask was immersed in an oil bath at 120 ° C., heated and stirred for 3 hours under reflux, and then dried under reduced pressure. Then, by removing the solvent, a carbodiimide-modified soluble polyamide serving as component (C) was obtained.
 上記のようにして得られた(C)カルボジイミド変性可溶性ポリアミドに対して赤外分光光度測定を行ったところ、2120cm-1にカルボジイミド基の存在を示す吸収ピークが認められた。さらに上記(C)カルボジイミド変性可溶性ポリアミドに対して示差走査熱量測定を行ったところ、1つの吸熱ピークが観測された。なお、上記(C)カルボジイミド変性可溶性ポリアミドのガラス転移温度(Tg)は120℃、5%重量減温度は320℃、溶液の粘度は860mPa・sであった。 When the infrared spectrophotometric measurement was performed on the (C) carbodiimide-modified soluble polyamide obtained as described above, an absorption peak indicating the presence of a carbodiimide group was observed at 2120 cm −1 . Further, when differential scanning calorimetry was performed on the (C) carbodiimide-modified soluble polyamide, one endothermic peak was observed. The (C) carbodiimide-modified soluble polyamide had a glass transition temperature (Tg) of 120 ° C., a 5% weight loss temperature of 320 ° C., and a solution viscosity of 860 mPa · s.
 次に下記表1に記載の配合組成に従い、実施例1~14及び比較例1、2のプリント配線板用エポキシ樹脂組成物のワニスを調製した。なお、下記表1の配合は全て固形分比率である。 Next, varnishes of the epoxy resin compositions for printed wiring boards of Examples 1 to 14 and Comparative Examples 1 and 2 were prepared according to the composition shown in Table 1 below. In addition, all the mixing | blendings of following Table 1 are solid content ratios.
 (実施例1)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分33質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
Example 1
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 33% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例2)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分33質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 2)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 33% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例3)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分27質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 3)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例4)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分25質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
Example 4
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 25% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例5)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分19質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 5)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 19% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus flame retardant (phosphazene) in a container.
 (実施例6)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分27質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 6)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例7)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、フェノキシ樹脂、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分29質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 7)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for printed wiring boards having a solid content of 29% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a phenoxy resin, a curing accelerator, and a phosphorus flame retardant (phosphazene) in a container.
 (実施例8)
 (A)エポキシ樹脂(ビフェニルノボラックエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分27質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 8)
(A) epoxy resin (biphenyl novolac epoxy resin), (B) epoxy resin curing agent (aminotriazine novolac resin represented by the above structural formula (4)), (C) carbodiimide-modified soluble polyamide, curing accelerator, phosphorus-based A varnish of an epoxy resin composition for printed wiring boards having a solid content of 27% by mass was prepared by mixing a flame retardant (phosphazene) in a container.
 (実施例9)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(ノボラック型フェノール樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分27質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
Example 9
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (novolak type phenol resin), (C) carbodiimide-modified soluble polyamide, curing accelerator, A phosphorus flame retardant (phosphazene) was put in a container and mixed to prepare a varnish of an epoxy resin composition for a printed wiring board having a solid content of 27% by mass.
 (実施例10)
 (A)エポキシ樹脂(上記構造式(2)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分22質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 10)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (2)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 22% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例11)
 (A)エポキシ樹脂(上記構造式(3)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分22質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 11)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (3)), (B) epoxy resin curing agent (aminotriazine novolac resin represented by the above structural formula (4)), (C ) A varnish of an epoxy resin composition for a printed wiring board having a solid content of 22% by mass was prepared by mixing a carbodiimide-modified soluble polyamide, a curing accelerator, and a phosphorus-based flame retardant (phosphazene) in a container.
 (実施例12)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)、リン変性エポキシ樹脂を容器に入れて混合することによって、固形分26質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
Example 12
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) Prepare varnish of epoxy resin composition for printed wiring board with a solid content of 26% by mass by mixing carbodiimide-modified soluble polyamide, curing accelerator, phosphorus flame retardant (phosphazene) and phosphorus-modified epoxy resin in a container. did.
 (実施例13)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)、リン変性フェノキシ樹脂を容器に入れて混合することによって、固形分26質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 13)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), (C ) Prepare varnish of epoxy resin composition for printed wiring board having a solid content of 26 mass% by mixing carbodiimide-modified soluble polyamide, curing accelerator, phosphorus flame retardant (phosphazene), and phosphorus-modified phenoxy resin in a container. did.
 (実施例14)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(ジシアンジアミド)、(C)カルボジイミド変性可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分28質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Example 14)
(A) Epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (dicyandiamide), (C) carbodiimide-modified soluble polyamide, curing accelerator, phosphorus-based difficulty A varnish of an epoxy resin composition for printed wiring boards having a solid content of 28% by mass was prepared by mixing a flame retardant (phosphazene) in a container.
 (比較例1)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、可溶性ポリアミド、硬化促進剤、リン系難燃剤(ホスファゼン)を容器に入れて混合することによって、固形分26質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Comparative Example 1)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), soluble polyamide A varnish of an epoxy resin composition for printed wiring boards having a solid content of 26% by mass was prepared by mixing a curing accelerator and a phosphorus-based flame retardant (phosphazene) in a container.
 (比較例2)
 (A)エポキシ樹脂(上記構造式(1)で表されるナフタレン骨格を有するエポキシ樹脂)、(B)エポキシ樹脂硬化剤(上記構造式(4)で表されるアミノトリアジンノボラック樹脂)、可溶性ポリアミド、硬化促進剤を容器に入れて混合することによって、固形分22質量%のプリント配線板用エポキシ樹脂組成物のワニスを調製した。
(Comparative Example 2)
(A) epoxy resin (epoxy resin having a naphthalene skeleton represented by the above structural formula (1)), (B) epoxy resin curing agent (aminotriazine novolak resin represented by the above structural formula (4)), soluble polyamide A varnish of an epoxy resin composition for a printed wiring board having a solid content of 22% by mass was prepared by mixing a curing accelerator in a container.
 なお、下記表1に示す各成分は以下の通りである。 In addition, each component shown in the following Table 1 is as follows.
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(1)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(日本化薬株式会社製「NC-7000L」、上記構造式(1)で表されるもの)
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(2)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(DIC株式会社製「EXA-9900」、上記構造式(2)で表されるもの)
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(3)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(DIC株式会社製「HP-4700」、上記構造式(3)で表されるもの)
 ・(A)ビフェニルノボラックエポキシ樹脂:ハロゲンを含有せず、フェノール骨格とビフェニル骨格を有するノボラック型エポキシ樹脂(日本化薬株式会社製「NC-3000」)
 ・(A)リン変性エポキシ樹脂:リン変性エポキシ樹脂(東都化成株式会社製「FX-305EK70」)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は70質量%であった。
(A) Epoxy resin having a naphthalene skeleton (Structural Formula (1)): Epoxy resin having no naphthalene skeleton and containing a naphthalene skeleton (“NC-7000L” manufactured by Nippon Kayaku Co., Ltd., with the above structural formula (1)) Represented)
(A) Epoxy resin having naphthalene skeleton (Structural Formula (2)): Epoxy resin having no naphthalene skeleton and containing naphthalene skeleton (“EXA-9900” manufactured by DIC Corporation, represented by the above structural formula (2)) Stuff)
(A) Epoxy resin having naphthalene skeleton (structural formula (3)): Epoxy resin not containing halogen and having naphthalene skeleton (“HP-4700” manufactured by DIC Corporation, represented by the above structural formula (3)) Stuff)
(A) Biphenyl novolac epoxy resin: novolac type epoxy resin containing no phenol and having a phenol skeleton and a biphenyl skeleton (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.)
(A) Phosphorus-modified epoxy resin: Phosphorus-modified epoxy resin (“FX-305EK70” manufactured by Tohto Kasei Co., Ltd.), which was dissolved in methyl ethyl ketone, and the resin solid content was 70% by mass.
 ・(B)フェノールノボラック型アミノトリアジンノボラック樹脂(構造式(4)、R=H):フェノールノボラック型のアミノトリアジンノボラック樹脂(DIC株式会社製「LA-7052」、上記構造式(4)で表され、RがHであるもの)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は60質量%であった。 (B) Phenol novolac type aminotriazine novolak resin (Structural Formula (4), R = H): Phenol novolac type aminotriazine novolak resin (“LA-7052” manufactured by DIC Corporation), represented by the above structural formula (4) And R is H), which was dissolved in methyl ethyl ketone, and the resin solid content was 60% by mass.
 ・(B)クレゾールノボラック型アミノトリアジンノボラック樹脂(構造式(4)、R=CH):クレゾールノボラック型のアミノトリアジンノボラック樹脂(DIC株式会社製「LA-3018-50P」、上記構造式(4)で表され、RがCHであるもの)であって、プロピレングリコールモノメチルエーテルに溶解したものであり、樹脂固形分は50質量%であった。 (B) Cresol novolac-type aminotriazine novolak resin (Structural Formula (4), R = CH 3 ): Cresol novolac-type aminotriazine novolak resin (“LA-3018-50P” manufactured by DIC Corporation, the above structural formula (4) And R is CH 3 ), dissolved in propylene glycol monomethyl ether, and the resin solid content was 50% by mass.
 ・(B)ノボラック型フェノール樹脂:フェノールノボラック樹脂(DIC株式会社製、「TD-2090-60M」)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は60重量%であった。 (B) Novolak type phenol resin: phenol novolak resin (manufactured by DIC Corporation, “TD-2090-60M”) dissolved in methyl ethyl ketone, and the resin solid content was 60% by weight.
 ・(B)ジシアンジアミド
 ・(C)カルボジイミド変性可溶性ポリアミド:既述のように合成したものを使用した。なお、これは、イソプロピルアルコールとトルエンの混合溶媒(質量混合比4:6)に溶解したものであり、固形分濃度は11質量%であった。
(B) Dicyandiamide (C) Carbodiimide-modified soluble polyamide: The one synthesized as described above was used. In addition, this was melt | dissolved in the mixed solvent (mass mixing ratio 4: 6) of isopropyl alcohol and toluene, and solid content concentration was 11 mass%.
 ・(C)可溶性ポリアミド:エステル共重合アミド樹脂(東レ株式会社製「CM-8000」)であり、これは、イソプロピルアルコールとトルエンの混合溶媒(質量混合比4:6)に溶解したものであり、固形分濃度は10質量%であった。 (C) Soluble polyamide: ester copolymer amide resin (“CM-8000” manufactured by Toray Industries, Inc.), which is dissolved in a mixed solvent of isopropyl alcohol and toluene (mass mixing ratio 4: 6). The solid content concentration was 10% by mass.
 ・フェノキシ樹脂:フェノキシ樹脂(東都化成株式会社製「YP-50」)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は65質量%であった。 • Phenoxy resin: Phenoxy resin (“YP-50” manufactured by Toto Kasei Co., Ltd.), which was dissolved in methyl ethyl ketone, and the resin solid content was 65% by mass.
 ・硬化促進剤:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製「2E4MZ」)
 ・ホスファゼン:ホスファゼン(大塚化学株式会社製「SPB-100」、下記構造式(6)で表されるもの)
Curing accelerator: 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Chemicals Co., Ltd.)
Phosphazene: Phosphazene (“SPB-100” manufactured by Otsuka Chemical Co., Ltd., represented by the following structural formula (6))
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ・リン変性フェノキシ樹脂:リン変性フェノキシ樹脂(東都化成株式会社製「ERF-001M30」)であって、ジグライム、キシレン、メチルセロソルブ、DMF、トルエンの混合溶媒(質量混合比10:5:30:10:15)に溶解したものであり、樹脂固形分は30質量%であった。 Phosphorus-modified phenoxy resin: Phosphorus-modified phenoxy resin (“ERF-001M30” manufactured by Tohto Kasei Co., Ltd.), a mixed solvent of diglyme, xylene, methyl cellosolve, DMF, and toluene (mass mixing ratio 10: 5: 30: 30) 15) and the resin solid content was 30% by mass.
 次に、コンマコーター及びこれに接続された乾燥機を用いて、厚み12μmの銅箔の片面に上記のようにして得られたワニスを塗工・乾燥し、乾燥後の厚みが50μmの接着性樹脂層を形成することによって、樹脂付き銅箔(銅箔付き樹脂シート)を製造した。 Next, using a comma coater and a dryer connected thereto, the varnish obtained as described above is applied to one side of a copper foil having a thickness of 12 μm and dried, and the thickness after drying is 50 μm. By forming a resin layer, a copper foil with resin (resin sheet with copper foil) was produced.
 そして、上記ワニスについて、ワニス保存性を評価すると共に、上記のようにして得られた樹脂付き銅箔について、耐薬品性、銅箔引き剥がし強度、半田耐熱性、屈曲性、回路充填性、難燃性、耐マイグレーション性、製品保存安定性(Bステージ保存安定性)を評価した。これらの各評価に用いたサンプルの作製条件及び評価条件は以下の通りであり、評価結果を下記表1に示す。 And about the said varnish, while evaluating varnish preservability, about the copper foil with a resin obtained as mentioned above, chemical resistance, copper foil peeling strength, solder heat resistance, flexibility, circuit filling property, difficulty Flammability, migration resistance, and product storage stability (B-stage storage stability) were evaluated. The preparation conditions and evaluation conditions of the samples used for each of these evaluations are as follows, and the evaluation results are shown in Table 1 below.
 (ワニス保存性)
 ワニス保存性は、初期の粘度と25℃で7日間保存した後の粘度とを測定し、粘度変化が10%未満であったワニスを「合格」、10%以上変化したワニスを「不合格」とした。
(Varnish preservation)
The varnish preservability is determined by measuring the initial viscosity and the viscosity after storage for 7 days at 25 ° C., and “pass” the varnish whose viscosity change was less than 10%, and “fail” the varnish changed by 10% or more. It was.
 (耐薬品性)
 耐薬品性は、次のようにして評価した。すなわち、樹脂付き銅箔を2枚用い、これらの接着性樹脂層が形成された面同士を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製した後、このサンプルの銅箔をエッチングにより除去した。次にこのサンプルを水酸化ナトリウム3質量%、温度40℃の水溶液に3分間浸漬させた後取り出し、水で洗い、乾燥した清浄な布で水分を十分に拭き取った。その後直ちにサンプルの変色、膨れ、はがれ等の外観の変化を目視にて観察した。そして、外観変化のないものを「合格」とし、外観変化のあるものを「不合格」とした。
(chemical resistance)
Chemical resistance was evaluated as follows. That is, two copper foils with resin were used, the surfaces on which these adhesive resin layers were formed were bonded together, and a sample was prepared by heating and pressing at 180 ° C. for 1 hour, and then the copper foil of this sample Was removed by etching. Next, this sample was immersed in an aqueous solution of 3% by mass of sodium hydroxide and a temperature of 40 ° C. for 3 minutes and then taken out, washed with water, and sufficiently wiped off moisture with a dry clean cloth. Immediately thereafter, changes in appearance such as discoloration, swelling, and peeling of the sample were visually observed. And the thing without an external appearance change was set as "pass", and the thing with an external appearance change was set as "fail".
 (銅箔引き剥がし強度)
 銅箔引き剥がし強度は、厚み25μmのポリイミドフィルムの両面に樹脂付き銅箔の接着性樹脂層が形成された面を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製し、このサンプルの銅箔を90°方向に引き剥がしたときの引き剥がし強度により評価した。
(Copper foil peel strength)
The copper foil peel strength was prepared by attaching a surface on which an adhesive resin layer of a copper foil with resin was formed on both sides of a polyimide film having a thickness of 25 μm, and heating and pressing at 180 ° C. for 1 hour, The copper foil of this sample was evaluated by the peel strength when peeled off in the 90 ° direction.
 (半田耐熱性)
 半田耐熱性は、厚み25μmのポリイミドフィルムの両面に樹脂付き銅箔の接着性樹脂層が形成された面を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製し、これを260℃と288℃に加熱した半田浴にそれぞれ60秒間浸漬した後、外観を観察することにより評価した。膨れやはがれ等の外観異常の発生がないものを「合格」とし、これ以外のものを「不合格」とした。
(Solder heat resistance)
For solder heat resistance, a sample was prepared by laminating a surface of an adhesive resin layer of a resin-coated copper foil on both sides of a polyimide film having a thickness of 25 μm, and heating and pressing at 180 ° C. for 1 hour. After immersing in a solder bath heated to 260 ° C. and 288 ° C. for 60 seconds, the appearance was evaluated. Those having no appearance abnormality such as blistering or peeling were evaluated as “pass”, and those other than this were defined as “fail”.
 (屈曲性)
 屈曲性は、MIT法によって試験を行い、測定条件をR=0.38mm、荷重500g、毎分175回の割合で折り曲げるように設定し、回路の導通が取れなくなるまでの折り曲げ回数により評価した。
(Flexibility)
Flexibility was tested by the MIT method, and the measurement condition was set to be bent at a rate of R = 0.38 mm, a load of 500 g, and 175 times per minute, and evaluated by the number of times of bending until the circuit could not be conducted.
 (回路充填性)
 回路充填性は、片面35μm厚みの圧延銅箔のフレキシブルプリント配線板に櫛形パターンを設けて形成した試験片に、樹脂付き銅箔の接着性樹脂層が形成された面を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製し、このサンプルの外観を目視にて観察することにより評価した。パターン間が全て樹脂で充填されているものを「合格」とし、これ以外のものを「不合格」とした。
(Circuit fillability)
The circuit filling property is obtained by laminating the surface on which the adhesive resin layer of the copper foil with resin is formed on a test piece formed by providing a comb-shaped pattern on a flexible printed wiring board of rolled copper foil having a thickness of 35 μm on one side, at 180 ° C. A sample was prepared by heating and pressing for 1 hour, and the appearance of this sample was visually observed and evaluated. The pattern filled with resin was regarded as “pass”, and the other pattern was defined as “fail”.
 (難燃性)
 難燃性は、UL94に準じて94VTMの難燃性の判定基準で評価した。
(Flame retardance)
The flame retardancy was evaluated according to the flame retardant judgment standard of 94 VTM according to UL94.
 (耐マイグレーション性)
 耐マイグレーション性は、片面フレキシブルプリント配線板に櫛形電極を設けた試験片に、樹脂付き銅箔の接着性樹脂層が形成された面を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製し、このサンプルを用いて85℃/85%RHの環境下で10Vの電圧を250時間印加するテストを行うことによって評価した。そしてこのテスト後のマイグレーション度合いを目視にて評価した。マイグレーションが発生していないものを「合格」とし、これ以外のものを「不合格」とした。
(Migration resistance)
Migration resistance is achieved by bonding the surface on which the adhesive resin layer of the copper foil with resin is formed to a test piece in which a comb-shaped electrode is provided on a single-sided flexible printed wiring board, and heating and pressing at 180 ° C. for 1 hour. A sample was prepared and evaluated by performing a test using a voltage of 10 V for 250 hours in an environment of 85 ° C./85% RH. And the migration degree after this test was evaluated visually. Those in which no migration occurred were defined as “pass”, and those other than this were defined as “fail”.
 (製品保存安定性)
 製品保存安定性は、次のようにして評価した。まず樹脂付き銅箔を製造し、これを5℃で6ヶ月間保存した。そして、片面35μm厚みの圧延銅箔のフレキシブルプリント配線板に櫛形パターンを設けて形成した試験片に、上記保存後の樹脂付き銅箔の接着性樹脂層が形成された面を貼り合わせ、180℃で1時間加熱加圧成形することによってサンプルを作製し、このサンプルの外観を目視にて観察することにより評価した。パターン間が全て樹脂で充填されているものを「合格」とし、これ以外のものを「不合格」とした。
(Product storage stability)
Product storage stability was evaluated as follows. First, a copper foil with resin was produced and stored at 5 ° C. for 6 months. And the surface in which the adhesive resin layer of the copper foil with resin after the said preservation | save was formed is bonded to the test piece formed by providing the comb-shaped pattern in the flexible printed wiring board of the rolled copper foil of 35 micrometers thickness on one side, and 180 degreeC A sample was prepared by heating and pressing for 1 hour and evaluated by visually observing the appearance of the sample. The pattern filled with resin was regarded as “pass”, and the other pattern was defined as “fail”.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記表1にみられるように、各実施例のものは、ワニス保存性、銅箔引き剥がし強度が良好であり、屈曲性が高くフレキシブルプリント配線板などに要求される屈曲性を満足するものであり、さらに回路充填性に優れているものであることが確認された。またハロゲン系難燃剤を用いていないので、有毒ガスや発煙の少ない材料となるものである。 As seen in Table 1 above, each of the examples has good varnish preservability and copper foil peel strength, high flexibility, and satisfactory flexibility required for flexible printed wiring boards and the like. In addition, it was confirmed that the circuit filling property was excellent. In addition, since no halogen-based flame retardant is used, it is a material with little toxic gas and fuming.
 次に下記表2に記載の配合組成に従い、実施例15~26及び比較例3~5のプリント配線板用エポキシ樹脂組成物のワニスを調製した。 Next, varnishes of the epoxy resin compositions for printed wiring boards of Examples 15 to 26 and Comparative Examples 3 to 5 were prepared according to the composition shown in Table 2 below.
 (実施例15~26及び比較例3~5)
 実施例15~26及び比較例3~5につき、下記表2に示される各成分を容器に混合することで、プリント配線板用エポキシ樹脂組成物のワニスを調製した。下記表2中の各成分の使用量は全て固形分比率で示され、(A)(B)(C)成分は下記表2中に示される質量比で使用し、その他の成分は(A)(B)(C)成分の合計量に対する配合割合が下記表2中に示されるものになるように使用した。
(Examples 15 to 26 and Comparative Examples 3 to 5)
For Examples 15 to 26 and Comparative Examples 3 to 5, the components shown in Table 2 below were mixed in a container to prepare a varnish of an epoxy resin composition for a printed wiring board. The amount of each component used in Table 2 below is shown as a solid content ratio, the components (A), (B) and (C) are used in the mass ratio shown in Table 2 below, and the other components are (A). (B) (C) It used so that the mixture ratio with respect to the total amount of a component might become what is shown in following Table 2.
 なお、下記表2に示す各成分は以下の通りである。 In addition, each component shown in the following Table 2 is as follows.
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(1)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(日本化薬株式会社製「NC-7000L」、上記構造式(1)で表されるもの)
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(2)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(DIC株式会社製「EXA-9900」、上記構造式(2)で表されるもの)
 ・(A)ナフタレン骨格を有するエポキシ樹脂(構造式(3)):ハロゲンを含有せず、ナフタレン骨格を有するエポキシ樹脂(DIC株式会社製「HP-4700」、上記構造式(3)で表されるもの)
 ・(A)ビフェニルノボラックエポキシ樹脂:ハロゲンを含有せず、フェノール骨格とビフェニル骨格を有するノボラック型エポキシ樹脂(日本化薬株式会社製「NC-3000」)
 ・(B)フェノールノボラック型アミノトリアジンノボラック樹脂(構造式(4)、R=H):フェノールノボラック型のアミノトリアジンノボラック樹脂(DIC株式会社製「LA-7052」、上記構造式(4)で表され、RがHであるもの)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は60質量%であった。
(A) Epoxy resin having a naphthalene skeleton (Structural Formula (1)): Epoxy resin having no naphthalene skeleton and containing a naphthalene skeleton (“NC-7000L” manufactured by Nippon Kayaku Co., Ltd., with the above structural formula (1)) Represented)
(A) Epoxy resin having naphthalene skeleton (Structural Formula (2)): Epoxy resin having no naphthalene skeleton and containing naphthalene skeleton (“EXA-9900” manufactured by DIC Corporation, represented by the above structural formula (2)) Stuff)
(A) Epoxy resin having naphthalene skeleton (structural formula (3)): Epoxy resin not containing halogen and having naphthalene skeleton (“HP-4700” manufactured by DIC Corporation, represented by the above structural formula (3)) Stuff)
(A) Biphenyl novolac epoxy resin: novolac type epoxy resin containing no phenol and having a phenol skeleton and a biphenyl skeleton (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.)
(B) Phenol novolac type aminotriazine novolak resin (Structural Formula (4), R = H): Phenol novolac type aminotriazine novolak resin (“LA-7052” manufactured by DIC Corporation), represented by the above structural formula (4) And R is H), which was dissolved in methyl ethyl ketone, and the resin solid content was 60% by mass.
 ・(B)クレゾールノボラック型アミノトリアジンノボラック樹脂(構造式(4)、R=CH):クレゾールノボラック型のアミノトリアジンノボラック樹脂(DIC株式会社製「LA-3018-50P」、上記構造式(4)で表され、RがCHであるもの)であって、プロピレングリコールモノメチルエーテルに溶解したものであり、樹脂固形分は50質量%であった。 (B) Cresol novolac-type aminotriazine novolak resin (Structural Formula (4), R = CH 3 ): Cresol novolac-type aminotriazine novolak resin (“LA-3018-50P” manufactured by DIC Corporation, the above structural formula (4) And R is CH 3 ), dissolved in propylene glycol monomethyl ether, and the resin solid content was 50% by mass.
 ・(B)ノボラック型フェノール樹脂:フェノールノボラック樹脂(DIC株式会社製、「TD-2090-60M」)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は60質量%であった。 (B) Novolak type phenol resin: phenol novolak resin (manufactured by DIC Corporation, “TD-2090-60M”) dissolved in methyl ethyl ketone, and the resin solid content was 60% by mass.
 ・(C)カルボジイミド変性可溶性ポリアミド:既述のように合成したものを使用した。なお、これは、イソプロピルアルコールとトルエンの混合溶媒(質量混合比4:6)に溶解したものであり、固形分濃度は11質量%であった。 (C) Carbodiimide-modified soluble polyamide: used was synthesized as described above. In addition, this was melt | dissolved in the mixed solvent (mass mixing ratio 4: 6) of isopropyl alcohol and toluene, and solid content concentration was 11 mass%.
 ・アルキルホスフィン酸アルミニウム(構造式(5)、R=R=CH):アルキルホスフィン酸アルミニウム(上記構造式(5)で表され、R及びRがCHであるもの)
 ・アルキルホスフィン酸アルミニウム(構造式(5)、R=R=CHCH):アルキルホスフィン酸アルミニウム(上記構造式(5)で表され、R及びRがCHCHであるもの)
 ・アルキルホスフィン酸アルミニウム(構造式(5)、R=R=CHCHCH):アルキルホスフィン酸アルミニウム(上記構造式(5)で表され、R及びRがCHCHCHであるもの)
 ・フェノキシ樹脂:フェノキシ樹脂(東都化成株式会社製「YP-50」)であって、メチルエチルケトンに溶解したものであり、樹脂固形分は65質量%であった。
-Aluminum alkylphosphinate (Structural formula (5), R 1 = R 2 = CH 3 ): Aluminum alkylphosphinate (represented by the above structural formula (5), R 1 and R 2 are CH 3 )
Aluminum alkylphosphinate (Structural formula (5), R 1 = R 2 = CH 2 CH 3 ): Aluminum alkylphosphinate (expressed by the above structural formula (5), R 1 and R 2 are CH 2 CH 3 some stuff)
Aluminum alkylphosphinate (Structural formula (5), R 1 = R 2 = CH 2 CH 2 CH 3 ): Alkyl phosphinic acid aluminum (expressed by the above structural formula (5), wherein R 1 and R 2 are CH 2 CH 2 CH 3 )
Phenoxy resin: A phenoxy resin (“YP-50” manufactured by Tohto Kasei Co., Ltd.) dissolved in methyl ethyl ketone, and the resin solid content was 65% by mass.
 ・硬化促進剤:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製「2E4MZ」)
 ・ホスファゼン:ホスファゼン(大塚化学株式会社製「SPB-100」、上記構造式(6)で表されるもの)
 次に、コンマコーター及びこれに接続された乾燥機を用いて、厚み12μmの銅箔の片面に上記のようにして得られたワニスを塗工・乾燥し、乾燥後の厚みが50μmの接着性樹脂層を形成することによって、樹脂付き銅箔(銅箔付き樹脂シート)を製造した。
Curing accelerator: 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Chemicals Co., Ltd.)
Phosphazene: Phosphazene (“SPB-100” manufactured by Otsuka Chemical Co., Ltd., represented by the above structural formula (6))
Next, using a comma coater and a dryer connected thereto, the varnish obtained as described above is applied to one side of a copper foil having a thickness of 12 μm and dried, and the thickness after drying is 50 μm. By forming a resin layer, a copper foil with resin (resin sheet with copper foil) was produced.
 そして、上記ワニスについて、ワニス保存性を評価すると共に、上記のようにして得られた樹脂付き銅箔について、耐薬品性、銅箔引き剥がし強度、半田耐熱性、屈曲性、回路充填性、難燃性、耐マイグレーション性、ガラス転移温度(Tg)を評価した。これらの各評価に用いたサンプルの作製条件及び評価条件は既述の通りであるが、難燃性、ガラス転移温度(Tg)の評価条件は以下の通りであり、評価結果を下記表2に示す。 And about the said varnish, while evaluating varnish preservability, about the copper foil with a resin obtained as mentioned above, chemical resistance, copper foil peeling strength, solder heat resistance, flexibility, circuit filling property, difficulty Flammability, migration resistance, and glass transition temperature (Tg) were evaluated. The preparation conditions and evaluation conditions of the samples used for each of these evaluations are as described above, but the evaluation conditions for flame retardancy and glass transition temperature (Tg) are as follows. The evaluation results are shown in Table 2 below. Show.
 (難燃性)
 難燃性は、UL94に準じて94VTMの難燃性の判定基準により、VTM-0を満たすものを「合格」、VTM-0を満たさないものを「不合格」と評価した。
(Flame retardance)
The flame retardancy was evaluated as “pass” if VTM-0 was satisfied and “failed” if it did not satisfy VTM-0 according to the flame retardancy criteria of 94 VTM according to UL94.
 (ガラス転移温度(Tg))
 ガラス転移温度(Tg)は、DMA法(引張り法)によって、損失正接ピークより求めた。
(Glass transition temperature (Tg))
The glass transition temperature (Tg) was determined from the loss tangent peak by the DMA method (tensile method).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表2にみられるように、各実施例のものは、ワニス保存性、銅箔引き剥がし強度が良好であり、屈曲性が高くフレキシブルプリント配線板などに要求される屈曲性を満足するものであり、さらに回路充填性に優れているものであることが確認された。またハロゲン系難燃剤を用いていないので、有毒ガスや発煙の少ない材料となるものである。 As seen in Table 2 above, each of the examples has good varnish preservability and good copper foil peel strength, high flexibility, and satisfactory flexibility required for flexible printed wiring boards and the like. In addition, it was confirmed that the circuit filling property was excellent. In addition, since no halogen-based flame retardant is used, it is a material with little toxic gas and fuming.

Claims (19)

  1.  (A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)カルボジイミド変性可溶性ポリアミドが必須成分として含有されていることを特徴とするプリント配線板用エポキシ樹脂組成物。 (A) Epoxy resin, (B) Epoxy resin curing agent, (C) A carbodiimide-modified soluble polyamide is contained as an essential component.
  2.  (C)成分の含有量が(A)(B)(C)成分の合計量に対して20~70質量%であることを特徴とする請求項1に記載のプリント配線板用エポキシ樹脂組成物。 2. The epoxy resin composition for printed wiring boards according to claim 1, wherein the content of the component (C) is 20 to 70% by mass with respect to the total amount of the components (A), (B) and (C). .
  3.  (A)成分として、ナフタレン骨格を有するエポキシ樹脂が用いられていることを特徴とする請求項1又は2に記載のプリント配線板用エポキシ樹脂組成物。 The epoxy resin composition for printed wiring boards according to claim 1 or 2, wherein an epoxy resin having a naphthalene skeleton is used as the component (A).
  4.  ナフタレン骨格を有するエポキシ樹脂として、下記構造式(1)~(3)で表されるもののうちの少なくとも1種類が用いられていることを特徴とする請求項3に記載のプリント配線板用エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    4. The epoxy resin for printed wiring boards according to claim 3, wherein at least one of those represented by the following structural formulas (1) to (3) is used as the epoxy resin having a naphthalene skeleton. Composition.
    Figure JPOXMLDOC01-appb-C000001
  5.  (B)成分として、下記構造式(4)で表されるアミノトリアジンノボラック樹脂、ジシアンジアミドのうちの少なくとも1種類が用いられていることを特徴とする請求項1乃至4のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    5. The component according to claim 1, wherein at least one of an aminotriazine novolak resin represented by the following structural formula (4) and dicyandiamide is used as the component (B). Epoxy resin composition for printed wiring boards.
    Figure JPOXMLDOC01-appb-C000002
  6.  (C)成分として、可溶性ポリアミド100質量部に対してカルボジイミド化合物を0.5~20質量部添加して反応させて得られたものが用いられていることを特徴とする請求項1乃至5のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物。 The component (C) is obtained by adding 0.5 to 20 parts by mass of a carbodiimide compound and reacting with 100 parts by mass of the soluble polyamide. The epoxy resin composition for printed wiring boards according to any one of the above.
  7.  フェノキシ樹脂が含有されていることを特徴とする請求項1乃至6のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物。 The epoxy resin composition for printed wiring boards according to any one of claims 1 to 6, wherein a phenoxy resin is contained.
  8.  リン変性エポキシ樹脂、リン変性フェノキシ樹脂、リン系難燃剤のうちの少なくとも1種類が含有されていることを特徴とする請求項1乃至7のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物。 The epoxy resin composition for printed wiring boards according to any one of claims 1 to 7, wherein at least one of a phosphorus-modified epoxy resin, a phosphorus-modified phenoxy resin, and a phosphorus-based flame retardant is contained. object.
  9.  リン系難燃剤として、下記構造式(5)で表されるアルキルホスフィン酸アルミニウムが用いられていることを特徴とする請求項8に記載のプリント配線板用エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    The epoxy resin composition for printed wiring boards according to claim 8, wherein an aluminum alkylphosphinate represented by the following structural formula (5) is used as the phosphorus-based flame retardant.
    Figure JPOXMLDOC01-appb-C000003
  10.  上記構造式(5)で表されるアルキルホスフィン酸アルミニウムの含有量が(A)(B)(C)成分の合計量に対して5~20質量%であることを特徴とする請求項9に記載のプリント配線板用エポキシ樹脂組成物。 The content of the aluminum alkylphosphinate represented by the structural formula (5) is 5 to 20% by mass with respect to the total amount of the components (A), (B) and (C). The epoxy resin composition for printed wiring boards as described.
  11.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物から成ることを特徴とするソルダーレジスト組成物。 A solder resist composition comprising the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10.
  12.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がフィルム状に成形されていることを特徴とする樹脂フィルム。 A resin film, wherein the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is formed into a film shape.
  13.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がシート状に成形されていることを特徴とする樹脂シート。 A resin sheet, wherein the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is formed into a sheet shape.
  14.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物が基材に含浸されて半硬化状態となっていることを特徴とするプリプレグ。 A prepreg characterized in that the epoxy resin composition for printed wiring boards according to any one of claims 1 to 10 is impregnated into a base material and is in a semi-cured state.
  15.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物が金属箔に塗布されて半硬化状態となっていることを特徴とする樹脂付き金属箔。 A metal foil with a resin, wherein the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is applied to the metal foil to be in a semi-cured state.
  16.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物が、塗工物、フィルム状物のうちの少なくとも1種類からなる絶縁層を介して、金属箔に塗布されて半硬化状態となっていることを特徴とする樹脂付き金属箔。 The epoxy resin composition for printed wiring boards according to any one of claims 1 to 10, is applied to a metal foil via an insulating layer composed of at least one of a coated material and a film-like material. A resin-coated metal foil characterized by being in a semi-cured state.
  17.  請求項1乃至10のいずれか1項に記載のプリント配線板用エポキシ樹脂組成物がプラスチックシートに塗布されて半硬化状態となっていることを特徴とするカバーレイ。 A coverlay, wherein the epoxy resin composition for a printed wiring board according to any one of claims 1 to 10 is applied to a plastic sheet and is in a semi-cured state.
  18.  請求項15又は16に記載の樹脂付き金属箔から成ることを特徴とするカバーレイ。 A coverlay comprising the resin-coated metal foil according to claim 15 or 16.
  19.  請求項11に記載のソルダーレジスト組成物、請求項12に記載の樹脂フィルム、請求項13に記載の樹脂シート、請求項14に記載のプリプレグ、請求項15に記載の樹脂付き金属箔、請求項16に記載の樹脂付き金属箔、請求項17に記載のカバーレイ、請求項18に記載のカバーレイのうちの少なくとも1種類を用いて形成されていることを特徴とするフレキシブルプリント配線板。 A solder resist composition according to claim 11, a resin film according to claim 12, a resin sheet according to claim 13, a prepreg according to claim 14, a metal foil with resin according to claim 15, A flexible printed wiring board formed by using at least one of a metal foil with resin according to claim 16, a cover lay according to claim 17, and a cover lay according to claim 18.
PCT/JP2009/059692 2008-05-27 2009-05-27 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board WO2009145224A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010514513A JPWO2009145224A1 (en) 2008-05-27 2009-05-27 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, coverlay, flexible printed wiring board
CN200980119418.1A CN102046726B (en) 2008-05-27 2009-05-27 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008138638 2008-05-27
JP2008-138638 2008-05-27
JP2008-194149 2008-07-28
JP2008194149 2008-07-28
JP2008-300151 2008-11-25
JP2008300151 2008-11-25

Publications (1)

Publication Number Publication Date
WO2009145224A1 true WO2009145224A1 (en) 2009-12-03

Family

ID=41377095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059692 WO2009145224A1 (en) 2008-05-27 2009-05-27 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board

Country Status (3)

Country Link
JP (1) JPWO2009145224A1 (en)
CN (1) CN102046726B (en)
WO (1) WO2009145224A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021050A (en) * 2009-07-13 2011-02-03 Dic Corp Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
WO2012086219A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Flexible printed wiring board, and laminate for use in production of flexible printed wiring board
JP2012175053A (en) * 2011-02-24 2012-09-10 Kaneka Corp Novel white cover lay film
JP2014150133A (en) * 2013-01-31 2014-08-21 Panasonic Corp Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
KR20150118132A (en) * 2013-02-08 2015-10-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol derivative used in same
WO2015178393A1 (en) * 2014-05-23 2015-11-26 住友ベークライト株式会社 Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
JP2016510077A (en) * 2013-02-13 2016-04-04 ヘクセル コンポジッツ、リミテッド Flame retardant epoxy resin formulation and use thereof
EP3114170A4 (en) * 2014-03-04 2017-11-01 FRX Polymers, Inc. Epoxy compositions
US9809601B2 (en) 2013-02-08 2017-11-07 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US9828355B2 (en) 2013-02-08 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
WO2019189820A1 (en) * 2018-03-30 2019-10-03 日鉄ケミカル&マテリアル株式会社 Thermoplastic resin composition, fiber-reinforced-plastic molding material, and molded article
US10751976B2 (en) 2016-01-26 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Resin-clad metal foil and flexible printed wiring board
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827456B (en) * 2012-09-07 2016-03-16 黄山金瑞泰投资发展有限公司 Composition epoxy resin and preparation method thereof
WO2014036711A1 (en) * 2012-09-07 2014-03-13 广东生益科技股份有限公司 Epoxy resin composition, and prepreg and laminated sheet coated with copper foil made from same
KR20150026557A (en) * 2013-09-03 2015-03-11 삼성전기주식회사 Insulating resin composition for printed circuit board and products having the same
JP2020050797A (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128599A (en) * 1976-12-22 1978-12-05 Celanese Corporation Polyamides for extrusion applications
JPH11140164A (en) * 1997-11-05 1999-05-25 Jsr Corp Thermosetting resin composition and cured article prepared therefrom
JPH11322899A (en) * 1998-05-11 1999-11-26 Nisshinbo Ind Inc Thermosetting resin composition
JP2006176657A (en) * 2004-12-22 2006-07-06 Sakata Corp Carbodiimide-based compound and application thereof
JP2008056820A (en) * 2006-08-31 2008-03-13 Toagosei Co Ltd Halogen-free flame-retardant adhesive composition
JP2008081727A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for manufacturing the same, multilayer flexible printed wiring board, and flex rigid printed wiring board
WO2009054312A1 (en) * 2007-10-26 2009-04-30 Nisshinbo Industries, Inc. Carbodiimide-modified soluble polyamide, method for producing the same, and carbodiimide-modified soluble polyamide solution
JP2009108144A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Flexible halogen-free epoxy resin composition, metallic foil with resin, cover-lay film, prepreg, laminate for printed wiring board, metal-clad flexible laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588263B2 (en) * 1998-05-15 2004-11-10 日清紡績株式会社 Epoxy resin composition
JP4237726B2 (en) * 2005-04-25 2009-03-11 パナソニック電工株式会社 Adhesive sheet containing substrate for flexible printed wiring board and method for producing the same, multilayer flexible printed wiring board, flex rigid printed wiring board
JP2011046782A (en) * 2009-08-25 2011-03-10 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring board, resin film, prepreg, metal foil with resin, and flexible printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128599A (en) * 1976-12-22 1978-12-05 Celanese Corporation Polyamides for extrusion applications
JPH11140164A (en) * 1997-11-05 1999-05-25 Jsr Corp Thermosetting resin composition and cured article prepared therefrom
JPH11322899A (en) * 1998-05-11 1999-11-26 Nisshinbo Ind Inc Thermosetting resin composition
JP2006176657A (en) * 2004-12-22 2006-07-06 Sakata Corp Carbodiimide-based compound and application thereof
JP2008081727A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for manufacturing the same, multilayer flexible printed wiring board, and flex rigid printed wiring board
JP2008056820A (en) * 2006-08-31 2008-03-13 Toagosei Co Ltd Halogen-free flame-retardant adhesive composition
WO2009054312A1 (en) * 2007-10-26 2009-04-30 Nisshinbo Industries, Inc. Carbodiimide-modified soluble polyamide, method for producing the same, and carbodiimide-modified soluble polyamide solution
JP2009108144A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Flexible halogen-free epoxy resin composition, metallic foil with resin, cover-lay film, prepreg, laminate for printed wiring board, metal-clad flexible laminate

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021050A (en) * 2009-07-13 2011-02-03 Dic Corp Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
US9232636B2 (en) 2010-12-21 2016-01-05 Panasonic Intellectual Property Management Co., Ltd. Flexible printed wiring board and laminate for production of flexible printed wiring board
WO2012086219A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Flexible printed wiring board, and laminate for use in production of flexible printed wiring board
JP2012134279A (en) * 2010-12-21 2012-07-12 Panasonic Corp Flexible printed wiring board and laminate for manufacturing flexible printed wiring board
CN103270820A (en) * 2010-12-21 2013-08-28 松下电器产业株式会社 Flexible printed wiring board, and laminate for use in production of flexible printed wiring board
KR101474986B1 (en) * 2010-12-21 2014-12-30 파나소닉 주식회사 Flexible printed wiring board, and laminate for use in production of flexible printed wiring board
JP2012175053A (en) * 2011-02-24 2012-09-10 Kaneka Corp Novel white cover lay film
JP2014150133A (en) * 2013-01-31 2014-08-21 Panasonic Corp Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
US9828355B2 (en) 2013-02-08 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
KR102159234B1 (en) * 2013-02-08 2020-09-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol derivative used in same
EP2955575A4 (en) * 2013-02-08 2016-09-07 Mitsubishi Gas Chemical Co Resist composition, resist pattern formation method, and polyphenol derivative used in same
KR20150118132A (en) * 2013-02-08 2015-10-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol derivative used in same
US9809601B2 (en) 2013-02-08 2017-11-07 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JP2016510077A (en) * 2013-02-13 2016-04-04 ヘクセル コンポジッツ、リミテッド Flame retardant epoxy resin formulation and use thereof
EP3114170A4 (en) * 2014-03-04 2017-11-01 FRX Polymers, Inc. Epoxy compositions
US10077354B2 (en) 2014-03-04 2018-09-18 Frx Polymers, Inc. Epoxy compositions
WO2015178393A1 (en) * 2014-05-23 2015-11-26 住友ベークライト株式会社 Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11572430B2 (en) 2015-09-10 2023-02-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US10751976B2 (en) 2016-01-26 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Resin-clad metal foil and flexible printed wiring board
WO2019189820A1 (en) * 2018-03-30 2019-10-03 日鉄ケミカル&マテリアル株式会社 Thermoplastic resin composition, fiber-reinforced-plastic molding material, and molded article

Also Published As

Publication number Publication date
JPWO2009145224A1 (en) 2011-10-13
CN102046726A (en) 2011-05-04
CN102046726B (en) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2009145224A1 (en) Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board
JP5834251B2 (en) Flexible metal-clad substrate, method for producing flexible metal-clad substrate, printed wiring board, multilayer flexible printed wiring board, and flex-rigid printed wiring board
US9232636B2 (en) Flexible printed wiring board and laminate for production of flexible printed wiring board
JP2011046782A (en) Epoxy resin composition for printed wiring board, resin film, prepreg, metal foil with resin, and flexible printed wiring board
US20090314523A1 (en) Adhesive sheet with base for flexible printed wiring boards, production method therefor, multilayer flexible printed wiring board and flex-rigid printed wiring board
JP2011148979A (en) Epoxy resin composition for printed wiring board, resin film, prepreg, resin sheet with metal foil, and flexible printed wiring board
JP2010222408A (en) Resin composition for flexible printed wiring board, resin film, prepreg, metallic foil with resin, flexible printed wiring board
JP4616771B2 (en) Flame retardant epoxy resin composition and cured product thereof
JP5097349B2 (en) Epoxy resin composition and epoxy resin varnish, bonding sheet and coverlay film using the same
JP2014150133A (en) Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
JPWO2008136096A1 (en) Halogen-free epoxy resin composition, coverlay film, bonding sheet, prepreg, laminate for printed wiring board
JP2023138760A (en) resin composition
JP2009108144A (en) Flexible halogen-free epoxy resin composition, metallic foil with resin, cover-lay film, prepreg, laminate for printed wiring board, metal-clad flexible laminate
JP2011155085A (en) Epoxy resin composition for printed wiring boards, resin film, prepreg, resin sheet with metal foil, flexible printed wiring board
JP6041204B2 (en) Base material for manufacturing flexible printed wiring board, flexible printed wiring board, and flex-rigid printed wiring board
JP2009295689A (en) Adhesive film for multilayer printed wiring board
WO2008072630A1 (en) Polyamide resin, epoxy resin composition using the same, and use of the composition
JP2010031131A (en) Epoxy resin composition for printed wiring board, resin film, prepreg, metal foil with resin, flexible printed wiring board
JP2010275375A (en) Epoxy resin composition for printed circuit board, resin film, prepreg, metal foil with resin, flexible printed circuit board
JP2010053189A (en) Epoxy resin composition and material for flexible printed wiring board
JP2023024463A (en) resin composition
JP4997690B2 (en) Resin composition, base material with resin, and laminate with conductor layer
JP2012188633A (en) Thermosetting resin composition, resin sheet with metal foil, and flexible printed wiring board
JP2015217645A (en) Metal foil with flexible resin and flexible printed wiring board
KR20210067903A (en) Resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119418.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514513

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754732

Country of ref document: EP

Kind code of ref document: A1