WO2009143773A1 - 一种媒体转发方法、系统和装置 - Google Patents

一种媒体转发方法、系统和装置 Download PDF

Info

Publication number
WO2009143773A1
WO2009143773A1 PCT/CN2009/072012 CN2009072012W WO2009143773A1 WO 2009143773 A1 WO2009143773 A1 WO 2009143773A1 CN 2009072012 W CN2009072012 W CN 2009072012W WO 2009143773 A1 WO2009143773 A1 WO 2009143773A1
Authority
WO
WIPO (PCT)
Prior art keywords
media
media stream
forwarding
media processing
processing
Prior art date
Application number
PCT/CN2009/072012
Other languages
English (en)
French (fr)
Inventor
郑若滨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009143773A1 publication Critical patent/WO2009143773A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • H04L45/308Route determination based on user's profile, e.g. premium users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a media forwarding method, system, and apparatus. Background technique
  • the network reference architecture of the optical access network is shown in Figure 1.
  • the entire reference architecture of the Optical Access Network consists of the Customer Premises Network (CPN), the Access Network (AN), and the Service Node Function (SNF).
  • the AF Adaptation Function
  • the AF is an adaptation function, which is an optional device, which mainly provides mutual conversion between an optical network unit/optical network interface and a UNI (User Network Interface) interface. It can also be built into the ONU so that (a) the reference point can be omitted.
  • the AF can also be placed between the OLT interface and the SNI (Service Node Interface) interface after the OLT (Optical Line Termination).
  • AF can be regarded as a function of CPN or as a function of Access Network.
  • the main network elements of the OAN customer premises network and the access network include: an optical path termination point OLT, an optical distribution network (ODN), an optical network unit/optical network terminal ONU/ONT, and an adaptation function body AF.
  • OLT provides a network interface for the ODN (Optical Distribution Network) and is connected to one or more ODNs.
  • ODN provides transport means for OLTs and ONUs.
  • the ONU provides a user-side interface to the OAN and is connected to the ODN.
  • User's device CPE Customer Premises Equipment, client device
  • passes UNI An interface (such as a DSL (Digital Subscriber Line) line) is connected to the AF.
  • the AF converts the message format from the UNI interface format to the (a) interface (eg, Ethernet link) format that can be connected to the ONU.
  • the ONU then converts the message into a format that can be transmitted on the ODN (eg, EPON (Ethernet Passive Optical Network) encapsulation, GPON (Gigabit-Capable PON), GPON (Gigabit-Capable PON) Framing of the framing).
  • the OLT converts the message into a message format of the SNI interface (for example, an Ethernet link), and then accesses the service point.
  • T is the reference point between the TE (Traffic Engineering) and the DSL Modem (DSL modem, called Modem) in the CPN network;
  • U is the DSL Modem and the DSLAM (DSL Access Multiplexer) Reference point between the multiplexer and the multiplexer;
  • the DSLAM and the broadband access server are the aggregation network (AN, Aggregation Network), and
  • V is the access.
  • A10 is the reference point between the access network and the SP (Service Provider), which can be connected to the ASP (Application Service) Provider, application service provider) to the NSP (Network Service Provider) with access network, or in the roaming scenario, connect the NSP to the visited access network.
  • the CPN network and the access network are interconnected by DSL access technology.
  • IEEE 802.16 is the first broadband wireless access standard. There are two main versions:
  • 802.16-2004 only defines two network elements, BS (basic station, Base station) and SS (subscriber station, user station), BS and SS are interconnected by broadband fixed wireless access technology; 802.16e also defines only two network elements, BS and MS (mobile station; mobile station;), BS Broadband mobile radio access technology is interconnected with MS.
  • WiMAX World Interoperability for Microwave Access
  • WiMAX defines ASN (Access Service Network) and 802.16.
  • CSN Connected Service Network
  • forming broadband WiMAX Network to support fixed, nomadic, portable, single IP mobile or full mobile access.
  • the WIMAX network reference architecture is shown in Figure 3. The figure uses 802.16e as an example.
  • R1 is a reference point between the MS/SS and the ASN
  • R3 is a reference point between the ASN and the CSN
  • T is a reference point between the CPE and the MS/SS in the CPN network
  • the MS can be a simple Mobile Terminal (mobile terminal) ;
  • the CPE can be attached to the MS.
  • the access network of the WIMAX is called ASN, and includes the BS and the ASW GW (Access Service Network Gateway).
  • the video service server is mainly installed in the core network, and the video service server cannot sense the specific access technology.
  • the root cause of the degradation of the user's video quality (QoE) is the physical condition of the last mile of the line, and the video service.
  • the server cannot adjust the video transmission according to the physical condition of the last mile line to improve the user video QoE.
  • the current access network is mainly designed according to the Layer 2 access, and cannot sense the video characteristics, nor can it be based on the last mile.
  • Video transmission is dynamically adjusted to improve user video QoE. Summary of the invention
  • the embodiment of the present invention provides a media forwarding method, system, and device, so that an access network performs media processing and forwarding on a media stream through an optimal path, and can monitor an experience quality of the media stream through an overlay layer. Reconfigure and optimize the path of media processing according to the media processing resource layout of the access network to dynamically improve the quality of the experience of the media stream and improve the user experience.
  • an embodiment of the present invention provides a media forwarding system, including a multi-service controller and an access overlay node:
  • the multi-service controller is configured to control the access superposition node to perform media forwarding on the media stream, and monitor an experience quality of the media stream;
  • the access overlay node is configured to accept control of the multi-service controller, Adding an overlay layer on the second layer or the pseudowire of the media stream, performing media forwarding, and feeding back the experience quality feature data of the media stream to the multi-service controller.
  • an embodiment of the present invention further provides a multi-service controller, including: a media processing resource admission control module, configured to receive a media stream service request sent by an access superposition node;
  • a media path configuration optimization module configured to configure an optimal media processing path for the media stream according to the media stream service request sent by the media processing resource admission control module;
  • a QoE analysis module configured to receive and analyze the experience quality feature data of the media stream that is fed back by the access superposition node, and determine, when the media stream is degraded according to the experience quality feature data of the media stream, Requesting the media path configuration optimization module to recalculate an optimal media processing path for the media stream;
  • the overlay network topology management module is configured to obtain a topology structure and a resource layout of the media access network formed by the access overlay node, and provide a basis for the media path configuration optimization module to configure an optimal media processing path.
  • an embodiment of the present invention further provides an access superposition node, including: an experience quality enabler, configured to accept control of a multi-service controller, and add an overlay layer to a layer 2 or pseudo line of the media stream. And performing corresponding media processing on the media stream, and feeding back the experience quality feature data of the media stream to the multi-service controller;
  • an experience quality enabler configured to accept control of a multi-service controller, and add an overlay layer to a layer 2 or pseudo line of the media stream. And performing corresponding media processing on the media stream, and feeding back the experience quality feature data of the media stream to the multi-service controller;
  • a communication port processing module configured to receive or send a media stream.
  • an embodiment of the present invention further provides a media forwarding method, including the following steps:
  • the embodiment of the present invention adopts a technology of adding an overlay layer to a layer 2 or a pseudo-line of a media stream, so that the access network performs media processing and forwarding on the media stream through an optimal path, and can pass the
  • the overlay monitors the quality of the experience of the media stream.
  • the media processing resource layout of the access network reconfigures and optimizes the path of the media processing to achieve a dynamic improvement of the quality of the media stream and improve the user experience.
  • 1 is a network reference architecture of an optical access network in the background art
  • FIG. 3 is a WIMAX network reference architecture in the background art
  • FIG. 4 is a schematic structural diagram of an access network based on media processing according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an access superposition node according to an embodiment of the present invention
  • FIG. 6 is a multi-service controller (Multi-service) according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a media forwarding method according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an implementation example of a media access network according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a media access network based on IP sensing or IP routing according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of a process change process of a media access network protocol stack in a medium access method in a media access network based on IP sensing or IP routing according to Embodiment 1 of the present invention
  • FIG. 11 is a schematic diagram of a PW OL in a media access network based on an Ethernet tunnel according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram of a process change process of a media access network protocol stack in a media access network in a media access network based on an Ethernet tunnel according to Embodiment 2 of the present invention
  • FIG. 13 is a schematic structural diagram of a PW OL in a media access network based on an MPLS tunnel according to Embodiment 3 of the present invention.
  • FIG. 14 is a third embodiment of an MPLS tunnel-based medium in a media access network. Schematic diagram of the change process of the media access network protocol stack of the forwarding method. detailed description
  • Embodiments of the present invention propose to superimpose L2 0L (two-layer overlay layer) or PW OL (pseudo-line overlay layer) on the access network to support Media Forwarding/Switch/Routing of the access network.
  • L2 0L two-layer overlay layer
  • PW OL pseudo-line overlay layer
  • the network formed by applying the technical solution of the present invention has strong service scalability.
  • the access network element by reconfiguring and optimizing the path of the media processing, directs the user data to the access network element that can support the processing of the new service medium to perform corresponding media processing, and can be used for the AN that does not support the new service. Users carry out new business.
  • the present invention provides an access network based on media processing, which may be an access network of OAN/DSLAViMAX, including a home gateway (HG, Home Gateway), an AN, and an aggregation network node (AggN, Aggregation Node). And IP edge nodes (IP EN, such as BNG/BRAS/ASN GW).
  • the CN in Figure 4 represents the network behind the IP edge node.
  • the media processing-based access network consists of three faces: Media Access Data Plane, QoE-aware Overlay Plane, and Media Access Control Plane. (Media Access Control Plane).
  • CN can also be divided into three faces.
  • the Media Access Data Plane is composed of data plane function modules of all network element nodes of the access network, Q.
  • E-perceived overlay QoE-aware stack QoE-aware Overlay Plane is an abstraction of the network element with media processing function in the access network. It consists of a superimposed function module with media processing function.
  • the media access control plane Media Access Control Plane is controlled by multiple services. Composed of a Multi-service Controller.
  • the overlay function module with media processing function is set on some access nodes to form an Access Overlay Node (AON).
  • AON Access Overlay Node
  • Media Access Data Plane consists of data plane function modules of all network element nodes of the access network.
  • the access network data plane function module can be based on Layer 2 forwarding (such as Ethernet or PBT network) function modules. Either based on switching (such as MPLS (Multi-Protocol Label Switch) network) functional modules, or ⁇ three-layer routing (such as IP network) functional modules.
  • Layer 2 forwarding such as Ethernet or PBT network
  • MPLS Multi-Protocol Label Switch
  • IP network IP network
  • QoE-aware Overlay Plane It is an abstraction of the network element with media processing function in the access network. It consists of superimposed function modules with media processing functions. The superimposed function module can set HG and AN. , Aggregation Node (AggN, Aggregation Node) and IP edge nodes.
  • the QoE Enabler can be composed of P2P (point to point), or point2 ⁇ (point to multi-point).
  • a superimposed function module with media processing function is set at the access node.
  • the corresponding access node On 1 ⁇ 4, the corresponding access node is called “QoE Enabler” on the QoE-aware Overlay Plane, and the corresponding access node is in the media access data plane. Data Plane is called “Media AN (Media Access Node)", and QoE enabler and media access node are physically integrated. If the overlay function module with media processing function is set to AggN/IP EN, it is called “Media AggN" I "Media EN”.
  • a schematic structural diagram of an access overlay node includes: a QoS Enabler 51 for accepting control of a multi-service controller, adding an overlay to the media stream, and adding a layer to the media stream Performing corresponding media processing, and feeding back the experience quality characteristic data of the media stream to the multi-service controller;
  • the experience quality enabler 51 includes:
  • the path configuration submodule 511 is configured to receive path configuration information sent by the multi-service controller, and generate a path forwarding table according to the path configuration information.
  • a forwarding table storage submodule 512 configured to store a path forwarding table generated by the path configuration submodule 511;
  • the media forwarding module 513 is configured to control the media processing sub-module 514 to perform media processing according to the path forwarding table stored in the forwarding table storage sub-module 512, and forward the media stream after the media processing;
  • the media processing sub-module 514 is configured to perform a corresponding media processing operation on the media stream according to the control information of the routing media forwarding module 513, and report the experience quality feature data of the media stream to the multi-service controller.
  • the communication port processing module 52 is configured to receive or send the media stream, and specifically includes: an ingress port submodule 521, configured to receive the media stream, and send the quality to the experience quality enabler 51 for media processing and media forwarding;
  • the egress port sub-module 522 is configured to perform a transmission process on the media stream after the experience quality enabler 51 processes and the media forwarding.
  • Each media-based service carried out by the operator can be decomposed into a sequence of basic media processing tasks, which are processed by multiple QoE Enablers, and each QoE Enabler processes one or several basic media processing tasks.
  • the video service can be decomposed into a sequence of basic media processing tasks according to Table 1, and the basic media processing tasks are encoded; taking 8-bit encoding as an example, each basic media processing task corresponds to one bit, if the bit is "0" means that the node does not process the basic media processing task. If the bit is "1", the node needs to process the basic media processing task.
  • Table 1 Basic media processing task type and code correspondence diagram
  • Media Access Control Plane It consists of a Multi-service Controller. As shown in FIG. 6, a schematic diagram of a multi-service controller controls only the QoS Enabler. Each QoE Enabler processes one or several basic media processing tasks according to the above description, but each QoS. Enabler is implemented by Multi-service Controller Control, that is, multi-service processors can achieve parallel control of multiple tasks.
  • the multi-service processor includes:
  • the media processing resource admission control module 61 is configured to receive a media stream service request sent by the access superposition node, that is, implement an admission control function of the overlay network media processing resource, and perform media processing resources on the overlay network composed of the QoS Enabler according to the service request. Admission control.
  • the media path configuration optimization module 62 is configured to configure an optimal media processing path for the media stream according to the media stream service request sent by the media processing resource admission control module 61, that is, implement path configuration and optimization functions of the media processing, and process resources according to the resource media.
  • the admission control module 61 requests the media processing resource or the recommendation of the QoE analysis module 63 to perform Media Forwarding/Switch/Routing (media forwarding/switching/routing) path configuration and optimization on the overlay network composed of the QoS Enabler.
  • the QoE analysis module 63 is configured to receive and analyze the experience quality feature data of the media stream fed back by the access superposition node, and request the media path configuration optimization module 62 when determining that the media stream is degraded according to the experience quality feature data of the media stream. Recalculate the optimal media processing path for the media stream, that is, implement the QoE problem feature data analysis function, analyze the cause, location and solution of the service degradation according to the QoE problem characteristic data reported by the QoS Enabler, and reconfigure the path through the media processing. And optimization to solve QoE problems.
  • the overlay network topology management module 64 is configured to obtain a topology structure and a resource layout of the media access network formed by the access overlay node, and provide a basis for configuring the optimal media processing path for the media path configuration optimization module.
  • the topology of the overlay network and the corresponding media processing resource layout database formed by the QoS Enabler may be generated by a dynamic sensing method such as SNMP or a routing protocol or a static configuration method.
  • Step S701 The access overlay node receives the media stream service request, and forwards the media stream.
  • the service requests to the multi-service controller.
  • Step S702 The multitasking processor calculates an optimal media processing path, and configures a media processing forwarding table of each node in the corresponding path.
  • the multi-service controller calculates an optimal media processing path according to the media stream service request, the overlay network topology, and the corresponding media processing resource distribution data, and configures a media processing forwarding table of each network element on the media processing path.
  • Step S703 The media stream enters a first edge access superposition node of the media access network, and the edge access superposition node adds an overlay layer on the second layer or the pseudowire layer of the media stream according to the calculation result, and forwards the media stream.
  • the overlay layer specifically includes an Ethertype field and an M-VID field, an Ethertype field is used to identify the presence of an overlay layer, and an M-VID field is used to indicate a type of processing for the media stream;
  • the overlay may also include an I-SID (Service Instance VLAN ID) field, and the I-SID field is used to indicate the media stream. Processing type.
  • I-SID Service Instance VLAN ID
  • Step S704 The intermediate access superposition node of the media access network performs corresponding media processing on the media stream according to the overlay layer, and forwards the media stream according to the overlay layer.
  • the method further includes: changing the M-VID field or the I-SID field to the code corresponding to the next media processing performed on the media stream.
  • Step S705 The media stream leaves the last edge of the media access network to access the superposition node, and the access superposition node performs corresponding media processing on the media stream according to the overlay layer, and forwards the media stream according to the overlay layer, and removes the overlay layer when forwarding. .
  • Step S706 The access superposition node reports the experience quality feature data to the multi-service controller.
  • Step S707 The multi-service controller performs an experience quality judgment of the media stream according to the experience quality feature data, and determines whether the experience quality of the media stream is degraded.
  • step S708 When the quality of the media stream is judged to be normal, the process proceeds to step S708; When the quality of the media stream determines that the quality of the experience is degraded, the process proceeds to
  • Step S708 Perform media stream processing and forwarding according to the optimal media processing path until the media stream service ends.
  • Step S709 The multi-service controller further analyzes the cause, location, and solution of the service degradation, and recalculates the optimal media processing path for the media stream according to the cause, location, and solution of the service degradation.
  • the multi-service controller reconfigures the media processing forwarding table of each network element on the media processing path, and returns to step S702.
  • the foregoing media forwarding method is described by using a specific embodiment.
  • the media access network implementation example is shown in FIG. 8.
  • Client1 and Client2 perform P2P video communication.
  • M-AN1 is provided with DPI (Deep Packet Inspection) filtering function module
  • M-AN2 is provided with QoE Monitoring function module
  • M-AN3 is provided with Caching and application layer FEC function modules.
  • M-AN4 is equipped with Media Transcoding function module;
  • M-AN1 ⁇ M-AN4 is equipped with reference point, that is, M-AN1 ⁇ M-AN4 support intercommunication function.
  • the Multi-service Controller needs to calculate the optimal media processing path.
  • the present invention proposes a specific processing scheme by the following embodiments. In the first embodiment of the present invention, if the media access network is based on IP-aware or IP-based routing, the following processing is required for AON:
  • each node of the overlay network sets to be a PE/s-PE (Provider Edge Carrier/Switching PE Switching Carrier Edge) node.
  • PE/s-PE Provider Edge Carrier/Switching PE Switching Carrier Edge
  • Each node of the overlay network supports the ARP proxy.
  • the L2 OL is composed of an M-VID, and the specific basic media processing type is indicated by the M-VID of the L2 OL; the M-VID indicates the IP address, the Ethernet destination.
  • the basic media processing type of the data stream determined by the address (DA, Destination Address), source address (SA, Source Address), Ethernet type Ethertype, virtual area network identifier (VID, VLAN Identifier) (which can be composed of multiple VLANs); IP address
  • the Ethernet destination address, source address, Ethernet type, and virtual local area network identifier are called flow identification related items.
  • the presence or absence of L2 OL can be indicated by the Ethertype Identification field of the previous stage.
  • AON supports IP bridging, IP bridging forwarding table (that is, the media processing forwarding table or media processing forwarding extension table below) is configured by the Multi-service Controller, and the IP bridging forwarding table adds an M-VID indicating the basic media processing type. Item, next hop DA address, and next mega M-VID.
  • AON can no longer analyze IP / TCP / UDP, no longer # text IP routing, and directly according to M-VID for the corresponding basic media processing operations.
  • the implementation process of the technical solution provided by the embodiment of the present invention is as shown in FIG. 10, and specifically includes the following steps:
  • Step S1000 Client1 sends an ARP (Address Resolution Protocol) request to AN0, and asks the user MAC address whose IP address is IPc, and AN0 returns the MAC address MAC0 whose IP address is AN0 to Clientl;
  • ARP Address Resolution Protocol
  • Step S1001 Client1 sends a request for providing a p2p Video Streaming service to Client2 to the Multi-service Controller.
  • Step S 1002 The media processing resource media processing resource admission control module of the Multi-service Controller performs the admission control of the media processing resource on the overlay network composed of the QoS Enablerl ⁇ 4 according to the Video Streaming service request, and sends the media processing path configuration and optimization module to the media processing path configuration and optimization module.
  • the media handles resource requests.
  • Step S1003 The media processing path configuration and optimization module calculates an optimal media processing path according to the overlay network topology provided by the overlay network topology management function module and the corresponding media processing resource distribution data, and configures the media processing path.
  • the media processing forwarding table of each network element; the optimal media processing path calculated in the first example in this example is: Client1 to M-AN0 to M-AN1 to M-AN2 to Client2; wherein, for the above-mentioned optimal media
  • the processing path, M-AN0, M-AN1, and M-AN2 media processing forwarding table configurations are shown in Table 2, Table 5, and Table 8, respectively, as follows: Table 2 M-ANO media processing forwarding table
  • the table 2 divides the table 2 into two: the MAC forwarding table and the media processing forwarding extension table.
  • the MAC forwarding table if the corresponding stream needs to be processed by the media, the outbound port entry is configured with a special value (such as a value of "0").
  • the outbound port entry is a normal value, and there is no need to further check the media processing forwarding extension table; when the MAC DA and the flow identifier are related items ( For example, if the service VID is used to check the MAC forwarding table, if the port is found to have a special value (such as "0"), then continue to check the media processing forwarding extension table according to the destination IP address and other related items of the flow identifier (such as the user VID). .
  • the classification table can greatly reduce the storage space of the forwarding table, as shown in Table 3 and Table 4.
  • M-AN0 media processing forwarding extension table
  • the M-AN1 media processing forwarding table configuration is shown in Table 5:
  • M-AN1 media processing forwarding extension table
  • the M-AN2 media processing forwarding table configuration is shown in Table 8: Table 8 M-AN2 media processing forwarding table
  • M-AN2 media processing forwarding extension table
  • Step S1004 When the media processing path is configured successfully, the media processing path configuration and optimization module replies to the media processing resource media processing resource admission control module with a media processing resource response; the media processing resource media processing resource admission control module further sends to the clientl Reply to the Video Streaming business response.
  • Step S1005 Client1 sends a Video Stream according to the Video Streaming service response, the destination IP address is IPc, and the destination MAC address is MAC0.
  • Steps SI 006 and M-AN0 receive the data packet, check the media processing forwarding table (or the MAC forwarding table and the media processing forwarding extension table) according to the MAC DA, the destination IP address, and the flow identifier related item, add the L2 OL, and set the M-
  • the VID is "00000010" and the DA is MAC1, which is forwarded out.
  • Step S1007 The M-AN1 receives the data packet, checks the media forwarding table according to the MAC DA, the destination IP address, and the flow identifier related item, performs DPI filtering processing according to the M-VID indication, and then changes the DA to MAC2 according to the next hop DA, according to The next hop M-VID changes the M-VID to "00000001" and forwards it out.
  • Step S1008 The M-AN2 receives the data packet, checks the media forwarding table according to the MAC DA, the destination IP address, and the flow identifier related item, performs QoE Monitoring processing according to the M-VID indication, and then removes L2 0L, and forwards the user port to Client2.
  • Steps S1009 and M-AN2 send the QoE problem characteristic data (for example, the user BER of the mosaic effect) to the Multi-service Controller.
  • QoE problem characteristic data for example, the user BER of the mosaic effect
  • Step S1010 The QoE analysis function module module of the Multi-service Controller analyzes the cause, location, and solution of the service degradation caused by the QoE problem characteristic data reported by the M-AN2, and the path configuration and optimization module reported to the media processing, for example, the user.
  • the mosaic effect occurs because the user line BER of the M-AN2 is high.
  • the solution is to add basic media processing such as Video Caching and Application Error FEC (Forward Error Control).
  • Step S1011 The path configuration and optimization module of the media processing calculates a new media processing path according to the recommendation of the QoE analysis function module module and the overlay network topology provided by the network topology management function module and the corresponding media processing resource distribution data. And reconfiguring the media processing forwarding table of each network element on the media processing path; the calculated new media processing path in this example is: Client1 to M-AN0 to M-AN1 to M-AN3 to M-AN2 to Client2;
  • the M-AN1 and M-AN3 media processing forwarding table reconfiguration is as follows: Table 11 M-ANl media processing forwarding table
  • M-AN1 media processing forwarding extension table
  • the M-AN3 media processing forwarding table configuration is shown in Table 14:
  • M-AN3 media processing forwarding extension table
  • Step S1012 M-AN1 receives the data packet, checks the media forwarding table according to the MAC DA, the destination IP address, and the flow identifier related item, performs DPI filtering processing according to the M-VID indication, and then changes the DA to MAC3 according to the next hop DA, according to The next hop M-VID will change the M-VID to "11000000" and forward it out.
  • Step S1013 The M-AN3 receives the data packet, checks the media forwarding table according to the MAC DA, the destination IP address, and the flow identifier related item, performs Video Caching and application layer FEC processing according to the M-VID indication, and then performs the DA according to the next hop DA. Change to MAC2 and change the M-VID to "00000001" according to the next hop M-VID and forward it out.
  • Step S1014 The M-AN2 receives the data packet, checks the media forwarding table according to the MAC DA, the destination IP address, and the flow identifier related item, performs QoE Monitoring processing according to the M-VID indication, and then removes the L2 0L, and the user port forwards it to the client2.
  • the media access network is set to be based on an Ethernet tunnel (eg,
  • each node of the overlay network needs to be specifically processed: 1. Set each node of the overlay network to be a PE/s-PE node, and the PE/s-PE nodes are interconnected by an Ethernet tunnel. Each node of the overlay network supports an ARP proxy.
  • the PW OL consists of M-VID or I-SID, which passes PW OL.
  • M-VID or I-SID to indicate the specific basic media processing type
  • M-VID/I-SID indicates the basic media processing type for PW (Pseudo Wire).
  • the PW exchange table (that is, the media processing forwarding table or the media processing forwarding extension table below) is configured by the Multi-service Controller, and the PW exchange table adds an M-VID item indicating the basic media processing type and the next hop M-VID. .
  • AON can no longer analyze IP / TCP / UDP, no longer # text IP routing, and directly according to M-VID for the corresponding basic media processing operations.
  • the implementation process of the technical solution provided by the embodiment of the present invention is as shown in FIG. 12, and specifically includes the following steps:
  • Step S1203 The media processing path configuration and optimization module calculates an optimal media processing path according to the overlay network topology provided by the overlay network topology management function module and the corresponding media processing resource distribution data, and configures the media processing path.
  • the media processing forwarding table of each network element; the optimal media processing path calculated in the first example in this example is: Client1 to M-AN0 to M-AN1 to M-AN2 to Client2; wherein, for the above-mentioned optimal media Processing path, M-AN0, M-AN1, and M-AN2 Layer 2 media processing forwarding table configuration is as follows:
  • the M-AN1 media processing forwarding table configuration is shown in Table 20: Table 20 M-AN1 Media Processing Forwarding Table
  • the M-AN2 media processing forwarding table configuration is shown in Table 23:
  • M-AN2 media processing forwarding extension table
  • Step S1206 M-AN0 receives the data packet as the PE, checks the media processing forwarding table (or the PW exchange table and the media processing forwarding extension table) according to the IP DA and the flow identifier related item, adds the PW OL, and sets the M-VID to " 00000010" , encapsulates the corresponding Ethernet tunnel and forwards it out.
  • the media processing forwarding table or the PW exchange table and the media processing forwarding extension table
  • Step S1207 The M-AN1 receives the data packet, terminates the Ethernet tunnel, checks the media forwarding table according to the PW identifier, performs DPI filtering processing according to the M-VID indication, and then changes the M-VID to "0000000 according to the next hop M-VID. Encapsulate the corresponding Ethernet tunnel and forward it out.
  • Steps S1208 and M-AN2 receive the data packet, terminate the Ethernet tunnel, check the media forwarding table according to the PW identifier, perform QoE Monitoring processing according to the M-VID indication, and then remove the PW OL, and the user port forwards it to Client2.
  • Steps S1209 ⁇ S1210 the same as S1009 ⁇ S1010.
  • Step S1211 The path configuration and optimization module of the media processing is based on the recommendation of the QoE analysis function module module and the overlay network topology and corresponding provided by the network topology management function module.
  • the M-AN1 and M-AN3 media processing forwarding table reconfiguration is as follows:
  • M-AN1 media processing forwarding extension table
  • the M-AN3 media processing forwarding table reconfiguration is as follows: Table 29 M-AN3 media processing forwarding table
  • M-AN3 media processing forwarding extension table
  • Step S1212 M-AN1 receives the data packet, terminates the Ethernet tunnel, checks the media forwarding table according to the PW identifier, performs DPI filtering processing according to the M-VID indication, and then changes the M-VID to "11000000" according to the next hop M-VID. , Encapsulate a new Ethernet tunnel and forward it out.
  • Step S1213 The M-AN3 receives the data packet, terminates the Ethernet tunnel, checks the media forwarding table according to the PW identifier, performs Video Caching and application layer FEC processing according to the M-VID indication, and then changes the M-VID according to the next hop M-VID. For "00000001", package new Ethernet tunnel, forwarded out.
  • Step S1214 M-AN2 receives the data packet, terminates the Ethernet tunnel, checks the media forwarding table according to the PW identifier, performs QoE Monitoring processing according to the M-VID indication, and then removes the PW OL, and the user port forwards it to Client2.
  • the media access network is based on an MPLS tunnel, the following processing is required for the AON:
  • each node of the overlay network to be a PE/s-PE node, and the PE/s-PE nodes are interconnected by MPLS tunnels.
  • PW OL Pulseudo Wire overlay layer
  • the PW OL consists of a heavy MPLS label (called M-MPLS label, Media MPLS label), which indicates the specific basic media processing type through the M-MPLS label of the PW OL.
  • M-MPLS label indicates The basic media processing type for PW.
  • the PW exchange table (that is, the media processing forwarding table or the media processing forwarding extension table below) is configured by the Multi-service Controller, and the PW exchange table adds an M-MPLS label item indicating the basic media processing type and the next mega M- MPLS label.
  • AON can no longer analyze IP / TCP / UDP, no longer # text IP routing, and directly according to the M- MPLS label for the corresponding basic media processing operations.
  • Step S1400 Client1 sends an ARP (Address Resolution Protocol) request to the EN to query the user MAC address whose IP address is IPc, and EN returns the MAC address of the user whose IP address is IPc to Clientl.
  • ARP Address Resolution Protocol
  • Steps S1401 to S1402 are the same as steps S1001 to S1002.
  • step S1403 The difference between step S1403 and step S1203 is that the M-VID and the next hop M-VID items in the M-AN0, M-AN1, and M-AN2 media processing forwarding table configurations are M-MPLS label and next hop M-MPLS. Replaced by label.
  • Steps S1404 to S1405 are the same as steps S1004 to S1005.
  • Step S1407 The M-AN1 receives the data packet, terminates the MPLS tunnel, checks the media forwarding table according to the PW identifier, performs DPI filtering processing according to the M-MPLS label indication, and then changes the M-MPLS label to "M-MPLS label" according to the next hop M-MPLS label. 0000000, encapsulates the corresponding MPLS tunnel and forwards it to M-AN2.
  • Steps S1408 and M-AN2 receive the data packet, terminate the MPLS tunnel, check the media forwarding table according to the PW identifier, perform QoE Monitoring according to the M-MPLS label indication, and then remove the PW OL, and the user port forwards it to Client2.
  • Step S1411 the difference from step S12011 is that the M-VID and the next hop M-VID items in the M-AN0, M-AN1, and M-AN2 media processing forwarding table configurations are M-MPLS label and next hop M- Replaced by MPLS label.
  • Step S1412 M-AN1 receives the data packet, terminates the MPLS tunnel, checks the media forwarding table according to the PW identifier, performs DPI filtering processing according to the M-MPLS label indication, and then changes the M-MPLS label to "M-MPLS label according to the next hop M-MPLS label". 11000000" , encapsulates the new MPLS tunnel and forwards it to M-AN3.
  • Step S1413 The M-AN3 receives the data packet, terminates the MPLS tunnel, checks the media forwarding table according to the PW identifier, performs Video Caching and application layer FEC processing according to the M-MPLS label indication, and then performs M-MPLS according to the next hop M-MPLS label.
  • the label is changed to "00000001" to encapsulate the new Ethernet tunnel and forward it to M-AN2.
  • Step S1414 The M-AN2 receives the data packet, terminates the MPLS tunnel, checks the media forwarding table according to the PW identifier, performs QoE Monitoring processing according to the M-MPLS label indication, and then removes L2 0L, and forwards the user port to Client2.
  • the technical solution of the embodiment of the present invention has the following advantages, because the technology for adding a layer 2 overlay layer to the media stream is adopted, so that the access network performs media processing and forwarding on the media stream through the optimal path, and can pass the layer 2 overlay layer. Monitor the quality of the experience of the media stream, in the experience When the quality is degraded, according to the media processing resource layout of the access network, the path of the media processing is reconfigured and optimized, and the experience quality of the media stream is dynamically improved, and the user experience is improved.
  • the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform, and the technical solution of the present invention. It can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device may It is a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种媒体转发方法、 系统和装置 本申请要求于 2008年 5月 30 日提交中国专利局、 申请号为 200810110783.3、 发明名称为"一种媒体转发方法、 系统和装置"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通讯技术领域, 特别是涉及一种媒体转发方 法、 系统和装置。 背景技术
光接入网的网络参考架构如图 1所示。 光接入网 OAN ( Optical Access Network ) 的整个参考架构由用户驻地网 CPN ( Customer Premises Network )、接入网 AN ( Access Network )和业务功能点 SNF ( Service Node Function )组成。 其中在接入网中, AF ( Adaptation Function )为适配功能体, 是可选设备, 主要是提供光网络单元 /光网 接口与 UNI ( User Network Interface, 用户网络接口 )接口的相互转 换, AF也可以内置在 ONU中, 这样(a )参考点可以不要。 AF也可 以放在 OLT ( Optical Line Termination, 光路终结点)之后作 OLT接 口和 SNI ( Service Node Interface, 业务点接口 )接口的相互转换。 AF既可以看成 CPN的功能体,也可以看成是 Access Network的功能 体。 OAN用户驻地网和接入网的主要网元包括: 光路终结点 OLT , 光分配网 ODN ( Optical Distribution Network ), 光网络单元 /光网络终 端 ONU/ONT, 适配功能体 AF。 其中 T为 UNI接口的参考点, V为 SNI接口的参考点。 OLT为 ODN ( Optical Distribution Network, 光分 配网 )提供网络接口并连至一个或多个 ODN。 ODN为 OLT和 ONU 提供传输手段。 ONU为 OAN提供用户侧接口并和 ODN相连。 用户 的设备 CPE ( Customer Premises Equipment, 用户端设备 )通过 UNI 接口 (如: 通过 DSL ( Digital Subscriber Line, 数字用户线 )线路 ) 连接到 AF, AF将报文格式由 UNI接口格式转换成能与 ONU连接的 ( a )接口(如: Ethernet链路 )格式, ONU再将报文转换成能在 ODN 上传送的格式(如: EPON ( Ethernet Passive Optical Network, 以太 网无源光网络) 的封装、 GPON ( Gigabit-Capable PON, 千兆无源光 网络 )的通用组帧的封装)。最后由 OLT将报文转换成 SNI接口(如: Ethernet链路) 的报文格式, 再进行业务点的访问。
DSL通用参考架构如图 2所示。其中, T为 CPN网络中, TE( Traffic Engineering , 流量工程)和 DSL Modem ( DSL调制解调器, 筒称 Modem )间的参考点; U为 DSL Modem和接入点 DSLAM( DSL Access Multiplexer,数字用户线接入复用器)间的参考点; 在接入网(Access Network )中, DSLAM和宽带接入服务器( BRAS, Broadband Remote Access Clientl ) 间为汇聚网给(AN, Aggregation Network ), V为接 入网中, DSLAM和 BRAS间的以太网汇聚( EA , Ethernet Aggregation ) 参考点; A10为接入网与 SP ( Service Provider, 服务提供商 )间的参 考点, 该参考点既可以连接 ASP ( Application Service Provider , 应用 服务提供商 )到拥有接入网的 NSP ( Network Service Provider, 网络 服务提供商), 或在漫游情景下, 连接 NSP到拜访地接入网。 CPN网 络与接入网间采用 DSL接入技术互连。
IEEE 802.16 为第一个宽带无线接入标准, 主要有两个版本:
802.16标准的宽带固定无线接入版本, "802.16-2004" 和 802.16标准 的宽带移动无线接入版本, "802.16e,,。 其中, 802.16-2004仅定义了 两种网元, BS ( basic station, 基站)和 SS ( subscriber station, 用户 站点), BS和 SS间采用宽带固定无线接入技术互连; 802.16e也仅定 义了两种网元, BS和 MS ( mobile station, 移动站点;), BS和 MS间 采用宽带移动无线接入技术互连。 而 WiMAX ( World Interoperability for Microwave Access, 全球微波接入互通技术)论坛则在 802.16的 基础上, 定义 ASN ( Access Service Network, 接入服务网络 )和 CSN ( Connectivity Service Network, 连接服务网络), 形成宽带 WiMAX 网络,以支持固定、游牧、便携、筒单 IP移动或全移动接入。 WIMAX 网络参考架构如图 3所示, 图中以 802.16e为例。
其中, R1为 MS/SS与 ASN间的参考点, R3为 ASN和 CSN间 的参考点; T为 CPN网络中, CPE和 MS/SS间的参考点, MS可以 为单纯的 Mobile Terminal (移动终端;), 或者 MS下面可以挂接 CPE, WIMAX的接入网络称为 ASN, 包含 BS和 ASW GW ( Access Service Network Gateway , 接入服务网络网关)。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题:
目前视频业务服务器主要设置于核心网,视频业务服务器并不能 感知具体接入技术, 而用户视频 QoE ( Quality of Experience, 体验质 量)劣化的根本原因在于接入最后一公里的线路物理状况, 视频业务 服务器不能根据最后一公里的线路物理状况而调整视频传送,以改善 用户视频 QoE; 同时, 现在的接入网主要按二层接入进行设计, 也不 能感知视频特性,也无法根据最后一公里的线路物理状况而动态调整 视频传送, 以改善用户视频 QoE。 发明内容
本发明实施例提供一种媒体转发方法、 系统和装置, 以实现接入 网通过最优路径对媒体流进行媒体处理和转发,并可以通过叠加层监 控媒体流的体验质量, 在体验质量劣化时, 根据接入网的媒体处理资 源布局, 重配置和优化媒体处理的路径, 以动态改善媒体流的体验质 量, 改善用户体验。
为达到上述目的, 本发明实施例一方面提出一种媒体转发系统, 包括多业务控制器和接入叠加节点:
所述多业务控制器,用于控制所述接入叠加节点对媒体流进行媒 体转发, 并监控所述媒体流的体验质量;
所述接入叠加节点, 用于接受所述多业务控制器的控制, 为所述 媒体流的二层或伪线上添加叠加层, 进行媒体转发, 并向所述多业务 控制器反馈所述媒体流的体验质量特征数据。
另一方面, 本发明实施例还提出一种多业务控制器, 包括: 媒体处理资源接纳控制模块,用于接收接入叠加节点所发送的媒 体流业务请求;
媒体路径配置优化模块,用于根据所述媒体处理资源接纳控制模 块发送的所述媒体流业务请求, 为所述媒体流配置最优媒体处理路 径;
QoE分析模块,用于接收并分析所述接入叠加节点反馈的所述媒 体流的体验质量特征数据,并在根据所述媒体流的体验质量特征数据 判断所述媒体流为体验质量劣化时,请求所述媒体路径配置优化模块 为所述媒体流重新计算最优媒体处理路径;
叠加网拓朴管理模块,用于获取所述接入叠加节点组成的媒体接 入网的拓朴结构和资源布局,为所述媒体路径配置优化模块配置最优 媒体处理路径提供依据。
另一方面, 本发明实施例还提出一种接入叠加节点, 包括: 体验质量使能者, 用于接受多业务控制器的控制, 为所述媒体流 的二层或伪线上添加叠加层, 并对所述媒体流进行相应的媒体处理, 并向所述多业务控制器反馈所述媒体流的体验质量特征数据;
通信端口处理模块, 用于接收或发送媒体流。
另一方面, 本发明实施例还提出一种媒体转发方法, 包括以下步 骤:
接收媒体流业务请求,并转发所述媒体流业务请求给多业务控制 器;
接收所述多业务控制器发送的根据所述媒体流业务请求所得到 的最优媒体处理路径计算结果;
接收媒体流,并根据所述计算结果在所述媒体流的二层或伪线上
; ^力口 ¾力口
根据所述叠加层对所述媒体流进行相应的媒体处理,并根据所述 叠加层对所述媒体流进行转发。
与现有技术相比,本发明实施例采用了为媒体流的二层或伪线上 添加叠加层的技术, 从而,接入网通过最优路径对媒体流进行媒体处 理和转发, 并可以通过叠加层监控媒体流的体验质量, 在体验质量劣 化时, 根据接入网的媒体处理资源布局, 重配置和优化媒体处理的路 径, 达到了动态改善媒体流的体验质量, 提高用户体验的效果。 附图说明
图 1为背景技术中光接入网的网络参考架构;
图 2为背景技术中 DSL通用参考架构;
图 3为背景技术中 WIMAX网络参考架构;
图 4 为本发明实施例中一种基于媒体处理的接入网络的结构示 意图;
图 5为本发明实施例中一种接入叠加节点的结构示意图; 图 6 为本发明实施例中一种多业务控制器 ( Multi-service
Controller ) 的结构示意图;
图 7为本发明实施例中一种媒体转发方法的流程示意图; 图 8为本发明实施例中媒体接入网实施举例的示意图;
图 9为本发明实施例一, 基于 IP感知或 IP路由的媒体接入网中
L2 OL示意图;
图 10为本发明实施例一, 基于 IP感知或 IP路由的媒体接入网 中媒体转发方法的媒体接入网协议栈变化过程示意图;
图 11 为本发明实施例二, 基于以太网隧道的媒体接入网中 PW OL示意图;
图 12为本发明实施例二, 基于以太网隧道的媒体接入网中媒体 转发方法的媒体接入网协议栈变化过程示意图;
图 13为本发明实施例三, 基于 MPLS隧道的媒体接入网中 PW OL的结构示意图。
图 14为本发明实施例三, 基于 MPLS隧道的媒体接入网中媒体 转发方法的媒体接入网协议栈变化过程示意图。 具体实施方式
本发明实施例提出在接入网上叠加 L2 0L (二层叠加层)或 PW OL (伪线叠加层), 以支持接入网的 Media Forwarding/Switch/Routing
(媒体转发 /交换 /路由), 使接入网能够在 L2 (二层)或 PW (伪线) 上就能感知到视频业务, 进而通过对 QoE问题特征数据分析, 在用 户视频 QoE劣化时, 能够根据接入网的媒体处理资源布局, 重配置 和优化媒体处理的路径, 以动态改善用户视频 QoE。
通过应用本发明技术方案组建的网络具有很强的业务扩展性, 当 一种新业务出现时, 无须更新所有接入网网元 (特别是数量庞大的 AN ), 只需引入支持新业务媒体处理的接入网网元, 通过重配置和优 化媒体处理的路径,将用户数据引导到能支持新业务媒体处理的接入 网网元做相应媒体处理, 即可为不支持新业务的 AN下的用户开展新 业务。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述:
如图 4所示, 本发明提出一种基于媒体处理的接入网络, 可以是 OAN/DSLAViMAX的接入网,包含了家庭网关( HG, Home Gateway )、 AN、 汇聚网节点 ( AggN, Aggregation Node )和 IP边缘节点 ( IP EN, 如 BNG/BRAS/ASN GW )。 图 4中的 CN代表 IP边缘节点之后的网 络。
基于媒体处理的接入网络, 由三个面组成, 分别为: 媒体接入数 据面 (Media Access Data Plane )、 QoE感 口的叠力口面 ( QoE-aware Overlay Plane )和媒体接入控制面 ( Media Access Control Plane )。 类 似地, CN也同样可以分成三个面。
其中, 媒体接入数据面 Media Access Data Plane由接入网络的全 体网元节点的数据面功能模块组成, Q。E感知的叠加面 QoE感知的叠 加面 QoE-aware Overlay Plane是接入网络的中带有媒体处理功能的 网元节点的抽象, 由带有媒体处理功能的叠加功能模块组成,媒体接 入控制面 Media Access Control Plane由多业务控制器( Multi- service Controller )构成。
进一步的, 在上述媒体接入数据面 Media Access Data Plane和
QoE感知的叠加面 QoE-aware Overlay Plane两功能面中,带有媒体处 理功能的叠加功能模块设置于部分接入节点上,共同组成接入叠加节 点 ( AON, Access Overlay Node )„
结合图 4, 进一步对上述网络进行说明如下:
媒体接入数据面 Media Access Data Plane: 由接入网络的全体网 元节点的数据面功能模块组成,接入网数据面功能模块可以是基于二 层转发(如以太网或 PBT网络 )功能模块, 或是基于交换(如 MPLS ( Multi-Protocol Label Switch, 多协议标记交换) 网络)功能模块, 或^ ϋ于三层路由 (如 IP网络) 功能模块。
QoE感知的叠加面 QoE-aware Overlay Plane: 是接入网络的中带 有媒体处理功能的网元节点的抽象,由带有媒体处理功能的叠加功能 模块组成; 该叠加功能模块可以设置 HG、 AN、 汇聚网节点(AggN, Aggregation Node )和 IP边缘节点上。 QoE Enabler间可组成 P2P( point to point ) 叠力口网各, 或 Ρ2ΜΡ ( point to multi-point ) 叠力口网各。
以图 4为例,带有媒体处理功能的叠加功能模块设置于接入节点
1 ~ 4上, 所对应的接入节点在 QoE感知的叠加面 QoE-aware Overlay Plane上称为 "QoE Enabler ( QoE使能者 )" , 所对应的接入节点在媒 体接入数据面 Media Access Data Plane上称为 "Media AN (媒体接入 节点) ", QoE使能者和媒体接入节点在物理上集成为一体。若带有媒 体处理功能的叠加功能模块设置于 AggN/IP EN, 则分别称为 "Media AggN" I "Media EN"。 Media AN/AggN/EN节点可统称为 "接入叠加 节点"。 对于节点 N1 ~ N6, 由于不媒体处理功能, 所以在 QoE感知 的叠加面 QoE-aware Overlay Plane上没有对应的节点,只存在于媒体 接入数据面 Media Access Data Plane上。 如图 5所示, 一种接入叠加节点的结构示意图, 包括: 体验质量使能者( QoS Enabler ) 51 , 用于接受多业务控制器的控 制, 为媒体流添加叠加层, 并对媒体流进行相应的媒体处理, 并向多 业务控制器反馈媒体流的体验质量特征数据;
其中, 体验质量使能者 51 , 具体包括:
路径配置子模块 511 , 用于接收多业务控制器发送的路径配置信 息, 并根据路径配置信息生成路径转发表;
转发表存储子模块 512, 用于存储路径配置子模块 511所生成的 路径转发表;
媒体转发模块 513 , 用于根据转发表存储子模块 512存储的路径 转发表控制媒体处理子模块 514进行媒体处理,并转发媒体处理后的 媒体流;
媒体处理子模块 514, 用于根据路由媒体转发模块 513的控制信 息对媒体流进行相对应的媒体处理操作,并向多业务控制器上报媒体 流的体验质量特征数据。
通信端口处理模块 52, 用于接收或发送媒体流, 具体包括: 入端口子模块 521 , 用于接收媒体流, 并发送给体验质量使能者 51进行媒体处理和媒体转发;
出端口子模块 522, 用于对经体验质量使能者 51处理和媒体转 发后的媒体流, 进行发送处理。
运营商开展的每一种基于媒体的业务可以分解为一序列的基本 媒体处理任务组成, 由多个 QoE Enabler共同处理完成, 每个 QoE Enabler处理其中的一种或几种基本媒体处理任务。 例如, 对于视频 业务可以按表 1分解为一序列的基本媒体处理任务,并对基本媒体处 理任务进行编码; 以 8位编码为例, 每一种基本媒体处理任务对应一 位, 若该位为 "0" 表示节点不处理该基本媒体处理任务, 若该位为 "1" 表示节点需要处理该基本媒体处理任务。 表 1、 基本媒体处理任务类型及编码对应示意图
Figure imgf000011_0001
媒体接入控制面 Media Access Control Plane: 由 Multi-service Controller (多业务控制器)构成。 如图 6 所示, 一种多业务控制器 ( Multi-service Controller )的结构示意图, 只控制 QoS Enabler, 由于 根据上述描述,每个 QoE Enabler处理一种或几种基本媒体处理任务, 但各 QoS Enabler均由多业务控制器( Multi-service Controller )进行 控制, 即多业务处理器可以实现多种任务的并行控制。
具体的, 多业务处理器包括:
媒体处理资源接纳控制模块 61 , 用于接收接入叠加节点所发送 的媒体流业务请求, 即实现叠加网媒体处理资源的接纳控制功能, 根 据业务请求对 QoS Enabler组成的叠加网进行媒体处理资源的接纳控 制。
媒体路径配置优化模块 62, 用于根据媒体处理资源接纳控制模 块 61发送的媒体流业务请求, 为媒体流配置最优媒体处理路径, 即 实现媒体处理的路径配置和优化功能,根据资源媒体处理资源接纳控 制模块 61对媒体处理资源的请求或 QoE分析模块 63的建议,对 QoS Enabler组成的叠加网进行 Media Forwarding/Switch/Routing (媒体转 发 /交换 /路由)路径配置和优化。
QoE分析模块 63 , 用于接收并分析接入叠加节点反馈的媒体流 的体验质量特征数据,并在根据媒体流的体验质量特征数据判断媒体 流为体验质量劣化时, 请求媒体路径配置优化模块 62为媒体流重新 计算最优媒体处理路径, 即实现 QoE 问题特征数据分析功能, 根据 QoS Enabler上报的 QoE问题特征数据分析出导致业务劣化的原因、 位置和解决方法, 并通过媒体处理的路径重配置和优化来解决 QoE 问题。
叠加网拓朴管理模块 64, 用于获取接入叠加节点组成的媒体接 入网的拓朴结构和资源布局, 为媒体路径配置优化模块 62配置最优 媒体处理路径提供依据。 具体的, 即为实现叠加网拓朴管理功能, 可 以通过 SNMP 或路由协议等动态感知方法或静态配置方法的生成 QoS Enabler 组成的叠加网的拓朴和相应的媒体处理资源布局数据 库。 基于上述系统, 本发明实施例提供了一种媒体转发方法, 如图 7 所示, 包括以下步骤:
步骤 S701、 接入叠加节点接收媒体流业务请求, 并转发媒体流 业务请求给多业务控制器。
步骤 S702、 多任务处理器计算最优的媒体处理路径, 并配置相 应路径中个节点的媒体处理转发表。
多业务控制器根据媒体流业务请求、叠加网拓朴和相应的媒体处 理资源分布数据, 计算出最优的媒体处理路径, 并配置媒体处理路径 上的各个网元的媒体处理转发表。
步骤 S703、 媒体流进入媒体接入网的首个边缘接入叠加节点, 该边缘接入叠加节点根据计算结果在媒体流的二层或伪线层上添加 叠加层, 并对媒体流进行转发, 具体的:
叠加层, 具体包括以太类型 Ethertype 字段和 M-VID 字段, Ethertype字段用于标识存在叠加层, M-VID字段用于指示对媒体流 的处理类型;
当媒体接入网为基于以太网隧道的网络时, 叠加层, 还可以是仅 包含 I-SID ( Service Instance VLAN ID, 业务实例虚拟局域网标识 ) 字段, I-SID字段用于指示对媒体流的处理类型。
步骤 S704、 媒体接入网的中间接入叠加节点根据叠加层对媒体 流进行相应的媒体处理, 并根据叠加层对媒体流进行转发。
其中, 根据叠加层对媒体流进行相应的媒体处理之后, 还包括: 变更 M-VID字段或 I-SID字段为对媒体流进行的下一项媒体处理所 对应的编码。
步骤 S705、 媒体流离开媒体接入网的末个边缘接入叠加节点, 该接入叠加节点根据叠加层对媒体流进行相应的媒体处理,根据叠加 层对媒体流进行转发, 转发时去除叠加层。
步骤 S706、 接入叠加节点向多业务控制器上报体验质量特征数 据。
步骤 S707、 多业务控制器根据体验质量特征数据进行媒体流的 体验质量判断, 判断媒体流的体验质量是否劣化。
当媒体流的体验质量判断结果为体验质量正常时, 转入步骤 S708; 当媒体流的体验质量判断结果为体验质量劣化时, 转入步骤
S709。
步骤 S708、 继续按照该最优媒体处理路径进行媒体流处理和转 发, 直至该媒体流业务结束。
步骤 S709、 多业务控制器进一步分析出导致业务劣化的原因、 位置和解决方法, 并 ^据导致业务劣化的原因、位置和解决方法重新 为媒体流计算最优媒体处理路径。
计算完成后,多业务控制器重配置媒体处理路径上的各个网元的 媒体处理转发表, 返回步骤 S702。
下面, 通过具体的实施例对上述媒体转发方法进行说明,媒体接 入网实施举例如图 8所示, Clientl与 Client2进行 P2P视频通信。
假设媒体接入网中, M-AN1设置有 DPI ( Deep Packet Inspection, 深度报文检测 ) filtering功能模块, M-AN2设置有 QoE Monitoring 功能模块, M- AN3设置有 Caching和应用层 FEC功能模块, M- AN4 设置有 Media Transcoding功能模块; M-AN1 ~ M-AN4间设置有参考 点,即 M-AN1 ~ M-AN4间支持互通信功能。对于 Internet业务, Clientl 到 Client2的最短路径为 Clientl至 M-AN0至 M-AN2至 Client2; 但 对于 Video Streaming业务, 需要由 Multi-service Controller计算最佳 媒体处理路径。 基于上述实施场景, 本发明通过如下实施例提出具体处理方案。 本发明实施例一, 假设媒体接入网为基于 IP感知或 IP路由, 则 对于 AON, 具体需要进行以下处理:
1、 设置叠加网各个节点为 PE/s-PE ( Provider Edge运营商边缘 /Switching PE交换运营商边缘)节点, 叠加网各个节点支持 ARP代 理。
2、 增加 L2 OL ( Layer 2 overlay layer, 二层叠加层)。
如图 9所示, L2 OL由 M-VID构成,通过 L2 OL的 M-VID来指 示具体的基本媒体处理类型; M-VID指示的是对 IP地址、 以太网目 的地址(DA, Destination Address ), 源地址( SA, Source Address )、 以太类型 Ethertype、 虚拟局域网标识(VID, VLAN Identifier ) (可由 多层 VLAN组成) 决定的数据流的基本媒体处理类型; IP地址、 以 太网目的地址、 源地址、 以太类型、 虚拟局域网标识称为流标识相关 项。 L2 OL的存在与否可由前一级的以太类型标识字段来指示。
3、 AON支持 IP桥接, IP桥接转发表(即为下文中的媒体处理 转发表或媒体处理转发扩展表) 由 Multi-service Controller进行配置, IP桥接转发表增加指示基本媒体处理类型的 M-VID项目、下一跳 DA 地址和下一兆 M-VID。
4、 AON可以不再分析 IP/TCP/UDP, 不再 #文 IP路由, 而直接才艮 据 M-VID进行相应的基本媒体处理操作。
基于以上设置,本发明实施例所提供的技术方案的实施过程如图 10所示, 具体包括以下步骤:
步骤 S1000、 Clientl 向 AN0 发送 ARP ( Address Resolution Protocol, 地址解析协议)请求, 询问 IP地址为 IPc的用户 MAC地 址, AN0向 Clientl返回 IP地址为 AN0的 MAC地址 MAC0;
步骤 S1001、 Clientl向 Multi-service Controller发送向 Client2提 供 p2p Video Streaming业务请求。
步骤 S 1002、 Multi-service Controller的媒体处理资源媒体处理资 源接纳控制模块, 根据 Video Streaming业务请求对 QoS Enablerl ~ 4 组成的叠加网进行媒体处理资源的接纳控制,向媒体处理路径配置和 优化模块发出媒体处理资源请求。
步骤 S1003、 媒体处理路径配置和优化模块, 根据叠加网拓朴管 理功能模块提供的叠加网拓朴和相应的媒体处理资源分布数据,计算 出最优的媒体处理路径,并配置媒体处理路径上的各个网元的媒体处 理转发表; 本例中的第一次计算出的最优媒体处理路径为: Clientl 至 M-AN0至 M-AN1至 M-AN2至 Client2; 其中, 对于上述的最优 媒体处理路径, M-AN0、 M-AN1和 M-AN2媒体处理转发表配置分 别如表 2、 表 5、 表 8所示, 具体如下: 表 2 M-ANO媒体处理转发表
Figure imgf000016_0001
或者, 将表 2分为两个: MAC转发表和媒体处理转发扩展表; 对 于 MAC转发表, 若相应的流需要做媒体处理, 则在出端口项配置为 特殊值(如 "0"值), 以指示需要进一步查媒体处理转发扩展表; 若 相应的流不需要做媒体处理, 则在出端口项为正常值, 无须进一步查 媒体处理转发扩展表; 当根据 MAC DA和流标识相关项(如业务 VID ) 查 MAC转发表时, 若查到出端口为特殊的值 (如 "0" 值), 则继续 根据目的 IP地址和流标识其它相关项 (如用户 VID ) 查媒体处理转发 扩展表。 采用分级表, 可以使转发表的存储空间大大降低, 具体如表 3、 表 4所示。
M-ANO MAC地址转发表
Figure imgf000016_0002
M-AN0媒体处理转发扩展表
Figure imgf000016_0003
M-ANl媒体处理转发表配置如表 5所示:
表 5 M-AN1媒体处理转发表
Figure imgf000017_0001
或者, 将表 5分为两个:
表 6 M-ANl MAC地址转发表
Figure imgf000017_0002
M-AN1媒体处理转发扩展表
Figure imgf000017_0003
M-AN2媒体处理转发表配置如表 8所示: 表 8 M-AN2媒体处理转发表
Figure imgf000018_0001
或者, 将表 8分为两个:
表 9 M-AN2 MAC地址转发表
Figure imgf000018_0002
M-AN2媒体处理转发扩展表
Figure imgf000018_0003
步骤 S1004、 当媒体处理路径配置成功, 媒体处理路径配置和优 化模块向媒体处理资源媒体处理资源接纳控制模块回复媒体处理资 源应答; 媒体处理资源媒体处理资源接纳控制模块进一步向 Clientl 回复 Video Streaming业务应答。
步骤 S1005、 Clientl根据 Video Streaming业务应答发送 Video Stream, 目的 IP地址为 IPc, 目的 MAC地址为 MAC0。
步骤 SI 006、 M-AN0收到数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体处理转发表 (或 MAC转发表和媒体处理转发 扩展表 ), 添加 L2 OL, 并设 M-VID为 "00000010" , DA为 MAC1 , 转发出去。
步骤 S1007、 M-AN1接收数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体转发表, 根据 M-VID指示进行 DPI filtering 处理,然后根据下一跳 DA将 DA改为 MAC2,根据下一跳 M-VID将 M-VID改为 "00000001" , 转发出去。
步骤 S 1008、 M-AN2接收数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体转发表,根据 M-VID指示进行 QoE Monitoring 处理, 然后去除 L2 0L, 由用户端口转发给 Client2。
步骤 S1009、 M-AN2将 QoE问题特征数据 (例如出现马赛克效 应的用户 BER )上才艮给 Multi-service Controller„
步骤 S1010、 Multi-service Controller的 QoE分析功能模块模块, 根据 M-AN2上报的 QoE问题特征数据分析出导致业务劣化的原因、 位置和解决方法, 上报给媒体处理的路径配置和优化模块, 例如用户 出现马赛克效应是因为 M-AN2的用户线路 BER偏高,解决方法是需 要添力口 Video Caching和应用层 FEC ( Forward Error Control, 前向差 错控制 ) 的基本媒体处理。
步骤 S1011、媒体处理的路径配置和优化模块根据 QoE分析功能 模块模块的建议和加网拓朴管理功能模块提供的叠加网拓朴和相应 的媒体处理资源分布数据, 计算出新的媒体处理路径, 并重配置媒体 处理路径上的各个网元的媒体处理转发表;本例中的计算出的新的媒 体处理路径为: Clientl至 M-AN0至 M-AN1至 M-AN3至 M-AN2至 Client2;
M-AN1和 M-AN3媒体处理转发表重配置如下: 表 11 M-ANl媒体处理转发表
Figure imgf000020_0001
或者, 将表 12分为两个:
表 12 M-ANl MAC地址转发表
Figure imgf000020_0002
M-AN1媒体处理转发扩展表
Figure imgf000020_0003
M-AN3媒体处理转发表配置如表 14所示:
表 14 M-AN3媒体处理转发表
Figure imgf000020_0004
或者, 将表 14分为两个:
表 15 M-AN3 MAC地址转发表
Figure imgf000021_0001
M-AN3媒体处理转发扩展表
Figure imgf000021_0002
步骤 S1012、 M-AN1接收数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体转发表, 根据 M-VID指示进行 DPI filtering 处理,然后根据下一跳 DA将 DA改为 MAC3 ,根据下一跳 M-VID 将 M-VID改为 " 11000000" , 转发出去。
步骤 S 1013、 M-AN3接收数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体转发表, 根据 M- VID指示进行 Video Caching 和应用层 FEC处理, 然后根据下一跳 DA将 DA改为 MAC2 , 根据 下一跳 M-VID将 M-VID改为 "00000001 " , 转发出去。
步骤 S1014、 M-AN2接收数据包, 根据 MAC DA、 目的 IP地址 和流标识相关项查媒体转发表,根据 M-VID指示进行 QoE Monitoring 处理, 然后去除 L2 0L, 由用户端口转发给 Client2。 本发明实施例二, 设媒体接入网为基于以太网隧道(如:
802.1ah/PBB ( Provider Backbone Bridge , 运营商骨干桥) /PBB-TE ( Provider Backbone Bridge Traffic Engineering , 运营商骨干桥;^ L量工 程)), 则对于 AON, 具体需要进行以下处理: 1、 设置叠加网各个节点为 PE/s-PE节点, PE/s-PE节点间采用以 太网隧道互连, 叠加网各个节点支持 ARP代理。
2、 增加 P W OL ( Pseudo Wire overlay layer , 伪线叠加层)。
如图 11所示, PW OL由 M-VID或 I-SID构成, 通过 PW OL的
M-VID或 I-SID来指示具体的基本媒体处理类型; M-VID/I-SID指示 的是对 PW ( Pseudo Wire, 伪线) 的基本媒体处理类型。
3、 PW 交换表(即为下文的媒体处理转发表或媒体处理转发扩 展表 )由 Multi-service Controller进行配置, PW交换表增加指示基本 媒体处理类型的 M-VID项目和下一跳 M-VID。
4、 AON可以不再分析 IP/TCP/UDP, 不再 #文 IP路由, 而直接才艮 据 M-VID进行相应的基本媒体处理操作。
基于以上设置,本发明实施例所提供的技术方案的实施过程如图 12所示, 具体包括以下步骤:
步骤 S1200~S1202、 同步骤 S1000~ S1002。
步骤 S1203、 媒体处理路径配置和优化模块, 根据叠加网拓朴管 理功能模块提供的叠加网拓朴和相应的媒体处理资源分布数据,计算 出最优的媒体处理路径,并配置媒体处理路径上的各个网元的媒体处 理转发表; 本例中的第一次计算出的最优媒体处理路径为: Clientl 至 M-AN0至 M-AN1至 M-AN2至 Client2; 其中, 对于上述的最优 媒体处理路径, M-AN0、 M-AN1和 M-AN2二层媒体处理转发表配 置如下:
表 17 M-AN0媒体处理转发表
Figure imgf000022_0001
M-ANl媒体处理转发表配置如表 20所示: 表 20 M-AN1媒体处理转发表
Figure imgf000023_0001
或者, 将表 20分为两个:
表 21 M-ANl PW交换表
Figure imgf000023_0002
表 22 M-AN1媒体处理转发扩展表
Figure imgf000023_0003
M-AN2媒体处理转发表配置如表 23所示:
表 23 M-AN2媒体处理转发表
Figure imgf000023_0004
或者, 将表 23分为两个: M-AN2 PW交换表
Figure imgf000024_0001
M-AN2媒体处理转发扩展表
Figure imgf000024_0002
步骤 S1204~S1205、 同 S1004~ S1005。
步骤 S1206、 M-AN0作为 PE收到数据包, 根据 IP DA和流标识 相关项查媒体处理转发表(或 PW交换表和媒体处理转发扩展表), 添加 PW OL, 并设 M-VID为 "00000010" , 封装相应的以太网隧道, 转发出去。
步骤 S1207、 M-AN1接收数据包, 终结以太网隧道,根据 PW标 识查媒体转发表,根据 M-VID指示进行 DPI filtering处理, 然后根据 下一跳 M-VID将 M-VID改为 "0000000 , 封装相应的以太网隧道, 转发出去。
步骤 S1208、 M-AN2接收数据包, 终结以太网隧道,根据 PW标 识查媒体转发表, 根据 M-VID指示进行 QoE Monitoring处理, 然后 去除 PW OL, 由用户端口转发给 Client2。
步骤 S1209~S1210、 同 S1009~S1010。
步骤 S1211、媒体处理的路径配置和优化模块根据 QoE分析功能 模块模块的建议和加网拓朴管理功能模块提供的叠加网拓朴和相应 的媒体处理资源分布数据, 计算出新的媒体处理路径, 并重配置媒体 处理路径上的各个网元的媒体处理转发表;本例中的计算出的新的媒 体处理路径为: Clientl至 M-AN0至 M-AN1至 M-AN3至 M-AN2至 Client2;
M-AN1和 M-AN3媒体处理转发表重配置如下:
表 26 M-AN1媒体处理转发表
Figure imgf000025_0001
或者, 将表 26分为两个:
表 27 M-AN1 PW交换表
Figure imgf000025_0002
M-AN1媒体处理转发扩展表
Figure imgf000025_0003
M-AN3媒体处理转发表重配置如下: 表 29 M-AN3媒体处理转发表
Figure imgf000026_0001
或者, 将表 29分为两个:
M-AN3 PW交换表
Figure imgf000026_0002
M-AN3媒体处理转发扩展表
Figure imgf000026_0003
步骤 S1212、 M-AN1接收数据包, 终结以太网隧道,根据 PW标 识查媒体转发表,根据 M-VID指示进行 DPI filtering处理, 然后根据 下一跳 M-VID将 M-VID改为 "11000000" , 封装新的以太网隧道, 转发出去。
步骤 S1213、 M-AN3接收数据包, 终结以太网隧道,根据 PW标 识查媒体转发表,根据 M-VID指示进行 Video Caching和应用层 FEC 处理, 然后根据下一跳 M-VID将 M-VID改为 "00000001" , 封装新 的以太网隧道, 转发出去。
步骤 S1214、 M-AN2接收数据包, 终结以太网隧道,根据 PW标 识查媒体转发表, 根据 M-VID指示进行 QoE Monitoring处理, 然后 去除 PW OL, 由用户端口转发给 Client2。 本发明实施例三, 假设媒体接入网为基于 MPLS 隧道, 则对于 AON, 具体需要进行以下处理:
1、 设置叠加网各个节点为 PE/s-PE 节点, PE/s-PE 节点间采用 MPLS隧道互连。
2、 增力口 PW OL ( Pseudo Wire overlay layer )。
如图 13所示, PW OL由一重 MPLS 标签(称为 M-MPLS label, Media MPLS label )构成, 通过 PW OL的 M-MPLS label来指示具体 的基本媒体处理类型; M-MPLS label指示的是对 PW的基本媒体处 理类型。
3、 PW 交换表(即为下文的媒体处理转发表或媒体处理转发扩 展表 )由 Multi-service Controller进行配置, PW交换表增加指示基本 媒体处理类型的 M- MPLS label项目和下一兆 M- MPLS label。
4、 AON可以不再分析 IP/TCP/UDP, 不再 #文 IP路由, 而直接才艮 据 M- MPLS label进行相应的基本媒体处理操作。
基于以上设置,本发明实施例所提供的技术方案的实施过程如图
14所示, 具体包括以下步骤:
步骤 S1400、Clientl向 EN发送 ARP( Address Resolution Protocol, 地址解析协议)请求, 询问 IP地址为 IPc的用户 MAC地址, EN向 Clientl返回 IP地址为 IPc的用户 MAC地址为 MACc。
步骤 S1401~S1402、 同步骤 S1001~S1002。
步骤 S1403、 与步骤 S1203 的区别在于, M-AN0、 M-AN1 和 M-AN2 媒体处理转发表配置中 M-VID 和下一跳 M-VID 项目由 M-MPLS label和下一跳 M-MPLS label所替代。
步骤 S1404~S1405、 同步骤 S1004~ S1005。 步骤 S1406、 M-ANO作为 PE收到数据包, 根据 IP DA和流标识 相关项查媒体处理转发表(或 PW交换表和媒体处理转发扩展表), 添加 PW OL, 并设 M-MPLS label为 "00000010" , 封装相应的 MPLS 隧道, 向 M-AN1转发。
步骤 S1407、 M-AN1接收数据包, 终结 MPLS隧道, 根据 PW 标识查媒体转发表, 根据 M-MPLS label指示进行 DPI filtering处理, 然后根据下一跳 M-MPLS label将 M-MPLS label改为 "0000000 , 封装相应的 MPLS隧道, 向 M-AN2转发。
步骤 S1408、 M-AN2接收数据包, 终结 MPLS隧道, 根据 PW 标识查媒体转发表, 根据 M-MPLS label指示进行 QoE Monitoring处 理, 然后去除 PW OL, 由用户端口转发给 Client2。
步骤 S1409~S1410、 同步骤 S1009~S1010。
步骤 S1411、 与步骤 S 12011的区别在于, M-AN0、 M-AN1和 M-AN2 媒体处理转发表配置中 M-VID 和下一跳 M-VID 项目由 M-MPLS label和下一跳 M-MPLS label所替代。
步骤 S1412、 M-AN1接收数据包, 终结 MPLS隧道, 根据 PW 标识查媒体转发表, 根据 M-MPLS label指示进行 DPI filtering处理, 然后根据下一跳 M-MPLS label将 M-MPLS label改为 "11000000" , 封装新的 MPLS隧道, 向 M-AN3转发。
步骤 S1413、 M-AN3接收数据包, 终结 MPLS隧道, 根据 PW 标识查媒体转发表,根据 M-MPLS label指示进行 Video Caching和应 用层 FEC处理, 然后根据下一跳 M-MPLS label将 M-MPLS label改 为 "00000001" , 封装新的以太网隧道, 向 M-AN2转发。
步骤 S1414、 M-AN2接收数据包, 终结 MPLS隧道, 根据 PW 标识查媒体转发表, 根据 M-MPLS label指示进行 QoE Monitoring处 理, 然后去除 L2 0L, 由用户端口转发给 Client2。
本发明实施例的技术方案具有以下优点, 因为采用了为媒体流添 加二层叠加层的技术, 从而, 接入网通过最优路径对媒体流进行媒体 处理和转发, 并可以通过二层叠加层监控媒体流的体验质量, 在体验 质量劣化时, 根据接入网的媒体处理资源布局, 重配置和优化媒体处 理的路径,达到了动态改善媒体流的体验质量,提高用户体验的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可以通过硬件实现,也可以可借助软件加必要的通用硬件平 台的方式来实现基于这样的理解,本发明的技术方案可以以软件产品 的形式体现出来, 该软件产品可以存储在一个非易失性存储介质(可 以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种媒体转发系统, 其特征在于, 包括多业务控制器和接入 叠加节点 AON:
所述多业务控制器,用于控制所述接入叠加节点对媒体流进行媒 体转发, 并监控所述媒体流的体验质量 QoE;
所述接入叠加节点, 用于接受所述多业务控制器的控制, 为所述 媒体流的二层或伪线上添加叠加层, 进行媒体转发, 并向所述多业务 控制器反馈所述媒体流的体验质量特征数据。
2、 如权利要求 1所述媒体转发系统, 其特征在于, 所述多业务 控制器, 具体包括:
媒体处理资源接纳控制模块,用于接收所述接入叠加节点所发送 的媒体流业务请求;
媒体路径配置优化模块,用于根据所述媒体处理资源接纳控制模 块发送的所述媒体流业务请求, 为所述媒体流配置最优媒体处理路 径;
QoE分析模块,用于接收并分析所述接入叠加节点反馈的所述媒 体流的体验质量特征数据,并在根据所述媒体流的体验质量特征数据 判断所述媒体流为体验质量劣化时,请求所述媒体路径配置优化模块 为所述媒体流重新计算最优媒体处理路径;
叠加网拓朴管理模块,用于获取所述接入叠加节点组成的媒体接 入网的拓朴结构和资源布局,为所述媒体路径配置优化模块配置最优 媒体处理路径提供依据。
3、 如权利要求 1所述媒体转发系统, 其特征在于, 所述接入叠 加节点, 具体包括:
体验质量使能者, 用于接受多业务控制器的控制, 为所述媒体流 的二层或伪线上添加叠加层, 并对所述媒体流进行相应的媒体处理, 并向所述多业务控制器反馈所述媒体流的体验质量特征数据;
转发模块, 用于转发所述体验质量使能者处理后的媒体流。
4、 一种多业务控制器, 其特征在于, 包括:
媒体处理资源接纳控制模块,用于接收接入叠加节点所发送的媒 体流业务请求;
媒体路径配置优化模块,用于根据所述媒体处理资源接纳控制模 块发送的所述媒体流业务请求, 为所述媒体流配置最优媒体处理路 径;
QoE分析模块,用于接收并分析所述接入叠加节点反馈的所述媒 体流的体验质量特征数据,并在根据所述媒体流的体验质量特征数据 判断所述媒体流为体验质量劣化时,请求所述媒体路径配置优化模块 为所述媒体流重新计算最优媒体处理路径;
叠加网拓朴管理模块,用于获取所述接入叠加节点组成的媒体接 入网的拓朴结构和资源布局,为所述媒体路径配置优化模块配置最优 媒体处理路径提供依据。
5、 一种接入叠加节点, 其特征在于, 包括:
体验质量使能者, 用于接受多业务控制器的控制, 为所述媒体流 的二层或伪线上添加叠加层, 并对所述媒体流进行相应的媒体处理, 并向所述多业务控制器反馈所述媒体流的体验质量特征数据;
通信端口处理模块, 用于接收或发送媒体流。
6、 如权利要求 5所述接入叠加节点, 其特征在于, 所述体验质 量使能者, 具体包括:
路径配置子模块,用于接收所述多业务控制器发送的路径配置信 息, 并根据所述路径配置信息生成路径转发表;
转发表存储子模块,用于存储所述路径配置子模块所生成的路径 转发表;
媒体转发模块,用于根据所述转发表存储子模块存储的路径转发 表控制媒体处理子模块进行媒体处理,并转发所述媒体处理子模块处 理后的媒体流; 媒体处理子模块,用于根据所述媒体转发子模块的控制信息对所 述媒体流进行相对应的媒体处理操作,并向所述多业务控制器上报所 述媒体流的体验质量特征数据。
7、 如权利要求 5所述接入叠加节点, 其特征在于, 所述通信端 口处理模块, 具体包括:
入端口子模块, 用于接收所述媒体流, 并发送给所述体验质量使 能者进行媒体处理和媒体转发;
出端口子模块,用于将所述体验质量使能者处理和媒体转发后的 媒体流进行发送。
8、 一种媒体转发方法, 其特征在于, 包括以下步骤:
接收媒体流业务请求,并转发所述媒体流业务请求给多业务控制 器;
接收所述多业务控制器发送的根据所述媒体流业务请求所得到 的最优媒体处理路径计算结果;
接收媒体流,并根据所述计算结果在所述媒体流的二层或伪线上
; ^力口 ¾力口
根据所述叠加层对所述媒体流进行相应的媒体处理,并根据所述 叠加层对所述媒体流进行转发。
9、 如权利要求 8所述媒体转发方法, 其特征在于, 所述接收多 业务控制器发送的根据所述媒体流业务请求所得到的最优媒体处理 路径计算结果, 具体为接收所述多业务控制器发送的媒体处理转发 表,所述媒体处理转发表中包含用于指示媒体处理类型的虚拟局域网 标识 VID信息和用于指示下一跳媒体处理类型的 VID, 或者包含用 于指示媒体处理类型的多协议标记交换标签和用于指示下一跳媒体 处理类型的多协议标记交换标签。
10、 如权利要求 8所述媒体转发方法, 其特征在于,
所述叠加层, 具体包括以太类型 Ethertype字段和 VID字段, 所 述 Ethertype字段用于标识存在所述叠加层, 所述 VID字段用于指示 对所述媒体流的处理类型;
当所述媒体接入网为基于以太网隧道的网络时, 所述叠加层, 具 体包括 Ethertype字段和 VID字段,所述 Ethertype字段用于标识存在 所述叠加层, 所述 VID字段用于指示对所述媒体流的处理类型, 或 仅包含业务实例虚拟局域网标识 I-SID字段, 所述 I-SID字段用于指 示对所述媒体流的处理类型。
11、 如权利要求 10所述媒体转发方法, 其特征在于, 所述根据 叠加层对所述媒体流进行相应的媒体处理之后, 还包括:
变更所述 M-VID字段或所述 I-SID字段为对所述媒体流进行的 下一项媒体处理所对应的编码。
12、 如权利要求 8所述媒体转发方法, 其特征在于, 还包括: 向所述多业务控制器上报体验质量特征数据,以进行所述媒体流 的体验质量判断。
13、 如权利要求 12所述媒体转发方法, 其特征在于, 当所述媒 体流的体验质量判断结果为体验质量劣化时,所述多业务控制器重新 为所述媒体流计算最优媒体处理路径。
14、 如权利要求 8所述媒体转发方法, 其特征在于, 还包括: 接收所述媒体流,并根据所述多业务控制器重新为所述媒体流计 算最优媒体处理路径的计算结果在所述媒体流的二层或伪线上添加 叠加层;
根据所述叠加层对所述媒体流进行相应的媒体处理,并根据所述 叠加层对所述媒体流进行转发。
PCT/CN2009/072012 2008-05-30 2009-05-27 一种媒体转发方法、系统和装置 WO2009143773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810110783.3 2008-05-30
CN2008101107833A CN101594555B (zh) 2008-05-30 2008-05-30 一种媒体转发方法、系统和装置

Publications (1)

Publication Number Publication Date
WO2009143773A1 true WO2009143773A1 (zh) 2009-12-03

Family

ID=41376613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072012 WO2009143773A1 (zh) 2008-05-30 2009-05-27 一种媒体转发方法、系统和装置

Country Status (2)

Country Link
CN (1) CN101594555B (zh)
WO (1) WO2009143773A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347937B (zh) * 2010-08-02 2014-06-04 杭州华三通信技术有限公司 一种发送流媒体数据的方法及虚拟管理器
CN102137454B (zh) * 2010-09-26 2013-09-25 华为技术有限公司 业务叠加网络中的内容存储方法及设备
CN102148766B (zh) * 2011-05-11 2014-05-14 烽火通信科技股份有限公司 一种三层功能组网下pon内业务互通的方法
CN104734956B (zh) * 2012-02-13 2018-06-15 华为技术有限公司 业务路由系统及业务处理的方法、设备
CN102571602B (zh) * 2012-02-13 2015-03-11 华为技术有限公司 业务路由网络及业务处理的方法、设备
CN105723667B (zh) * 2014-06-28 2019-02-19 华为技术有限公司 一种路径计算的方法和装置
CN107592961B (zh) * 2015-05-13 2020-08-25 华为技术有限公司 基于叠加发送的网络节点,用户设备及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842677A1 (fr) * 2002-07-16 2004-01-23 Ipanema Technologies Procede de dimensionnement de la capacite d'un reseau de telecommunication
CN1993928A (zh) * 2004-08-11 2007-07-04 维迪亚特企业公司 多播和广播串流方法和系统
US20070271590A1 (en) * 2006-05-10 2007-11-22 Clarestow Corporation Method and system for detecting of errors within streaming audio/video data
WO2008025666A1 (fr) * 2006-08-16 2008-03-06 Ipanema Technologies Procede d'optimisation du transfert d'informations dans un reseau de telecommunication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842677A1 (fr) * 2002-07-16 2004-01-23 Ipanema Technologies Procede de dimensionnement de la capacite d'un reseau de telecommunication
CN1993928A (zh) * 2004-08-11 2007-07-04 维迪亚特企业公司 多播和广播串流方法和系统
US20070271590A1 (en) * 2006-05-10 2007-11-22 Clarestow Corporation Method and system for detecting of errors within streaming audio/video data
WO2008025666A1 (fr) * 2006-08-16 2008-03-06 Ipanema Technologies Procede d'optimisation du transfert d'informations dans un reseau de telecommunication

Also Published As

Publication number Publication date
CN101594555A (zh) 2009-12-02
CN101594555B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
US11258705B2 (en) Method, apparatus, and system for managing label of access network
US20230224246A1 (en) System, apparatus and method for providing a virtual network edge and overlay with virtual control plane
US10904142B2 (en) System, apparatus and method for providing a virtual network edge and overlay with virtual control plane
US10523593B2 (en) System, apparatus and method for providing a virtual network edge and overlay
USRE46195E1 (en) Multipath transmission control protocol proxy
US9929964B2 (en) System, apparatus and method for providing aggregation of connections with a secure and trusted virtual network overlay
WO2009143773A1 (zh) 一种媒体转发方法、系统和装置
EP1875668B1 (en) Scalable system method for dsl subscriber traffic over an ethernet network
EP1713197A1 (en) A method for implementing the virtual leased line
WO2010043167A1 (zh) 一种标签交换方法、装置和系统
WO2014008820A1 (zh) 业务处理方法、设备及系统
WO2011069419A1 (zh) 一种IPv6报文的处理方法、设备和系统
WO2011095040A1 (zh) 无缝多协议标签交换网络中标签分配方法、装置和系统
WO2009132559A1 (zh) 一种均衡流量的方法、装置及系统
WO2008019619A1 (fr) Équipement et système multi-extrémité et multiservice
JP7298606B2 (ja) 通信システム及び通信方法
US7978602B2 (en) Dynamic construction of label switching protocol interfaces
US9154447B2 (en) System and method for stitching Ethernet networks
US10237092B2 (en) Technique for routing and switching redundancy
CN1859430B (zh) Ip传输系统及其方法
JP2004032453A (ja) パケット通信システムとこのシステムで使用されるパケット転送装置及びパケット転送制御プログラム
JP2004104527A (ja) インターネットアクセスネットワーク及びアクセススイッチ装置
KR20050036365A (ko) Mpls 터널링을 이용한 인터넷 부가서비스 제공 시스템및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09753491

Country of ref document: EP

Kind code of ref document: A1