WO2009142362A1 - High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same - Google Patents

High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same Download PDF

Info

Publication number
WO2009142362A1
WO2009142362A1 PCT/KR2008/005132 KR2008005132W WO2009142362A1 WO 2009142362 A1 WO2009142362 A1 WO 2009142362A1 KR 2008005132 W KR2008005132 W KR 2008005132W WO 2009142362 A1 WO2009142362 A1 WO 2009142362A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature range
resultant structure
steel sheet
followed
weight percent
Prior art date
Application number
PCT/KR2008/005132
Other languages
French (fr)
Inventor
Young Hoon Jin
Kwang Geun Chin
Seung Bok Lee
Jai Hyun Kwak
Original Assignee
Posco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco filed Critical Posco
Priority to JP2011510406A priority Critical patent/JP5470375B2/en
Priority to US12/993,271 priority patent/US9109273B2/en
Publication of WO2009142362A1 publication Critical patent/WO2009142362A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Definitions

  • the present invention relates to a high strength steel sheet mainly used as structural parts of a vehicle such as a bumper reinforcing member or a shock absorber inside a door, and more particularly, to a high strength steel sheet and a hot dip galvanized steel sheet, both of which have high ductility and excellent delayed fracture resistance by changing composition and improving heat treatment from those of conventional steel types, and manufacturing methods thereof.
  • Background Art
  • a steel sheet for a vehicle requires higher level formability as shape of the vehicle are complicated and integrated.
  • a bumper reinforcing member and a shock absorber inside a door are required to have high tensile strength and elongation since they closely relate to the safety of passengers of a vehicle in the case of collision.
  • the bumper reinforcing member and the shock absorber are generally made of a high strength and high ductility steel sheet having a tensile strength of 780 MPa and an elongation 30% or more.
  • the present invention aims to manufacture a steel sheet for vehicles having high strength and elongation, such as a tensile strength of 980 MPa or more and an elongation of 28% or more, and excellent delayed fracture resistance.
  • a steel sheet containing a great amount of retained austenite for improving both strength and elongation has excellent uniform ductility. This is because retained austenite increases ductility while transforming into martensite when it is deformed.
  • retained austenite transforming into martensite sharply increases necking resistance. Due to these properties, a cold rolled steel sheet and the like in which a (222) texture is not developed can be subjected to drawing. Therefore, the application of steel sheets containing a great amount of retained austenite having excellent ductility will greatly increase when they can be used as processing products which are subjected to drawing.
  • the first method is an austempering method, which involves adding a great amount of Si and Mn into low carbon steel to form austenite in an annealing stage and then holding a predetermined bainite temperature in a cooling stage to increase both strength and ductility.
  • the retained austenite formed as above is caused to transform into martensite during plastic deformation, thereby increasing strength as well as ductility by alleviating stress concentration. This is referred to as Transformation Induced Plasticity (TRIP) and the resultant steel is used as high strength steel.
  • TRIP Transformation Induced Plasticity
  • a first method proposed by the present invention is to manufacture a steel sheet having a composition of the present invention by using the above described continuous annealing method.
  • the second method is an reverse transformation method, which reverse transforms martensite into austenite by re-annealing Mn low carbon steel at a predetermined temperature after hot rolling.
  • a mixed texture of martensite and bainite obtained after the hot rolling, is subjected to cold rolling and then batch annealing to form austenite in lath boundaries of the entire texture, followed by cooling down and retaining at room temperature.
  • the steel sheet containing a great amount of retained austenite, manufactured according to the above method has a problem of delayed fracture in which cracks occur as time passes after drawing (CAMP-ISIJ Vol.5 (1992), 1841).
  • the delayed fracture frequently occurs in high strength steel, such as a high tensile bolt in 1.2 GPa level, or austenite-based stainless steel.
  • the delayed fracture is generally in the form of cracks, which are caused by the diffusion of hydrogen atoms or molecules under high residual stress (Material Science and Technology, Vol. 20 (2004), 940).
  • a steel sheet containing a great amount of retained austenite is subjected to delayed fracture since internal stress occurs in boundaries, caused by cubical expansion induced by transformation of retained austenite into martensite by a drawing stage, and concentration increases due to intrusion of hydrogen (Material Science and Engineering A 438-440 (2006), 262-266).
  • intrusion hydrogen easily collects in boundaries between martensite and retained austenite.
  • Japanese Laid-Open Patent Application No. 1993-070886 discloses a composition consisting of 0.05 to 0.3% C, 2.0% or less Si, 0.5 to 4.0% Mn, 0.1% or less P, 0.1% S, 0 to 5.0% Ni, 0.1 to 2.0% Al, and 0.01% or less N, where Si (%) + Al (%) > 0.5, and Mn (%) + 1/3Ni (%) > 1.0, and also has a structure containing 5% or more retained austenite by volume.
  • a steel slab having the above composition is hot-rolled, coiled at a temperature range from 300 to 72O 0 C, and cold-rolled at a reduction rate from 30 to 80%.
  • the resulting steel sheet is subjected, in the course of a subsequent continuous annealing stage, to heating up to a temperature in the region between AcI transformation point and Ac3 transformation point, and then subjected, in the course of cooling, to holding at a temperature range from 550 to 35O 0 C for 30 sees or more or to slow cooling at a cooling rate of 400°C/min or less.
  • This technology belongs to the class of the continuous annealing, corresponding to the first method of the present invention. However, this technology is different from the present invention since added elements such as Mn, Ti, B and Sb are different and its mechanical properties are greatly less than those of the present invention.
  • Japanese Laid-Open Patent Application No. 2003-138345 discloses a composition consisting of, by mass, 0.06 to 0.20% C, 2.0% or less Si, and 3.0 to 7.0% Mn, and the balance Fe, in which the volume ratio of retained austenite is 10 to below 20%, and the area ratio of tempered martensite and tempered bainite is 30% or more.
  • a steel ingot having the above composition is manufactured by hot rolling or cold rolling at a reduction rate of 20% or less, followed by tempering heat treatment of holding at 700 0 C to (Al point - 5O) 0 C for 20 sec or less.
  • the resultant steel has a tensile strength of 800 MPa and an elongation of about 30%.
  • this technology has a problem of delayed fracture due to the lack of Al and is different from the present invention with respect to hot finish rolling temperature, cold reduction rate and annealing holding time, and its mechanical properties are greatly less than those requested.
  • Japanese Laid-Open Patent Application No. Hei 07-138345 discloses a high strength steel sheet consisting of 2 to 6% Mn and 20% or more retained austenite. This steel sheet has a composition consisting of 0.1 to 0.4% C, 0.5% or less Si, 2.0 to 6.0% Mn, 0.005 to 0.1% Al.
  • This steel sheet is produced by subjecting a hot rolled sheet or a cold rolled sheet, which is preliminarily heat-treated at a temperature range from 800 to 95O 0 C and then air-cooled or cooled at a cooling velocity equal to or higher than air cooling velocity, or a hot rolled sheet, prepared by hot rolling and coiling at a tern- perature range from 200 to 500 0 C, or a cold rolled sheet, prepared by cold-rolling this hot rolled sheet, to first-stage annealing at a temperature range from 650 to 75O 0 C for 1 minute or more, to cooling down to a temperature 500 0 C or less, and successively to second-stage annealing at a temperature range from 650 to 75O 0 C for 1 minute or more.
  • This technology is different from the present invention in that 20% or more retained austenite causes delayed fracture owing to transformation into martensite during drawing and Al for enhancing delayed fracture resistance is not added to the composition. Also with respect to annealing heat treatment, this technology performing the two annealing stages is different from the present invention performing one annealing stage.
  • the present invention has been devised to solve the foregoing problems with the conventional art related to a steel sheet having both high strength and high ductility, and one or more aspects of the present invention provide a cold rolled steel sheet and a hot dip galvanized steel sheet, which have improvement in delayed fracture resistance, a tensile strength of 980 PMa or more and an elongation of 28% or more by adding a suitable amount of Al for raising the stability of retained austenite and resistance against delayed fracture into an optimum composition that can increase the amount of retained austenite.
  • One or more aspects of the present invention provide a method of manufacturing a cold rolled steel sheet and a hot dip galvanized steel sheet, which have a tensile strength of 980 PMa or more, an elongation of 28% or more and excellent delayed fracture resistance.
  • a high strength cold rolled steel sheet and a galvanized steel sheet each of which consists of 0.05 to 0.3 weight percent C, 0.3 to 1.6 weight percent Si, 4.0 to 7.0 weight percent Mn, 0.5 to 2.0 weight percent Al, 0.01 to 0.1 weight percent Cr, 0.02 to 0.1 weight percent Ni and 0.005 to 0.03 weight percent Ti, 5 to 30ppm B, 0.01 to 0.03 weight percent Sb, 0.008 weight percent or less S, balance Fe and impurities.
  • a method of manufacturing a high strength cold rolled steel sheet and a method of manufacturing a galvanized steel sheet includes steps of: heating a steel slab having the above described composition at a temperature range from 1150 to 125O 0 C, followed by hot finish rolling at a temperature range from 880 to 92O 0 C; coiling the resultant structure at a temperature range from 550 to 65O 0 C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; and performing continuous annealing on the resultant structure by holding a temperature range from 670 to 75O 0 C for 60 seconds or more.
  • a method of manufacturing a high strength cold rolled steel sheet and a method of manufacturing a galvanized steel sheet includes steps of: heating a steel slab at a temperature range from 1150 to 125O 0 C, followed by hot finish rolling at a temperature range from 880 to 92O 0 C; coiling the resultant structure at a temperature range from 550 to 65O 0 C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing reverse transformation by batch-annealing the resultant structure at a temperature range from 620 to 72O 0 C for 1 to 24 hours; and cooling the resultant structure at a cooling rate from 10 to 200°C/s.
  • steel having the above described composition was manufactured according to the above described manufacturing conditions.
  • This steel has a tensile strength of 980 MPa or more and an elongation of 28% or more, and particularly, has delayed fracture resistance improved by the addition of Al component.
  • the steel sheet manufactured thereby can be used as reinforcing members and impact absorbers for vehicles, which are subjected to bending. Furthermore, this steel sheet can be deformed by a common level of drawing and thus can be made into some specific parts of the vehicles, which are made of 500 MPa level steel sheets. This can bring in effects such as the stability and lightweight of a vehicle body. Best Mode for Carrying out the Invention
  • the present invention relates to a high strength cold rolled steel sheet having excellent elongation and delayed fracture resistance and a manufacturing method thereof, wherein the high strength cold rolled steel sheet having a composition containing 0.05 to 0.3 weight percent C, 0.3 to 1.6 weight percent Si, 4.0 to 7.0 weight percent Mn, 0.5 to 2.0 weight percent Al, 0.01 to 0.1 weight percent Cr, 0.02 to 0.1 weight percent Ni and 0.005 to 0.03 weight percent Ti, 5 to 30ppm B, 0.01 to 0.03 weight percent Sb, 0.008 weight percent or less S, the balance Fe and impurities.
  • composition of the present invention will be described in detail (by weight percent).
  • the content of carbon (C) is in the range from 0.05% to 0.3%.
  • C is the most important component in steel, which has close relations with all physical and chemical properties such as strength and ductility.
  • C has an effect on the formation of martensite or bainite having a lath texture after hot rolling, and on the amount and stability of austenite, which is formed during reverse transformation by batch annealing.
  • the content of C is limited to the range from 0.05-0.3% since a C content under 0.05% decreases ductility and strength due to unstable formation of the lath texture and reduced stability of austenite after annealing but a C content exceeding 0.3% decreases workability due to increased cold rolling load and decreased weldability.
  • the content of silicon (Si) is in the range from 0.3 to 1.6%. Si acts to suppress the formation of carbide and thus ensure a predetermined amount of dissolved carbon, which is essential to Transformation Induced Plasticity (TRIP). Si is also added to facilitate the flotation of inclusion in a steel-making process while increasing the flowability of welding metal in welding.
  • the content of Si is limited to the range from 0.3 to 1.6% since a Si content under 0.3% does not have an effect on inclusions and the formation of MnS in the steel-making process but a Si content exceeding 1.6% causes hot rolling scales and degrades plating (galvanizing) property and weldability.
  • Mn is set to the range from 4.0 to 7.0%. Mn is added for effects of increasing hardenability to obtain a lath texture even in cooling conditions after hot coiling as well as extending the temperature range in which austenite is formed in the lath texture in reverse transformation by batch annealing.
  • the cooling rate necessary for the formation of martensite is expressed by the following relation:
  • Mn equivalent Mn% + 0.45 * Si% + 2.67 * Mo%.
  • the Mn equivalent is at least 3.6% since the cooling rate after the coiling is 0.005°C/s or more.
  • Mn is a component that increases strength by facilitating the formation of a low temperature transformation phase such as acicular ferrite and bainite. Mn is also a very effective element that stabilizes austenite to thereby facilitate the retaining of austenite formed in annealing.
  • Mn content is limited to the range from 4.0 to 7.0%.
  • the addition of Al is to prevent delayed fracture and increase the amount of dissolved carbon in austenite. Delayed fracture is mainly caused by hydrogen adsorption due to increase in residual stress and dislocation density resulting from internal deformation, which occurs in boundaries when retained austenite transforms into martensite.
  • the addition of high Mn greatly decreases the stacking fault energy inside steel to obstruct entangled dislocations from traveling, such that hydrogen can rarely escape from the core of the dislocations once adsorbed thereto, thereby increasing hydrogen concentration in the boundaries.
  • Al is the most effective component for raising stacking fault energy. Specifically, Al relatively facilitates the motion of dislocations, such that hydrogen can easily escape from the core of the dislocations to thereby lower hydrogen concentration in the boundaries.
  • Ni is set to the range from 0.02 to 0.1%.
  • Ni is an austenite stabilizing component, which has similar behavior to Mn. Ni increases the stability and fraction of retained austenite. Since a Ni content exceeding 0.1% greatly decreases the ductility of steel, the content of Ni of the present invention is limited to the range from 0.02 to 0.1%.
  • the content of Cr is set to the range from 0.01 to 0.1%.
  • the addition of Cr aims to increase hardenability and strength. Since an improvement effect in quenching cannot be expected any further at a Cr content exceeding 0.1%, the content of Cr of the present invention is limited to the range from 0.01 to 0.1%.
  • the content of Ti is set to the range from 0.005 to 0.03%.
  • Ti is a component ensuring that Al and B perform intended actions by precedently exhausting N in the form of TiN. Otherwise N would exhaust Al and B by forming AlN and BN.
  • a Ti content below 0.005% can rarely perform the intended function, but a Ti content exceeding 0.03% is no more effective. Therefore, the content of Ti is limited to the range from 0.005 to 0.03%.
  • the content of B is set to the range from 5 to 30ppm.
  • B is a component improving hardenability even if added at a small amount into steel.
  • B added at a content of 5ppm or more precipitates in austenite grain boundaries at a high temperature so as to suppress the formation of ferrite thereby contributing to the improvement of hardenability.
  • B added at a content exceeding 30ppm raises recrystallization temperature to thereby degrade weldability.
  • the content of Sb is set to the range from 0.01 to 0.03%. Sb improves surface characteristics when added at the suitable content from 0.01 to 0.03%. However, at a content exceeding 0.03%, Sb causes thickening to thereby worsen surface characteristics. Therefore, the Sb content of the present invention is limited to the range from 0.01 to 0.03%.
  • a steel slab having the above-described composition is heated to a temperature range from 1150 to 125O 0 C, followed by hot finish rolling at a temperature range from 880 to 92O 0 C. This corresponds to the heating temperature range of a steel slab that satisfies the composition of the present invention.
  • the coiling temperature is limited to the range from 550 to 65O 0 C owing to the following reasons.
  • a coiling temperature under 55O 0 C worsens the slab geometry and increases the strength of the hot rolled sheet, thereby degrading workability in cold rolling.
  • a coiling temperature exceeding 65O 0 C forms coarse band- like bainite grains so as to cause non-uniformity to an annealed structure thereby degrading workability.
  • the first manufacturing method is aimed to be applied to continuous annealing.
  • the continuous annealing is carried out at a temperature range from 670 to 75O 0 C for 60 minutes or more. Since the time range applicable to the continuous annealing is preferably from 1 to 3 minutes, in which faster distribution reaction of C and Mn compared to batch annealing is required, the temperature ranging from 670 to 75O 0 C with high C and Mn diffusion rates is set as an annealing temperature. The temperature range is determined such that austenite is formed in a lath texture. Specifically, an annealing temperature under 67O 0 C makes it difficult to ensure a certain amount of C, which is required to stabilize austenite to increase strength and ductility.
  • the annealing temperature is limited to the range from 670 to 75O 0 C and austenite can reach an equilibrium state when a predetermined temperature within this temperature range is held for 60 seconds or more.
  • the continuous annealing is followed by a typical cooling stage, preferably, at a cooling rate from 5 to 50°C/s.
  • the second manufacturing method relates to reverse transformation by batch annealing, which is carried out as follows:
  • annealing is performed in a temperature range from 620 to
  • the batch annealing for reverse transformation holds an annealing temperature for about one hour and needs a process time that is several tens of times of the process time of continuous annealing. Therefore, the annealing temperature of this stage is somewhat different from that of the continuous annealing.
  • the batch annealing for reverse transformation holds a lower temperature for a longer time than the continuous annealing does in order to ensure retained austenite. In this manufacturing method, at a temperature under 62O 0 C, it is impossible in terms of commercialization to ensure a necessary time for carbon distribution.
  • the annealing temperature is limited to the range from 620 to 72O 0 C.
  • the batch annealing time is required to be longer than the continuous annealing time and is a time necessary for realizing an equilibrium state in the annealing temperature.
  • a batch annealing time not exceeding one hour a large amount of retained austenite is not obtained since the nucleation and growth of austenite are unstable.
  • the upper limit is set 24 hours since austenite can sufficiently reach an equilibrium state in 24 hours and annealing beyond that time is economically inefficient.
  • the hot dip galvanization is preferably performed according to a common method in a galvanizing bath having a temperature range from 450 to 500 0 C.
  • the galvanizing temperature is preferably 45O 0 C or more in order to maximize the bonding of the hot dip galvanization but is limited to 500 0 C or less since a higher temperature may alloy the steel sheet.
  • the hot dip galvannealing is performed when necessary.
  • the hot dip galvannealing is carried out by a common method, preferably, at a temperature range from 500 to 600 0 C.
  • the galvannealing temperature is preferably limited between 500 and 600 0 C since alloying is not enough at a temperature under 500 0 C and a hot dip galvannealed layer may evaporate from the surface of the steel sheet at a temperature exceeding 600 0 C.
  • the hot dip galvanized or galvannealed steel sheet according to the above the hot dip galvanization or galvannealing has a hot dip galvanized or galvannealed layer having a thickness of 10/M or less.
  • the cold rolled steel sheets manufactured by the two methods of the present invention have substantially the same texture.
  • Each of the cold rolled steel sheets of the present invention consists of 40 to 50% annealed martensite as matrix, 20 to 40% retained austenite and balance ferrite.
  • the present invention limits the amount of the retained austenite to the range from 20 to 40% in order to obtain high tensile strength and elongation.
  • Table 5 show the results of measuring the tensile strength, elongation and crack length in delayed fracture of Inventive Steels and Comparative Steels after the reverse transformation by batch annealing. The property evaluation of the crack length in delayed fracture was performed in the same manner as above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A cold rolled steel sheet and a hot dip galvanized steel sheet, which have high strength and elongation, such as a tensile strength of 980 MPa or more and an elongation of 28% or more, and excellent delayed fracture resistance, and manufacturing methods thereof. The cold rolled steel sheet has a composition consisting of 0.05 to 0.3 weight percent C, 0.3 to 1.6 weight percent Si, 4.0 to 7.0 weight percent Mn, 0.5 to 2.0 weight percent Al, 0.01 to 0.1 weight percent Cr, 0.02 to 0.1 weight percent Ni and 0.005 to 0.03 weight percent Ti, 5 to 30ppm B, 0.01 to 0.03 weight percent Sb, 0.008 weight percent or less S, balance Fe and impurities. The hot dip galvanized steel sheet has a hot dip galvanized layer or a hot dip galvannealed layer on the cold rolled steel sheet.

Description

Description
HIGH STRENGTH STEEL SHEET AND HOT DIP
GALVANIZED STEEL SHEET HAVING HIGH DUCTILITY
AND EXCELLENT DELAYED FRACTURE RESISTANCE AND
METHOD FOR MANUFACTURING THE SAME Technical Field
[1] The present invention relates to a high strength steel sheet mainly used as structural parts of a vehicle such as a bumper reinforcing member or a shock absorber inside a door, and more particularly, to a high strength steel sheet and a hot dip galvanized steel sheet, both of which have high ductility and excellent delayed fracture resistance by changing composition and improving heat treatment from those of conventional steel types, and manufacturing methods thereof. Background Art
[2] Recently, a steel sheet for a vehicle requires higher level formability as shape of the vehicle are complicated and integrated. In particular, a bumper reinforcing member and a shock absorber inside a door are required to have high tensile strength and elongation since they closely relate to the safety of passengers of a vehicle in the case of collision. Thus, the bumper reinforcing member and the shock absorber are generally made of a high strength and high ductility steel sheet having a tensile strength of 780 MPa and an elongation 30% or more. As the problem of environmental pollution due to exhaust gas emission is recently rising, researches for light weight vehicles using high strength steel are increasing. However, high strength and high elongation increase the fraction of retained austenite, which has a disadvantage of relatively increasing delayed fracture.
[3]
[4] Accordingly, the present invention aims to manufacture a steel sheet for vehicles having high strength and elongation, such as a tensile strength of 980 MPa or more and an elongation of 28% or more, and excellent delayed fracture resistance. A steel sheet containing a great amount of retained austenite for improving both strength and elongation has excellent uniform ductility. This is because retained austenite increases ductility while transforming into martensite when it is deformed. In addition, when localized compression is applied for example in a drawing stage, retained austenite transforming into martensite sharply increases necking resistance. Due to these properties, a cold rolled steel sheet and the like in which a (222) texture is not developed can be subjected to drawing. Therefore, the application of steel sheets containing a great amount of retained austenite having excellent ductility will greatly increase when they can be used as processing products which are subjected to drawing.
[5]
[6] Steel sheets containing a great amount of retained austenite are manufactured by two conventional methods.
[7] The first method is an austempering method, which involves adding a great amount of Si and Mn into low carbon steel to form austenite in an annealing stage and then holding a predetermined bainite temperature in a cooling stage to increase both strength and ductility. The retained austenite formed as above is caused to transform into martensite during plastic deformation, thereby increasing strength as well as ductility by alleviating stress concentration. This is referred to as Transformation Induced Plasticity (TRIP) and the resultant steel is used as high strength steel. A first method proposed by the present invention is to manufacture a steel sheet having a composition of the present invention by using the above described continuous annealing method.
[8]
[9] The second method is an reverse transformation method, which reverse transforms martensite into austenite by re-annealing Mn low carbon steel at a predetermined temperature after hot rolling. In this method, a mixed texture of martensite and bainite, obtained after the hot rolling, is subjected to cold rolling and then batch annealing to form austenite in lath boundaries of the entire texture, followed by cooling down and retaining at room temperature.
[10]
[11] However, as is known up to the present, the steel sheet containing a great amount of retained austenite, manufactured according to the above method, has a problem of delayed fracture in which cracks occur as time passes after drawing (CAMP-ISIJ Vol.5 (1992), 1841). The delayed fracture frequently occurs in high strength steel, such as a high tensile bolt in 1.2 GPa level, or austenite-based stainless steel. The delayed fracture is generally in the form of cracks, which are caused by the diffusion of hydrogen atoms or molecules under high residual stress (Material Science and Technology, Vol. 20 (2004), 940).
[12]
[13] A steel sheet containing a great amount of retained austenite is subjected to delayed fracture since internal stress occurs in boundaries, caused by cubical expansion induced by transformation of retained austenite into martensite by a drawing stage, and concentration increases due to intrusion of hydrogen (Material Science and Engineering A 438-440 (2006), 262-266). In particular, since hydrogen diffusion rate is high and hydrogen solubility is low in a martensite structure, intrusion hydrogen easily collects in boundaries between martensite and retained austenite.
[14]
[15] Japanese Laid-Open Patent Application No. 1993-070886 discloses a composition consisting of 0.05 to 0.3% C, 2.0% or less Si, 0.5 to 4.0% Mn, 0.1% or less P, 0.1% S, 0 to 5.0% Ni, 0.1 to 2.0% Al, and 0.01% or less N, where Si (%) + Al (%) > 0.5, and Mn (%) + 1/3Ni (%) > 1.0, and also has a structure containing 5% or more retained austenite by volume. A steel slab having the above composition is hot-rolled, coiled at a temperature range from 300 to 72O0C, and cold-rolled at a reduction rate from 30 to 80%. The resulting steel sheet is subjected, in the course of a subsequent continuous annealing stage, to heating up to a temperature in the region between AcI transformation point and Ac3 transformation point, and then subjected, in the course of cooling, to holding at a temperature range from 550 to 35O0C for 30 sees or more or to slow cooling at a cooling rate of 400°C/min or less. This technology belongs to the class of the continuous annealing, corresponding to the first method of the present invention. However, this technology is different from the present invention since added elements such as Mn, Ti, B and Sb are different and its mechanical properties are greatly less than those of the present invention.
[16]
[17] Japanese Laid-Open Patent Application No. 2003-138345 discloses a composition consisting of, by mass, 0.06 to 0.20% C, 2.0% or less Si, and 3.0 to 7.0% Mn, and the balance Fe, in which the volume ratio of retained austenite is 10 to below 20%, and the area ratio of tempered martensite and tempered bainite is 30% or more. A steel ingot having the above composition is manufactured by hot rolling or cold rolling at a reduction rate of 20% or less, followed by tempering heat treatment of holding at 7000C to (Al point - 5O)0C for 20 sec or less. The resultant steel has a tensile strength of 800 MPa and an elongation of about 30%. Compared with the present invention, this technology has a problem of delayed fracture due to the lack of Al and is different from the present invention with respect to hot finish rolling temperature, cold reduction rate and annealing holding time, and its mechanical properties are greatly less than those requested.
[18]
[19] Japanese Laid-Open Patent Application No. Hei 07-138345 discloses a high strength steel sheet consisting of 2 to 6% Mn and 20% or more retained austenite. This steel sheet has a composition consisting of 0.1 to 0.4% C, 0.5% or less Si, 2.0 to 6.0% Mn, 0.005 to 0.1% Al. This steel sheet is produced by subjecting a hot rolled sheet or a cold rolled sheet, which is preliminarily heat-treated at a temperature range from 800 to 95O0C and then air-cooled or cooled at a cooling velocity equal to or higher than air cooling velocity, or a hot rolled sheet, prepared by hot rolling and coiling at a tern- perature range from 200 to 5000C, or a cold rolled sheet, prepared by cold-rolling this hot rolled sheet, to first-stage annealing at a temperature range from 650 to 75O0C for 1 minute or more, to cooling down to a temperature 5000C or less, and successively to second-stage annealing at a temperature range from 650 to 75O0C for 1 minute or more. This technology is different from the present invention in that 20% or more retained austenite causes delayed fracture owing to transformation into martensite during drawing and Al for enhancing delayed fracture resistance is not added to the composition. Also with respect to annealing heat treatment, this technology performing the two annealing stages is different from the present invention performing one annealing stage.
[20]
[21] While the above described technologies were developed in view of increasing the content of retained austenite in order to increase both strength and ductility, there have been no solutions to the probability of delayed fracture that increases with the amount of retained austenite. Therefore, there are required an alloy composition, which can increase the content of retained austenite as well as improve delayed fracture resistance in order to increase both strength and ductility, and a manufacturing method thereof. Disclosure of Invention Technical Problem
[22] The present invention has been devised to solve the foregoing problems with the conventional art related to a steel sheet having both high strength and high ductility, and one or more aspects of the present invention provide a cold rolled steel sheet and a hot dip galvanized steel sheet, which have improvement in delayed fracture resistance, a tensile strength of 980 PMa or more and an elongation of 28% or more by adding a suitable amount of Al for raising the stability of retained austenite and resistance against delayed fracture into an optimum composition that can increase the amount of retained austenite.
[23] One or more aspects of the present invention provide a method of manufacturing a cold rolled steel sheet and a hot dip galvanized steel sheet, which have a tensile strength of 980 PMa or more, an elongation of 28% or more and excellent delayed fracture resistance. Technical Solution
[24] In one or more aspects of the present invention, there are provided a high strength cold rolled steel sheet and a galvanized steel sheet, each of which consists of 0.05 to 0.3 weight percent C, 0.3 to 1.6 weight percent Si, 4.0 to 7.0 weight percent Mn, 0.5 to 2.0 weight percent Al, 0.01 to 0.1 weight percent Cr, 0.02 to 0.1 weight percent Ni and 0.005 to 0.03 weight percent Ti, 5 to 30ppm B, 0.01 to 0.03 weight percent Sb, 0.008 weight percent or less S, balance Fe and impurities.
[25]
[26] In one or more aspects of the present invention, there are provided a method of manufacturing a high strength cold rolled steel sheet and a method of manufacturing a galvanized steel sheet. Each of the method includes steps of: heating a steel slab having the above described composition at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; and performing continuous annealing on the resultant structure by holding a temperature range from 670 to 75O0C for 60 seconds or more.
[27]
[28] In one or more aspects of the present invention, there are provided a method of manufacturing a high strength cold rolled steel sheet and a method of manufacturing a galvanized steel sheet. Each of the method includes steps of: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing reverse transformation by batch-annealing the resultant structure at a temperature range from 620 to 72O0C for 1 to 24 hours; and cooling the resultant structure at a cooling rate from 10 to 200°C/s.
Advantageous Effects
[29] According to one or more aspects of the present invention as set forth above, steel having the above described composition was manufactured according to the above described manufacturing conditions. This steel has a tensile strength of 980 MPa or more and an elongation of 28% or more, and particularly, has delayed fracture resistance improved by the addition of Al component. The steel sheet manufactured thereby can be used as reinforcing members and impact absorbers for vehicles, which are subjected to bending. Furthermore, this steel sheet can be deformed by a common level of drawing and thus can be made into some specific parts of the vehicles, which are made of 500 MPa level steel sheets. This can bring in effects such as the stability and lightweight of a vehicle body. Best Mode for Carrying out the Invention
[30] The present invention relates to a high strength cold rolled steel sheet having excellent elongation and delayed fracture resistance and a manufacturing method thereof, wherein the high strength cold rolled steel sheet having a composition containing 0.05 to 0.3 weight percent C, 0.3 to 1.6 weight percent Si, 4.0 to 7.0 weight percent Mn, 0.5 to 2.0 weight percent Al, 0.01 to 0.1 weight percent Cr, 0.02 to 0.1 weight percent Ni and 0.005 to 0.03 weight percent Ti, 5 to 30ppm B, 0.01 to 0.03 weight percent Sb, 0.008 weight percent or less S, the balance Fe and impurities.
[31]
[32] Hereinafter the composition of the present invention will be described in detail (by weight percent).
[33] The content of carbon (C) is in the range from 0.05% to 0.3%. C is the most important component in steel, which has close relations with all physical and chemical properties such as strength and ductility. In the steel sheet of the present invention, C has an effect on the formation of martensite or bainite having a lath texture after hot rolling, and on the amount and stability of austenite, which is formed during reverse transformation by batch annealing. The content of C is limited to the range from 0.05-0.3% since a C content under 0.05% decreases ductility and strength due to unstable formation of the lath texture and reduced stability of austenite after annealing but a C content exceeding 0.3% decreases workability due to increased cold rolling load and decreased weldability.
[34]
[35] The content of silicon (Si) is in the range from 0.3 to 1.6%. Si acts to suppress the formation of carbide and thus ensure a predetermined amount of dissolved carbon, which is essential to Transformation Induced Plasticity (TRIP). Si is also added to facilitate the flotation of inclusion in a steel-making process while increasing the flowability of welding metal in welding. The content of Si is limited to the range from 0.3 to 1.6% since a Si content under 0.3% does not have an effect on inclusions and the formation of MnS in the steel-making process but a Si content exceeding 1.6% causes hot rolling scales and degrades plating (galvanizing) property and weldability.
[36]
[37] The content of Mn is set to the range from 4.0 to 7.0%. Mn is added for effects of increasing hardenability to obtain a lath texture even in cooling conditions after hot coiling as well as extending the temperature range in which austenite is formed in the lath texture in reverse transformation by batch annealing. The cooling rate necessary for the formation of martensite is expressed by the following relation:
[38] log (critical cooling rate, 0CJs) = 3.95 - 1.73 * (Mn equivalent),
[39] where Mn equivalent = Mn% + 0.45 * Si% + 2.67 * Mo%. In the present invention, the Mn equivalent is at least 3.6% since the cooling rate after the coiling is 0.005°C/s or more. Mn is a component that increases strength by facilitating the formation of a low temperature transformation phase such as acicular ferrite and bainite. Mn is also a very effective element that stabilizes austenite to thereby facilitate the retaining of austenite formed in annealing. However, a Mn content exceeding 7% decreases weldability, changes the composition of steel making slag so as to increase the erosion of refractory members, and in a heating stage before hot rolling, forms Mn oxide in grain boundaries of a steel ingot adjacent to the surface thereby causing surface defects after the hot rolling. Furthermore, in the hot rolling, centerline segregation is formed in a steel slab thereby causing hydrogen embrittlement due to inclusions. Therefore, the Mn content is limited to the range from 4.0 to 7.0%.
[40]
[41] The content of Al is limited to the range from 0.5 to 2.0%. Likewise the addition of
Si, the addition of Al is to prevent delayed fracture and increase the amount of dissolved carbon in austenite. Delayed fracture is mainly caused by hydrogen adsorption due to increase in residual stress and dislocation density resulting from internal deformation, which occurs in boundaries when retained austenite transforms into martensite. In particular, the addition of high Mn greatly decreases the stacking fault energy inside steel to obstruct entangled dislocations from traveling, such that hydrogen can rarely escape from the core of the dislocations once adsorbed thereto, thereby increasing hydrogen concentration in the boundaries. Al is the most effective component for raising stacking fault energy. Specifically, Al relatively facilitates the motion of dislocations, such that hydrogen can easily escape from the core of the dislocations to thereby lower hydrogen concentration in the boundaries. However, at an Al content below 0.5%, the foregoing effects are rarely expectable. An Al content exceeding 2.0% facilitates the adsorption and escape of hydrogen but decreases the fraction of austenite, which relatively lowers ductility and thus degrades surface characteristics after galvanization.
[42]
[43] The content of Ni is set to the range from 0.02 to 0.1%. Ni is an austenite stabilizing component, which has similar behavior to Mn. Ni increases the stability and fraction of retained austenite. Since a Ni content exceeding 0.1% greatly decreases the ductility of steel, the content of Ni of the present invention is limited to the range from 0.02 to 0.1%.
[44]
[45] The content of Cr is set to the range from 0.01 to 0.1%. The addition of Cr aims to increase hardenability and strength. Since an improvement effect in quenching cannot be expected any further at a Cr content exceeding 0.1%, the content of Cr of the present invention is limited to the range from 0.01 to 0.1%.
[46]
[47] The content of Ti is set to the range from 0.005 to 0.03%. Ti is a component ensuring that Al and B perform intended actions by precedently exhausting N in the form of TiN. Otherwise N would exhaust Al and B by forming AlN and BN. A Ti content below 0.005% can rarely perform the intended function, but a Ti content exceeding 0.03% is no more effective. Therefore, the content of Ti is limited to the range from 0.005 to 0.03%.
[48]
[49] The content of B is set to the range from 5 to 30ppm. B is a component improving hardenability even if added at a small amount into steel. B added at a content of 5ppm or more precipitates in austenite grain boundaries at a high temperature so as to suppress the formation of ferrite thereby contributing to the improvement of hardenability. In contrast, B added at a content exceeding 30ppm raises recrystallization temperature to thereby degrade weldability.
[50]
[51] The content of Sb is set to the range from 0.01 to 0.03%. Sb improves surface characteristics when added at the suitable content from 0.01 to 0.03%. However, at a content exceeding 0.03%, Sb causes thickening to thereby worsen surface characteristics. Therefore, the Sb content of the present invention is limited to the range from 0.01 to 0.03%.
[52]
[53] Below, manufacturing methods of the present invention will be described in detail.
[54]
[55] In the present invention, a steel slab having the above-described composition is heated to a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C. This corresponds to the heating temperature range of a steel slab that satisfies the composition of the present invention.
[56]
[57] After the hot finishing rolling, coiling is carried out at a temperature ranging from
550 to 65O0C. The coiling temperature is limited to the range from 550 to 65O0C owing to the following reasons. A coiling temperature under 55O0C worsens the slab geometry and increases the strength of the hot rolled sheet, thereby degrading workability in cold rolling. A coiling temperature exceeding 65O0C forms coarse band- like bainite grains so as to cause non-uniformity to an annealed structure thereby degrading workability.
[58]
[59] After the coiling, pickling using hydrochloric acid is performed, followed by cold rolling at a cold reduction rate from 30 to 60%. The cold reduction rate is limited to the range from 30 to 60% since thickness decreases little at a reduction rate under 30% but rolling is difficult owing to increasing rolling load at a reduction rate exceeding 60%.
[60] [61] After the cold rolling, two methods can be applied in the present invention. Below, a detailed description will be made of the two methods.
[62]
[63] The first manufacturing method is aimed to be applied to continuous annealing.
[64] After the cold rolling, the continuous annealing is carried out at a temperature range from 670 to 75O0C for 60 minutes or more. Since the time range applicable to the continuous annealing is preferably from 1 to 3 minutes, in which faster distribution reaction of C and Mn compared to batch annealing is required, the temperature ranging from 670 to 75O0C with high C and Mn diffusion rates is set as an annealing temperature. The temperature range is determined such that austenite is formed in a lath texture. Specifically, an annealing temperature under 67O0C makes it difficult to ensure a certain amount of C, which is required to stabilize austenite to increase strength and ductility. At an annealing temperature exceeding 75O0C, austenite stability is not ensured since it is difficult to prevent carbide precipitation due to facilitated diffusion of Si and Al elements. Hence, the annealing temperature is limited to the range from 670 to 75O0C and austenite can reach an equilibrium state when a predetermined temperature within this temperature range is held for 60 seconds or more.
[65] The continuous annealing is followed by a typical cooling stage, preferably, at a cooling rate from 5 to 50°C/s.
[66]
[67] The second manufacturing method relates to reverse transformation by batch annealing, which is carried out as follows:
[68] After the cold rolling, annealing is performed in a temperature range from 620 to
72O0C for 1 to 24 hours.
[69] Generally, it is assumed that the batch annealing for reverse transformation holds an annealing temperature for about one hour and needs a process time that is several tens of times of the process time of continuous annealing. Therefore, the annealing temperature of this stage is somewhat different from that of the continuous annealing. The batch annealing for reverse transformation holds a lower temperature for a longer time than the continuous annealing does in order to ensure retained austenite. In this manufacturing method, at a temperature under 62O0C, it is impossible in terms of commercialization to ensure a necessary time for carbon distribution. At a temperature of 72O0C or more, high ductility is not obtained since retained austenite becomes unstable by decomposition (carbide forming reaction) due to the long diffusion time of structural elements. Accordingly, the annealing temperature is limited to the range from 620 to 72O0C.
[70] The batch annealing time is required to be longer than the continuous annealing time and is a time necessary for realizing an equilibrium state in the annealing temperature. At a batch annealing time not exceeding one hour, a large amount of retained austenite is not obtained since the nucleation and growth of austenite are unstable. The upper limit is set 24 hours since austenite can sufficiently reach an equilibrium state in 24 hours and annealing beyond that time is economically inefficient.
[71]
[72] The batch annealing is followed by cooling at a cooling rate from 10 to
2000C. When the amount of cold rolling increases, dislocations induced by the rolling also increases to an excessive amount, such that a lath texture, which was formed before the cold rolling, is destroyed by recrystallization behavior and thus austenite changes into short bar-shaped minute grains. Since these grains decrease elongation, the formation of recrystallization grains should be suppressed by cooling at a predetermined rate or more after the batch annealing. The lath texture should be held by accelerated cooling in order to ensure both strength and ductility. A cooling rate under 10°C/s per minute decreases workability, and a cooling rate exceeding 200°C/s per minute causes a shape abnormality in the slab due to the slab shape and irregular cooling and thereby causes surface oxidation by a large amount of cooling air. Accordingly, the cooling rate is limited to the range from 10 to 200°C/s.
[73]
[74] The cold rolled steel sheet manufactured by the two methods as described above are subjected to hot dip galvanization or galvannealing.
[75] The hot dip galvanization is preferably performed according to a common method in a galvanizing bath having a temperature range from 450 to 5000C. The galvanizing temperature is preferably 45O0C or more in order to maximize the bonding of the hot dip galvanization but is limited to 5000C or less since a higher temperature may alloy the steel sheet.
[76]
[77] After the hot dip galvanization, the hot dip galvannealing is performed when necessary. The hot dip galvannealing is carried out by a common method, preferably, at a temperature range from 500 to 6000C. The galvannealing temperature is preferably limited between 500 and 6000C since alloying is not enough at a temperature under 5000C and a hot dip galvannealed layer may evaporate from the surface of the steel sheet at a temperature exceeding 6000C.
[78]
[79] The hot dip galvanized or galvannealed steel sheet according to the above the hot dip galvanization or galvannealing has a hot dip galvanized or galvannealed layer having a thickness of 10/M or less.
[80]
[81] Below, a description will be made of a texture of the present invention. [82] The cold rolled steel sheets manufactured by the two methods of the present invention have substantially the same texture. Each of the cold rolled steel sheets of the present invention consists of 40 to 50% annealed martensite as matrix, 20 to 40% retained austenite and balance ferrite. Particular, the present invention limits the amount of the retained austenite to the range from 20 to 40% in order to obtain high tensile strength and elongation. Mode for the Invention
[83] The present invention will now be described in more detail with respect to following Examples.
[84] [85] (EXAMPLES) [86] [87] Steel types were prepared according to compositions reported in Table 1 below. Eight (8) steel types A to H satisfy the composition range of the present invention, three (3) steel types I to K are beyond the composition range of the present invention.
[88] [89] Table 1 [Table 1] [Table ]
Figure imgf000012_0001
[90] [91] Steel slabs according to the compositions reported in Table 1 above were heated to a temperature range from 1150 to 125O0C, followed by hot finishing rolling at a temperature range from 880 to 92O0C, coiling at a temperature range from 550 to 65O0C, pickling, and then cold rolling at a cold reduction rate from 30 to 60%.
[92]
[93] Cold rolled steel sheets manufactured according to the above described method were subjected to continuous annealing according to process conditions including coiling times, annealing temperatures and annealing times as reported in Table 2 below:
[94]
[95] Table 2
[Table 2] [Table ]
Figure imgf000014_0001
Figure imgf000015_0001
[96] [97] The tensile strength, elongation and the crack length in delayed fracture of the cold rolled steel sheets manufactured according to the conditions of Table 2 above were measured and the results are reported in Table 3 below. To measure the crack length in delayed fracture reported in Table 3, disks having a 95mm diameter were deformed and drawn into the shape of a cup using a punch having a 45mm diameter and a flat head and the resultant structures were immersed into ethyl alcohol for three (3) and seven (7) days, respectively.
[98] [99] In Table 3, Inventive Steels were manufactured with the composition range of the present invention according to the manufacturing methods of the present invention, and Comparative Steels were prepared by hot rolling steel materials having the same composition range as Inventive Steels except for Al excluded, followed by treatment at different annealing temperatures.
[100] [101] Table 3
[Table 3] [Table ]
Figure imgf000016_0001
Figure imgf000017_0001
[102] Note) CS!> Comparative Steel, IS2> Inventive Steel [103] [104] In addition, steel slabs having the composition range reported in Table 1 were heated at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, coiling at a temperature range from 550 to 65O0C, pickling, and then cold rolling at a cold reduction rate from 30 to 60%.
[105] [106] The cold rolled steel sheets manufactured according to the above described method were subjected to reverse transformation by batch annealing at coiling temperatures, annealing temperatures, annealing times and cooling temperatures as reported in Table 4 below.
[107] [108] Table 4
[Table 4] [Table ]
Figure imgf000018_0001
Figure imgf000019_0001
[109] [HO] Table 5 show the results of measuring the tensile strength, elongation and crack length in delayed fracture of Inventive Steels and Comparative Steels after the reverse transformation by batch annealing. The property evaluation of the crack length in delayed fracture was performed in the same manner as above.
[111] [112] Table 5
[Table 5] [Table ]
Figure imgf000020_0001
Figure imgf000021_0001
[113] Note) CS!> Comparative Steel, IS2> Inventive Steel [114] [115] Inventive Steels manufactured according to the two manufacturing methods of the present invention had excellent properties with their elongation increased for about 8 to 10% compared to that of Comparative Steels when they had the same composition and were treated at an annealing temperature within the range of the present invention. Especially, when Inventive Steels and Comparative Steels to which Al component is not added were processed in the same manufacturing method, their tensile strength and elongation were similar but the crack length in delayed fracture was significantly different. While the crack length in delayed fracture of Inventive Steels was substantially zero (0) mm even after 3 and 7 days passed (good delayed fracture resistance), the crack length in delayed fracture of Comparative Steels was from 15 to 20mm after 3 and 7 days passed. From these results, it can be appreciated that the addition of Al into the composition of Inventive Steels improves delayed fracture resistance.
[116] [117] As described above, when Inventive Steels having the composition of the present invention were manufactured by the two manufacturing methods of the present invention, all Inventive Steels had a tensile strength of 980 MPa or more, an elongation of 28% or more and excellent delayed fracture resistance. Thus, the steel sheets of the present invention have more excellent ductility as well as improved workability compared to conventional high strength steel sheets. Especially, the steel sheets of the present invention can be deformed by drawing due to improved behavior related to delayed fracture, which is a disadvantage of high strength steel sheets having high fraction of retained austenite.
[118]

Claims

Claims
[1] A high strength cold rolled steel sheet comprising, by weight percent, 0.05 to
0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities.
[2] The high strength cold rolled steel sheet of claim 1, comprising a microtexture including 40 to 50% annealed martensite as a matrix, 20 to 40% retained austenite and balance ferrite.
[3] The high strength cold rolled steel sheet of claim 1 or 2, having a tensile strength of 980MPa or more and an elongation of 28% or more.
[4] A high strength galvanized steel sheet comprising: a steel including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; and a galvanized layer or a galvannealed layer.
[5] A method of manufacturing a high strength cold rolled steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; and performing continuous annealing on the resultant structure by holding a temperature range from 670 to 75O0C for 60 seconds or more, followed by cooling.
[6] A method of manufacturing a high strength cold rolled steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing reverse transformation by batch-annealing the resultant structure at a temperature range from 620 to 72O0C for 1 to 24 hours; and cooling the resultant structure at a cooling rate from 10 to 200°C/s.
[7] A method of manufacturing a high strength galvanized steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing continuous annealing on the resultant structure by holding a temperature range from 670 to 75O0C for 60 seconds or more, followed by cooling; and galvanizing the resultant structure at a temperature range from 450 to 5000C.
[8] A method of manufacturing a high strength galvannealed steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing continuous annealing on the resultant structure by holding a temperature range from 670 to 75O0C for 60 seconds or more, followed by cooling; galvanizing the resultant structure at a temperature range from 450 to 5000C; and galvannealing the resultant structure at a temperature range from 500 to 6000C.
[9] A method of manufacturing a high strength galvanized steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing reverse transformation by batch-annealing the resultant structure at a temperature range from 620 to 72O0C for 1 to 24 hours; cooling the resultant structure at a cooling rate from 10 to 200°C/s; and galvanizing the resultant structure at a temperature range from 450 to 5000C. [10] A method of manufacturing a high strength galvannealed steel sheet, comprising: heating a steel slab at a temperature range from 1150 to 125O0C, followed by hot finish rolling at a temperature range from 880 to 92O0C, the steel slab including, by weight percent, 0.05 to 0.3% C, 0.3 to 1.6% Si, 4.0 to 7.0% Mn, 0.5 to 2.0% Al, 0.01 to 0.1% Cr, 0.02 to 0.1% Ni and 0.005 to 0.03% Ti, 5 to 30ppm B, 0.01 to 0.03% Sb, 0.008% or less S, balance Fe and impurities; coiling the resultant structure at a temperature range from 550 to 65O0C; pickling the resultant structure using hydrochloric acid, followed by cold rolling at a cold reduction rate from 30 to 60%; performing reverse transformation by batch-annealing the resultant structure at a temperature range from 620 to 72O0C for 1 to 24 hours; cooling the resultant structure at a cooling rate from 10 to 200°C/s; galvanizing the resultant structure at a temperature range from 450 to 5000C; and galvannealing the resultant structure at a temperature range from 500 to 6000C.
PCT/KR2008/005132 2008-05-20 2008-09-01 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same WO2009142362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011510406A JP5470375B2 (en) 2008-05-20 2008-09-01 High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in high ductility and delayed fracture resistance, and manufacturing method thereof
US12/993,271 US9109273B2 (en) 2008-05-20 2008-09-01 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0046718 2008-05-20
KR1020080046718A KR101027250B1 (en) 2008-05-20 2008-05-20 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2009142362A1 true WO2009142362A1 (en) 2009-11-26

Family

ID=41340282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/005132 WO2009142362A1 (en) 2008-05-20 2008-09-01 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same

Country Status (4)

Country Link
US (1) US9109273B2 (en)
JP (1) JP5470375B2 (en)
KR (1) KR101027250B1 (en)
WO (1) WO2009142362A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215525A (en) * 2013-05-10 2013-07-24 江苏永昊高强度螺栓有限公司 Alloy steel for bolt
US20140050941A1 (en) * 2011-04-25 2014-02-20 Yoshiyasu Kawasaki High strength steel sheet having excellent formability and stability of mechanical properties and method for manufacturing the same
US20140308156A1 (en) * 2011-11-07 2014-10-16 Posco Steel sheet for warm press forming, warm-pressed member, and manufacturing methods thereof
CN104204266A (en) * 2012-03-19 2014-12-10 杰富意钢铁株式会社 Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
WO2015001414A1 (en) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
WO2015011510A1 (en) * 2013-07-25 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Spot welded joint using high strength and high forming and its production method
EP2728027A4 (en) * 2011-06-30 2015-07-15 Hyundai Steel Co Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
EP2829627A4 (en) * 2012-03-19 2015-08-05 Jfe Steel Corp Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
DE102015111866A1 (en) 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
EP3409805A4 (en) * 2016-01-29 2018-12-19 JFE Steel Corporation High-strength steel sheet for warm working, and method for producing same
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
EP3473742A4 (en) * 2016-06-21 2019-05-15 Posco Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
EP2383353B1 (en) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG High tensile steel containing Mn, steel surface product made from such steel and method for producing same
US10793936B2 (en) 2014-12-23 2020-10-06 Posco High strength galvanized steel sheet having excellent surface qualities, plating adhesion, and formability, and method for manufacturing same
WO2021105489A1 (en) * 2019-11-27 2021-06-03 Tata Steel Ijmuiden B.V. Method of making a cold formable high strength steel strip and steel strip
EP3896184A4 (en) * 2018-12-11 2022-04-20 Nippon Steel Corporation High-strength steel sheet having excellent moldability and impact resistance, and method for manufacturing high-strength steel sheet having excellent moldability and impact resistance

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012830B4 (en) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and body component
JP5440672B2 (en) 2011-09-16 2014-03-12 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP5888267B2 (en) * 2012-06-15 2016-03-16 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5962541B2 (en) * 2012-07-23 2016-08-03 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
JP5962540B2 (en) * 2012-07-23 2016-08-03 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
KR101449119B1 (en) * 2012-09-04 2014-10-08 주식회사 포스코 Ferritic lightweight high strength steel sheet having excellent rigidity and ductility and method for manufacturing the same
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
JP5794284B2 (en) 2013-11-22 2015-10-14 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
WO2016001699A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet having improved formability and sheet obtained
WO2016001705A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained
WO2016001703A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained by the method
KR101657784B1 (en) 2014-11-28 2016-09-20 주식회사 포스코 High ductility and strength cold rolled steel sheet with reduced cracking in hot-rolling and method for manufacturing the same
KR101657796B1 (en) 2014-12-15 2016-09-20 주식회사 포스코 High strength steel sheet having excellent delayed fracture resistance and mehtod for manufacturing the same
KR101639914B1 (en) * 2014-12-23 2016-07-15 주식회사 포스코 High strength cold steel sheet with good phosphating property and method for manufacturing the same
KR101647225B1 (en) * 2014-12-23 2016-08-10 주식회사 포스코 High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
KR102154986B1 (en) * 2015-05-21 2020-09-14 에이케이 스틸 프로퍼티즈 인코포레이티드 High manganese 3rd generation high strength steel
KR101677396B1 (en) 2015-11-02 2016-11-18 주식회사 포스코 Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same
WO2017090236A1 (en) * 2015-11-26 2017-06-01 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet, method for manufacturing hot-rolled steel plate for high-strength hot-dip galvanized steel sheet, method for manufacturing cold-rolled steel plate for high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US11248275B2 (en) 2016-01-29 2022-02-15 Jfe Steel Corporation Warm-workable high-strength steel sheet and method for manufacturing the same
JP6260676B2 (en) * 2016-03-29 2018-01-17 Jfeスチール株式会社 Hot press steel plate and method for manufacturing the same, and hot press member and method for manufacturing the same
RU2714975C1 (en) * 2016-08-23 2020-02-21 Зальцгиттер Флахшталь Гмбх Method of making high-strength steel strip with improved properties for further processing and steel strip of this type
KR102020404B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 Steel sheet having ultra high strength and superior ductility and method of manufacturing the same
KR102043524B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Ultra high strength hot rolled steel, steel tube, steel member, and method for manufacturing thereof
JP6687171B1 (en) * 2018-07-18 2020-04-22 日本製鉄株式会社 steel sheet
CA3229159A1 (en) * 2021-08-31 2023-03-09 Arcelormittal Hot rolled and steel sheet and a method of manufacturing thereof
CN117881812A (en) * 2021-08-31 2024-04-12 安赛乐米塔尔公司 Hot-rolled steel sheet and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570886A (en) * 1991-09-17 1993-03-23 Sumitomo Metal Ind Ltd High tensile strength steel sheet excellent in local ductility and its production
KR19980045322A (en) * 1996-12-10 1998-09-15 김종진 Manufacturing method of super high strength cold rolled steel sheet with excellent workability
KR20000043762A (en) * 1998-12-29 2000-07-15 이구택 Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR20040037963A (en) * 2002-10-31 2004-05-08 주식회사 포스코 A method for manufacture high strength cold rolled steel sheet having low yield ratio and excellent elongation
KR20040088583A (en) * 2002-03-11 2004-10-16 위시노 High-resistant, low-density hot laminated sheet steel and method for the production thereof
KR20050032721A (en) * 2003-10-02 2005-04-08 주식회사 포스코 Ultra high strength steel of 120kgf/㎟ grade having excellent formability
JP2005120436A (en) * 2003-10-17 2005-05-12 Nippon Steel Corp High-strength steel sheet superior in hole-expandability and ductility, and manufacturing method therefor
JP2006207019A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability
KR20070067593A (en) * 2005-12-24 2007-06-28 주식회사 포스코 High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138345A (en) 1993-11-16 1995-05-30 Toshiba Chem Corp Epoxy resin composition and sealed semiconductor device
FR2796083B1 (en) * 1999-07-07 2001-08-31 Usinor PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED
JP4060997B2 (en) 1999-08-27 2008-03-12 新日本製鐵株式会社 High-strength cold-rolled steel sheet and high-strength galvanized cold-rolled steel sheet excellent in bendability and deep drawability and manufacturing method thereof
JP2001288550A (en) 2000-01-31 2001-10-19 Kobe Steel Ltd Galvanized steel sheet
JP4299451B2 (en) 2000-11-14 2009-07-22 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP2002155317A (en) 2000-11-16 2002-05-31 Kawasaki Steel Corp Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP4552314B2 (en) 2000-12-04 2010-09-29 Jfeスチール株式会社 High strength and high ductility cold-rolled steel sheet with excellent press formability
JP3809074B2 (en) 2001-03-30 2006-08-16 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability and method for producing the same
EP1354970B1 (en) 2000-12-29 2011-02-16 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
US7267890B2 (en) 2001-06-06 2007-09-11 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance corrosion resistance ductility and plating adhesion after servere deformation and a method of producing the same
JP3857939B2 (en) 2001-08-20 2006-12-13 株式会社神戸製鋼所 High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
FR2833970B1 (en) 2001-12-24 2004-10-15 Usinor CARBON STEEL STEEL SEMI-PRODUCT AND METHODS OF MAKING SAME, AND STEEL STEEL PRODUCT OBTAINED FROM THIS SEMI-PRODUCT, IN PARTICULAR FOR GALVANIZATION
JP4091894B2 (en) 2003-04-14 2008-05-28 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same
JP4235030B2 (en) 2003-05-21 2009-03-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet having excellent local formability and a tensile strength of 780 MPa or more with suppressed increase in hardness of the weld
EP1512760B1 (en) 2003-08-29 2011-09-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High tensile strength steel sheet excellent in processibility and process for manufacturing the same
JP4119832B2 (en) 2003-12-24 2008-07-16 新日本製鐵株式会社 High strength steel plate for automobile fuel tank with excellent press formability, corrosion resistance and secondary workability, and method for producing the same
JP2006037201A (en) 2004-07-29 2006-02-09 Kobe Steel Ltd Marine steel material superior in corrosion resistance
JP5040093B2 (en) * 2004-10-07 2012-10-03 Jfeスチール株式会社 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
EP1806422A4 (en) 2004-10-07 2009-07-15 Jfe Steel Corp Hot dip zinc plated steel sheet and method for production thereof
CA2531616A1 (en) 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
KR100764253B1 (en) 2005-01-28 2007-10-05 가부시키가이샤 고베 세이코쇼 High-strength steel used for spring having excellent hydrogen embrittlement resistance
CN104264075B (en) 2005-12-09 2018-01-30 Posco公司 High strength cold rolled steel plate with excellent formability and coating characteristic, the zinc-base metal-plated steel plate and manufacture method being made from it
JP4882446B2 (en) * 2006-03-28 2012-02-22 Jfeスチール株式会社 Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP4882447B2 (en) * 2006-03-28 2012-02-22 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570886A (en) * 1991-09-17 1993-03-23 Sumitomo Metal Ind Ltd High tensile strength steel sheet excellent in local ductility and its production
KR19980045322A (en) * 1996-12-10 1998-09-15 김종진 Manufacturing method of super high strength cold rolled steel sheet with excellent workability
KR20000043762A (en) * 1998-12-29 2000-07-15 이구택 Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR20040088583A (en) * 2002-03-11 2004-10-16 위시노 High-resistant, low-density hot laminated sheet steel and method for the production thereof
KR20040037963A (en) * 2002-10-31 2004-05-08 주식회사 포스코 A method for manufacture high strength cold rolled steel sheet having low yield ratio and excellent elongation
KR20050032721A (en) * 2003-10-02 2005-04-08 주식회사 포스코 Ultra high strength steel of 120kgf/㎟ grade having excellent formability
JP2005120436A (en) * 2003-10-17 2005-05-12 Nippon Steel Corp High-strength steel sheet superior in hole-expandability and ductility, and manufacturing method therefor
JP2006207019A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability
KR20070067593A (en) * 2005-12-24 2007-06-28 주식회사 포스코 High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383353B1 (en) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG High tensile steel containing Mn, steel surface product made from such steel and method for producing same
US20140050941A1 (en) * 2011-04-25 2014-02-20 Yoshiyasu Kawasaki High strength steel sheet having excellent formability and stability of mechanical properties and method for manufacturing the same
US9758848B2 (en) * 2011-04-25 2017-09-12 Jfe Steel Corporation High strength steel sheet having excellent formability and stability of mechanical properties and method for manufacturing the same
EP2728027B1 (en) 2011-06-30 2019-01-16 Hyundai Steel Company Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
EP2728027A4 (en) * 2011-06-30 2015-07-15 Hyundai Steel Co Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
US20140308156A1 (en) * 2011-11-07 2014-10-16 Posco Steel sheet for warm press forming, warm-pressed member, and manufacturing methods thereof
CN104204266A (en) * 2012-03-19 2014-12-10 杰富意钢铁株式会社 Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
EP2829626A1 (en) * 2012-03-19 2015-01-28 JFE Steel Corporation Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US10449751B2 (en) 2012-03-19 2019-10-22 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet
EP2829626A4 (en) * 2012-03-19 2015-08-05 Jfe Steel Corp Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
EP2829627A4 (en) * 2012-03-19 2015-08-05 Jfe Steel Corp Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
CN103215525A (en) * 2013-05-10 2013-07-24 江苏永昊高强度螺栓有限公司 Alloy steel for bolt
WO2015001367A1 (en) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
US10400315B2 (en) 2013-07-04 2019-09-03 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled steel sheet and vehicle
WO2015001414A1 (en) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
WO2015011547A3 (en) * 2013-07-25 2015-04-16 Arcelormittal Investigación Desarrollo Sl Spot welded joint using high strength and high forming and its production method
US11504795B2 (en) 2013-07-25 2022-11-22 Arcelormittal Spot welded joint using high strength and high forming steel and its production method
US10272514B2 (en) 2013-07-25 2019-04-30 Arcelormittal Sa Spot welded joint using high strength and high forming steel and its production method
WO2015011510A1 (en) * 2013-07-25 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Spot welded joint using high strength and high forming and its production method
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
US10793936B2 (en) 2014-12-23 2020-10-06 Posco High strength galvanized steel sheet having excellent surface qualities, plating adhesion, and formability, and method for manufacturing same
DE102015111866A1 (en) 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
US11414720B2 (en) 2016-01-29 2022-08-16 Jfe Steel Corporation High-strength steel sheet for warm working and method for manufacturing the same
CN109072371A (en) * 2016-01-29 2018-12-21 杰富意钢铁株式会社 Warm working high-strength steel sheet and its manufacturing method
EP3409805A4 (en) * 2016-01-29 2018-12-19 JFE Steel Corporation High-strength steel sheet for warm working, and method for producing same
US10752968B2 (en) 2016-06-21 2020-08-25 Posco Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
EP3473742A4 (en) * 2016-06-21 2019-05-15 Posco Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
EP3896184A4 (en) * 2018-12-11 2022-04-20 Nippon Steel Corporation High-strength steel sheet having excellent moldability and impact resistance, and method for manufacturing high-strength steel sheet having excellent moldability and impact resistance
US11885025B2 (en) 2018-12-11 2024-01-30 Nippon Steel Corporation High-strength steel sheet having excellent moldability and impact resistance, and method for manufacturing high-strength steel sheet having excellent moldability and impact resistance
WO2021105489A1 (en) * 2019-11-27 2021-06-03 Tata Steel Ijmuiden B.V. Method of making a cold formable high strength steel strip and steel strip

Also Published As

Publication number Publication date
US9109273B2 (en) 2015-08-18
JP2011523442A (en) 2011-08-11
JP5470375B2 (en) 2014-04-16
KR101027250B1 (en) 2011-04-06
KR20090120759A (en) 2009-11-25
US20110083774A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
US9109273B2 (en) High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
CA2791018C (en) Heat-treated steel material, method for producing same, and base steel material for same
EP1972698B1 (en) Hot-dip zinc-coated steel sheets and process for production thereof
EP3483297B1 (en) Hot forming member having excellent crack propagation resistance and ductility, and method for producing same
EP3733898B1 (en) High-strength cold rolled steel sheet and method for manufacturing same
CN113840934B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
EP3728679B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
EP3719155B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
CN111771009A (en) Automobile steel and manufacturing method thereof
CN113403551B (en) High-yield-ratio hydrogen embrittlement-resistant cold-rolled DH980 steel plate and preparation method thereof
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
EP3853387B1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
CN112955575B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
JP2011523443A (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
WO2024104279A1 (en) Steel sheet for hot stamping forming, hot stamping forming member, and steel sheet manufacturing method
JP3918589B2 (en) Steel plate for heat treatment and manufacturing method thereof
KR101115790B1 (en) Cold rolled steel sheet having excellent spot welding property and delayed fracture resistance and method for manufacturing the same
CN115151673A (en) Steel sheet, member, and method for producing same
CN114763594A (en) Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet
WO2020157665A1 (en) A high strength-high ductile steel and a method of manufacturing thereof
EP4353862A1 (en) Hot-dip galvanized steel plate and manufacturing method therefor
EP4265813A1 (en) Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof
EP4190921A1 (en) High-strength steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and manufacturing method of these
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08793626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993271

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011510406

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08793626

Country of ref document: EP

Kind code of ref document: A1