WO2009142137A1 - Code plate and manufacturing method thereof - Google Patents

Code plate and manufacturing method thereof Download PDF

Info

Publication number
WO2009142137A1
WO2009142137A1 PCT/JP2009/058989 JP2009058989W WO2009142137A1 WO 2009142137 A1 WO2009142137 A1 WO 2009142137A1 JP 2009058989 W JP2009058989 W JP 2009058989W WO 2009142137 A1 WO2009142137 A1 WO 2009142137A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
phase
conductive layer
separation line
code plate
Prior art date
Application number
PCT/JP2009/058989
Other languages
French (fr)
Japanese (ja)
Inventor
寿 小松
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to CN2009801182216A priority Critical patent/CN102037333B/en
Priority to JP2010512995A priority patent/JP4960503B2/en
Publication of WO2009142137A1 publication Critical patent/WO2009142137A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/25Selecting one or more conductors or channels from a plurality of conductors or channels, e.g. by closing contacts
    • G01D5/252Selecting one or more conductors or channels from a plurality of conductors or channels, e.g. by closing contacts a combination of conductors or channels

Definitions

  • the present invention relates to a code plate used in an encoder, and more particularly to a code plate that can obtain stable output characteristics, does not require an A / D converter, and has excellent reliability, and a method for manufacturing the same. .
  • Patent Document 1 discloses an invention related to an encoder.
  • the invention described in Patent Document 1 discloses a code plate in which a number of irregularities are formed on the surface of a metal substrate and a resistance film is formed on the surface.
  • the resistance film is formed with a thin part and a thick part.
  • the electrical resistance value decreases, and when the slider comes into contact with the thick part, the electrical resistance value. Is going to grow.
  • rotation information is obtained by shaping the extracted output waveform by A / D conversion or the like ([0013] column in Patent Document 1).
  • Patent Document 1 since the encoder described in Patent Document 1 can obtain an analog output, a processing circuit such as an A / D converter is required to convert it into a digital signal.
  • Japanese Patent Laid-Open No. 6-94476 Japanese Patent Laid-Open No. 6-94476
  • the present invention is to solve the above-described conventional problems, and in particular, a stable output characteristic can be obtained, and an A / D converter or the like is not required, and a highly reliable code plate and a method for manufacturing the same The purpose is to provide.
  • the present invention provides a code plate in which an ON region for obtaining an ON signal and an OFF region for obtaining an OFF signal are alternately formed on the sliding surface with the slider,
  • the on region and the off region are both formed on the surface of a conductive layer, and the on region and the off region are partitioned between the on region and the off region, and a first separation formed of an insulating material.
  • a line is provided.
  • the insulating first separation line is provided between the conductive on region and the off region, the resistance value is adjusted by the film thickness of the resistive film as in Patent Document 1. Therefore, variation in resistance can be suppressed to a small value, and stable output characteristics can be obtained.
  • the ON region and the OFF region are insulated by the insulating first separation line, the digital output can be obtained, and the output signal processing is patented such that no A / D converter is required. Compared to the invention described in Document 1, this can be facilitated.
  • the ON region, the OFF region, and the first separation line appearing on the sliding surface are formed on the same surface.
  • the sliding frictional force when the slider slides alternately on the ON region and the OFF region can be made small, and a sudden change due to a step can be eliminated, and the frictional force can be made almost constant. Accordingly, the product life can be extended.
  • the first conductive layer constituting the ON region and the second conductive layer constituting the OFF region are formed of the same material. Since the slider slides relatively on the same surface on the on region and off region of the same material, it is possible to extend the life more effectively. In addition, since the material can be made common, the manufacturing cost can be reduced.
  • a width dimension of the off region is larger than a width dimension of the on region.
  • the first separation line is continuously formed over the entire circumference of the sliding surface, the conductive layer is supported by an insulating substrate formed of resin, and the first separation line is formed of the resin. It is preferable that it is formed by.
  • the conductive layer can be separated by laser light irradiation to form the first separation line, and the insulating first separation line and the insulating substrate can be formed by filling the resin, so that the code plate can be produced with a simple configuration. Can be manufactured with good performance.
  • the ON region is entirely divided into a region in which the A-phase ON region and the A-phase ON region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial position. It is formed of a B-phase ON region that is spaced apart in the circumferential direction over the circumference, and is provided in a different region that is radially shifted from the A-phase ON region and the B-phase ON region, and is electrically connected to the ON region.
  • a common region, and the off region is formed between the A phase on region via the first separation line and the A phase off region is formed between the B phase on region via the first separation line.
  • the first separation line that divides the common region, the A phase on region, and the B phase on region, and the A phase off region and the B phase off region. Is formed with a single stroke pattern It is preferable. Thereby, the ON region and the OFF region can be easily partitioned, and the pattern deviation between the A phase and the B phase can be reduced.
  • the ON region is entirely divided into a region in which the A-phase ON region and the A-phase ON region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial position. It is formed of a B-phase ON region that is spaced apart in the circumferential direction over the circumference, and is provided in a different region that is radially shifted from the A-phase ON region and the B-phase ON region, and is electrically connected to the ON region.
  • a common region, and the off region is formed between the A phase on region via the first separation line and the A phase off region is formed between the B phase on region via the first separation line. It is preferable that the B phase off region is insulated from the B phase off region. This can prevent an erroneous signal from being output.
  • the common region, the A phase on region, and the B phase on region are arranged in this order in a direction orthogonal to the circumferential direction, and the adjacent A phase off region and the B phase off region are adjacent to each other.
  • the gap is insulated by a second separation line formed of an insulating material.
  • the second separation line is formed by a routing pattern from the first separation line.
  • the second separation line may be formed in a branch pattern from the first separation line.
  • the A-phase on region and the B-phase on region are arranged to be shifted in the circumferential direction.
  • the A-phase signal slider and the B-phase signal slider can be arranged on the same straight line, and the necessary phase difference between the A-phase signal and the B-phase signal can be obtained with high accuracy. be able to.
  • the present invention provides a method for manufacturing a code plate in which an ON region for obtaining an ON signal and an OFF region for obtaining an OFF signal are alternately formed on the sliding surface with the slider.
  • the conductive layer is separated into a first conductive layer whose surface is the on-region and a second conductive layer whose surface is the off-region, and between the first conductive layer and the second conductive layer.
  • the conductive layer formed on the transfer plate is placed in a mold, and molten resin is poured into the mold.
  • a first separation line including the groove portion, and the first conductive layer Filling the second conductive layer with the resin;
  • the transfer plate is peeled off, the conductive layer is transferred to the insulating substrate made of resin, and the ON region, the OFF region, and the first separation line formed of the resin appearing on the sliding surface are the same. And forming with a surface.
  • the present invention it is possible to reliably and easily form the first separation line that separates the ON region and the OFF region. Further, in the above manufacturing method, the on-region, the off-region, and the first separation line formed of the resin appearing on the sliding surface can be easily and appropriately formed on the same surface. Therefore, in the present invention, it is possible to manufacture a cord plate having a long life and excellent output stability by a simple manufacturing method.
  • the conductive layer is separated into the first conductive layer and the second conductive layer by laser light irradiation.
  • the first conductive layer and the second conductive layer can be separated with high accuracy.
  • various code plates of various types and small lots can be easily formed with high productivity simply by changing the laser drawing program.
  • the conductive layer is separated into the first conductive layer and the second conductive layer continuously over the entire circumference of the sliding surface.
  • the on-region is entirely divided into regions where the A-phase on-region and the A-phase on-region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial direction.
  • a common region that is formed in a B-phase on region that is spaced circumferentially around the circumference and that is electrically connected to the on-region in a region that is radially shifted from the A-phase on region and the B-phase on region.
  • the first separation line that divides the common region, the A phase on region, and the B phase on region, and the A phase off region and the B phase off region is drawn with one stroke. It is preferable to form with a pattern . Thereby, an ON area
  • the on-region is entirely divided into regions where the A-phase on-region and the A-phase on-region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial direction.
  • a common region that is formed in a B-phase on region that is spaced circumferentially around the circumference and that is electrically connected to the on-region in a region that is radially shifted from the A-phase on region and the B-phase on region.
  • the code board which can prevent that an error signal is output can be manufactured simply and appropriately.
  • the common region, the A phase on region, and the B phase on region are formed in this order, and the second conductive that constitutes the adjacent A phase off region. It is preferable that the layer and the second conductive layer constituting the B-phase off region are separated by a second separation line made of the resin. Thereby, even if the A phase and B phase patterns (tracks) are adjacent to each other, the A phase off region and the B phase off region can be easily separated by forming the second separation line.
  • the second separation line can be formed with a routing pattern from the first separation line.
  • the second separation line can be easily drawn from the first separation line by the laser beam irradiation described above.
  • the second separation line with a branch pattern from the first separation line.
  • the A-phase on region and the B-phase on region are formed by shifting in the circumferential direction.
  • the slider for the A phase signal and the slider for the B phase signal can be arranged on the same straight line, and the required phase difference between the A phase signal and the B phase signal can be accurately obtained. It can be ensured well, and can correspond to a high-resolution encoder.
  • a conductive paste having carbon powder and a first binder resin is printed to form a surface-side conductive layer on the transfer plate,
  • the cord plate of the present invention stable output characteristics can be obtained, and an A / D converter or the like is not required, and high reliability can be obtained.
  • FIG. 1 is a plan view of a code plate according to the first embodiment
  • FIG. 2 is an enlarged plan view showing a part of FIG. 1 in an exaggerated manner
  • FIG. 3 is cut along the line AA shown in FIG.
  • FIG. 4 is a plan view of the code plate in the second embodiment
  • FIG. 5 is a partially enlarged perspective view of the code plate in the third embodiment
  • FIG. 6 is an output pulse in the third embodiment.
  • Waveform, FIG. 7 is an encoder circuit diagram
  • FIG. 8 is a partially enlarged perspective view for explaining the malfunction of the first embodiment
  • FIG. 9 is an output pulse waveform when the malfunction described in FIG. 10 is a plan view of a code plate according to the fourth embodiment.
  • FIG. 3 the signal waveform of the B-phase pulse signal (V B ) and the position of the slider at the timing when the signal is switched on / off are additionally illustrated.
  • the sliding surface (surface) 1a of the code plate 1 used in the rotary encoder is formed in a circular shape, but the shape is not particularly limited.
  • a rotary encoder in which the code plate 1 rotates and the slider 9 (see FIG. 3) is a fixed side is shown.
  • a through hole is formed in the center 1b of the code plate 1.
  • a rotation shaft is inserted into the center 1b of the code plate 1, and the code plate 1 is supported so as to be rotatable about the rotation axis.
  • the code plate 1 may be supported by the rotating shaft by a configuration in which the through hole is not formed in the center 1b of the code plate 1 and the concave and convex portions are integrally formed or integrally formed.
  • the code plate 1 may be a rotary encoder on the fixed side and on the movable side where the slider rotates.
  • a ring-shaped common region 10 is formed on the center 1b side on the sliding surface 1a of the code plate 1 (the common region 10 in a form in which no through hole is formed in the center 1b). May be a simple circle), and an A-phase ON region 11 is formed along the outer periphery of the common region (ON region) 10 so as to protrude in the radial direction at a predetermined interval in the circumferential direction.
  • the B-phase on region 12 is arranged so as to be shifted in the circumferential direction (clockwise direction) with respect to the A-phase on region 11.
  • the ON region 2 of the common region 10 is formed on the surface of the first conductive layer 7a
  • the OFF region 3 is the surface of the second conductive layer 7b. Formed with.
  • the first separation line 4 partitions the ON region 2 composed of the common region 10, the A phase ON region 11, and the B phase ON region 12, and the OFF region 3.
  • the first separation line 4 separates the conductive layer into the first conductive layer 7a and the second conductive layer 7b by, for example, laser light irradiation, and the separated first conductive layer 7a and second conductive layer 7a are separated from each other. It is formed by filling a resin between the conductive layer 7b.
  • the width in the circumferential direction of the A phase on region 11, the B phase on region 12, and the off region 3 is approximately 100 ⁇ m to 200 ⁇ m, and the width of the first separation line 4 is approximately 20 to 40 ⁇ m.
  • a cord plate can be formed.
  • both the first conductive layer 7a and the second conductive layer 7b have a laminated structure.
  • the conductive layers 7a and 7b are composed of the surface-side conductive layer 5 and the inner conductive layer 6, and the surface of the surface-side conductive layer 5 is exposed to the sliding surface 1a.
  • the surface-side conductive layer 5 is formed having carbon powder and a first binder resin.
  • the carbon powder is, for example, a mixture of carbon black and carbon fiber.
  • the inner conductive layer 6 includes silver powder and a second binder resin.
  • the conductive particles contained in the inner conductive layer 6 are preferably silver powder and bismuth oxide, carbon, or a composite powder containing bismuth oxide and carbon as main components.
  • thermosetting resins such as polyimide resin, bismaleimide resin, epoxy resin, phenol resin, acrylic resin can be preferably used for the first binder resin and the second binder resin.
  • the first separation line 4 is formed in a one-stroke pattern continuous over the entire circumference of the sliding surface 1a.
  • the first separation line 4 is formed in a meander shape (more specifically, substantially in a gear shape), whereby the A-phase on region 11 and the B-phase partitioned by the first separation line 4.
  • the ON region 12 and the OFF region 3 are alternately arranged along the circumferential direction.
  • the first conductive layer 7a and the second conductive layer 7b are supported by an insulating substrate 8 made of resin. As shown in FIG. 3, since this resin is also interposed between the first conductive layer 7a and the second conductive layer 7b, the first separation line 4 appearing on the sliding surface 1a is also the same as the insulating substrate 8. It is made of resin.
  • a common slider slides relatively on the common region 10 formed in an annular or circular shape over the entire circumference of the code plate 1.
  • the first slider includes an A-phase ON region 11 formed in a region (track) having a radial position (diameter dimension) different from that of the common region 10, and an OFF region between the A-phase ON region 11. 3 and slide relative to each other alternately.
  • the second slider 9 is located in a region having a different radial position (diameter dimension) from the common region 10 and the A-phase on region 11, that is, a region (track) on the outer peripheral side of the A-phase on region 11.
  • a phase signal pattern is formed by the A phase on region 11 and the off region 3 between the A phase on regions 11, and similarly, between the B phase on region 12 and the B phase on region 12.
  • a B-phase signal pattern is formed with the off region 3.
  • the second slider 9 slides relatively on the B-phase on region 12
  • the second slider 9 and the common slider are electrically connected and turned on. (ON) signal is output.
  • the second slider 9 slides relatively on the OFF region 3 the second slider 9 and the common slider are electrically disconnected, and an OFF signal is output. Then, the ON signal and the OFF signal are alternately repeated, and the B-phase pulse signal (V B ) is output (see FIG. 3).
  • the B-phase on region is output so that the timing (phase) of the A-phase pulse and the B-phase pulse is shifted by 90 degrees (1/4 of one pulse).
  • 12 and the A-phase on region 11 are arranged so as to be shifted in the circumferential direction.
  • the phase difference between the A-phase pulse signal and the B-phase pulse signal is obtained by shifting the A-phase on region 11 and the B-phase on region 12 in the circumferential direction. Since the phase first slider and the phase B second slider can be arranged side by side along the radial direction of the code plate 1, the accuracy of the phase difference can be increased.
  • the rotation state (rotation direction and rotation amount) can be detected by measuring the output of each pulse.
  • the A-phase pattern (track) and the B-phase pattern (track) are adjacent to each other, and a common region 10 is provided on the center 1 b side of the code plate 1, and A Since the phase and B phase patterns are formed, the A phase and B phase patterns can be formed in a wide region, and the output waveform and the phase difference can be controlled with high accuracy.
  • both the ON region 2 and the OFF region 3 are formed on the surfaces of the conductive layers 7 a and 7 b, and the ON region 2 and the OFF region 3 are partitioned between the ON region 2 and the OFF region 3 and insulated.
  • a first separation line 4 made of material is provided.
  • the variation in resistance can be suppressed smaller than the case where the resistance is adjusted by the film thickness of the resistance film as in Patent Document 1, and stable output characteristics can be obtained.
  • a digital binary output can be obtained and the A / D converter is not required, output signal processing can be facilitated as compared with the invention described in Patent Document 1.
  • the off region 3 is also formed on the surface of the conductive layer 7b in the same manner as the on region 2, the sliding friction when the slider alternately slides on the on region 2 and the off region 3 can be made substantially the same. .
  • the ON region 2 and the OFF region 3 are separated by a narrow first separation line 4, and the ON region 2, the OFF region 3 and the first separation line 4 can be formed on the same plane, so that the OFF region 3 is insulated, for example.
  • a step is less likely to occur on the sliding surface 1a even after long-term use. Therefore, the life of the encoder can be extended.
  • the first conductive layer 7a constituting the ON region 2 and the second conductive layer 7b constituting the OFF region 3 are formed of the same material.
  • the slider slides on the ON region 2 and the OFF region 3 of the same material, so that the life can be more effectively extended.
  • manufacturing costs can be reduced by using common materials.
  • the width dimension T4 of the off region 3 is preferably formed larger than the width dimension T3 of the on region 2. Since an area for generating an ON signal is increased by the width dimension T5 in the sliding direction of the slider 9, for example, if the width dimension T4 of the OFF area 3 is set to be the same as the width dimension T3 of the ON area 2, the ON signal is substantially ON. Region 2 is wider than off region 3. As a result, the duty ratio of the output pulse cannot be brought close to 50%.
  • the width dimension T4 of the off region 3 is formed larger than the width dimension T3 of the on region 2, and the pulse width T1 of the on signal and the pulse width T2 of the off signal are It is more preferable to adjust the width dimension T3 and the width dimension T4 so that they are substantially the same (see FIG. 3).
  • the slider is made of a metal material such as a conductive metal plate.
  • the slider 9 is shown in a columnar shape in FIG.
  • T3 T1-T5
  • T4 T2 + T5-2 ⁇ T6
  • T6 is the width dimension of the first separation line 4.
  • the first separation line 4 is continuously formed over the entire circumference of the sliding surface 1a, and the first separation line 4 is formed of the same resin as the insulating substrate 8, so that, for example, the conductive layer is made of a laser.
  • the first separation line 4 can be formed by separation by light irradiation, and the insulating first separation line 4 and the insulating substrate 8 can be formed by filling the resin. Therefore, the code plate can be formed with a simple structure and high productivity.
  • an A-phase ON region 21 is formed on the outer peripheral side of the common region 20 with a predetermined interval in the circumferential direction, and a predetermined interval is provided on the inner peripheral side of the common region 20 in the circumferential direction.
  • B-phase on region 22 is formed.
  • the common region 20, the A phase on region 21, and the B phase on region 22 are on regions 23 formed on the surface of the first conductive layer.
  • the B-phase on region 22 is output so that the timing (phase) of the A-phase pulse and the B-phase pulse are shifted by 90 degrees (1/4 of one pulse).
  • the A-phase ON region 21 is arranged so as to be shifted in the circumferential direction with respect to the common region 20.
  • the A region on region 21 and the B phase on region 22 are off regions 24 formed on the surface of the second conductive layer, and the on region 23 and the off region 24 are insulative. It is partitioned by the first separation line 25.
  • the 1st separation line 25 is continuously formed over the circumferential direction similarly to embodiment of FIG. 1, in the embodiment of FIG. 4, two 1st separation lines 25 are outside and inside of a sliding surface. Provided.
  • the number of the first separation lines 25 is not limited. However, as shown in FIG. 1, the common region, the A-phase region, and the B-phase region are arranged in this order in the direction orthogonal to the circumferential direction, that is, in the radial direction.
  • the on region and the off region can be easily partitioned, and the A phase pattern and the B phase pattern can be adjacent to each other.
  • the pattern shift between the on region 11 and the B phase on region 12 can be reduced.
  • the third embodiment shown in FIG. 5 is an improvement of the configuration of the first embodiment shown in FIG.
  • the adjacent A-phase off region 3a and B-phase off region 3b defined by the first separation line 4 are insulated by a second separation line 31 formed of an insulating material.
  • FIG. 8 does not insulate the A phase off region 3 a and the B phase off region 3 b by the second separation line 31.
  • the second slider 9 sliding on the B phase region (track) is positioned on the B phase off region 3b, while sliding on the A phase region (track). It is assumed that the first slider 13 is positioned on the first separation line 4. At this time, if the contact surface 13a of the first slider 13 made of a metal plate or the like is larger than the width of the first separation line 4, the first slider 13 is turned on region 2 (A phase on region 11). And the off region 3 (A phase off region 3a). Then, the second slider 9 located on the B-phase off region 3b is electrically connected to the first slider 13 in contact with the A-phase on region 11 via the second conductive layer 7b.
  • the B-phase circuit which should originally be in an open circuit state without conducting with the common slider, is in conduction with the common slider as shown with a broken line in FIG.
  • the output is lowered from 5V to 0V, and an ON signal is output as an erroneous signal for a moment at a sliding position where an OFF signal should be output as shown in FIG.
  • FIG. 9 the same phenomenon occurs for the A phase.
  • the B-phase circuit shown in FIG. 7 maintains an open circuit state. Therefore, as shown in FIG. 6, a rectangular pulse signal can be output with high accuracy, and an erroneous signal can be effectively prevented from being output.
  • the second separation line 31 is formed by a routing pattern from the first separation line 4. Thereby, the 1st separation line 4 and the 2nd separation line 31 can be formed with a single stroke pattern.
  • the second separation line 31 may be formed in a branch pattern from the first separation line 4.
  • the pattern shape of the second separation line 31 is not limited. It is only necessary that the A-phase off region 3a and the B-phase off region 3b can be insulated from each other by the second separation line 31 in a form in which the A-phase off region 3a and the B-phase off region 3b formed by the second conductive layer 7b are adjacent to each other.
  • the second separation line 31 is formed of the same resin as the insulating substrate 8 in the same manner as the first separation line 4, and the first separation line 4, the second separation line 31, the on region 2 and the off region 3 are formed. It is preferable that they are all formed on the same surface.
  • the two first separation lines 25 are in an insulated state. Therefore, it is not necessary to form the second separation line 31 in the form of FIG.
  • FIG. 11 to FIG. 15 are explanatory views of steps showing the method for manufacturing the code plate of the present embodiment.
  • 11 (a), 12 (a), 13 (a), and 14 to 15 are all taken along line BB in FIGS. 11 (b), 12 (b), and 13 (b).
  • FIG. 11B and FIG. 12B are plan views of FIG. 11A and FIG. 12A, respectively.
  • FIG.13 (b) is the reverse view seen through the transfer plate 30 from the arrow direction of Fig.13 (a).
  • the surface-side conductive layer 5 is formed by screen-printing the first conductive paste on the transfer plate 30 formed of, for example, a brass plate.
  • the surface of the transfer plate 30 is mirror-finished in advance.
  • the transfer plate 30 is preferably made of metal. By forming the transfer plate 30 from a metal that does not thermally contract, the transfer plate 30 can be easily peeled off in the final process due to the effect of thermal contraction of the surface-side conductive layer 5. Moreover, since sufficient heat treatment can be applied to the conductive layers 7a and 7b, the wear resistance of the sliding surface 1a can be enhanced.
  • a first binder resin is dissolved in a first solvent, and for example, carbon black and carbon fibers (pulverized powder of carbon fibers having an average particle diameter of 3 to 30 ⁇ m) are mixed with the first binder resin.
  • 1 conductive paste for example, the first binder resin is 30 to 95% by volume, and the total of carbon black and carbon fiber is 5 to 70% by volume (the total of the first binder resin, carbon black, and carbon fiber excluding the solvent is 100%. volume%).
  • a paste-like surface-side conductive layer 5 is screen-printed on the entire surface of the transfer plate 30. After printing, the surface-side conductive layer 5 is dried, for example, at 100 to 250 ° C. for 10 to 60 minutes using a drying furnace, and the first solvent is evaporated and removed.
  • a paste-like inner conductive layer 6 is patterned on the surface-side conductive layer 5 by screen printing.
  • the second conductive paste is mainly composed of a second binder resin, silver as a main component, and bismuth oxide, carbon, or a composite powder containing carbon, bismuth oxide and carbon, or the like in a second solvent. It is preferable that the conductive particles are mixed.
  • the second binder resin is 50 to 95% by volume and the conductive particles are 5 to 50% by volume (the second binder resin excluding the solvent and the total of the conductive particles is 100% by volume).
  • the screen-printed paste-like inner conductive layer 6 is dried, for example, at 100 to 260 ° C. for 10 to 60 minutes using a drying furnace to evaporate and remove the second solvent. You may dry the surface side conductive layer 5 and the inner side conductive layer 6 simultaneously.
  • the surface side conductive layer 5 and the inner side conductive layer 6 are separated into the first conductive layer 7a and the second conductive layer 7b, and the first conductive layer 7a and the second conductive layer 7b are separated.
  • a first separation line 4 made of a groove is formed between the two.
  • the surface of the first conductive layer 7a (the surface facing the transfer plate 30 of the surface side conductive layer 5) is the ON region 2, and the surface of the second conductive layer 7b (the transfer plate 30 of the surface side conductive layer 5 with the transfer plate 30).
  • the facing surface is the off region 3.
  • the first separation line 4 composed of grooves that divide the ON region 2 and the OFF region 3 is formed in a one-stroke pattern, for example, by laser light irradiation.
  • FIG. 13B a rear view seen through the transfer plate 30 from the direction of the arrow in FIG. 13A
  • the first separation line 4 is formed in a substantially gear shape.
  • the sliding surface 1a is divided into the common region 10, the A phase on region 11, and the B phase on region 12, which are the on region 2, and the off region 3 between the A phase on region 11 and the B phase on region 12.
  • the B phase on region 12 is arranged so as to be shifted in the circumferential direction (clockwise direction) with respect to the A phase on region 11.
  • FIG. 13B the A-phase ON region 11 and the B-phase ON region 12 and the OFF region 3 partitioned by the first separation line 4 are alternately formed along the circumferential direction.
  • LP-V10 and LP-V15 both excitation wavelength: 1064 nm, amplification method: output amplification by ytterbium
  • SUNX Corporation can be preferably used as the laser beam irradiation device.
  • This laser is classified as a YAG laser, and the laser output is 12 W, for example.
  • the first separation line 4 can be formed by etching, for example, but as described above, the first separation line 4 is formed by using, for example, a one-stroke pattern as shown in FIG. 13B using a YAG laser or the like. As a result, the machining time can be shortened, and the ON region 2 and the OFF region 3 can be partitioned with high accuracy.
  • the first binder resin contained in the surface-side conductive layer 5 and the second binder resin contained in the inner conductive layer 6 are simultaneously thermoset by heating in a heating furnace at a temperature of about 400 ° C. for 1-2 hours.
  • the surface-side conductive layer 5 has a film structure in which carbon powder is dispersed in a thermoset binder resin
  • the inner conductive layer 6 has a film structure in which composite powder is dispersed in a thermoset binder resin.
  • carbitol acetate methyl carbitol, ethyl carbitol, butyl carbitol, monoglyme, diglyme, methyltriglyme and the like can be used.
  • thermosetting resins such as polyimide resin, bismaleimide resin, epoxy resin, phenol resin, and acrylic resin can be selected as the first binder resin and the second binder resin.
  • the binder resin preferably contains an acetylene-terminated polyisoimide oligomer from the viewpoint of increasing the glass transition temperature (Tg) and improving the heat resistance.
  • the conductive layer formed on the transfer plate 30 is placed in the mold 40. Then, for example, an epoxy resin in a molten state is injected into the cavity 43 of the mold 40. At this time, the epoxy resin also appropriately flows into the first separation line 4 formed by the groove between the first conductive layer 7a and the second conductive layer 7b, and fills the gap (groove). Thereby, the 1st separation line 4 will also be formed with resin.
  • the temperature of the mold 40 is, for example, 160 to 200 ° C., and the epoxy resin is cured to form the insulating substrate 8. Then, the insulating substrate 8 with the transfer plate 30 is taken out from the mold 40, and the transfer plate 30 is peeled off from the insulating substrate 8 and the conductive layers 7a and 7b are transferred to the insulating substrate 8 as shown in FIG. The board 1 is completed.
  • the first separation line 4 that separates and isolates the ON region 2 that is the surface of the first conductive layer 7a and the OFF region 3 that is the surface of the second conductive layer 7b is provided. It can be reliably and easily formed.
  • the ON region 2, the OFF region 3, and the first separation line 4 made of an insulating resin can be formed on the same surface. Therefore, in this embodiment, it is possible to manufacture the code plate 1 having a long life and excellent output stability at a low cost by a simple manufacturing method.
  • the conductive layer is separated into the first conductive layer 7a and the second conductive layer 7b by laser light irradiation because separation can be performed with high accuracy.
  • productivity can be improved.
  • the narrow first separation line 4 can be easily formed by laser light irradiation.
  • the width T5 in the sliding direction of the slider 9 and the first separation line are used to set the duty ratio of the output pulse to a desired ratio. As described in FIG.
  • the width dimension T5 in the sliding direction of the slider 9 and the first separation line 4 are set so that the pulse width T1 of the on signal and the pulse width T2 of the off signal are the same.
  • the conductive layer is formed by a laminated structure of the surface-side conductive layer 5 and the inner conductive layer 6, but a single-layer structure may be used.
  • the surface-side conductive layer 5 containing carbon powder is exposed on the sliding surface, and the inner conductive layer 6 containing silver powder is placed on the inner side of the surface-side conductive layer 5 and exposed on the sliding surface.
  • the first separation line 4 and the second separation line 31 can be formed with a single stroke pattern in the process of FIG. it can.
  • the second separation line 31 can be formed in a branch pattern from the first separation line 4.
  • the first separation line 4 is formed by laser light irradiation
  • the second separation line 31 formed of a groove is formed by laser light irradiation between each A-phase off region 3a and B-phase off region 3b. .
  • the code plate 1 in which the A-phase on region and the B-phase on region are arranged to be shifted in the circumferential direction has been described, but the present invention is not limited to this. That is, it may be a code plate in which the A-phase ON region and the B-phase ON region are not displaced in the circumferential direction. In this case, both contact portions of the A-phase slider and the B-phase slider By shifting the position in the circumferential direction, a desired phase difference may be generated between the A-phase pulse signal and the B-phase pulse signal.
  • each of the code plates 1 of the present embodiment described above is of a form that is rotatably supported with respect to a fixed slider.
  • the code plate 1 is relative to the slider.
  • it may be supported so as to be slidable.
  • the ON region and the OFF region are alternately repeated toward the linear sliding direction of the slider.
  • FIG. 1 is an enlarged plan view exaggerating a part of FIG.
  • FIG. 2 is a partial enlarged cross-sectional view taken along the line AA shown in FIG. 1, and a diagram additionally showing a slider and a waveform of a B-phase pulse signal;
  • the top view of the code board in 2nd Embodiment The partial expansion perspective view of the code board in a 3rd embodiment, Output pulse waveform diagram in the third embodiment, Encoder circuit diagram,
  • FIG. 8 is an output pulse waveform diagram when the trouble described in FIG. 8 occurs;
  • FIG. 11 is a process diagram illustrating a method of manufacturing a code plate according to the present embodiment, in which (a) is a partial cross-sectional view when the code plate is cut in the film thickness direction from line BB shown in FIG. ) Is a plan view of the code plate during the manufacturing process,
  • FIG. 12A is a process diagram performed subsequent to FIG. 11, in which FIG. 11A is a partial cross-sectional view when the code plate is cut in the film thickness direction from the line BB shown in FIG. 12B, and
  • FIG. 13A is a process diagram performed next to FIG. 12, where FIG. 13A is a partial cross-sectional view when the code plate is cut in the film thickness direction from the line BB shown in FIG.
  • FIG. 14 is a process diagram performed subsequent to FIG. 13, and is a partial cross-sectional view showing a state in which a conductive layer on a transfer plate is arranged in a mold
  • FIG. 15 is a process diagram subsequent to FIG. 14, and is a partial cross-sectional view illustrating a process of peeling the transfer plate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The objective in particular is to provide a highly‑reliable code plate and a manufacturing method thereof with which stabilized output characteristics can be obtained and that requires no A/D converter or the like. With a code plate on which an on region (2) for obtaining an on signal and an off region (3) for obtaining an off signal are formed alternately on a sliding surface (1a) that acts with a slider, both the on region (2) and the off region (3) are formed by the surface of a conductive layer. A first separation line (4) made of an insulating material is provided between the on region (2) and the off region (3) to separate the on region (2) and the off region (3). In this case, it is preferable to form the on region (2), the off region (3), and the first separation line (4) appearing on the sliding surface (1a) in the same plane.

Description

コード板及びその製造方法Code plate and manufacturing method thereof
 本発明は、エンコーダに使用されるコード板に係り、特に、安定した出力特性を得ることが出来でき、A/D変換器等を必要とせず、信頼性に優れたコード板及びその製造方法に関する。 The present invention relates to a code plate used in an encoder, and more particularly to a code plate that can obtain stable output characteristics, does not require an A / D converter, and has excellent reliability, and a method for manufacturing the same. .
 下記特許文献1には、エンコーダに関する発明が開示されている。
 特許文献1に記載された発明には、金属基板の表面に多数の凹凸が形成されており、その表面に抵抗皮膜が形成されたコード板が開示されている。そして抵抗皮膜には薄肉部と厚肉部とが形成され薄肉部上に摺動子が接触したときは電気抵抗値が小さくなり、厚肉部上に摺動子が接触したときは電気抵抗値が大きくなるとしている。そして、取り出した出力波形をA/D変換等で波形成形することにより回転情報が得られるとしている(特許文献1の[0013]欄等)。
The following Patent Document 1 discloses an invention related to an encoder.
The invention described in Patent Document 1 discloses a code plate in which a number of irregularities are formed on the surface of a metal substrate and a resistance film is formed on the surface. The resistance film is formed with a thin part and a thick part. When the slider comes into contact with the thin part, the electrical resistance value decreases, and when the slider comes into contact with the thick part, the electrical resistance value. Is going to grow. Then, rotation information is obtained by shaping the extracted output waveform by A / D conversion or the like ([0013] column in Patent Document 1).
 しかしながら特許文献1のように金属基板の表面に凹凸を設け、その上に薄肉部と厚肉部を有する抵抗皮膜を形成する形態では、抵抗のばらつきが大きくなり、安定した出力特性を得ることが難しい。 However, in the form in which the surface of the metal substrate is provided with unevenness as in Patent Document 1 and a resistance film having a thin portion and a thick portion is formed thereon, the variation in resistance increases, and stable output characteristics can be obtained. difficult.
 また特許文献1に記載されたエンコーダではアナログ出力が得られるためデジタル信号化するにはA/D変換器等の処理回路を必要とした。
特開平6-94476号公報
Further, since the encoder described in Patent Document 1 can obtain an analog output, a processing circuit such as an A / D converter is required to convert it into a digital signal.
Japanese Patent Laid-Open No. 6-94476
 そこで本発明は上記従来の課題を解決するためのものであり、特に、安定した出力特性を得ることができ、A/D変換器等を必要とせず、信頼性の高いコード板及びその製造方法を提供することを目的としている。 Therefore, the present invention is to solve the above-described conventional problems, and in particular, a stable output characteristic can be obtained, and an A / D converter or the like is not required, and a highly reliable code plate and a method for manufacturing the same The purpose is to provide.
 本発明は、摺動子との摺動面にオン信号を得るためのオン領域とオフ信号を得るためのオフ領域とが交互に形成されたコード板において、
 前記オン領域と前記オフ領域が共に導電層の表面で形成されており、前記オン領域と前記オフ領域の間に、前記オン領域と前記オフ領域とを区画し絶縁材料で形成された第1分離ラインが設けられていることを特徴とするものである。
The present invention provides a code plate in which an ON region for obtaining an ON signal and an OFF region for obtaining an OFF signal are alternately formed on the sliding surface with the slider,
The on region and the off region are both formed on the surface of a conductive layer, and the on region and the off region are partitioned between the on region and the off region, and a first separation formed of an insulating material. A line is provided.
 このように本発明では、導電性のオン領域とオフ領域との間に絶縁性の第1分離ラインを設けたため、特許文献1にように抵抗皮膜の膜厚で抵抗値を調整する形態に比べて抵抗のばらつきを小さく抑えることができ、安定した出力特性を得ることが出来る。また、オン領域とオフ領域とが絶縁性の第1分離ラインで絶縁されているので、デジタル的な出力を得ることができ、A/D変換器を必要としない等、出力信号の処理を特許文献1に記載された発明に比べて容易化できる。 As described above, in the present invention, since the insulating first separation line is provided between the conductive on region and the off region, the resistance value is adjusted by the film thickness of the resistive film as in Patent Document 1. Therefore, variation in resistance can be suppressed to a small value, and stable output characteristics can be obtained. In addition, since the ON region and the OFF region are insulated by the insulating first separation line, the digital output can be obtained, and the output signal processing is patented such that no A / D converter is required. Compared to the invention described in Document 1, this can be facilitated.
 本発明では、前記摺動面に現れる前記オン領域、前記オフ領域、及び前記第1分離ラインが同一面で形成されていることが好ましい。これにより、摺動子がオン領域上及びオフ領域上を交互に相対的に摺動したときの摺動摩擦力を小さくかつ段差による急激な変化をなくし、ほぼ一定の摩擦力に出来る。したがって製品の長寿命化が可能である。 In the present invention, it is preferable that the ON region, the OFF region, and the first separation line appearing on the sliding surface are formed on the same surface. As a result, the sliding frictional force when the slider slides alternately on the ON region and the OFF region can be made small, and a sudden change due to a step can be eliminated, and the frictional force can be made almost constant. Accordingly, the product life can be extended.
 本発明では、前記オン領域を構成する第1の導電層と前記オフ領域を構成する第2の導電層が同じ材質で形成されていることが好ましい。摺動子が同じ材料のオン領域上及びオフ領域上を同一面上で相対的に摺動するため、より効果的に長寿命化が可能である。また材料を共通に出来るので、製造コストを低減できる。 In the present invention, it is preferable that the first conductive layer constituting the ON region and the second conductive layer constituting the OFF region are formed of the same material. Since the slider slides relatively on the same surface on the on region and off region of the same material, it is possible to extend the life more effectively. In addition, since the material can be made common, the manufacturing cost can be reduced.
 また本発明では、前記オフ領域の幅寸法が、前記オン領域の幅寸法より大きいことが好ましい。これにより、摺動子の接触部に摺動方向における幅があり、面接触状態で摺動するものであっても、50%に近い出力パルスのデューティ比を得ることが出来る。 In the present invention, it is preferable that a width dimension of the off region is larger than a width dimension of the on region. As a result, the contact portion of the slider has a width in the sliding direction, and a duty ratio of an output pulse close to 50% can be obtained even when the slider slides in a surface contact state.
 また本発明では、前記第1分離ラインが前記摺動面の全周にわたって連続して形成されており、前記導電層が樹脂で形成された絶縁基板により支持され、前記第1分離ラインが前記樹脂により形成されていることが好ましい。これにより、例えば、導電層をレーザー光照射により分離して第1分離ラインを形成し、樹脂の充填により絶縁性の第1分離ラインと絶縁基板を形成できるため、コード板を簡単な構成で生産性良く製造できる。 In the present invention, the first separation line is continuously formed over the entire circumference of the sliding surface, the conductive layer is supported by an insulating substrate formed of resin, and the first separation line is formed of the resin. It is preferable that it is formed by. Thus, for example, the conductive layer can be separated by laser light irradiation to form the first separation line, and the insulating first separation line and the insulating substrate can be formed by filling the resin, so that the code plate can be produced with a simple configuration. Can be manufactured with good performance.
 また本発明では、前記オン領域は、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成されると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に設けられ前記オン領域と導通するコモン領域を有し、前記オフ領域は前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで構成されており、前記コモン領域、前記A相オン領域及び前記B相オン領域と、前記A相オフ領域及び前記B相オフ領域とを区画する前記第1分離ラインが一筆書きパターンで形成されていることが好ましい。これにより、オン領域とオフ領域とを簡単に区画でき、またA相とB相のパターンずれを小さくできる。 Further, in the present invention, the ON region is entirely divided into a region in which the A-phase ON region and the A-phase ON region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial position. It is formed of a B-phase ON region that is spaced apart in the circumferential direction over the circumference, and is provided in a different region that is radially shifted from the A-phase ON region and the B-phase ON region, and is electrically connected to the ON region. A common region, and the off region is formed between the A phase on region via the first separation line and the A phase off region is formed between the B phase on region via the first separation line. The first separation line that divides the common region, the A phase on region, and the B phase on region, and the A phase off region and the B phase off region. Is formed with a single stroke pattern It is preferable. Thereby, the ON region and the OFF region can be easily partitioned, and the pattern deviation between the A phase and the B phase can be reduced.
 また本発明では、前記オン領域は、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成されると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に設けられ前記オン領域と導通するコモン領域を有し、前記オフ領域は前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで構成されており、前記A相オフ領域と、前記B相オフ領域とが絶縁されていることが好ましい。これにより誤信号が出力されるのを防止することが出来る。 Further, in the present invention, the ON region is entirely divided into a region in which the A-phase ON region and the A-phase ON region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial position. It is formed of a B-phase ON region that is spaced apart in the circumferential direction over the circumference, and is provided in a different region that is radially shifted from the A-phase ON region and the B-phase ON region, and is electrically connected to the ON region. A common region, and the off region is formed between the A phase on region via the first separation line and the A phase off region is formed between the B phase on region via the first separation line. It is preferable that the B phase off region is insulated from the B phase off region. This can prevent an erroneous signal from being output.
 本発明では、前記周方向に対して直交する方向に、前記コモン領域、前記A相オン領域、及び前記B相オン領域の順に配置されており、隣接するA相オフ領域及び前記B相オフ領域の間が、絶縁材料で形成された第2分離ラインにより絶縁されていることが好ましい。第2分離ラインの形成により、A相オフ領域とB相オフ領域とを簡単に分離することができる。また上記の構成では、A相とB相のパターン(トラック)とが隣り合っているので、出力波形及び位相差を高精度に制御しやすく、しかも第2分離ラインの形成により、誤信号の出力を効果的に、防止することが出来る。 In the present invention, the common region, the A phase on region, and the B phase on region are arranged in this order in a direction orthogonal to the circumferential direction, and the adjacent A phase off region and the B phase off region are adjacent to each other. It is preferable that the gap is insulated by a second separation line formed of an insulating material. By forming the second separation line, the A-phase off region and the B-phase off region can be easily separated. In the above configuration, since the A-phase and B-phase patterns (tracks) are adjacent to each other, the output waveform and the phase difference can be easily controlled with high accuracy, and an error signal is output by forming the second separation line. Can be effectively prevented.
 本発明では、例えば、前記第2分離ラインは、前記第1分離ラインからの引き回しパターンで形成される。あるいは、前記第2分離ラインは、前記第1分離ラインからの分岐パターンで形成されてもよい。 In the present invention, for example, the second separation line is formed by a routing pattern from the first separation line. Alternatively, the second separation line may be formed in a branch pattern from the first separation line.
 また本発明では、前記A相オン領域と前記B相オン領域とが周方向にずれて配置されていることが好ましい。これにより、A相信号用の摺動子とB相信号用の摺動子とを、同一直線上に配置させることができ、A相信号とB相信号との必要な位相差を精度良く得ることができる。 In the present invention, it is preferable that the A-phase on region and the B-phase on region are arranged to be shifted in the circumferential direction. As a result, the A-phase signal slider and the B-phase signal slider can be arranged on the same straight line, and the necessary phase difference between the A-phase signal and the B-phase signal can be obtained with high accuracy. be able to.
 また本発明は、摺動子との摺動面にオン信号を得るためのオン領域とオフ信号を得るためのオフ領域とを交互に形成するコード板の製造方法において、
 転写板上に、導電性粒子とバインダー樹脂とを有する導電ペーストを印刷して導電層を形成する工程、
 前記導電層を表面が前記オン領域となる第1の導電層と、表面が前記オフ領域となる第2の導電層に分離し、前記第1の導電層と前記第2の導電層との間に溝部からなる第1分離ラインを形成する工程、
 前記転写板上に形成した前記導電層を金型内に配置し、溶融した樹脂を前記金型内に流し込み、このとき、前記溝部からなる第1分離ライン、及び前記第1の導電層上と前記第2の導電層上を前記樹脂で埋める工程、
 前記転写板を剥離し、前記導電層を前記樹脂からなる絶縁基板に転写して、前記摺動面に現れる前記オン領域、前記オフ領域、及び前記樹脂で形成された前記第1分離ラインを同一面で形成する工程、を有することを特徴とするものである。
Further, the present invention provides a method for manufacturing a code plate in which an ON region for obtaining an ON signal and an OFF region for obtaining an OFF signal are alternately formed on the sliding surface with the slider.
A step of printing a conductive paste having conductive particles and a binder resin on the transfer plate to form a conductive layer;
The conductive layer is separated into a first conductive layer whose surface is the on-region and a second conductive layer whose surface is the off-region, and between the first conductive layer and the second conductive layer. Forming a first separation line comprising a groove in
The conductive layer formed on the transfer plate is placed in a mold, and molten resin is poured into the mold. At this time, a first separation line including the groove portion, and the first conductive layer Filling the second conductive layer with the resin;
The transfer plate is peeled off, the conductive layer is transferred to the insulating substrate made of resin, and the ON region, the OFF region, and the first separation line formed of the resin appearing on the sliding surface are the same. And forming with a surface.
 本発明によれば、オン領域とオフ領域とを分離する第1分離ラインを確実且つ容易に形成できる。また上記の製造方法では、摺動面に現れるオン領域、オフ領域、及び樹脂で形成された第1分離ラインを簡単且つ適切に同一面で形成できる。よって本発明では長寿命で出力安定性に優れたコード板を簡単な製造方法で製造することが可能である。 According to the present invention, it is possible to reliably and easily form the first separation line that separates the ON region and the OFF region. Further, in the above manufacturing method, the on-region, the off-region, and the first separation line formed of the resin appearing on the sliding surface can be easily and appropriately formed on the same surface. Therefore, in the present invention, it is possible to manufacture a cord plate having a long life and excellent output stability by a simple manufacturing method.
 また本発明では、前記導電層をレーザー光照射により前記第1の導電層と前記第2の導電層とに分離することが好ましい。これにより第1の導電層と第2の導電層とに高精度に分離できる。また、レーザー描画のプログラムを変更するだけで多品種小ロットの様々なコード板を簡単に生産性良く形成できる。 In the present invention, it is preferable that the conductive layer is separated into the first conductive layer and the second conductive layer by laser light irradiation. Thus, the first conductive layer and the second conductive layer can be separated with high accuracy. In addition, various code plates of various types and small lots can be easily formed with high productivity simply by changing the laser drawing program.
 また本発明では、前記導電層を、前記摺動面の全周にわたって連続して前記第1の導電層と前記第2の導電層とに分離することが好ましい。これにより、連続したレーザー光照射で分離できるので生産性を向上させることができる。 In the present invention, it is preferable that the conductive layer is separated into the first conductive layer and the second conductive layer continuously over the entire circumference of the sliding surface. Thereby, since it can isolate | separate by continuous laser beam irradiation, productivity can be improved.
 また本発明では、前記オン領域を、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成すると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に前記オン領域と導通するコモン領域を形成し、前記オフ領域を、前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで形成するとき、前記コモン領域、前記A相オン領域及び前記B相オン領域と、前記A相オフ領域及び前記B相オフ領域とを区画する前記第1分離ラインを一筆書きパターンで形成することが好ましい。これにより、オン領域とオフ領域とを簡単に区画でき、またA相とB相とのパターンずれを小さくできる。 Further, in the present invention, the on-region is entirely divided into regions where the A-phase on-region and the A-phase on-region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial direction. A common region that is formed in a B-phase on region that is spaced circumferentially around the circumference and that is electrically connected to the on-region in a region that is radially shifted from the A-phase on region and the B-phase on region. And forming the off region between the A phase on region via the first separation line and between the B phase on region via the first separation line. When forming with the B phase off region, the first separation line that divides the common region, the A phase on region, and the B phase on region, and the A phase off region and the B phase off region is drawn with one stroke. It is preferable to form with a pattern . Thereby, an ON area | region and an OFF area | region can be divided easily, and the pattern shift | offset | difference of A phase and B phase can be made small.
 また本発明では、前記オン領域を、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成すると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に前記オン領域と導通するコモン領域を形成し、前記オフ領域を前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域及び前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域で形成するとき、前記A相オフ領域と、前記B相オフ領域とを絶縁することが好ましい。これにより、誤信号が出力されるのを防止できるコード板を簡単且つ適切に製造することができる。 Further, in the present invention, the on-region is entirely divided into regions where the A-phase on-region and the A-phase on-region that are spaced apart in the circumferential direction over the entire circumference of the sliding surface are different in radial direction. A common region that is formed in a B-phase on region that is spaced circumferentially around the circumference and that is electrically connected to the on-region in a region that is radially shifted from the A-phase on region and the B-phase on region. And forming the off region between the A phase on region via the first separation line and the B phase formed between the A phase off region and the B phase on region via the first separation line. When forming in an off region, it is preferable to insulate the A phase off region from the B phase off region. Thereby, the code board which can prevent that an error signal is output can be manufactured simply and appropriately.
 本発明では、前記周方向に対して直交する方向に、前記コモン領域、前記A相オン領域、及び前記B相オン領域の順に形成し、隣接する前記A相オフ領域を構成する第2の導電層と、前記B相オフ領域を構成する第2の導電層とを前記樹脂からなる第2分離ラインにより分離することが好ましい。これにより、A相とB相のパターン(トラック)とが隣り合っていても、第2分離ラインの形成により、簡単に、A相オフ領域とB相オフ領域とを分離することができる。 In the present invention, in the direction perpendicular to the circumferential direction, the common region, the A phase on region, and the B phase on region are formed in this order, and the second conductive that constitutes the adjacent A phase off region. It is preferable that the layer and the second conductive layer constituting the B-phase off region are separated by a second separation line made of the resin. Thereby, even if the A phase and B phase patterns (tracks) are adjacent to each other, the A phase off region and the B phase off region can be easily separated by forming the second separation line.
 本発明では、前記第2分離ラインを前記第1分離ラインからの引き回しパターンで形成することができる。例えば上記したレーザー光照射により、簡単に、第1分離ラインから第2分離ラインを引き回して形成することができる。 In the present invention, the second separation line can be formed with a routing pattern from the first separation line. For example, the second separation line can be easily drawn from the first separation line by the laser beam irradiation described above.
 また本発明では、前記第2分離ラインを、前記第1分離ラインからの分岐パターンで形成することも可能である。 In the present invention, it is also possible to form the second separation line with a branch pattern from the first separation line.
 また本発明では、前記A相オン領域と前記B相オン領域とを周方向にずらして形成するのが望ましい。このようにすると、A相信号用の摺動子とB相信号用の摺動子とを、同一直線上に配置させることができ、A相信号とB相信号との必要な位相差を精度良く確保することが可能となって、高分解能のエンコーダに対応することができる。 In the present invention, it is preferable that the A-phase on region and the B-phase on region are formed by shifting in the circumferential direction. In this way, the slider for the A phase signal and the slider for the B phase signal can be arranged on the same straight line, and the required phase difference between the A phase signal and the B phase signal can be accurately obtained. It can be ensured well, and can correspond to a high-resolution encoder.
 また本発明では、カーボン粉と第1のバインダー樹脂とを有する導電ペーストを印刷して前記転写板上に表面側導電層を形成し、
 次に、銀粉と第2のバインダー樹脂とを有する導電ペーストを前記表面側導電層上に印刷して内側導電層を形成することが好ましい。これにより耐環境性を向上させることができるとともに導通抵抗を低減できる。
In the present invention, a conductive paste having carbon powder and a first binder resin is printed to form a surface-side conductive layer on the transfer plate,
Next, it is preferable to form an inner conductive layer by printing a conductive paste having silver powder and a second binder resin on the surface-side conductive layer. Thereby, the environmental resistance can be improved and the conduction resistance can be reduced.
 本発明のコード板によれば、安定した出力特性を得ることが出来でき、A/D変換器等を必要とせず、高い信頼性を得ることが出来る。また、本発明では長寿命で出力安定性に優れたコード板を簡単な製造方法で製造することが可能である。 According to the cord plate of the present invention, stable output characteristics can be obtained, and an A / D converter or the like is not required, and high reliability can be obtained. In the present invention, it is possible to manufacture a cord plate having a long life and excellent output stability by a simple manufacturing method.
 図1は、第1実施形態におけるコード板の平面図、図2は図1の一部を誇張して示した拡大平面図、図3は、図1に示すA-A線に沿って切断したときの部分拡大断面図、図4は、第2実施形態におけるコード板の平面図、図5は、第3実施形態におけるコード板の部分拡大斜視図、図6は、第3実施形態における出力パルス波形、図7は、エンコーダ回路図、図8は、第1実施形態の不具合を説明するための部分拡大斜視図、図9は、図8で説明した不具合が生じた場合における出力パルス波形、図10は、第4実施形態におけるコード板の平面図、である。なお、図3においては、B相パルス信号(V)の信号波形と信号のオン/オフが切り換わるタイミングでの摺動子の位置とを追加して図示している。 FIG. 1 is a plan view of a code plate according to the first embodiment, FIG. 2 is an enlarged plan view showing a part of FIG. 1 in an exaggerated manner, and FIG. 3 is cut along the line AA shown in FIG. FIG. 4 is a plan view of the code plate in the second embodiment, FIG. 5 is a partially enlarged perspective view of the code plate in the third embodiment, and FIG. 6 is an output pulse in the third embodiment. Waveform, FIG. 7 is an encoder circuit diagram, FIG. 8 is a partially enlarged perspective view for explaining the malfunction of the first embodiment, and FIG. 9 is an output pulse waveform when the malfunction described in FIG. 10 is a plan view of a code plate according to the fourth embodiment. In FIG. 3, the signal waveform of the B-phase pulse signal (V B ) and the position of the slider at the timing when the signal is switched on / off are additionally illustrated.
 図1に示す実施形態では、回転型エンコーダに用いられるコード板1の摺動面(表面)1aは円形状で形成されているが形状は特に限定されるものではない。この実施形態では例えばコード板1が回転する可動側であり、摺動子9(図3参照)が固定側となる回転型エンコーダの場合を示している。コード板1の中央1bには例えば貫通孔が形成されており、コード板1の中央1bに回転軸が挿着され、このコード板1が回転軸を中心として回転可能に支持されている。なおコード板1の中央1bに貫通孔が形成されずにコード板1が凹凸嵌合あるいは一体形成される構成によって回転軸にて支持された形態でもよい。またコード板1が固定側で摺動子が回転する可動側となる回転型エンコーダであってもよい。 In the embodiment shown in FIG. 1, the sliding surface (surface) 1a of the code plate 1 used in the rotary encoder is formed in a circular shape, but the shape is not particularly limited. In this embodiment, for example, a rotary encoder in which the code plate 1 rotates and the slider 9 (see FIG. 3) is a fixed side is shown. For example, a through hole is formed in the center 1b of the code plate 1. A rotation shaft is inserted into the center 1b of the code plate 1, and the code plate 1 is supported so as to be rotatable about the rotation axis. Note that the code plate 1 may be supported by the rotating shaft by a configuration in which the through hole is not formed in the center 1b of the code plate 1 and the concave and convex portions are integrally formed or integrally formed. The code plate 1 may be a rotary encoder on the fixed side and on the movable side where the slider rotates.
 図1,図2に示すように、コード板1の摺動面1aには、中央1b側にリング状のコモン領域10が形成されており(中央1bに貫通孔が形成されない形態ではコモン領域10は単なる円状でもよい)、このコモン領域(オン領域)10の外周に沿って周方向に所定の間隔を空けて径方向に突出するA相オン領域11が形成され、さらにA相オン領域11の外周側に連続し、A相オン領域11に対し周方向(時計回り方向)にずらしてB相オン領域12が配置されている。 As shown in FIGS. 1 and 2, a ring-shaped common region 10 is formed on the center 1b side on the sliding surface 1a of the code plate 1 (the common region 10 in a form in which no through hole is formed in the center 1b). May be a simple circle), and an A-phase ON region 11 is formed along the outer periphery of the common region (ON region) 10 so as to protrude in the radial direction at a predetermined interval in the circumferential direction. The B-phase on region 12 is arranged so as to be shifted in the circumferential direction (clockwise direction) with respect to the A-phase on region 11.
 周方向におけるA相オン領域11の間、及びB相オン領域12の間は共にオフ領域3である。本実施形態では、コモン領域10、A相オン領域11、及びB相オン領域12のオン領域2は第1の導電層7aの表面で形成され、オフ領域3は第2の導電層7bの表面で形成される。 Between the A-phase on region 11 and the B-phase on region 12 in the circumferential direction are both off-region 3. In the present embodiment, the ON region 2 of the common region 10, the A phase ON region 11, and the B phase ON region 12 is formed on the surface of the first conductive layer 7a, and the OFF region 3 is the surface of the second conductive layer 7b. Formed with.
 本実施形態では、コモン領域10、A相オン領域11及びB相オン領域12で構成されるオン領域2と、オフ領域3との間は第1分離ライン4によって区画されている。第1分離ライン4は、後述するように導電層を第1の導電層7aと第2の導電層7bとに例えばレーザー光照射により分離し、分離された第1の導電層7aと第2の導電層7bとの間に樹脂を充填して形成されたものである。 In the present embodiment, the first separation line 4 partitions the ON region 2 composed of the common region 10, the A phase ON region 11, and the B phase ON region 12, and the OFF region 3. As will be described later, the first separation line 4 separates the conductive layer into the first conductive layer 7a and the second conductive layer 7b by, for example, laser light irradiation, and the separated first conductive layer 7a and second conductive layer 7a are separated from each other. It is formed by filling a resin between the conductive layer 7b.
 A相オン領域11、B相オン領域12及びオフ領域3の円周方向における幅は、概ね100μm~200μmで、第1分離ライン4の幅は概ね20~40μmであり、パルス数の極めて多いエンコーダ用コード板を形成可能である。 The width in the circumferential direction of the A phase on region 11, the B phase on region 12, and the off region 3 is approximately 100 μm to 200 μm, and the width of the first separation line 4 is approximately 20 to 40 μm. A cord plate can be formed.
 図3に示す実施形態では、第1の導電層7a及び第2の導電層7bは共に積層構造である。導電層7a,7bは、表面側導電層5と内側導電層6とで構成され、表面側導電層5の表面が摺動面1aに露出している。 In the embodiment shown in FIG. 3, both the first conductive layer 7a and the second conductive layer 7b have a laminated structure. The conductive layers 7a and 7b are composed of the surface-side conductive layer 5 and the inner conductive layer 6, and the surface of the surface-side conductive layer 5 is exposed to the sliding surface 1a.
 この実施形態では表面側導電層5は、カーボン粉と第1のバインダー樹脂とを有して形成される。カーボン粉は、例えば、カーボンブラックとカーボンファイバーを混合させたものである。 In this embodiment, the surface-side conductive layer 5 is formed having carbon powder and a first binder resin. The carbon powder is, for example, a mixture of carbon black and carbon fiber.
 内側導電層6は、銀粉と第2のバインダー樹脂を有して構成される。内側導電層6に含まれる導電性粒子は、主成分の銀粉及び、酸化ビスマス、あるいは、カーボン、又は、酸化ビスマス及びカーボンを有する複合粉であることが好適である。 The inner conductive layer 6 includes silver powder and a second binder resin. The conductive particles contained in the inner conductive layer 6 are preferably silver powder and bismuth oxide, carbon, or a composite powder containing bismuth oxide and carbon as main components.
 また第1のバインダー樹脂及び第2のバインダー樹脂には、ポリイミド樹脂、ビスマレイミド樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の熱硬化性樹脂が好ましく使用できる。 Also, thermosetting resins such as polyimide resin, bismaleimide resin, epoxy resin, phenol resin, acrylic resin can be preferably used for the first binder resin and the second binder resin.
 図1に示す実施形態では、第1分離ライン4は摺動面1aの全周にわたって連続した一筆書きパターンで形成される。例えば図1のように第1分離ライン4はミアンダ状(より具体的には略歯車状)に形成されており、これにより、第1分離ライン4により区画されたA相オン領域11及びB相オン領域12とオフ領域3とが円周方向に沿って交互に配置される。 In the embodiment shown in FIG. 1, the first separation line 4 is formed in a one-stroke pattern continuous over the entire circumference of the sliding surface 1a. For example, as shown in FIG. 1, the first separation line 4 is formed in a meander shape (more specifically, substantially in a gear shape), whereby the A-phase on region 11 and the B-phase partitioned by the first separation line 4. The ON region 12 and the OFF region 3 are alternately arranged along the circumferential direction.
 図3に示すように、第1の導電層7a及び第2の導電層7bが樹脂で形成された絶縁基板8により支持されている。図3に示すように、この樹脂は、第1の導電層7aと第2の導電層7b間にも介在しているため、摺動面1aに現れる第1分離ライン4も絶縁基板8と同じ樹脂により形成されている。 As shown in FIG. 3, the first conductive layer 7a and the second conductive layer 7b are supported by an insulating substrate 8 made of resin. As shown in FIG. 3, since this resin is also interposed between the first conductive layer 7a and the second conductive layer 7b, the first separation line 4 appearing on the sliding surface 1a is also the same as the insulating substrate 8. It is made of resin.
 図示しないコモン摺動子は、コード板1の全周にわたって環状または円形状に形成されたコモン領域10上を相対的に摺動する。また図示しない第1の摺動子は、コモン領域10とは径方向の位置(径寸法)が異なる領域(トラック)に形成されたA相オン領域11と、A相オン領域11間のオフ領域3とを交互に相対的に摺動する。さらに第2の摺動子9は、コモン領域10及びA相オン領域11とは径方向の位置(径寸法)の異なる領域、すなわち、A相オン領域11よりも外周側の領域(トラック)に形成されたB相オン領域12と、B相オン領域12間のオフ領域3とを交互に相対的に摺動する。なお、A相オン領域11と、A相オン領域11間のオフ領域3とで、A相信号用パターンが形成されており、同様に、B相オン領域12と、B相オン領域12間のオフ領域3とでB相信号用パターンが形成されている。 A common slider (not shown) slides relatively on the common region 10 formed in an annular or circular shape over the entire circumference of the code plate 1. Further, the first slider (not shown) includes an A-phase ON region 11 formed in a region (track) having a radial position (diameter dimension) different from that of the common region 10, and an OFF region between the A-phase ON region 11. 3 and slide relative to each other alternately. Further, the second slider 9 is located in a region having a different radial position (diameter dimension) from the common region 10 and the A-phase on region 11, that is, a region (track) on the outer peripheral side of the A-phase on region 11. The formed B-phase ON region 12 and the OFF region 3 between the B-phase ON regions 12 are alternately slid relative to each other. A phase signal pattern is formed by the A phase on region 11 and the off region 3 between the A phase on regions 11, and similarly, between the B phase on region 12 and the B phase on region 12. A B-phase signal pattern is formed with the off region 3.
 コード板1が回転することにより、第1の摺動子が、A相オン領域11上を相対的に摺動しているときは、第1の摺動子とコモン摺動子とが電気的に接続され、オン(ON)信号が出力される。一方、第1の摺動子がオフ領域3上を相対的に摺動すると第1の摺動子とコモン摺動子が電気的に切断され、オフ(OFF)信号が出力される。そして、このオン信号とオフ信号が交互に繰り返され、A相パルス信号(V)が出力される。 When the first slider is relatively sliding on the A-phase ON region 11 by rotating the code plate 1, the first slider and the common slider are electrically connected. And an ON signal is output. On the other hand, when the first slider slides relatively on the off region 3, the first slider and the common slider are electrically disconnected, and an OFF signal is output. Then, the ON signal and the OFF signal are alternately repeated, and an A-phase pulse signal (V A ) is output.
 また、同様に、第2の摺動子9がB相オン領域12上を相対的に摺動するときは、第2の摺動子9とコモン摺動子とが電気的に接続され、オン(ON)信号が出力される。一方、第2の摺動子9がオフ領域3上を相対的に摺動すると第2の摺動子9とコモン摺動子が電気的に切断され、オフ(OFF)信号が出力される。そして、このオン信号とオフ信号が交互に繰り返され、B相パルス信号(V)が出力される(図3参照)。 Similarly, when the second slider 9 slides relatively on the B-phase on region 12, the second slider 9 and the common slider are electrically connected and turned on. (ON) signal is output. On the other hand, when the second slider 9 slides relatively on the OFF region 3, the second slider 9 and the common slider are electrically disconnected, and an OFF signal is output. Then, the ON signal and the OFF signal are alternately repeated, and the B-phase pulse signal (V B ) is output (see FIG. 3).
 図1,図2に示す実施形態では、A相のパルスと、B相のパルスのタイミング(位相)が90度(1パルスの1/4分)ずれて出力されるように、B相オン領域12とA相オン領域11とが円周方向にずれて配置されている。このように、本実施形態では、A相オン領域11とB相オン領域12とを周方向にずらすことにより、A相パルス信号とB相パルス信号の位相差を得るようにしているため、A相用の第1の摺動子とB相用の第2の摺動子とをコード板1の径方向に沿って並べて配置できるので、位相差の精度を高めることが可能である。そして各パルスの出力を測定することで回転状態(回転方向と回転量)を検知できるようになっている。特に図1の形態では、A相用パターン(トラック)とB相用パターン(トラック)とが隣り合っており、また、コード板1の中央1b側にコモン領域10を設け、その外周側にA相及びB相用パターンを形成しているので、A相及びB相パターンを広い領域に形成でき、出力波形や位相差を高精度に制御することができる。 In the embodiment shown in FIG. 1 and FIG. 2, the B-phase on region is output so that the timing (phase) of the A-phase pulse and the B-phase pulse is shifted by 90 degrees (1/4 of one pulse). 12 and the A-phase on region 11 are arranged so as to be shifted in the circumferential direction. Thus, in the present embodiment, the phase difference between the A-phase pulse signal and the B-phase pulse signal is obtained by shifting the A-phase on region 11 and the B-phase on region 12 in the circumferential direction. Since the phase first slider and the phase B second slider can be arranged side by side along the radial direction of the code plate 1, the accuracy of the phase difference can be increased. The rotation state (rotation direction and rotation amount) can be detected by measuring the output of each pulse. In particular, in the form of FIG. 1, the A-phase pattern (track) and the B-phase pattern (track) are adjacent to each other, and a common region 10 is provided on the center 1 b side of the code plate 1, and A Since the phase and B phase patterns are formed, the A phase and B phase patterns can be formed in a wide region, and the output waveform and the phase difference can be controlled with high accuracy.
 本実施形態のコード板1の特徴的構成について以下に説明する。本実施形態では、オン領域2とオフ領域3が共に導電層7a,7bの表面で形成されており、オン領域2とオフ領域3の間に、オン領域2とオフ領域3とを区画し絶縁材料で形成された第1分離ライン4が設けられている。 The characteristic configuration of the code plate 1 of the present embodiment will be described below. In this embodiment, both the ON region 2 and the OFF region 3 are formed on the surfaces of the conductive layers 7 a and 7 b, and the ON region 2 and the OFF region 3 are partitioned between the ON region 2 and the OFF region 3 and insulated. A first separation line 4 made of material is provided.
 これにより、特許文献1にように抵抗皮膜の膜厚で抵抗を調整するよりも抵抗のばらつきを小さく抑えることができ、安定した出力特性を得ることが出来る。また、デジタル的な2値の出力を得ることができ、A/D変換器を必要としない等、出力信号の処理を特許文献1に記載された発明に比べて容易化できる。さらにオフ領域3もオン領域2と同様に導電層7bの表面で形成されるため、摺動子がオン領域2上及びオフ領域3上を交互に摺動したときの摺動摩擦をほぼ同じに出来る。またオン領域2、オフ領域3との間を幅細の第1分離ライン4で区切り、オン領域2、オフ領域3と第1分離ライン4を同一面で形成できるので、例えばオフ領域3を絶縁基板8と同様の樹脂で形成する場合に比べて長期間の使用によっても摺動面1aに段差は生じにくい。したがってエンコーダの長寿命化が可能である。 As a result, the variation in resistance can be suppressed smaller than the case where the resistance is adjusted by the film thickness of the resistance film as in Patent Document 1, and stable output characteristics can be obtained. In addition, since a digital binary output can be obtained and the A / D converter is not required, output signal processing can be facilitated as compared with the invention described in Patent Document 1. Further, since the off region 3 is also formed on the surface of the conductive layer 7b in the same manner as the on region 2, the sliding friction when the slider alternately slides on the on region 2 and the off region 3 can be made substantially the same. . Further, the ON region 2 and the OFF region 3 are separated by a narrow first separation line 4, and the ON region 2, the OFF region 3 and the first separation line 4 can be formed on the same plane, so that the OFF region 3 is insulated, for example. Compared to the case where the same resin as that of the substrate 8 is used, a step is less likely to occur on the sliding surface 1a even after long-term use. Therefore, the life of the encoder can be extended.
 また、オン領域2を構成する第1の導電層7aとオフ領域3を構成する第2の導電層7bが同じ材質で形成されることが好ましい。これにより摺動子が同じ材料のオン領域2及びオフ領域3上を摺動するため、より効果的に長寿命化を図ることが出来る。また材料を共通にすることで製造コストを低減できる。 Further, it is preferable that the first conductive layer 7a constituting the ON region 2 and the second conductive layer 7b constituting the OFF region 3 are formed of the same material. As a result, the slider slides on the ON region 2 and the OFF region 3 of the same material, so that the life can be more effectively extended. In addition, manufacturing costs can be reduced by using common materials.
 図3に示すように、オフ領域3の幅寸法T4は、オン領域2の幅寸法T3より大きく形成されていることが好ましい。摺動子9の摺動方向の幅寸法T5によってオン信号を生成する領域が増えるため、例えばオフ領域3の幅寸法T4をオン領域2の幅寸法T3と同じに設定すると、実質的に、オン領域2がオフ領域3よりも広がる。その結果、出力パルスのデューティ比を50%に近づけることができなくなる。 As shown in FIG. 3, the width dimension T4 of the off region 3 is preferably formed larger than the width dimension T3 of the on region 2. Since an area for generating an ON signal is increased by the width dimension T5 in the sliding direction of the slider 9, for example, if the width dimension T4 of the OFF area 3 is set to be the same as the width dimension T3 of the ON area 2, the ON signal is substantially ON. Region 2 is wider than off region 3. As a result, the duty ratio of the output pulse cannot be brought close to 50%.
 よって、摺動子9の幅寸法T5を考慮して、オフ領域3の幅寸法T4を、オン領域2の幅寸法T3より大きく形成し、オン信号のパルス幅T1とオフ信号のパルス幅T2とがほぼ同じになるように、幅寸法T3と幅寸法T4の調整することがより好適である(図3参照)。なお、摺動子は、導電性を有する金属板などの金属材料で形成されるが、理解をしやすくするために、便宜上、図3においては、摺動子9を柱状に現している。 Therefore, in consideration of the width dimension T5 of the slider 9, the width dimension T4 of the off region 3 is formed larger than the width dimension T3 of the on region 2, and the pulse width T1 of the on signal and the pulse width T2 of the off signal are It is more preferable to adjust the width dimension T3 and the width dimension T4 so that they are substantially the same (see FIG. 3). Note that the slider is made of a metal material such as a conductive metal plate. For the sake of easy understanding, the slider 9 is shown in a columnar shape in FIG.
 幅寸法T3および幅寸法T4の関係は次に示される式で調整が可能である。
 T3=T1-T5、 T4=T2+T5-2×T6
 ここで、T6は第1分離ライン4の幅寸法である。
The relationship between the width dimension T3 and the width dimension T4 can be adjusted by the following equation.
T3 = T1-T5, T4 = T2 + T5-2 × T6
Here, T6 is the width dimension of the first separation line 4.
 また、第1分離ライン4が摺動面1aの全周にわたって連続して形成されており、第1分離ライン4が絶縁基板8と同じ樹脂により形成されていることで、例えば、導電層をレーザー光照射により分離して第1分離ライン4を形成し、樹脂の充填により絶縁性の第1分離ライン4と絶縁基板8を形成できるため、コード板を簡単な構造で生産性良く形成できる。 In addition, the first separation line 4 is continuously formed over the entire circumference of the sliding surface 1a, and the first separation line 4 is formed of the same resin as the insulating substrate 8, so that, for example, the conductive layer is made of a laser. The first separation line 4 can be formed by separation by light irradiation, and the insulating first separation line 4 and the insulating substrate 8 can be formed by filling the resin. Therefore, the code plate can be formed with a simple structure and high productivity.
 図4に示す実施形態では、コモン領域20の外周側に所定の間隔を周方向に空けてA相オン領域21が形成され、コモン領域20の内周側に所定の間隔を空けて周方向にB相オン領域22が形成される。コモン領域20、A相オン領域21及びB相オン領域22は第1の導電層の表面で形成されたオン領域23である。図1の実施形態と同様に、A相のパルスと、B相のパルスのタイミング(位相)が90度(1パルスの1/4分)ずれて出力されるように、B相オン領域22とA相オン領域21とがコモン領域20に対して円周方向にずれて配置されている。 In the embodiment shown in FIG. 4, an A-phase ON region 21 is formed on the outer peripheral side of the common region 20 with a predetermined interval in the circumferential direction, and a predetermined interval is provided on the inner peripheral side of the common region 20 in the circumferential direction. B-phase on region 22 is formed. The common region 20, the A phase on region 21, and the B phase on region 22 are on regions 23 formed on the surface of the first conductive layer. As in the embodiment of FIG. 1, the B-phase on region 22 is output so that the timing (phase) of the A-phase pulse and the B-phase pulse are shifted by 90 degrees (1/4 of one pulse). The A-phase ON region 21 is arranged so as to be shifted in the circumferential direction with respect to the common region 20.
 図4の実施形態でもA相オン領域21間、及びB相オン領域22間が第2の導電層の表面で形成されたオフ領域24であり、オン領域23とオフ領域24とが絶縁性の第1分離ライン25により区画されている。第1分離ライン25は図1の実施形態と同様に円周方向にわたって連続的に形成されているが、図4の実施形態では、第1分離ライン25が摺動面の外側と内側に2本設けられる。本実施形態では、第1分離ライン25の本数は限定しない。ただし図1のように、周方向に対して直交する方向、すなわち径方向にコモン領域、A相領域、B相領域の順に配置し、一筆書きパターンの第1分離ライン4によりコモン領域10、A相オン領域11、B相オン領域12を区画することで、オン領域とオフ領域とを簡単に区画でき、また、A相用パターンとB相用パターンとを隣接させることができるので、A相オン領域11とB相オン領域12とのパターンずれを小さくできる。 In the embodiment of FIG. 4, the A region on region 21 and the B phase on region 22 are off regions 24 formed on the surface of the second conductive layer, and the on region 23 and the off region 24 are insulative. It is partitioned by the first separation line 25. Although the 1st separation line 25 is continuously formed over the circumferential direction similarly to embodiment of FIG. 1, in the embodiment of FIG. 4, two 1st separation lines 25 are outside and inside of a sliding surface. Provided. In the present embodiment, the number of the first separation lines 25 is not limited. However, as shown in FIG. 1, the common region, the A-phase region, and the B-phase region are arranged in this order in the direction orthogonal to the circumferential direction, that is, in the radial direction. By partitioning the phase on region 11 and the B phase on region 12, the on region and the off region can be easily partitioned, and the A phase pattern and the B phase pattern can be adjacent to each other. The pattern shift between the on region 11 and the B phase on region 12 can be reduced.
 次に図5に示す第3実施形態は、図1に示す第1実施形態の構成を改良したものである。 Next, the third embodiment shown in FIG. 5 is an improvement of the configuration of the first embodiment shown in FIG.
 図5では、第1分離ライン4により画定された隣接するA相オフ領域3aとB相オフ領域3bとの間が、絶縁材料で形成された第2分離ライン31により絶縁されている。 In FIG. 5, the adjacent A-phase off region 3a and B-phase off region 3b defined by the first separation line 4 are insulated by a second separation line 31 formed of an insulating material.
 一方、図8は、図5と違って、A相オフ領域3aとB相オフ領域3bとの間を第2分離ライン31により絶縁していない。 On the other hand, unlike FIG. 5, FIG. 8 does not insulate the A phase off region 3 a and the B phase off region 3 b by the second separation line 31.
 今、図8に示すように、B相領域(トラック)上を摺動する第2の摺動子9がB相オフ領域3b上に位置し、一方、A相領域(トラック)上を摺動する第1の摺動子13が、ちょうど、第1分離ライン4上に位置しているとする。このとき、金属板等からなる第1の摺動子13の接触面13aが第1分離ライン4の幅より大きいと、第1の摺動子13が、オン領域2(A相オン領域11)とオフ領域3(A相オフ領域3a)の両方に接触した状態となる。するとB相オフ領域3b上に位置している第2の摺動子9が、A相オン領域11と接している第1の摺動子13と第2の導電層7bを介して導通し、ひいてはコモン領域10上を摺動するコモン摺動子(図示せず)と導通することになる(図8には電流パスを矢印で示している)。よって図7の回路図に示すように、本来、コモン摺動子と導通せずに開回路状態であるはずのB相回路が、同図の破線で示すようにコモン摺動子と導通した状態になって閉回路になり、出力が5Vから0Vに低下し、図9のように、オフ信号が出力されるはずの摺動位置で、誤信号としてオン信号が一瞬、出力されてしまう。図9のようにA相についても同様の現象が生じる。 Now, as shown in FIG. 8, the second slider 9 sliding on the B phase region (track) is positioned on the B phase off region 3b, while sliding on the A phase region (track). It is assumed that the first slider 13 is positioned on the first separation line 4. At this time, if the contact surface 13a of the first slider 13 made of a metal plate or the like is larger than the width of the first separation line 4, the first slider 13 is turned on region 2 (A phase on region 11). And the off region 3 (A phase off region 3a). Then, the second slider 9 located on the B-phase off region 3b is electrically connected to the first slider 13 in contact with the A-phase on region 11 via the second conductive layer 7b. As a result, it is electrically connected to a common slider (not shown) that slides on the common region 10 (current paths are indicated by arrows in FIG. 8). Therefore, as shown in the circuit diagram of FIG. 7, the B-phase circuit, which should originally be in an open circuit state without conducting with the common slider, is in conduction with the common slider as shown with a broken line in FIG. As a result, the output is lowered from 5V to 0V, and an ON signal is output as an erroneous signal for a moment at a sliding position where an OFF signal should be output as shown in FIG. As shown in FIG. 9, the same phenomenon occurs for the A phase.
 これに対して、図5のように、第1分離ライン4により画定された隣接するA相オフ領域3aとB相オフ領域3bとの間を、第2分離ライン31により絶縁した状態にすると、図8の場合と同様に、A相領域上を摺動する第1の摺動子13が、ちょうど、第1分離ライン4上に位置しても、B相オフ領域3b上に位置している第2の摺動子9が、A相オン領域11(オン領域2)に接している第1の摺動子13(及びコモン摺動子)と導通しない。 On the other hand, as shown in FIG. 5, when the state between the adjacent A-phase off region 3 a and B-phase off region 3 b defined by the first separation line 4 is insulated by the second separation line 31, As in the case of FIG. 8, the first slider 13 that slides on the A-phase region is located on the B-phase off region 3 b even if it is located on the first separation line 4. The second slider 9 is not electrically connected to the first slider 13 (and the common slider) in contact with the A-phase on region 11 (on region 2).
 よって、第2の摺動子9がB相オフ領域3b上に位置している間、図7に示すB相回路は、開回路の状態を維持する。したがって、図6に示すように、矩形状のパルス信号を高精度に出力でき、誤信号が出力されるのを効果的に防止できる。 Therefore, while the second slider 9 is positioned on the B-phase off region 3b, the B-phase circuit shown in FIG. 7 maintains an open circuit state. Therefore, as shown in FIG. 6, a rectangular pulse signal can be output with high accuracy, and an erroneous signal can be effectively prevented from being output.
 図5では、第2分離ライン31は第1分離ライン4からの引き回しパターンで形成されている。これにより、第1分離ライン4及び第2分離ライン31を一筆書きパターンで形成することができる。 In FIG. 5, the second separation line 31 is formed by a routing pattern from the first separation line 4. Thereby, the 1st separation line 4 and the 2nd separation line 31 can be formed with a single stroke pattern.
 あるいは図10に示すように第2分離ライン31は第1分離ライン4からの分岐パターンで形成されてもよい。 Alternatively, as shown in FIG. 10, the second separation line 31 may be formed in a branch pattern from the first separation line 4.
 本実施形態では第2分離ライン31のパターン形状を限定するものでない。第2の導電層7bで形成されるA相オフ領域3aとB相オフ領域3bが隣接する形態で、第2分離ライン31によりA相オフ領域3aとB相オフ領域3bとを絶縁できればよい。 In the present embodiment, the pattern shape of the second separation line 31 is not limited. It is only necessary that the A-phase off region 3a and the B-phase off region 3b can be insulated from each other by the second separation line 31 in a form in which the A-phase off region 3a and the B-phase off region 3b formed by the second conductive layer 7b are adjacent to each other.
 本実施形態では第2分離ライン31は、第1分離ライン4と同様に、絶縁基板8と同じ樹脂により形成され、第1分離ライン4、第2分離ライン31、オン領域2及びオフ領域3が全て同一面で形成されることが好適である。 In the present embodiment, the second separation line 31 is formed of the same resin as the insulating substrate 8 in the same manner as the first separation line 4, and the first separation line 4, the second separation line 31, the on region 2 and the off region 3 are formed. It is preferable that they are all formed on the same surface.
 なお図4の形態のように周方向に対して直交する方向である径方向に、A相領域、コモン領域、B相領域の順に配置された構成では、2本の第1分離ライン25によって、A相オフ領域24aと、B相オフ領域24bとは絶縁された状態にある。よって図4の形態では第2分離ライン31の形成が不要である。 In the configuration in which the A phase region, the common region, and the B phase region are arranged in this order in the radial direction that is a direction orthogonal to the circumferential direction as in the form of FIG. 4, the two first separation lines 25 The A-phase off region 24a and the B-phase off region 24b are in an insulated state. Therefore, it is not necessary to form the second separation line 31 in the form of FIG.
 図11ないし図15は、本実施形態のコード板の製造方法を示す工程の説明図である。図11(a)、図12(a)、図13(a)、及び図14ないし図15は、いずれも図11(b)、図12(b)、図13(b)のB-B線に沿って切断した、製造工程中におけるコード板の部分断面図であり、図11(b)、図12(b)は夫々、図11(a)、図12(a)の平面図である。ただし図13(b)は、図13(a)の矢印方向から転写板30を透視して見た裏面図である。 FIG. 11 to FIG. 15 are explanatory views of steps showing the method for manufacturing the code plate of the present embodiment. 11 (a), 12 (a), 13 (a), and 14 to 15 are all taken along line BB in FIGS. 11 (b), 12 (b), and 13 (b). FIG. 11B and FIG. 12B are plan views of FIG. 11A and FIG. 12A, respectively. However, FIG.13 (b) is the reverse view seen through the transfer plate 30 from the arrow direction of Fig.13 (a).
 図11に示す工程では、例えば黄銅板で形成された転写板30上に、第1の導電ペーストをスクリーン印刷して表面側導電層5を形成する。転写板30の表面は予め鏡面加工されている。転写板30は金属であることが好適である。転写板30を熱収縮しない金属で形成することにより、表面側導電層5の熱収縮の効果で最終工程で転写板30を剥離しやすい。また、導電層7a,7bに十分な加熱処理を加えることが出来るため、摺動面1aの耐摩耗性を高めることができる。 In the step shown in FIG. 11, the surface-side conductive layer 5 is formed by screen-printing the first conductive paste on the transfer plate 30 formed of, for example, a brass plate. The surface of the transfer plate 30 is mirror-finished in advance. The transfer plate 30 is preferably made of metal. By forming the transfer plate 30 from a metal that does not thermally contract, the transfer plate 30 can be easily peeled off in the final process due to the effect of thermal contraction of the surface-side conductive layer 5. Moreover, since sufficient heat treatment can be applied to the conductive layers 7a and 7b, the wear resistance of the sliding surface 1a can be enhanced.
 本実施形態では、第1の溶媒に、第1のバインダー樹脂を溶解させ、これに例えばカーボンブラックと、カーボンファイバー(平均粒径3~30μmのカーボンファイバーの粉砕粉)を混合させたものを第1の導電ペーストとする。例えば、第1のバインダー樹脂は、30~95体積%、カーボンブラック及びカーボンファイバーは合わせて5~70体積%である(溶媒を除いた第1のバインダー樹脂、カーボンブラック、カーボンファイバーの合計が100体積%)。 In the present embodiment, a first binder resin is dissolved in a first solvent, and for example, carbon black and carbon fibers (pulverized powder of carbon fibers having an average particle diameter of 3 to 30 μm) are mixed with the first binder resin. 1 conductive paste. For example, the first binder resin is 30 to 95% by volume, and the total of carbon black and carbon fiber is 5 to 70% by volume (the total of the first binder resin, carbon black, and carbon fiber excluding the solvent is 100%. volume%).
 転写板30の表面全体に、ペースト状の表面側導電層5をスクリーン印刷する。
 印刷後、乾燥炉を用いて、表面側導電層5を例えば100℃~250℃で10分~60分乾燥させ、第1の溶媒を蒸発させて除去する。
A paste-like surface-side conductive layer 5 is screen-printed on the entire surface of the transfer plate 30.
After printing, the surface-side conductive layer 5 is dried, for example, at 100 to 250 ° C. for 10 to 60 minutes using a drying furnace, and the first solvent is evaporated and removed.
 次に図12に示す工程では、表面側導電層5上に、ペースト状の内側導電層6をスクリーン印刷にてパターン形成する。 Next, in the step shown in FIG. 12, a paste-like inner conductive layer 6 is patterned on the surface-side conductive layer 5 by screen printing.
 第2の導電ペーストは、第2の溶媒中に、第2のバインダー樹脂及び、主成分の銀と、酸化ビスマス、あるいは、カーボン、又は酸化ビスマス及びカーボンとを有する複合粉等の銀を主成分とした導電性粒子を混合したものであることが好適である。例えば、第2のバインダー樹脂は、50~95体積%、導電性粒子は、5~50体積%である(溶媒を除いた第2のバインダー樹脂、前記導電性粒子の合計が100体積%)。 The second conductive paste is mainly composed of a second binder resin, silver as a main component, and bismuth oxide, carbon, or a composite powder containing carbon, bismuth oxide and carbon, or the like in a second solvent. It is preferable that the conductive particles are mixed. For example, the second binder resin is 50 to 95% by volume and the conductive particles are 5 to 50% by volume (the second binder resin excluding the solvent and the total of the conductive particles is 100% by volume).
 印刷後に、乾燥炉を用いて、スクリーン印刷したペースト状の内側導電層6を例えば、100~260℃で10~60分間乾燥させて、第2の溶媒を蒸発させて除去する。
 表面側導電層5及び内側導電層6の乾燥を同時に行ってもよい。
After printing, the screen-printed paste-like inner conductive layer 6 is dried, for example, at 100 to 260 ° C. for 10 to 60 minutes using a drying furnace to evaporate and remove the second solvent.
You may dry the surface side conductive layer 5 and the inner side conductive layer 6 simultaneously.
 次に図13の工程では、表面側導電層5及び内側導電層6を第1の導電層7aと第2の導電層7bに分離し、第1の導電層7aと第2の導電層7bとの間に溝部からなる第1分離ライン4を形成する。第1の導電層7aの表面(表面側導電層5の転写板30との対向面)はオン領域2であり、第2の導電層7bの表面(表面側導電層5の転写板30との対向面)はオフ領域3である。 Next, in the process of FIG. 13, the surface side conductive layer 5 and the inner side conductive layer 6 are separated into the first conductive layer 7a and the second conductive layer 7b, and the first conductive layer 7a and the second conductive layer 7b are separated. A first separation line 4 made of a groove is formed between the two. The surface of the first conductive layer 7a (the surface facing the transfer plate 30 of the surface side conductive layer 5) is the ON region 2, and the surface of the second conductive layer 7b (the transfer plate 30 of the surface side conductive layer 5 with the transfer plate 30). The facing surface is the off region 3.
 図13に示す実施形態では、オン領域2とオフ領域3を区画する溝部からなる第1分離ライン4をレーザー光照射により例えば、一筆書きパターンで形成している。例えば図13(b)(図13(a)の矢印方向から転写板30を透視した裏面図)のように第1分離ライン4を略歯車状に形成する。これにより摺動面1aがオン領域2であるコモン領域10、A相オン領域11及びB相オン領域12と、A相オン領域11間及びB相オン領域12間のオフ領域3とに区画される。B相オン領域12はA相オン領域11に対して周方向(時計回り方向)にずれて配置される。図13(b)のように第1分離ライン4にて区画されたA相オン領域11及びB相オン領域12とオフ領域3とが円周方向に沿って交互に形成される。 In the embodiment shown in FIG. 13, the first separation line 4 composed of grooves that divide the ON region 2 and the OFF region 3 is formed in a one-stroke pattern, for example, by laser light irradiation. For example, as shown in FIG. 13B (a rear view seen through the transfer plate 30 from the direction of the arrow in FIG. 13A), the first separation line 4 is formed in a substantially gear shape. As a result, the sliding surface 1a is divided into the common region 10, the A phase on region 11, and the B phase on region 12, which are the on region 2, and the off region 3 between the A phase on region 11 and the B phase on region 12. The The B phase on region 12 is arranged so as to be shifted in the circumferential direction (clockwise direction) with respect to the A phase on region 11. As shown in FIG. 13B, the A-phase ON region 11 and the B-phase ON region 12 and the OFF region 3 partitioned by the first separation line 4 are alternately formed along the circumferential direction.
 レーザー光照射装置としては、たとえば、SUNX(株)社製のLP-V10やLP-V15(いずれも、励起波長:1064nm、増幅方式:イッテリビウムによる出力増幅)を好ましく使用できる。このレーザーはYAGレーザーに分類されるものであり、レーザー出力は例えば12Wである。 As the laser beam irradiation device, for example, LP-V10 and LP-V15 (both excitation wavelength: 1064 nm, amplification method: output amplification by ytterbium) manufactured by SUNX Corporation can be preferably used. This laser is classified as a YAG laser, and the laser output is 12 W, for example.
 第1分離ライン4は例えばエッチングにて形成することも出来るが、上記のように第1分離ライン4をYAGレーザー等を用いて図13(b)に示すように例えば、一筆書きパターンで形成することで加工時間を短く出来、さらに高精度にオン領域2とオフ領域3とに区画できるといった効果がある。 The first separation line 4 can be formed by etching, for example, but as described above, the first separation line 4 is formed by using, for example, a one-stroke pattern as shown in FIG. 13B using a YAG laser or the like. As a result, the machining time can be shortened, and the ON region 2 and the OFF region 3 can be partitioned with high accuracy.
 次に、加熱炉において400℃程度の温度で1~2時間加熱し、表面側導電層5に含まれる第1のバインダー樹脂及び、内側導電層6に含まれる第2のバインダー樹脂を同時に熱硬化する。これにより表面側導電層5は熱硬化したバインダー樹脂中にカーボン粉が分散した膜構造になり、内側導電層6は熱硬化したバインダー樹脂中に複合粉が分散した膜構造になる。 Next, the first binder resin contained in the surface-side conductive layer 5 and the second binder resin contained in the inner conductive layer 6 are simultaneously thermoset by heating in a heating furnace at a temperature of about 400 ° C. for 1-2 hours. To do. Thus, the surface-side conductive layer 5 has a film structure in which carbon powder is dispersed in a thermoset binder resin, and the inner conductive layer 6 has a film structure in which composite powder is dispersed in a thermoset binder resin.
 ここで第1の溶媒及び第2の溶媒には、酢酸カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、モノグライム、ジグライム、メチルトリグライム等を使用できる。 Here, as the first solvent and the second solvent, carbitol acetate, methyl carbitol, ethyl carbitol, butyl carbitol, monoglyme, diglyme, methyltriglyme and the like can be used.
 また、第1のバインダー樹脂及び第2のバインダー樹脂には、ポリイミド樹脂、ビスマレイミド樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の熱硬化性樹脂を選択できる。なおバインダー樹脂に、アセチレン末端ポリイソイミドオリゴマーを含むことがガラス転移温度(Tg)を高くでき耐熱性を向上させる上で好ましい。 Further, thermosetting resins such as polyimide resin, bismaleimide resin, epoxy resin, phenol resin, and acrylic resin can be selected as the first binder resin and the second binder resin. The binder resin preferably contains an acetylene-terminated polyisoimide oligomer from the viewpoint of increasing the glass transition temperature (Tg) and improving the heat resistance.
 次に図14に示す工程では、転写板30上に形成した導電層を金型40内に配置する。そして、金型40のキャビティ43に溶融状態の例えばエポキシ樹脂を射出する。このとき、エポキシ樹脂は、第1の導電層7aと第2の導電層7bとの間の溝部からなる第1分離ライン4にも適切に流れて、間隔内(溝部)を埋める。これにより第1分離ライン4も樹脂により形成されるものとなる。 Next, in the step shown in FIG. 14, the conductive layer formed on the transfer plate 30 is placed in the mold 40. Then, for example, an epoxy resin in a molten state is injected into the cavity 43 of the mold 40. At this time, the epoxy resin also appropriately flows into the first separation line 4 formed by the groove between the first conductive layer 7a and the second conductive layer 7b, and fills the gap (groove). Thereby, the 1st separation line 4 will also be formed with resin.
 金型40の温度は例えば160~200℃であり、エポキシ樹脂が硬化して絶縁基板8が成形される。そして、転写板30が付いた絶縁基板8を金型40から取り出し、図15に示すように、転写板30を絶縁基板8から剥離し、導電層7a,7bを絶縁基板8に転写すると、コード板1が完成する。 The temperature of the mold 40 is, for example, 160 to 200 ° C., and the epoxy resin is cured to form the insulating substrate 8. Then, the insulating substrate 8 with the transfer plate 30 is taken out from the mold 40, and the transfer plate 30 is peeled off from the insulating substrate 8 and the conductive layers 7a and 7b are transferred to the insulating substrate 8 as shown in FIG. The board 1 is completed.
 本実施形態の製造方法によれば、第1の導電層7aの表面であるオン領域2と第2の導電層7bの表面であるオフ領域3とを分離して絶縁する第1分離ライン4を確実且つ容易に形成できる。また本実施形態では、オン領域2、オフ領域3、及び絶縁樹脂からなる第1分離ライン4を同一面で形成できる。よって本実施形態では長寿命で出力安定性に優れたコード板1を簡単な製造方法で安価に製造することが可能である。 According to the manufacturing method of the present embodiment, the first separation line 4 that separates and isolates the ON region 2 that is the surface of the first conductive layer 7a and the OFF region 3 that is the surface of the second conductive layer 7b is provided. It can be reliably and easily formed. In the present embodiment, the ON region 2, the OFF region 3, and the first separation line 4 made of an insulating resin can be formed on the same surface. Therefore, in this embodiment, it is possible to manufacture the code plate 1 having a long life and excellent output stability at a low cost by a simple manufacturing method.
 また、本実施形態では、導電層をレーザー光照射により第1の導電層7aと第2の導電層7bとに分離することが高精度に分離できて好ましい。例えば、一筆書きパターンのように連続したレーザー光照射で加工できるので、生産性を向上させることができる。またレーザー光照射により幅細の第1分離ライン4を形成しやすい。また第1の導電層7aと第2の導電層7bとに分離するとき、出力パルスのデューティ比を所望の割合とするには摺動子9の摺動方向の幅寸法T5と第1分離ライン4の幅寸法T6を加味して図3で説明したように、オフ領域3の幅寸法T4がオン領域2の幅寸法T3より大きくなるように、第1分離ライン4の加工パターン(描画パターン)を制御することが好適である。特に、図3に示すように、オン信号のパルス幅T1と、オフ信号のパルス幅T2とが同じとなるように、摺動子9の摺動方向の幅寸法T5と第1分離ライン4の幅寸法T6を考慮して加工パターンを制御することで出力パルスのデューティ比を50%により近づけることが可能になり好適である。 Further, in the present embodiment, it is preferable that the conductive layer is separated into the first conductive layer 7a and the second conductive layer 7b by laser light irradiation because separation can be performed with high accuracy. For example, since it can process by continuous laser beam irradiation like a one-stroke pattern, productivity can be improved. Further, the narrow first separation line 4 can be easily formed by laser light irradiation. Further, when separating into the first conductive layer 7a and the second conductive layer 7b, the width T5 in the sliding direction of the slider 9 and the first separation line are used to set the duty ratio of the output pulse to a desired ratio. As described in FIG. 3 in consideration of the width dimension T6 of 4, the processing pattern (drawing pattern) of the first separation line 4 so that the width dimension T4 of the off region 3 is larger than the width dimension T3 of the on region 2. Is preferably controlled. In particular, as shown in FIG. 3, the width dimension T5 in the sliding direction of the slider 9 and the first separation line 4 are set so that the pulse width T1 of the on signal and the pulse width T2 of the off signal are the same. By controlling the processing pattern in consideration of the width dimension T6, the duty ratio of the output pulse can be made closer to 50%, which is preferable.
 また上記のコード板1の製造方法では、導電層を表面側導電層5と内側導電層6の積層構造で形成したが、単層構造であってもよい。ただし本実施形態のように、カーボン粉を含む表面側導電層5を摺動面に露出させ、銀粉を含む内側導電層6を表面側導電層5の内側に重ねて配置し摺動面に露出しないようにすることで、耐環境性を向上させることができるとともに、導通抵抗を低減できる。 In the above method for manufacturing the code plate 1, the conductive layer is formed by a laminated structure of the surface-side conductive layer 5 and the inner conductive layer 6, but a single-layer structure may be used. However, as in this embodiment, the surface-side conductive layer 5 containing carbon powder is exposed on the sliding surface, and the inner conductive layer 6 containing silver powder is placed on the inner side of the surface-side conductive layer 5 and exposed on the sliding surface. By avoiding this, the environmental resistance can be improved and the conduction resistance can be reduced.
 また図1のように、周方向に対して直交する方向である径方向に、A相領域とB相領域とが隣り合うコード板を作製する場合は、例えば図13の工程のときに、A相オフ領域3aを構成する第2の導電層7bと、B相オフ領域3bを構成する第2の導電層7bを溝部からなる第2分離ライン31により分離する(図5参照)。そして、図14工程で、溝部からなる第1分離ライン4と共に第2分離ライン31を樹脂で埋める。 Further, as shown in FIG. 1, when a code plate in which the A-phase region and the B-phase region are adjacent to each other in the radial direction that is a direction orthogonal to the circumferential direction, The second conductive layer 7b constituting the phase-off region 3a and the second conductive layer 7b constituting the B-phase off region 3b are separated by the second separation line 31 formed of a groove (see FIG. 5). Then, in the step of FIG. 14, the second separation line 31 is filled with resin together with the first separation line 4 including the groove portion.
 図5のように、第2分離ライン31を第1分離ライン4からの引き回しパターンで形成すれば、第1分離ライン4及び第2分離ライン31を図13工程で一筆書きパターンで形成することができる。 As shown in FIG. 5, if the second separation line 31 is formed with a drawing pattern from the first separation line 4, the first separation line 4 and the second separation line 31 can be formed with a single stroke pattern in the process of FIG. it can.
 あるいは図10のように、第2分離ライン31を第1分離ライン4からの分岐パターンで形成することもできる。例えば、まず、第1分離ライン4をレーザー光照射により形成した後、各A相オフ領域3a及びB相オフ領域3bの間に夫々、溝部からなる第2分離ライン31をレーザー光照射により形成する。 Alternatively, as shown in FIG. 10, the second separation line 31 can be formed in a branch pattern from the first separation line 4. For example, first, the first separation line 4 is formed by laser light irradiation, and then the second separation line 31 formed of a groove is formed by laser light irradiation between each A-phase off region 3a and B-phase off region 3b. .
 なお、上記したいずれの実施形態においても、A相オン領域とB相オン領域とが周方向にずれて配置されたコード板1で説明したが、本発明はこれに限られない。すなわち、A相オン領域とB相オン領域とが周方向にずれていないコード板であっても良く、この場合には、A相用摺動子とB相用摺動子の両接点部の位置を周方向にずらすことにより、A相パルス信号とB相パルス信号とに所望の位相差が生じるようにすればよい。 In any of the above-described embodiments, the code plate 1 in which the A-phase on region and the B-phase on region are arranged to be shifted in the circumferential direction has been described, but the present invention is not limited to this. That is, it may be a code plate in which the A-phase ON region and the B-phase ON region are not displaced in the circumferential direction. In this case, both contact portions of the A-phase slider and the B-phase slider By shifting the position in the circumferential direction, a desired phase difference may be generated between the A-phase pulse signal and the B-phase pulse signal.
 また、上記した本実施形態のコード板1は、いずれも、固定された摺動子に対して回転可能に支持される形態のものであるが、例えばコード板1は摺動子に対して相対的にスライド移動可能に支持された形態でもよい。この場合、摺動子の直線的な摺動方向に向けてオン領域とオフ領域とが交互に繰り返された形態となる。 In addition, each of the code plates 1 of the present embodiment described above is of a form that is rotatably supported with respect to a fixed slider. For example, the code plate 1 is relative to the slider. Alternatively, it may be supported so as to be slidable. In this case, the ON region and the OFF region are alternately repeated toward the linear sliding direction of the slider.
第1実施形態におけるコード板の平面図、The top view of the code board in a 1st embodiment, 図1の一部を誇張して示した拡大平面図、FIG. 1 is an enlarged plan view exaggerating a part of FIG. 図1に示すA-A線に沿って切断したときの部分拡大断面図で、摺動子とB相パルス信号の波形を追加して示す図、FIG. 2 is a partial enlarged cross-sectional view taken along the line AA shown in FIG. 1, and a diagram additionally showing a slider and a waveform of a B-phase pulse signal; 第2実施形態におけるコード板の平面図、The top view of the code board in 2nd Embodiment, 第3実施形態におけるコード板の部分拡大斜視図、The partial expansion perspective view of the code board in a 3rd embodiment, 第3実施形態における出力パルス波形図、Output pulse waveform diagram in the third embodiment, エンコーダ回路図、Encoder circuit diagram, 第1実施形態の不具合を説明するための部分拡大斜視図、The partial expansion perspective view for demonstrating the malfunction of 1st Embodiment, 図8で説明した不具合が生じた場合における出力パルス波形図、FIG. 8 is an output pulse waveform diagram when the trouble described in FIG. 8 occurs; 第4実施形態におけるコード板の平面図、The top view of the code board in a 4th embodiment, 本実施形態のコード板の製造方法を示す工程図であり、(a)は、コード板を図11(b)に示すB-B線から膜厚方向に切断したときの部分断面図、(b)は製造工程中のコード板の平面図、FIG. 11 is a process diagram illustrating a method of manufacturing a code plate according to the present embodiment, in which (a) is a partial cross-sectional view when the code plate is cut in the film thickness direction from line BB shown in FIG. ) Is a plan view of the code plate during the manufacturing process, 図11の次に行われる工程図であり、(a)は、コード板を図12(b)に示すB-B線から膜厚方向に切断したときの部分断面図、(b)は製造工程中のコード板の平面図、FIG. 12A is a process diagram performed subsequent to FIG. 11, in which FIG. 11A is a partial cross-sectional view when the code plate is cut in the film thickness direction from the line BB shown in FIG. 12B, and FIG. Top view of the inner code plate 図12の次に行われる工程図であり、(a)は、前記コード板を図13(b)に示すB-B線から膜厚方向に切断したときの部分断面図、(b)は転写板を透視して見た製造工程中のコード板の裏面図、FIG. 13A is a process diagram performed next to FIG. 12, where FIG. 13A is a partial cross-sectional view when the code plate is cut in the film thickness direction from the line BB shown in FIG. A back view of the code plate during the manufacturing process seen through the plate, 図13の次に行われる工程図であり、転写板上の導電層を金型内に配置した状態を示す部分断面図、FIG. 14 is a process diagram performed subsequent to FIG. 13, and is a partial cross-sectional view showing a state in which a conductive layer on a transfer plate is arranged in a mold; 図14の次に行われる工程図であり、転写板を剥離する工程を示す部分断面図、FIG. 15 is a process diagram subsequent to FIG. 14, and is a partial cross-sectional view illustrating a process of peeling the transfer plate;
1 コード板
1a 摺動面
2、23 オン領域
3、24 オフ領域
3a、24a A相オフ領域
3b、24b B相オフ領域
4、25 第1分離ライン
5 表面側導電層
6 内側導電層
7a 第1の導電層
7b 第2の導電層
8 絶縁基板
9、13 摺動子
10、20 コモン領域
11、21 A相オン領域
12、22 B相オン領域
30 転写板
31 第2分離ライン
40 金型
43 キャビティ
DESCRIPTION OF SYMBOLS 1 Code board 1a Sliding surface 2, 23 ON area | region 3, 24 OFF area | region 3a, 24a A phase OFF area | region 3b, 24b B phase OFF area | region 4, 25 1st separation line 5 Surface side conductive layer 6 Inner conductive layer 7a 1st Conductive layer 7b Second conductive layer 8 Insulating substrate 9, 13 Slider 10, 20 Common region 11, 21 Phase A on region 12, 22 Phase B on region 30 Transfer plate 31 Second separation line 40 Mold 43 Cavity

Claims (21)

  1.  摺動子との摺動面にオン信号を得るためのオン領域とオフ信号を得るためのオフ領域とが交互に形成されたコード板において、
     前記オン領域と前記オフ領域が共に導電層の表面で形成されており、前記オン領域と前記オフ領域の間に、前記オン領域と前記オフ領域とを区画し絶縁材料で形成された第1分離ラインが設けられていることを特徴とするコード板。
    In the code plate in which the ON region for obtaining the ON signal and the OFF region for obtaining the OFF signal are alternately formed on the sliding surface with the slider,
    The on region and the off region are both formed on the surface of a conductive layer, and the on region and the off region are partitioned between the on region and the off region, and a first separation formed of an insulating material. A code plate, characterized in that a line is provided.
  2.  前記摺動面に現れる前記オン領域、前記オフ領域、及び前記第1分離ラインが同一面で形成されている請求項1記載のコード板。 The code plate according to claim 1, wherein the ON region, the OFF region, and the first separation line appearing on the sliding surface are formed on the same surface.
  3.  前記オン領域を構成する第1の導電層と前記オフ領域を構成する第2の導電層が同じ材質で形成されている請求項1又は2に記載のコード板。 The code plate according to claim 1 or 2, wherein the first conductive layer constituting the ON region and the second conductive layer constituting the OFF region are formed of the same material.
  4.  前記オフ領域の幅寸法が、前記オン領域の幅寸法より大きい請求項1ないし3のいずれかに記載のコード板。 The code plate according to any one of claims 1 to 3, wherein a width dimension of the off region is larger than a width dimension of the on region.
  5.  前記第1分離ラインが前記摺動面の全周にわたって連続して形成されており、前記導電層が樹脂で形成された絶縁基板により支持され、前記第1分離ラインが前記樹脂により形成されている請求項1ないし4のいずれかに記載のコード板。 The first separation line is continuously formed over the entire circumference of the sliding surface, the conductive layer is supported by an insulating substrate formed of resin, and the first separation line is formed of the resin. The code board according to any one of claims 1 to 4.
  6.  前記オン領域は、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成されると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に設けられ前記オン領域と導通するコモン領域を有し、前記オフ領域は、前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで構成されており、前記コモン領域、前記A相オン領域及び前記B相オン領域と、前記A相オフ領域及び前記B相オフ領域とを区画する前記第1分離ラインが一筆書きパターンで形成されている請求項5記載のコード板。 The ON region is an A-phase ON region that is spaced circumferentially over the entire circumference of the sliding surface, and a region that is different in radial direction from the A-phase ON region in the circumferential direction over the entire periphery. A common region is formed in a B-phase on region that is arranged at an interval, and is provided in a different region that is radially shifted from the A-phase on region and the B-phase on region. The off region includes an A phase off region formed between the A phase on regions via the first separation line and a B phase formed between the B phase on regions via the first separation line. An off region, and the first separation line dividing the common region, the A phase on region and the B phase on region, the A phase off region and the B phase off region is a one-stroke pattern 6. It is formed by this. Code plate.
  7.  前記オン領域は、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成されると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に設けられ前記オン領域と導通するコモン領域を有し、前記オフ領域は、前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで構成されており、前記A相オフ領域と、前記B相オフ領域とが絶縁されている請求項1ないし5のいずれかに記載のコード板。 The ON region is an A-phase ON region that is spaced circumferentially over the entire circumference of the sliding surface, and a region that is different in radial direction from the A-phase ON region in the circumferential direction over the entire periphery. A common region is formed in a B-phase on region that is arranged at an interval, and is provided in a different region that is radially shifted from the A-phase on region and the B-phase on region. The off region includes an A phase off region formed between the A phase on regions via the first separation line and a B phase formed between the B phase on regions via the first separation line. The code plate according to any one of claims 1 to 5, further comprising an off region, wherein the A-phase off region and the B-phase off region are insulated.
  8.  前記周方向に対して直交する方向に、前記コモン領域、前記A相オン領域、及び前記B相オン領域の順に配置されており、隣接する前記A相オフ領域及び前記B相オフ領域の間が、絶縁材料で形成された第2分離ラインにより絶縁されている請求項7記載のコード板。 In the direction orthogonal to the circumferential direction, the common region, the A phase on region, and the B phase on region are arranged in this order, and between the adjacent A phase off region and the B phase off region. The cord plate according to claim 7, wherein the cord plate is insulated by a second separation line made of an insulating material.
  9.  前記第2分離ラインは、前記第1分離ラインからの引き回しパターンで形成される請求項8記載のコード板。 The code plate according to claim 8, wherein the second separation line is formed by a routing pattern from the first separation line.
  10.  前記第2分離ラインは、前記第1分離ラインからの分岐パターンで形成される請求項8記載のコード板。 The code plate according to claim 8, wherein the second separation line is formed in a branch pattern from the first separation line.
  11.  前記A相オン領域と前記B相オン領域とが周方向にずれて配置されている請求項6ないし10のいずれかに記載のコード板。 The code plate according to any one of claims 6 to 10, wherein the A-phase on region and the B-phase on region are arranged so as to be shifted in the circumferential direction.
  12.  摺動子との摺動面にオン信号を得るためのオン領域とオフ信号を得るためのオフ領域とを交互に形成するコード板の製造方法において、
     転写板上に、導電性粒子とバインダー樹脂とを有する導電ペーストを印刷して導電層を形成する工程、
     前記導電層を表面が前記オン領域となる第1の導電層と、表面が前記オフ領域となる第2の導電層に分離し、前記第1の導電層と前記第2の導電層との間に溝部からなる第1分離ラインを形成する工程、
     前記転写板上に形成した前記導電層を金型内に配置し、溶融した樹脂を前記金型内に流し込み、このとき、前記溝部からなる第1分離ライン、及び前記第1の導電層上と前記第2の導電層上を前記樹脂で埋める工程、
     前記転写板を剥離し、前記導電層を前記樹脂からなる絶縁基板に転写して、前記摺動面に現れる前記オン領域、前記オフ領域、及び前記樹脂で形成された前記第1分離ラインを同一面で形成する工程、
     を有することを特徴とするコード板の製造方法。
    In the manufacturing method of the code plate in which the ON region for obtaining the ON signal and the OFF region for obtaining the OFF signal are alternately formed on the sliding surface with the slider,
    A step of printing a conductive paste having conductive particles and a binder resin on the transfer plate to form a conductive layer;
    The conductive layer is separated into a first conductive layer whose surface is the on-region and a second conductive layer whose surface is the off-region, and between the first conductive layer and the second conductive layer. Forming a first separation line comprising a groove in
    The conductive layer formed on the transfer plate is placed in a mold, and molten resin is poured into the mold. At this time, a first separation line including the groove portion, and the first conductive layer Filling the second conductive layer with the resin;
    The transfer plate is peeled off, the conductive layer is transferred to the insulating substrate made of resin, and the ON region, the OFF region, and the first separation line formed of the resin appearing on the sliding surface are the same. Forming on the surface,
    A method for manufacturing a cord plate, comprising:
  13.  前記導電層をレーザー光照射により前記第1の導電層と前記第2の導電層とに分離する請求項12に記載のコード板の製造方法。 The method for manufacturing a code plate according to claim 12, wherein the conductive layer is separated into the first conductive layer and the second conductive layer by laser light irradiation.
  14.  前記導電層を、前記摺動面の全周にわたって連続して前記第1の導電層と前記第2の導電層とに分離する請求項13記載のコード板の製造方法。 The method for manufacturing a code plate according to claim 13, wherein the conductive layer is separated into the first conductive layer and the second conductive layer continuously over the entire circumference of the sliding surface.
  15.  前記オン領域を、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成すると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に前記オン領域と導通するコモン領域を形成し、前記オフ領域を、前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域と、前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域とで形成するとき、前記コモン領域、前記A相オン領域及び前記B相オン領域と、前記A相オフ領域及び前記B相オフ領域とを区画する前記第1分離ラインを一筆書きパターンで形成する請求項14記載のコード板の製造方法。 The A-phase ON region, which is arranged at intervals in the circumferential direction over the entire circumference of the sliding surface, and the A-phase ON region in a region where the radial position is different from each other in the circumferential direction. A common region that is electrically connected to the ON region is formed in a different region that is radially shifted from the A phase ON region and the B phase ON region. A phase off region formed between the A phase on regions via the first separation line, and a B phase off region formed between the B phase on regions via the first separation line, Forming the first separation line in a single stroke pattern that partitions the common region, the A-phase on region, and the B-phase on region, and the A-phase off region and the B-phase off region. Item 14. Production of cord plate according to item 14 Method.
  16.  前記オン領域を、前記摺動面の全周にわたって周方向に間隔を空けて配置されるA相オン領域と、前記A相オン領域とは径方向の位置が異なる領域に全周にわたって周方向に間隔を空けて配置されるB相オン領域で形成すると共に、前記A相オン領域及びB相オン領域とは径方向にずれた異なる領域に前記オン領域と導通するコモン領域を形成し、前記オフ領域を、前記A相オン領域間に前記第1分離ラインを介して形成されるA相オフ領域及び前記B相オン領域間に前記第1分離ラインを介して形成されるB相オフ領域で形成するとき、前記A相オフ領域と、前記B相オフ領域とを絶縁する請求項12ないし14のいずれかに記載のコード板の製造方法。 The A-phase ON region, which is arranged at intervals in the circumferential direction over the entire circumference of the sliding surface, and the A-phase ON region in a region where the radial position is different from each other in the circumferential direction. A common region that is electrically connected to the ON region is formed in a different region that is radially shifted from the A phase ON region and the B phase ON region. A region is formed with an A phase off region formed between the A phase on regions via the first separation line and a B phase off region formed between the B phase on regions via the first separation line. 15. The method for manufacturing a code plate according to claim 12, wherein the A-phase off region and the B-phase off region are insulated from each other.
  17.  前記周方向に対して直交する方向に、前記コモン領域、前記A相オン領域、及び前記B相オン領域の順に形成し、隣接する前記A相オフ領域を構成する第2の導電層と、前記B相オフ領域を構成する第2の導電層とを前記樹脂からなる第2分離ラインにより分離する請求項16記載のコード板の製造方法。 A second conductive layer that is formed in the order of the common region, the A-phase on region, and the B-phase on region in a direction orthogonal to the circumferential direction, and constitutes the adjacent A-phase off region; The manufacturing method of the code | cord board of Claim 16 which isolate | separates the 2nd conductive layer which comprises B phase OFF area | region with the 2nd separation line which consists of the said resin.
  18.  前記第2分離ラインを前記第1分離ラインからの引き回しパターンで形成する請求項17記載のコード板の製造方法。 The method for manufacturing a code plate according to claim 17, wherein the second separation line is formed by a drawing pattern from the first separation line.
  19.  前記第2分離ラインを、前記第1分離ラインからの分岐パターンで形成する請求項17記載のコード板の製造方法。 The method for manufacturing a code plate according to claim 17, wherein the second separation line is formed in a branch pattern from the first separation line.
  20.  前記A相オン領域と前記B相オン領域とを周方向にずらして形成する請求項15ないし19のいずれかに記載のコード板の製造方法。 The method for manufacturing a code plate according to any one of claims 15 to 19, wherein the A-phase on region and the B-phase on region are formed by shifting in a circumferential direction.
  21.  カーボン粉と第1のバインダー樹脂とを有する導電ペーストを印刷して前記転写板上に表面側導電層を形成し、
     次に、銀粉と第2のバインダー樹脂とを有する導電ペーストを前記表面側導電層上に印刷して内側導電層を形成する請求項12ないし20のいずれかに記載のコード板の製造方法。
    Printing a conductive paste having carbon powder and a first binder resin to form a surface-side conductive layer on the transfer plate;
    21. The method for manufacturing a code plate according to claim 12, wherein an inner conductive layer is formed by printing a conductive paste having silver powder and a second binder resin on the surface-side conductive layer.
PCT/JP2009/058989 2008-05-20 2009-05-14 Code plate and manufacturing method thereof WO2009142137A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801182216A CN102037333B (en) 2008-05-20 2009-05-14 Code plate and manufacturing method thereof
JP2010512995A JP4960503B2 (en) 2008-05-20 2009-05-14 Code plate and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-132329 2008-05-20
JP2008132329 2008-05-20
JP2008242962 2008-09-22
JP2008-242962 2008-09-22

Publications (1)

Publication Number Publication Date
WO2009142137A1 true WO2009142137A1 (en) 2009-11-26

Family

ID=41340070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058989 WO2009142137A1 (en) 2008-05-20 2009-05-14 Code plate and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4960503B2 (en)
CN (1) CN102037333B (en)
WO (1) WO2009142137A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694476A (en) * 1992-09-16 1994-04-05 Alps Electric Co Ltd Encoder
US6271770B1 (en) * 1999-06-30 2001-08-07 Chien-Chun Chien Mechanical coder
JP2005339916A (en) * 2004-05-26 2005-12-08 Alps Electric Co Ltd Contact substrate and encoder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630080B2 (en) * 2000-02-25 2003-10-07 Alps Electric Co., Ltd. Conductive resin composition and encoder switch using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694476A (en) * 1992-09-16 1994-04-05 Alps Electric Co Ltd Encoder
US6271770B1 (en) * 1999-06-30 2001-08-07 Chien-Chun Chien Mechanical coder
JP2005339916A (en) * 2004-05-26 2005-12-08 Alps Electric Co Ltd Contact substrate and encoder

Also Published As

Publication number Publication date
CN102037333B (en) 2012-08-29
JP4960503B2 (en) 2012-06-27
JPWO2009142137A1 (en) 2011-09-29
CN102037333A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP2006245220A (en) Wiring circuit board
JP4960503B2 (en) Code plate and manufacturing method thereof
JP2008235679A (en) Manufacturing method of encoder substrate
JP2007157836A (en) Wiring circuit board
JP4050106B2 (en) Resistive substrate and manufacturing method thereof
WO2010079692A1 (en) Method for manufacturing resistance substrate
US2744986A (en) Potentiometer and method of making
US3464108A (en) Method of making commutator discs
JP2008218619A (en) Low resistance chip resistor and its manufacturing method
JP2005051050A (en) Voice coil and manufacturing method thereof
JP2015008189A (en) Manufacturing method of thin-film chip resistor
JP2021044297A (en) Circuit board
JP5240375B1 (en) Suspension board, suspension, suspension with element, and hard disk drive
JP2021044142A (en) Circuit board
JP2020188077A (en) Circuit board
JP5088620B2 (en) Method for forming conductive bump
JP5088622B2 (en) Method for forming conductive bump
JP3053976B2 (en) Encoder
JPH0666171B2 (en) Method of manufacturing circuit board with resistance
JP2021044087A (en) Circuit board
JP2542498B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPH06105643B2 (en) Method of manufacturing circuit board with resistance
JPS61117715A (en) Thin film magnetic head
JP5088621B2 (en) Method for forming conductive bump
EP1097448A1 (en) Method for producing a magnetic recording/reading head and application in a matrix head

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118221.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512995

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750499

Country of ref document: EP

Kind code of ref document: A1