WO2009142116A1 - Forming die for precision processing, method of forming molded curable resin, and formed object - Google Patents

Forming die for precision processing, method of forming molded curable resin, and formed object Download PDF

Info

Publication number
WO2009142116A1
WO2009142116A1 PCT/JP2009/058714 JP2009058714W WO2009142116A1 WO 2009142116 A1 WO2009142116 A1 WO 2009142116A1 JP 2009058714 W JP2009058714 W JP 2009058714W WO 2009142116 A1 WO2009142116 A1 WO 2009142116A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
molding
master
precision processing
Prior art date
Application number
PCT/JP2009/058714
Other languages
French (fr)
Japanese (ja)
Inventor
明子 原
大輔 渡邉
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2009142116A1 publication Critical patent/WO2009142116A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • At least a molding part of the molding die contains a resin component and an inorganic component dispersed in the resin component.
  • the base material and the molding part are integrally formed of the same material.
  • the base material is formed of a material different from the molded part,
  • the base material is made of glass.
  • the base material is formed of a material different from the molded part,
  • the base material is made of resin.
  • the resin component is a curable resin.
  • It has a base material and a molded part, and the molded part fills a mold containing a resin component and an inorganic component dispersed in the resin component with a curable resin material, and is cured by light or heat.
  • a method for molding a curable resin molded product is provided.
  • a molded product obtained by the molding method of the curable resin molded product is provided.
  • At least a molding part including at least a molding surface is made of a material in which an inorganic component is dispersed in a resin component. It is possible to provide a mold capable of producing a curable resin molded product by a simple method without causing variation among lots.
  • inorganic materials when used as a mold for precision processing of thermosetting resin moldings, inorganic materials generally have higher thermal conductivity than resin materials, so that the moldings can be cured efficiently and uniformly. Is possible, and precise molding becomes possible.
  • the wafer lens 1 has a circular glass substrate 3 and a plurality of lens portions 5, and a plurality of lens portions 5 are arranged in an array on the glass substrate 3. ing.
  • the lens unit 5 may be formed on the surface of the glass substrate 3 or may be formed on both front and back surfaces.
  • the lens unit 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
  • photocurable resin for example, an acrylic resin or an allyl resin can be used, and these resins can be cured by radical polymerization.
  • an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
  • thermosetting resin can be cured by addition polymerization such as silicone in addition to the above radical polymerization and cationic polymerization.
  • master 10 a master mold 10 (hereinafter simply referred to as “master 10”) and a sub master mold 20 (hereinafter simply referred to as “submaster 20”) shown in FIG. 2 are used.
  • submaster 20 a sub master mold 20
  • the surface (molded surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape (shape of the surface opposite to the glass substrate 3) of the lens unit 5 molded and transferred onto the glass substrate 3.
  • Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL.
  • Examples of iron-based alloys include Japanese Patent Application Laid-Open Nos. 2005-113161 and 2005-206913.
  • As the non-ferrous alloys copper alloys, aluminum alloys and zinc alloys are well known. Examples thereof include alloys disclosed in JP-A-10-219373 and JP-A-2000-176970.
  • As the metal glass material PdCuSi, PdCuSiNi, and the like are suitable because they have high machinability in diamond cutting and less tool wear.
  • Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting.
  • These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
  • thermoplastic resin and a curable resin can be used as the resin component.
  • thermoplastic resin and curable resin examples include the following types of resins.
  • thermoplastic resin the following resins can be used.
  • acrylic resin examples include a homopolymer of an alkyl methacrylate having 1 to 4 alkyl carbon atoms, or a copolymer of 50 mol% or more of the alkyl methacrylate and another copolymerizable monomer.
  • alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and tert-butyl methacrylate.
  • ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, tetramethylolmethane tetraacrylate, tetramethylol Methane dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, and the like can also be used.
  • the styrene resin examples include a homopolymer of styrene or a substituted product thereof, or a copolymer of 50 mol% or more of the styrene compound and another copolymerizable monomer.
  • styrene compounds include styrene, methylstyrene, chlorostyrene, vinyltoluene and the like.
  • Another copolymerizable monomer is a copolymerizable monomer used in the acrylic resin.
  • the vinyl chloride resin examples include a vinyl chloride homopolymer or a copolymer of 50% or more of the vinyl chloride and other copolymerizable monomers.
  • a copolymerizable monomer there is a copolymerizable monomer used in the acrylic resin.
  • the curable resin may be a photocurable resin or a thermosetting resin, and its properties (whether it is photocurable or thermosetting) are: It can be selected depending on the type of initiator.
  • (meth) acrylate having an alicyclic structure is preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
  • 2-alkyl-2-adamantyl (meth) acrylate see Japanese Patent Laid-Open No. 2002-193883
  • adamantyl di (meth) acrylate Japanese Patent Laid-Open No. 57-5000785
  • diallyl adamantyl dicarboxylate Japanese Patent Laid-Open No. 60-100537
  • Perfluoroadamantyl acrylate JP 2004-123687
  • Curable resin see JP-A-2001-322950
  • bis (hydroxyphenyl) adamantanes bis (glycidyloxyphenyl) adamantane (see JP-A-11-35522, JP-A-10-130371), etc. Is mentioned.
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
  • Bromine-containing (meth) allyl ester not containing an aromatic ring see JP-A-2003-66201
  • allyl (meth) acrylate see JP-A-5-286896
  • allyl ester resin JP-A-5-286896
  • JP 2003-66201 A a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound
  • JP 2003-128725 A an acrylate compound
  • an acrylic And ester compounds see JP 2005-2064 A.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like is used as a curing initiator. Can do.
  • Silicone Resin A silicone resin having a siloxane bond with Si—O—Si as the main chain can be used.
  • a silicone resin made of a predetermined amount of polyorganosiloxane resin can be used (see, for example, JP-A-6-9937).
  • inorganic particles are uniformly dispersed in the resin component, and light is scattered in the molding part 22 when light is incident on the molding part 22.
  • any inorganic particles having the above properties can be used.
  • the following inorganic particles are preferably oxide fine particles, metal salt fine particles, semiconductor fine particles and the like.
  • oxide fine particles the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co. Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth
  • a metal oxide that is one or more metals selected from the group consisting of metals can be used.
  • Examples also include dysprosium, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • Metal salt fine particles examples include carbonates, phosphates, sulfates, and specifically calcium carbonate, aluminum phosphate and the like.
  • Semiconductor fine particles mean fine particles having a semiconductor crystal composition, and specific examples of the semiconductor crystal composition include those of Group 14 elements of the periodic table such as carbon, silicon, germanium, and tin.
  • ZincO zinc oxide
  • ZnS zinc sulfide
  • ZnSe zinc selenide
  • ZnTe zinc telluride
  • CdO cadmium oxide
  • CdS cadmium sulfide
  • CdSe cadmium selenide
  • CdTe cadmium telluride
  • HgS mercury sulfide
  • HgSe mercury selenide
  • HgTe mercury telluride
  • the shape of the inorganic particles used as an example of the inorganic component is not particularly limited, but spherical inorganic particles are preferably used.
  • the minimum diameter of the inorganic particles (the minimum value of the distance between the tangents when drawing two tangents in contact with the outer periphery of the inorganic particles) / the maximum diameter (the two tangents in contact with the outer periphery of the inorganic particles)
  • the maximum value of the distance between the tangents is preferably 0.5 to 1.0, and more preferably 0.7 to 1.0.
  • the base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22.
  • any material having smoothness such as quartz, silicone wafer, metal, glass, resin, etc. may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the sub-master 20 is substantially constituted only by the molding part 22.
  • the optical surface shape (convex part 14) of the master 10 is preferably an organic inorganic material 22A. Is designed in anticipation of curing shrinkage of the resin and curing shrinkage of the resin 5A.
  • the organic / inorganic material 22A When the organic / inorganic material 22A is applied on the master 10, a technique such as spray coating, spin coating, dropping, or discharging is used. In this case, the organic / inorganic material 22A may be applied while evacuating. If the organic-inorganic material 22A is applied while evacuating, the organic-inorganic material 22A can be cured without introducing bubbles into the organic-inorganic material 22A.
  • a release agent to the surface of the master 10.
  • the light source 50 disposed above the master 10 is turned on and irradiated with light.
  • a plurality of linear or point light sources 50 may be arranged in a lattice shape so that the light reaches the entire surface of the organic-inorganic material 22A at a time.
  • the point light source 50 may be scanned in parallel to the surface of the organic / inorganic material 22A so that the light sequentially reaches the organic / inorganic material 22A.
  • the luminance distribution and the illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, the irradiation amount, the irradiation time, and the like are controlled based on the measurement results.
  • the submaster 20 may be post-cured (heat treatment). If post-cure is performed, the organic inorganic material 22A (resin component) of the submaster 20 can be completely cured, and the mold life of the submaster 20 can be extended.
  • the organic / inorganic material 22A is heated while controlling the heating temperature and the heating time within an optimum range.
  • the organic / inorganic material 22A can also be molded by a technique such as injection molding, press molding, light irradiation and then cooling.
  • the base material 26 is attached to the back surface (the surface opposite to the concave portion 24) of the molded portion 22 (organic inorganic material 22A), and the molded portion 22 is lined.
  • the substrate 26 may be quartz or a glass plate, and it is important to have sufficient bending strength and UV transmittance.
  • a treatment such as applying a silane coupling agent to the base material 26 may be performed.
  • a conventionally known vacuum chuck device 260 is used, and the base material 26 is sucked and held on the suction surface 260A of the vacuum chuck device 260, while It is preferable that the molded portion 22 is lined with the base material 26 with the suction surface 260A parallel to the molding surface of the convex portion 14 in the master 10.
  • the back surface 20A (surface on the base material 26 side) of the sub master 20 is parallel to the molding surface of the convex portion 14 in the master 10, and the molding surface of the recess 24 in the sub master 20 is parallel to the back surface 20A.
  • the master 10 is also most cautious and careful that the cured sub-master 20 is peeled off from the master 10 when the master 10 is sucked and held by the second vacuum chuck device parallel to the suction surface 260A of the vacuum chuck device 260. Can be easily removed from the molding equipment by turning off the vacuum chuck while the two are cured and in close contact with each other, and a reliable peeling operation can be performed in a wide environment with little equipment restrictions or on another equipment. be able to. Further, when another master and a sub master substrate are attached to the molding apparatus by a vacuum chuck during the operation, the sub master can be continuously molded.
  • back surface 20A is parallel to the molding surface of the recess 24 specifically means that the back surface 20A is perpendicular to the central axis of the molding surface of the recess 24.
  • the suction surface 260A of the vacuum chuck device 260 is preferably made of a ceramic material.
  • the hardness of the suction surface 260A is high and the suction surface 260A is hardly damaged by the attachment / detachment of the submaster 20 (base material 26), the surface accuracy of the suction surface 260A can be maintained high.
  • the linear expansion coefficient is as small as 1.3 ppm, the flatness of the suction surface 260A can be kept high with respect to the temperature change.
  • the following method is used as a method for bringing the suction surface 260A into a parallel state with respect to the molding surface of the convex portion 14 in the master 10.
  • the front and back surfaces of the master 10 are parallelized with high accuracy. Thereby, in the master 10, the shaping
  • reference members 260C and 260D are provided so as to protrude from the support surface 260B that supports the master 10 from the back surface (surface opposite to the convex portion 14) and the suction surface 260A, respectively.
  • the shapes of these reference members 260C and 260D are such that when the master 10 and the sub master 20 come into contact with each other in a state where the support surface 260B and the suction surface 260A are parallel to each other, there is no backlash.
  • the support surface 260B of the master 10 and thus the molding surface of the convex portion 14 of the master 10 are parallel to the suction surface 260A.
  • the reference member may be provided on at least one of the support surface 260B and the suction surface 260A.
  • the shape of the reference member is When the master 10 and the sub master 20 are in contact with each other with the surface 260B and the suction surface 260A being parallel to each other, the shape may be configured to contact the suction surface 260A without backlash.
  • the shape of the reference member is such that when the master 10 and the sub master 20 are in contact with each other with the support surface 260B and the suction surface 260A being parallel to each other, What is necessary is just to make it the shape which contact
  • Such parallelism by mechanical contact can realize reproducibility of about a few seconds without having a special alignment device.
  • the molding part 22 and the base material 26 are released from the master 10 to form the sub-master 20.
  • the resin 5A is filled between the sub-master 20 and the glass substrate 3 and cured. More specifically, the resin 5A is filled in the recess 24 of the submaster 20, and the resin 5A is cured while pressing the glass substrate 3 from above.
  • the resin 5A When filling the resin 5A into the recess 24 of the submaster 20, the resin 5A may be filled while evacuating. If the resin 5A is filled while evacuating, the resin 5A can be cured without introducing bubbles into the resin 5A.
  • the resin 5A may be applied to the glass substrate 3, and the glass substrate 3 coated with the resin 5A may be pressed against the submaster 20.
  • the glass substrate 3 When the glass substrate 3 is pressed, the glass substrate 3 is preferably provided with a structure for axial alignment with the submaster 20.
  • the glass substrate 3 When the glass substrate 3 has a circular shape, for example, it is preferable to form a D cut, an I cut, a marking, a notch, or the like.
  • the glass substrate 3 may have a polygonal shape, and in this case, the axis alignment with the submaster 20 is easy. Further, a marker pattern for matching the coaxiality with the front-side molding optical surface at the time of molding the back surface of the glass substrate 3 may be molded and transferred simultaneously with the optical surface at the time of molding the front-surface side.
  • the resin 5A When the resin 5A is cured, if the resin 5A is a thermosetting resin, it is cured by heating.
  • the resin 5A when the resin 5A is a photocurable resin, the light source 52 disposed below the sub master 20 may be turned on to emit light from the sub master 20 side, or the light source disposed above the glass substrate 3. 54 may be turned on and light may be irradiated from the glass substrate 3 side, or both the light sources 52 and 54 may be turned on simultaneously and light may be irradiated from both sides of the submaster 20 side and the glass substrate 3 side.
  • the same high pressure mercury lamp, metal halide lamp, xenon lamp, halogen lamp, fluorescent lamp, black light, G lamp, and F lamp as the light source 50 described above can be used. It may be a point light source.
  • a plurality of linear or point light sources 52 and 54 may be arranged in a lattice shape so that the light reaches the resin 5A at a time.
  • the point light sources 52 and 54 may be scanned in parallel to the sub master 20 and the glass substrate 3 so that the light sequentially reaches the resin 5A.
  • the luminance distribution and the illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, the irradiation amount, the irradiation time, and the like are controlled based on the measurement results.
  • the lens portion 5 is formed. Thereafter, the lens unit 5 and the glass substrate 3 are released from the sub-master 20 to manufacture the wafer lens 1 (the wafer lens 1 has the lens unit 5 formed only on the surface of the glass substrate 3). ).
  • the tension lens 60 is provided in advance between the wafer lens 1 (glass substrate 3) and the sub-master 20, and the tension lens 60 is pulled to remove the wafer lens 1.
  • the mold may be released from the sub master 20.
  • the base material 26 of the submaster 20 is an elastic material (resin)
  • it may be bent slightly to release the wafer lens 1 from the submaster 20, or the glass substrate 3 is elastic instead of glass. Even in the case of a material (resin), the wafer lens 1 may be released from the sub master 20 by slightly bending it.
  • the method of providing the lens unit 5 on one side of the glass substrate 3 has been described.
  • the lens unit 5 when the lens unit 5 is provided on both sides, first, it corresponds to the optical surface shape of the lens unit 5 on one side of the glass substrate 3.
  • a master (not shown) having a plurality of positive molding surfaces and a master having a plurality of positive molding surfaces corresponding to the optical surface shape of the lens portion 5 on the other surface are prepared, and each of these masters is used.
  • the sub masters 20C and 20D are formed.
  • the sub master 20C has a negative molding surface corresponding to the optical surface shape of the lens portion 5 on one surface of the glass substrate 3, and the sub master 20D corresponds to the optical surface shape of the lens portion 5 on the other surface. Will have a negative shaped molding surface.
  • the resin 5A is hardened simultaneously and the lens part 5 is shape
  • the resin 5A does not cure and shrink on only one side of the glass substrate 3, and the resin 5A cures and shrinks simultaneously on both sides to become the lens parts 5, respectively.
  • the warp of the glass substrate 3 can be prevented, the shape accuracy of the lens portion 5 can be improved.
  • the simultaneous curing of the resin 5A on both surfaces of the glass substrate 3 means that the resin 5A is completely cured in the same curing process, and it is not always necessary to start and end the curing simultaneously. After the resin 5A between the glass substrate 3 is thickened to a predetermined viscosity, the resin 5A and the other resin 5A may be completely cured.
  • the constituent material of the molding part 22 including at least the molding surface is the organic inorganic material 22A in which the inorganic component is dispersed in the resin component, whereby the lens part of the wafer lens 1 is obtained.
  • the occurrence of the shape error 5 and the variation of each production lot can be suppressed.
  • the resin 5A of the lens unit 5 is a photocurable resin
  • the resin 5A of the lens unit 5 when curing is performed using a point light source, variation in light intensity occurs, so that sufficient hardness cannot be obtained or after molding
  • the lens unit 5 may cause a shape error due to curing shrinkage
  • the molded product 22 is irradiated with light uniformly due to scattering by inorganic particles in the molding unit 22 of the sub-master 20, and thus the lens unit 5. Can be cured more uniformly.
  • the resin 5A of the lens unit 5 is a thermosetting resin
  • the inorganic component since the inorganic component generally has higher thermal conductivity than the resin component in the molding unit 22 of the submaster 20, the lens unit 5 is cured. Can be performed efficiently and uniformly, and precise molding becomes possible.
  • Example 1 (1) Durability Evaluation Method of Mold and its Results Six types of molds in which inorganic particles are dispersed in the thermosetting and thermoplastic resins listed in Table 1 (Examples 1 to 3, Comparative Examples 1 to Using 3), a wafer lens was produced.
  • the surface shape of the wafer lens (lens part) produced from each mold was measured, and the durability (deterioration degree according to the use frequency) of each mold was evaluated.
  • the PV value of the first lens part surface molded with each mold and the PV value of the deviation from the design value is 100%
  • the 10th and 100th lens part surface surfaces molded with each mold PV value was measured.
  • relative deviations of the PV values measured at the 10th and 100th times with respect to the PV value measured at the first time were calculated, and the durability of each mold was evaluated from the calculated values.
  • Panasonic UA3P ultra-high precision three-dimensional measuring device
  • 10 parts were arbitrarily selected from the 2000 lens parts in the wafer lens, and the average value thereof was obtained and used as the PV value.
  • Table 1 shows the evaluation results of the above evaluation methods.
  • the criteria for “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” are as follows.
  • ⁇ ... PV value deviation (vs. 1st) is within ⁇ 5% ⁇ ... PV value deviation (vs. 1st) is less than ⁇ 20% ⁇ ... PV value deviation (vs. 1st) is ⁇ 20% or more
  • “Silpot 184” is a PDMS (polydimethylsiloxane) -containing silicone resin manufactured by Toray Dow Corning
  • “APEL” is a cycloolefin polymer manufactured by Mitsui Chemicals
  • “Zeonex” is a cycloolefin polymer manufactured by Zeon Corporation. It is.
  • “Silica RX300” is RX300 (particle size: 7 nm) manufactured by Nippon Aerosil Co., Ltd. The amount of silica RX300 added as inorganic particles was 50 wt% with respect to each resin.
  • Example 2 (1) Production of sample (mold) (1.1)
  • Example 21 Add 50 wt% silica particles (RX300 (Aerosil)) to acrylic curable resin (1: 1 mixture of A-DCP (Shinnakamura Chemical) and A-IB (Shin Nakamura Chemical)) and cure. 1 wt% of perbutyl O (manufactured by Nippon Oil & Fats) was added as an agent, and heated at 150 ° C. for 5 minutes to prepare a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 3 hours to obtain a mold of “Example 21”.
  • Example 21 A mold was produced in the same manner as in Example 21 except that silica particles were not added. Thereafter, the mold was post-cured (heated) at 190 ° C. for 5 hours, and this was used as the mold of “Comparative Example 21”.
  • Example 22 50 wt% of silica particles (RX300) were added to silicone resin SR7010 (manufactured by Toray Dow) and heated at 150 ° C. for 1 hour to produce a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 1 hour, and this was used as the mold of “Example 22”.
  • Comparative Example 22 A mold was produced in the same manner as in Example 22 except that silica particles were not added.
  • Example 23 Silica particles (RX300) of 50 wt% was added to Nippon Steel Chemical's Silplus MHD2510, and 365 nm light from a high pressure mercury lamp was irradiated at an intensity of 100 mW / cm 2 for 1 minute to produce a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 3 hours to obtain a mold of “Example 23”.
  • Comparative Example 23 A mold was produced in the same manner as in Example 23 except that silica particles were not added.
  • Each mold is formed with grooves of 200 mm square, 250 ⁇ m wide and 250 ⁇ m high at intervals of 250 ⁇ m. After that, each mold is filled with a photo-curable resin, and the glass plate that has been subjected to the mold release treatment is lined so that the thickness of the molded product becomes 500 ⁇ m, and light is irradiated from the mold side to emit light. The curable resin was cured, the glass flat plate was peeled off after curing, and the presence or absence of an uncured portion on the back of the molded product was detected (see FIG. 4). The detection results are shown in Table 3. In Table 3, the criteria for “ ⁇ ” and “x” were as follows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Shape errors and lot-to-lot fluctuations are inhibited from occurring even in precision elements.  A forming die for precisely processing a molded curable resin is provided for the inhibition.  The die comprises a base and a forming part, and at least the forming part of the die comprises a resin ingredient and an inorganic ingredient dispersed in the resin ingredient.

Description

精密加工用成形型、硬化性樹脂成形物の成形方法及び成形物Mold for precision machining, molding method of curable resin molding, and molding
 本発明は精密加工用成形型、硬化性樹脂成形物の成形方法及び成形物に関する。 The present invention relates to a molding die for precision processing, a molding method for a curable resin molding, and a molding.
 撮像素子、光ピックアップ装置、光通信用機器に用いられるレンズや回折素子等の光学素子や半導体装置に用いられる精密素子を製造するための方法として、フォトレジスト製法や成形型による射出成形や転写による成形等が知られている。その中でも成形型による成形は繰り返し同じ形状の成形物を容易に成形できるため、好ましく用いられている。 As a method for manufacturing optical elements such as lenses and diffraction elements used in imaging devices, optical pickup devices, optical communication devices, and precision elements used in semiconductor devices, a photoresist manufacturing method, injection molding using a molding die, or transfer Molding and the like are known. Among them, molding by a molding die is preferably used because a molded product having the same shape can be easily molded repeatedly.
 従来光学素子等の用途には熱可塑性樹脂が用いられており、熱可塑性樹脂材料を成形型により成形する際には、熱により溶融した樹脂材料を高圧で成形型内に射出して成形する射出成形が用いられる。従って、用いられる金型は高い剛性が求められるため、金属製の金型が用いられていた。しかしながら、金属製の金型はダイヤモンド切削等に製造法が限られるため、微細な表面形状を有する成形型や精密素子用の成形型の製造にコストや手間がかかる問題があった。また、熱可塑性樹脂は、耐熱性が低く、高熱環境化で使用され、いわゆるリフロー処理といわれる高熱環境化における処理が行われる場合(例えば特許文献1参照)には軟化による変形や着色が発生し問題となる場合があった。 Conventionally, thermoplastic resin is used for applications such as optical elements. When a thermoplastic resin material is molded with a mold, injection is performed by injecting the resin material melted by heat into the mold at high pressure. Molding is used. Therefore, since the metal mold used is required to have high rigidity, a metal metal mold has been used. However, since metal molds have a limited production method for diamond cutting or the like, there is a problem in that manufacturing of a mold having a fine surface shape or a mold for precision elements is costly and laborious. In addition, thermoplastic resins have low heat resistance and are used in a high thermal environment. When processing in a high thermal environment called a reflow process is performed (for example, see Patent Document 1), deformation and coloring due to softening occur. There was a problem.
 そこで、硬化性樹脂により光学素子や精密素子を成形する技術が検討されている。硬化性樹脂は、一般的に熱可塑性樹脂と比較して、耐熱性が高く、高熱環境化で用いられた場合であっても変形等の問題が発生しない。また硬化性樹脂は熱可塑性樹脂とは異なり、硬化前は常温でも非常に粘度が低いため、成形型の材料が制限されず、ガラスや樹脂による成形型であっても使用が可能となる。 Therefore, techniques for molding optical elements and precision elements with curable resins are being studied. A curable resin generally has higher heat resistance than a thermoplastic resin, and does not cause problems such as deformation even when used in a high thermal environment. In addition, unlike a thermoplastic resin, the curable resin has a very low viscosity even at room temperature before curing. Therefore, the material of the molding die is not limited, and the molding die made of glass or resin can be used.
特開2001-24320号公報JP 2001-24320 A
 しかしながら、成形型としてガラスを用いた場合は、融点が高く高温での成形を余儀なくされるため、コストの増大を招いた。そこで樹脂材料からなる成形型が考えられる。しかしながら、樹脂材料で精密加工用成形型を製造すると新たな問題が発生した。 However, when glass is used as the mold, the melting point is high and molding at high temperature is unavoidable, resulting in an increase in cost. Therefore, a mold made of a resin material can be considered. However, when a precision processing mold is manufactured from a resin material, a new problem has occurred.
 例えば、硬化性樹脂材料で精密加工用成形型を製造した場合、硬化性樹脂材料は一般的に硬化に伴い収縮するため、成形型を硬化する際に硬化収縮を起こし、当初の設計値から成形型の形状がずれる場合があり、成形後に補正する必要があった。また、同一の成形型により複数回成形物を成型した場合に、成形型の材料となる硬化性樹脂材料の未硬化部分が硬化することで硬化収縮が発生し、製造ロットごとにばらつきが発生することが判明した。 For example, when a mold for precision processing is manufactured with a curable resin material, the curable resin material generally shrinks as it cures, so when the mold is cured, it shrinks and cures from the original design value. The shape of the mold may be shifted, and it was necessary to correct it after molding. In addition, when molding a molded product multiple times using the same mold, curing shrinkage occurs due to curing of the uncured portion of the curable resin material that is the material of the mold, resulting in variations among production lots. It has been found.
 また、熱可塑性樹脂材料で精密加工用成形型を製造した場合にも、軟化により形状が変形し、成形型を複数回使用した場合には製造ロットごとにばらつきが発生したりすることが判明した。 In addition, when manufacturing precision processing molds with thermoplastic resin materials, it was found that the shape was deformed due to softening, and if the mold was used more than once, there were variations among production lots. .
 従って、本発明の主な目的は、精密素子であっても形状誤差や製造ロットごとのばらつきが発生せず、簡易な方法で硬化性樹脂成形物を製造可能な成形型及び製造方法を提供することである。 Accordingly, a main object of the present invention is to provide a molding die and a manufacturing method capable of manufacturing a curable resin molded product by a simple method without causing a shape error or a variation for each manufacturing lot even if it is a precision element. That is.
 本発明の一態様によれば、
 基材と成形部とを有する硬化性樹脂成形物の精密加工用成形型において、
 前記成形型の少なくとも成形部は、樹脂成分と、該樹脂成分に分散された無機成分を含有することを特徴とする精密加工用成形型が提供される。
According to one aspect of the invention,
In a mold for precision processing of a curable resin molding having a base and a molding part,
At least a molding part of the molding die contains a resin component and an inorganic component dispersed in the resin component.
 好ましくは、
 前記成形型は、光硬化性樹脂成形物の精密加工用成形型であり、
 前記成形型は、前記光硬化性樹脂成形物を硬化する際に使用される光に対して透過性を有することを特徴としている。なお、光の透過性は、使用する波長の光に対して、20%以上の透過率を示すものを指し、好ましくは50%以上、更に好ましくは70%以上の透過率を示すことが好ましい。
Preferably,
The mold is a mold for precision processing of a photocurable resin molding,
The mold is characterized in that it has transparency to the light used when curing the photocurable resin molding. Note that the light transmittance refers to a light having a transmittance of 20% or more, preferably 50% or more, and more preferably 70% or more, with respect to light having a wavelength to be used.
 さらに好ましくは、
 前記無機成分は、前記光硬化性樹脂成形物を硬化する際に使用される光の波長よりも粒径が小さい無機粒子である。
More preferably,
The inorganic component is inorganic particles having a particle size smaller than the wavelength of light used when the photocurable resin molded product is cured.
 好ましくは、
 前記成形型は、熱硬化性樹脂組成物の精密加工用成形型であり、
 前記成形型は、前記熱硬化性樹脂性成形物を硬化する際の成形温度よりも高い軟化点を有し、
 さらに好ましくは、
 前記無機成分が無機粒子である。
Preferably,
The mold is a mold for precision processing of a thermosetting resin composition,
The mold has a softening point higher than a molding temperature when curing the thermosetting resinous molding,
More preferably,
The inorganic component is inorganic particles.
 また好ましくは、
 前記基材と前記成形部が同一の材料により一体的に形成されている。
Also preferably,
The base material and the molding part are integrally formed of the same material.
 また好ましくは、
 前記基材は、前記成形部とは異なる材料で形成されており、
 前記基材がガラス製である。
Also preferably,
The base material is formed of a material different from the molded part,
The base material is made of glass.
 また好ましくは、
 前記基材は、前記成形部とは異なる材料で形成されており、
 前記基材が樹脂製である。
Also preferably,
The base material is formed of a material different from the molded part,
The base material is made of resin.
 また好ましくは、
 前記樹脂成分が、硬化性樹脂である。
Also preferably,
The resin component is a curable resin.
 本発明の他の態様によれば、
 基材と成形部とを有し、該成形部が樹脂成分と該樹脂成分に分散された無機成分を含有する成形型に硬化性樹脂材料を充填し、光または熱により硬化することを特徴とする硬化性樹脂成形物の成形方法が提供される。
According to another aspect of the invention,
It has a base material and a molded part, and the molded part fills a mold containing a resin component and an inorganic component dispersed in the resin component with a curable resin material, and is cured by light or heat. A method for molding a curable resin molded product is provided.
 本発明の他の態様によれば、
 上記硬化性樹脂成形物の成形方法により得られた成形物が提供される。
According to another aspect of the invention,
A molded product obtained by the molding method of the curable resin molded product is provided.
 本発明によれば、硬化性樹脂成型物を成型する精密加工用成形型において、少なくとも成型面を含む成形部の材料を樹脂成分に無機成分を分散させた材料とすることにより、形状誤差や製造ロットごとのばらつきが発生せず、簡易な方法で硬化性樹脂成型物を製造可能な成形型を提供することができる。 According to the present invention, in a precision processing mold for molding a curable resin molding, at least a molding part including at least a molding surface is made of a material in which an inorganic component is dispersed in a resin component. It is possible to provide a mold capable of producing a curable resin molded product by a simple method without causing variation among lots.
 特に光硬化性樹脂成形物の精密加工用成形型として用いられる場合、点光源を用いて硬化を行う場合には光強度のばらつきが発生するため、十分な硬度が得られなかったり、成型後の成形物が硬化収縮により形状誤差を発生したりする場合があるが、無機粒子による散乱により成形物に均一に光が照射されることとなるため、より均一な硬化が可能となる、という効果も得られる。 In particular, when used as a mold for precision processing of a photocurable resin molded product, when curing is performed using a point light source, variation in light intensity occurs, so that sufficient hardness cannot be obtained or after molding The molded product may cause a shape error due to curing shrinkage, but since the molded product is uniformly irradiated with light due to scattering by inorganic particles, there is also an effect that more uniform curing is possible. can get.
 他方、熱硬化性樹脂成形物の精密加工用成形型として用いられる場合、一般的に無機材料は樹脂材料に比べて熱伝導性が高いため、成形物の硬化を効率的に且つ均一に行うことが可能となり、精密な成形が可能となる。 On the other hand, when used as a mold for precision processing of thermosetting resin moldings, inorganic materials generally have higher thermal conductivity than resin materials, so that the moldings can be cured efficiently and uniformly. Is possible, and precise molding becomes possible.
ウエハレンズの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a wafer lens. マスター、サブマスターの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a master and a submaster. ウエハレンズの製造方法を説明するための図面である。It is drawing for demonstrating the manufacturing method of a wafer lens. 成形型の光拡散の様子を模式的に示す概略図である。It is the schematic which shows typically the mode of the light diffusion of a shaping | molding die.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1に示す通り、ウエハレンズ1は円形状のガラス基板3と複数のレンズ部5とを有しており、ガラス基板3上に複数のレンズ部5がアレイ状に配置された構成を有している。レンズ部5はガラス基板3の表面に形成されていてもよいし、表裏両面に形成されていてもよい。レンズ部5には、光学面の表面に回折溝や段差等の微細構造が形成されていてもよい。 As shown in FIG. 1, the wafer lens 1 has a circular glass substrate 3 and a plurality of lens portions 5, and a plurality of lens portions 5 are arranged in an array on the glass substrate 3. ing. The lens unit 5 may be formed on the surface of the glass substrate 3 or may be formed on both front and back surfaces. The lens unit 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
 レンズ部5は樹脂5Aで形成されている。この樹脂5Aとしては、硬化性樹脂材料が用いられる。硬化性樹脂材料としては大きく分けて光硬化性樹脂と熱硬化性樹脂とに分類され、樹脂5Aは光硬化性樹脂、熱硬化性樹脂のいずれであってもよい。 The lens part 5 is made of resin 5A. A curable resin material is used as the resin 5A. The curable resin material is roughly classified into a photocurable resin and a thermosetting resin, and the resin 5A may be either a photocurable resin or a thermosetting resin.
 光硬化性樹脂としては、例えばアクリル樹脂やアリル樹脂などを用いることができ、これら樹脂はラジカル重合により反応硬化させることができる。その他の光硬化性樹脂としては、例えばエポキシ系の樹脂などを用いることができ、当該樹脂はカチオン重合により反応硬化させることができる。 As the photocurable resin, for example, an acrylic resin or an allyl resin can be used, and these resins can be cured by radical polymerization. As another photocurable resin, for example, an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
 一方、熱硬化性樹脂は上記ラジカル重合やカチオン重合の他にシリコーン等のように付加重合により硬化させることもできる。 On the other hand, the thermosetting resin can be cured by addition polymerization such as silicone in addition to the above radical polymerization and cationic polymerization.
 ウエハレンズ1の製造にあたっては、図2のマスター成形型10(以下、単に「マスター10」とする)、サブマスター成形型20(以下、単に「サブマスター20」とする)が使用される。 In manufacturing the wafer lens 1, a master mold 10 (hereinafter simply referred to as “master 10”) and a sub master mold 20 (hereinafter simply referred to as “submaster 20”) shown in FIG. 2 are used.
 マスター10はサブマスター20を製造する際に用いる母型であり、サブマスター20はウエハレンズ1(レンズ部5)を成形する際に用いる成形型である。サブマスター20はウエハレンズ1を量産するのに複数回にわたり使用され、その使用目的、使用頻度などにおいてマスター10とは異なるものである。本実施形態では、マスター10を精密加工用成形型の一例として使用している。
<マスター>
 図2(a)に示す通り、マスター10は直方体状のベース部12に対し複数の凸部14がアレイ状に形成されている。凸部14はウエハレンズ1のレンズ部5に対応する部位であり、略半球形状に突出している。なお、マスター10の外形状は、このように四角形であっても良いし円形であっても良い。本発明の権利範囲はこの差異によって制約されないが、以降は四角形状を例にして説明する。
The master 10 is a mother die used when the sub master 20 is manufactured, and the sub master 20 is a molding die used when the wafer lens 1 (lens portion 5) is molded. The sub master 20 is used a plurality of times to mass-produce the wafer lens 1, and is different from the master 10 in the purpose of use, frequency of use, and the like. In this embodiment, the master 10 is used as an example of a precision processing mold.
<Master>
As shown in FIG. 2A, the master 10 has a plurality of convex portions 14 formed in an array with respect to a rectangular parallelepiped base portion 12. The convex part 14 is a part corresponding to the lens part 5 of the wafer lens 1 and protrudes in a substantially hemispherical shape. Note that the outer shape of the master 10 may be a quadrangle or a circle as described above. Although the scope of rights of the present invention is not limited by this difference, the following description will be made taking a rectangular shape as an example.
 凸部14の表面(成形面)形状は、ガラス基板3上に成形転写するレンズ部5の光学面形状(ガラス基板3とは反対の面の形状)に対応するポジ形状となっている。 The surface (molded surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape (shape of the surface opposite to the glass substrate 3) of the lens unit 5 molded and transferred onto the glass substrate 3.
 マスター10の材料としては、切削や研削などの機械加工によって光学面形状を創製する場合には、金属または金属ガラスを用いることができる。分類としては鉄系の材料とその他合金が挙げられる。鉄系としては、熱間金型、冷間金型、プラスチック金型、高速度工具鋼、一般構造用圧延鋼材、機械構造用炭素鋼、クロム・モリブデン鋼、ステンレス鋼が挙げられる。その内、プラスチック金型としては、プリハードン鋼、焼入れ焼戻し鋼、時効処理鋼がある。プリハードン鋼としては、SC系、SCM系、SUS系が挙げられる。さらに具体的には、SC系はPXZがある。SCM系はHPM2、HPM7、PX5、IMPAXが挙げられる。SUS系は、HPM38、HPM77、S-STAR、G-STAR、STAVAX、RAMAX-S、PSLが挙げられる。また、鉄系の合金としては特開2005-113161号公報や特開2005-206913号公報が挙げられる。非鉄系の合金は主に、銅合金、アルミ合金、亜鉛合金がよく知られている。例としては、特開平10-219373号公報、特開2000-176970号公報に示されている合金が挙げられる。金属ガラスの材料としては、PdCuSiやPdCuSiNiなどがダイヤモンド切削における被削性が高く、工具の磨耗が少ないので適している。また、無電解や電解のニッケル燐メッキなどのアモルファス合金もダイヤモンド切削における被削性が良いので適している。これらの高被削性材料は、マスター10全体を構成しても良いし、メッキやスパッタなどの方法によって特に光学転写面の表面だけを覆っても良い。 As the material of the master 10, when an optical surface shape is created by machining such as cutting or grinding, metal or metal glass can be used. The classification includes ferrous materials and other alloys. Examples of the iron system include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structure, chromium / molybdenum steel, and stainless steel. Among them, plastic molds include pre-hardened steel, quenched and tempered steel, and aging treated steel. Examples of pre-hardened steel include SC, SCM, and SUS. More specifically, the SC system includes PXZ. Examples of the SCM system include HPM2, HPM7, PX5, and IMPAX. Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL. Examples of iron-based alloys include Japanese Patent Application Laid-Open Nos. 2005-113161 and 2005-206913. As the non-ferrous alloys, copper alloys, aluminum alloys and zinc alloys are well known. Examples thereof include alloys disclosed in JP-A-10-219373 and JP-A-2000-176970. As the metal glass material, PdCuSi, PdCuSiNi, and the like are suitable because they have high machinability in diamond cutting and less tool wear. Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting. These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
 また、マスター10の材料として、機械加工はやや難しいが、ガラスを用いることもできる。マスター10にガラスを用いれば、光を通すというメリットも得られる。一般的に使用されているガラスであれば特に限定されない。
<サブマスター>
 図2(b)に示す通り、精密加工用成形型の一例であるサブマスター20は、主には成形部22と基材26とで構成されている。成形部22には複数の凹部24がアレイ状に形成されている。凹部24の表面(成形面)形状はウエハレンズ1におけるレンズ部5に対応するネガ形状となっており、この図では略半球形状に凹んでいる。
Further, as the material of the master 10, machining is somewhat difficult, but glass can also be used. If glass is used for the master 10, the merit of allowing light to pass through can also be obtained. If it is the glass generally used, it will not specifically limit.
<Submaster>
As shown in FIG. 2 (b), the sub master 20, which is an example of a precision processing mold, is mainly composed of a molding part 22 and a base material 26. A plurality of recesses 24 are formed in the molding portion 22 in an array. The surface (molding surface) shape of the concave portion 24 is a negative shape corresponding to the lens portion 5 in the wafer lens 1, and is concave in a substantially hemispherical shape in this figure.
 本実施形態では、サブマスター20をウエハレンズ1のレンズ部5の成形に用いる例を示すが、これに限らず、サブマスター20(の構成)は表面に微細でかつ精密な凹凸形状(ナノサイズスケールの凹凸形状)を形成することが要求される光学素子や精密素子などの成形にも適用可能であって、例えば単品のレンズや複数のレンズをアレイ状に配置したレンズアレイの成形、パターンドメディアの基材の成形、ナノインプリント技術におけるナノホールの成形技術などにも応用可能である。
≪成形部≫
 成形部22は、有機無機材料22Aによって形成されている。有機無機材料22Aは主には樹脂成分と無機成分とで構成される材料であり、樹脂成分に対し無機成分が分散された材料である。
In the present embodiment, an example in which the sub master 20 is used for molding the lens portion 5 of the wafer lens 1 is shown. However, the sub master 20 is not limited to this, and the sub master 20 has a fine and precise uneven shape (nano-size) on the surface. It can also be applied to molding of optical elements and precision elements that are required to form scale irregularities). For example, molding of a lens array with a single lens or a plurality of lenses arranged in an array, patterned It can also be applied to media substrate molding and nanohole molding technology in nanoimprint technology.
≪Molding part≫
The molding part 22 is made of an organic / inorganic material 22A. The organic inorganic material 22A is a material mainly composed of a resin component and an inorganic component, and is a material in which an inorganic component is dispersed with respect to the resin component.
 下記では、(1)樹脂成分と(2)無機成分とに分けてそれぞれ説明する。
(1)樹脂成分
 樹脂成分としては熱可塑性樹脂及び硬化性樹脂を用いることができる。
Hereinafter, (1) a resin component and (2) an inorganic component will be described separately.
(1) Resin component A thermoplastic resin and a curable resin can be used as the resin component.
 ただし、樹脂5Aとして光硬化性樹脂を用いてサブマスター20から光硬化性樹脂製のレンズ部5を成形する場合(サブマスター20を光硬化性樹脂成形物の成形型として使用する場合)には、樹脂成分は好ましくはその光硬化性樹脂成形物(レンズ部5)を硬化する際に使用される光に対して透過性を有している。 However, when the lens portion 5 made of a photocurable resin is molded from the submaster 20 using a photocurable resin as the resin 5A (when the submaster 20 is used as a mold for a photocurable resin molded product). The resin component preferably has transparency to the light used when the photocurable resin molded product (lens portion 5) is cured.
 他方、樹脂5Aとして熱硬化性樹脂を用いてサブマスター20から熱硬化性樹脂製のレンズ部5を成形する場合(サブマスター20を熱硬化性樹脂成形物の成形型として使用する場合)には、樹脂成分は好ましくはその熱硬化性樹脂成形物(レンズ部5)を硬化する際の成形温度よりも高い軟化点を有している。 On the other hand, when the lens portion 5 made of a thermosetting resin is molded from the submaster 20 using a thermosetting resin as the resin 5A (when the submaster 20 is used as a mold for a thermosetting resin molded product). The resin component preferably has a softening point higher than the molding temperature when curing the thermosetting resin molding (lens portion 5).
 樹脂成分として使用可能な熱可塑性樹脂、硬化性樹脂としては、例えば下記のような種類の樹脂が挙げられる。
(1.1)熱可塑性樹脂
 熱可塑性樹脂としては、下記の樹脂を用いることができる。
Examples of the thermoplastic resin and curable resin that can be used as the resin component include the following types of resins.
(1.1) Thermoplastic resin As the thermoplastic resin, the following resins can be used.
 シクロオレフィン樹脂として、ジシクロペンタジエン、トリシクロペンタジエン、ジクロペンタジエン-メチルシクロペンタジエン共二量体、5-エチリデンノルボルネン、ノルボルナジエン、5-シクロヘキセニルノルボルネン、1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、1,4-メタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-ヘプタヒドロ-ナフタレン、6-メチル-1,4,5,8-ジメタノ-1,4,4a,5,6,7,8,8a-ヘプタヒドロナフタレン、1,4,5,8-ジメタノ-1,4,4a,5,8,8a-ヘキサヒドロナフタレン、等の1~3個のノルボルネン構造を有する環状オレフィンの一種または二種以上の混合物を挙げることができる。また、上記環状オレフィンとエチレンとの共重合体とすることもできる。 Cycloolefin resins include dicyclopentadiene, tricyclopentadiene, dichloropentadiene-methylcyclopentadiene co-dimer, 5-ethylidene norbornene, norbornadiene, 5-cyclohexenyl norbornene, 1,4,5,8-dimethano-1,4 , 4a, 5,6,7,8,8a-octahydronaphthalene, 1,4-methano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethylidene-1,4 , 5,8-Dimethano-1,4,4a, 5,6,7,8,8a-heptahydro-naphthalene, 6-methyl-1,4,5,8-dimethano-1,4,4a, 5,6 , 7,8,8a-heptahydronaphthalene, 1,4,5,8-dimethano-1,4,4a, 5,8,8a-hexahydronaphthalene, etc. It can be exemplified one or two or more mixtures of cyclic olefins having Ruborunen structure. Moreover, it can also be set as the copolymer of the said cyclic olefin and ethylene.
 アクリル系樹脂として、アルキル炭素数1~4のアルキルメタクリレートの単独重合体または該アルキルメタクリレート50モル%以上と他の共重合性単量体との共重合体がある。このようなアルキルメタクリレートとしては、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、tert-ブチルメタクリレートなどがある。共重合性単量体としては、これを使用して得られる共重合体の透明性をそこなわないものであれば使用でき、例えば、2-ヒドロキシルエチルアクリレート、2-ヒドロキシルプロピルアクリレート、3-ヒドロ岸ブチルアクリレート等のヒドロキシアルキルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレート、シクロヘキシルアクリレート、スチレン、塩化ビニル、酢酸ビニル、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸等がある。また、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタンジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート等も使用できる。 Examples of the acrylic resin include a homopolymer of an alkyl methacrylate having 1 to 4 alkyl carbon atoms, or a copolymer of 50 mol% or more of the alkyl methacrylate and another copolymerizable monomer. Examples of such an alkyl methacrylate include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and tert-butyl methacrylate. As the copolymerizable monomer, any copolymer can be used as long as it does not impair the transparency of the copolymer obtained by using this, and examples thereof include 2-hydroxylethyl acrylate, 2-hydroxylpropyl acrylate, 3-hydroxyl Hydroxyalkyl acrylate such as butyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, alkyl acrylate such as 2-ethylhexyl acrylate, cyclohexyl acrylate, styrene, vinyl chloride, vinyl acetate, acrylonitrile, methacrylonitrile Acrylic acid, methacrylic acid, and the like. Also, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, tetramethylolmethane tetraacrylate, tetramethylol Methane dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, and the like can also be used.
 スチレン系樹脂として、スチレンまたはその置換体の単独重合体または、該スチレン化合物50モル%以上と他の共重合性単量体との共重合体がある。このようなスチレン化合物としては、スチレン、メチルスチレン、クロロスチレン、ビニルトルエン等がある。他の共重合性単量体としては、前記アクリル系樹脂においてしようされる共重合性単量体がある。 Examples of the styrene resin include a homopolymer of styrene or a substituted product thereof, or a copolymer of 50 mol% or more of the styrene compound and another copolymerizable monomer. Such styrene compounds include styrene, methylstyrene, chlorostyrene, vinyltoluene and the like. Another copolymerizable monomer is a copolymerizable monomer used in the acrylic resin.
 塩化ビニル系樹脂として、塩化ビニルの単独重合体または、該塩化ビニル50%以上とその他の共重合性単量体との共重合体がある。他の共重合性単量体としては、前記アクリル系樹脂において使用される共重合性単量体がある。 Examples of the vinyl chloride resin include a vinyl chloride homopolymer or a copolymer of 50% or more of the vinyl chloride and other copolymerizable monomers. As another copolymerizable monomer, there is a copolymerizable monomer used in the acrylic resin.
 ポリカーボネート樹脂として、ビスフェノール型ポリカーボネートの他オクチル安息香酸、フタル酸モノオクチル、テレフタル酸モノオクチル等がある。 Polycarbonate resins include bisphenol type polycarbonate, octyl benzoic acid, monooctyl phthalate, monooctyl terephthalate and the like.
 フッ素系材料として、テトラフルオロエチレン、ヘキサフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニリデン等の単独重合または二種以上の材料における共重合体を使用することができる。また、環状フッ素化合物も使用することができる。
(1.2)硬化性樹脂
 硬化性樹脂は光硬化性樹脂であってもよいし、熱硬化性樹脂であってもよく、その性質(光硬化性であるか熱硬化性であるか)は開始剤の種類により選択可能である。
As the fluorine-based material, homopolymerization such as tetrafluoroethylene, hexafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, or a copolymer of two or more kinds of materials can be used. Cyclic fluorine compounds can also be used.
(1.2) Curable resin The curable resin may be a photocurable resin or a thermosetting resin, and its properties (whether it is photocurable or thermosetting) are: It can be selected depending on the type of initiator.
 硬化性樹脂としては、下記の樹脂を用いることができる。
(1.2.1)アクリル樹脂
 重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類または2種類以上を用いることができる。
特に脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報参照)、アダマンチルジ(メタ)アクリレート(特開昭57-500785)、アダマンチルジカルボン酸ジアリル(特開昭60―100537)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687)、新中村化学製 2-メチル-2-アダマンチルメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220)、3,3’-ジアルコキシカルボニル-1,1’ビアダマンタン(特開2001-253835号公報参照)、1,1’-ビアダマンタン化合物(米国特許第3342880号明細書参照)、テトラアダマンタン(特開2006-169177号公報参照)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報参照)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報参照)等が挙げられる。
The following resins can be used as the curable resin.
(1.2.1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
In particular, (meth) acrylate having an alicyclic structure is preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylate, di (meth) acrylate of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (see Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537). ), Perfluoroadamantyl acrylate (JP 2004-123687), Shin-Nakamura Chemical Co., Ltd. 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5-adamantane triol triacrylate, Saturated carboxylic acid adamantyl ester (JP 2000-119220 A), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (see JP 2001-253835 A), 1,1′-biadamantane compound (US Patent) See No. 3342880 ), Tetraadamantane (see JP-A-2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantanedicarboxylate di-tert-butyl, etc. Curable resin (see JP-A-2001-322950), bis (hydroxyphenyl) adamantanes, bis (glycidyloxyphenyl) adamantane (see JP-A-11-35522, JP-A-10-130371), etc. Is mentioned.
 また、その他反応性単量体を含有することも可能である。 It is also possible to contain other reactive monomers.
 (メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート、などが挙げられる。 In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
 多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
(1.2.2)アリルエステル樹脂
 アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol Such as Li (meth) acrylate.
(1.2.2) Allyl Ester Resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報参照)、アリル(メタ)アクリレート(特開平5-286896号公報参照)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報参照)、アクリル酸エステルとエポキシ基含有不飽和化合物の共重合化合物(特開2003-128725号公報参照)、アクリレート化合物(特開2003-147072号公報参照)、アクリルエステル化合物(特開2005-2064号公報参照)等が挙げられる。
(1.2.3)エポキシ樹脂
 エポキシ樹脂としては、エポキシ基を持ち光または熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。
Bromine-containing (meth) allyl ester not containing an aromatic ring (see JP-A-2003-66201), allyl (meth) acrylate (see JP-A-5-286896), allyl ester resin (JP-A-5-286896) , JP 2003-66201 A), a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound (see JP 2003-128725 A), an acrylate compound (see JP 2003-147072 A), an acrylic And ester compounds (see JP 2005-2064 A).
(1.2.3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like is used as a curing initiator. Can do.
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2′-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。
(1.2.4)シリコーン樹脂
 Si-O-Siを主鎖としたシロキサン結合を有するシリコーン樹脂を使用することができる。当該シリコーン樹脂として、所定量のポリオルガノシロキサン樹脂よりなるシリコーン系樹脂が使用可能である(例えば特開平6-9937号公報参照)。
Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, Vinylcyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1, And 2-cyclopropanedicarboxylic acid bisglycidyl ester.
(1.2.4) Silicone Resin A silicone resin having a siloxane bond with Si—O—Si as the main chain can be used. As the silicone resin, a silicone resin made of a predetermined amount of polyorganosiloxane resin can be used (see, for example, JP-A-6-9937).
 熱硬化性のポリオルガノシロキサン樹脂は、加熱による連続的加水分解-脱水縮合反応によって、シロキサン結合骨格による三次元網状構造となるものであれば、特に制限はなく、一般に高温、長時間の加熱で硬化性を示し、一度硬化すると過熱により再軟化し難い性質を有する。 The thermosetting polyorganosiloxane resin is not particularly limited as long as it becomes a three-dimensional network structure with a siloxane bond skeleton by a continuous hydrolysis-dehydration condensation reaction by heating. It exhibits curability and has the property of being hard to be re-softened by overheating once cured.
 このようなポリオルガノシロキサン樹脂は、下記一般式(A)が構成単位として含まれ、その形状は鎖状、環状、網状形状のいずれであってもよい。 Such a polyorganosiloxane resin includes the following general formula (A) as a structural unit, and the shape thereof may be any of a chain, a ring, and a network.
 ((R1)(R2)SiO)n … (A)
 上記一般式(A)中、「R1」及び「R2」は同種または異種の置換もしくは非置換の一価炭化水素基を示す。具体的には、「R1」及び「R2」として、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリル基、シクロヘキシル基、シクロオクチル基等のシクロアルキル基、またはこれらの基の炭素原子に結合した水素原子をハロゲン原子、シアノ基、アミノ基などで置換した基、例えばクロロメチル基、3,3,3-トリフルオロプロピル基、シアノメチル基、γ-アミノプロピル基、N-(β-アミノエチル)-γ-アミノプロピル基などが例示される。「R1」及び「R2」は水酸基およびアルコキシ基から選択される基であってもよい。また、上記一般式(A)中、「n」は50以上の整数を示す。
((R1) (R2) SiO) n (A)
In the general formula (A), “R1” and “R2” represent the same or different substituted or unsubstituted monovalent hydrocarbon groups. Specifically, as “R1” and “R2”, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, an alkenyl group such as a vinyl group and an allyl group, an allyl group such as a phenyl group and a tolyl group, A cycloalkyl group such as a cyclohexyl group or a cyclooctyl group, or a group in which a hydrogen atom bonded to a carbon atom of these groups is substituted with a halogen atom, a cyano group, an amino group, or the like, such as a chloromethyl group, 3, 3, 3- Examples thereof include a trifluoropropyl group, a cyanomethyl group, a γ-aminopropyl group, and an N- (β-aminoethyl) -γ-aminopropyl group. “R1” and “R2” may be a group selected from a hydroxyl group and an alkoxy group. In the general formula (A), “n” represents an integer of 50 or more.
 ポリオルガノシロキサン樹脂は、通常、トルエン、キシレン、石油系溶剤のような炭化水素系溶剤、またはこれらと極性溶剤との混合物に溶解して用いられる。また、相互に溶解しあう範囲で、組成の異なるものを配合して用いても良い。 The polyorganosiloxane resin is usually used after being dissolved in a hydrocarbon solvent such as toluene, xylene or petroleum solvent, or a mixture of these with a polar solvent. Moreover, you may mix | blend and use what differs in a composition in the range which mutually melt | dissolves.
 ポリオルガノシロキサン樹脂の製造方法は、特に限定されるものではなく、公知のいずれの方法も用いることができる。例えば、オルガノハロゲノシランの一種または二種以上の混合物を加水分解ないしアルコリシスすることによって得ることができ、ポリオルガノシロキサン樹脂は、一般にシラノール基またはアルコキシ基等の加水分解性基を含有し、これらの基をシラノール基に換算して1~10重量%含有する。 The method for producing the polyorganosiloxane resin is not particularly limited, and any known method can be used. For example, it can be obtained by hydrolysis or alcoholysis of one or a mixture of two or more organohalogenosilanes. Polyorganosiloxane resins generally contain hydrolyzable groups such as silanol groups or alkoxy groups. The group is contained in an amount of 1 to 10% by weight in terms of a silanol group.
 これらの反応は、オルガノハロゲノシランを溶融しうる溶媒の存在下に行うのが一般的である。また、分子鎖末端に水酸基、アルコキシ基またはハロゲン原子を有する直鎖状のポリオルガノシロキサンを、オルガノトリクロロシランと共加水分解して、ブロック共重合体を合成する方法によっても得ることができる。このようにして得られるポリオルガノシロキサン樹脂は一般に残存するHClを含むが、本実施形態の組成物においては、保存安定性が良好なことから、10ppm以下、好ましくは1ppm以下のものを使用するのが良い。
(2)無機成分
 成形部22の樹脂成分中に分散される無機成分としては特に限定はなく、樹脂成分に対し均一に分散させる観点からいえば、無機成分は例えば無機粒子であることが好ましい。
These reactions are generally performed in the presence of a solvent capable of melting the organohalogenosilane. It can also be obtained by a method of synthesizing a block copolymer by cohydrolyzing a linear polyorganosiloxane having a hydroxyl group, an alkoxy group or a halogen atom at the molecular chain terminal with an organotrichlorosilane. The polyorganosiloxane resin thus obtained generally contains the remaining HCl, but in the composition of the present embodiment, the storage stability is good, so that the one having 10 ppm or less, preferably 1 ppm or less is used. Is good.
(2) Inorganic component There is no limitation in particular as an inorganic component disperse | distributed in the resin component of the shaping | molding part 22, From a viewpoint of disperse | distributing uniformly with respect to a resin component, it is preferable that an inorganic component is an inorganic particle, for example.
 特に、樹脂5Aとして光硬化性樹脂を用いてサブマスター20から光硬化性樹脂製のレンズ部5を成形する場合(サブマスター20を光硬化性樹脂成形物の成形型として使用する場合)には、無機成分はその光硬化性樹脂成形物(レンズ部5)を硬化する際に使用される光の波長よりも粒径が小さい無機粒子であるのがよく、その粒径は好ましくは100nm以下であり、さらに好ましくは50nm以下である。 In particular, when the photo-curing resin lens portion 5 is molded from the sub-master 20 using a photo-curing resin as the resin 5A (when the sub-master 20 is used as a mold for a photo-curing resin molding). The inorganic component may be inorganic particles having a particle size smaller than the wavelength of light used when curing the photocurable resin molded product (lens portion 5), and the particle size is preferably 100 nm or less. More preferably, it is 50 nm or less.
 なお、無機粒子は、ナノインプリント技術におけるナノホールの成形技術に用いられる場合には、好ましくは粒径が20nm以下であり、さらに好ましくは粒径が10nm以下である。 The inorganic particles preferably have a particle size of 20 nm or less, more preferably 10 nm or less when used for nanohole molding technology in the nanoimprint technology.
 また、樹脂5Aとして光硬化性樹脂を用いてサブマスター20から光硬化性樹脂製のレンズ部5を成形する場合(サブマスター20を光硬化性樹脂成形物の成形型として使用する場合)において、成形部22からレンズ部5を優位に転写・成形する観点からいえば、樹脂成分中に無機粒子を均一に分散させ、成形部22に光が入射したときに成形部22内で光の散乱が均一に生じるようにすればよく、また、成形部22の光透過性を高める観点からいえば、樹脂成分と無機成分との屈折率差を小さくするのが好ましい。 Moreover, in the case of molding the lens portion 5 made of a photocurable resin from the submaster 20 using a photocurable resin as the resin 5A (when the submaster 20 is used as a mold for a photocurable resin molded product), From the viewpoint of transferring and molding the lens part 5 from the molding part 22 predominantly, inorganic particles are uniformly dispersed in the resin component, and light is scattered in the molding part 22 when light is incident on the molding part 22. In order to increase the light transmittance of the molded part 22, it is preferable to reduce the difference in refractive index between the resin component and the inorganic component.
 上記のような特性を有する無機粒子であれば使用可能であるが、無機粒子は具体的には下記のような酸化物微粒子、金属塩微粒子、半導体微粒子などが好適である。
(2.1)酸化物微粒子
 酸化物微粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができ、具体的には、例えば、酸化珪素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等が挙げられる。また、酸化物微粒子として希土類酸化物を用いることもでき、具体的には酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。
(2.2)金属塩微粒子
 金属塩微粒子としては、炭酸塩、リン酸塩、硫酸塩などが挙げられ、具体的には炭酸カルシウム、リン酸アルミニウム等が挙げられる。
(2.3)半導体微粒子
 半導体微粒子とは、半導体結晶組成の微粒子を意味し、該半導体結晶組成の具体的な組成例としては、炭素、ケイ素、ゲルマニウム、錫等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、酸化錫(IV)(SnO)、硫化錫(II、IV)(Sn(II)Sn(IV)S)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化砒素(III)(As)、セレン化砒素(III)(AsSe)、テルル化砒素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の周期表第11族元素と周期表第16族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS2)、酸化タングステン(IV)(WO)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO、Ti、Ti、Ti等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCrS4)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられる。なお、G.Schmidら;Adv.Mater.,4巻,494頁(1991)に報告されている(BN)75(BF2)15F15や、D.Fenskeら;Angew.Chem.Int.Ed.Engl.,29巻,1452頁(1990)に報告されているCu146Se73(トリエチルホスフィン)22のように構造の確定されている半導体クラスターも同様に例示される。
Any inorganic particles having the above properties can be used. Specifically, the following inorganic particles are preferably oxide fine particles, metal salt fine particles, semiconductor fine particles and the like.
(2.1) Oxide fine particles As oxide fine particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co. Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth A metal oxide that is one or more metals selected from the group consisting of metals can be used. Specifically, for example, silicon oxide, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide Niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, indium oxide, tin oxide, lead oxide, and the complex oxide composed of these oxides Examples thereof include lithium, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ). Also, rare earth oxides can be used as oxide fine particles, specifically scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, oxide. Examples also include dysprosium, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
(2.2) Metal salt fine particles Examples of the metal salt fine particles include carbonates, phosphates, sulfates, and specifically calcium carbonate, aluminum phosphate and the like.
(2.3) Semiconductor fine particles The semiconductor fine particles mean fine particles having a semiconductor crystal composition, and specific examples of the semiconductor crystal composition include those of Group 14 elements of the periodic table such as carbon, silicon, germanium, and tin. Compound consisting of a single element, a group 15 element of the periodic table such as phosphorus (black phosphorus), a group 16 element of the periodic table such as selenium and tellurium, and a group 14 element of a plurality of periodic tables such as silicon carbide (SiC) , Tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), Such as tin (II) selenide (SnSe), tin (II) telluride (SnTe), lead (II) sulfide (PbS), lead (II) selenide (PbSe), lead (II) telluride (PbTe) Compound of periodic table group 14 element and periodic table group 16 element, boron nitride (BN), phosphide Boron (BP), boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), Periodic table Group 13 elements such as gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc. Compounds with Group 15 elements (or III-V compound semiconductors), aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3), telluride gallium (Ga 2 Te 3), oxide Print Arm (In 2 O 3), indium sulfide (In 2 S 3), indium selenide (In 2 Se 3), periodic table Group 13 element and Periodic Table Group 16 such as a telluride, indium (In 2 Te 3) A compound with an element, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr), thallium iodide (I) (TlI), etc. Compound, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc. There is a II-VI group compound semiconductor), arsenic sulfide (III) (As 2 S 3 ), selenium arsenic (III) (As 2 Se 3 ), telluride arsenic (III) (As 2 Te 3 ), antimony sulfide (III) (Sb 2 S 3 ), antimony selenide (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), selenization Compound of periodic table group 15 element and periodic table group 16 element such as bismuth (III) (Bi 2 Se 3 ), bismuth telluride (III) (Bi 2 Te 3 ), copper oxide (I) (Cu 2 O), compounds of Group 11 elements of the periodic table and elements of Group 16 of the periodic table such as copper (I) selenide (Cu 2 Se), copper chloride (I) (CuCl), copper bromide (I) (CuBr) ), Copper (I) iodide (CuI), silver chloride (AgCl), silver bromide (AgBr) A compound of a periodic table group 11 element and a periodic table group 17 element such as nickel oxide (II) (NiO), a periodic table group 10 element and a periodic table group 16 element, cobalt oxide (II ) (CoO), cobalt sulfide (II) (CoS) and other compounds of Group 9 elements and Group 16 elements of the periodic table, triiron tetroxide (Fe 3 O 4 ), iron (II) sulfide (FeS) ), Etc., compounds of Group 8 elements of the Periodic Table, elements of Group 16 of the Periodic Table, compounds of Group 7 elements of the Periodic Table, such as manganese (II) (MnO), and Group 16 elements of the Periodic Table, molybdenum sulfide ( IV) (MoS2), tungsten oxide (IV) (WO 2 ) and other compounds of Group 6 elements of the periodic table and Group 16 elements of the periodic table, vanadium oxide (II) (VO), vanadium oxide (IV) (VO) 2), tantalum oxide (V) (Ta 2 O 5) fifth periodic table, such as element and peripheral Table compound of Group 16 element, titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 O 3, Ti 5 O 9 , etc.) compounds of the periodic table Group 4 element and Periodic Table Group 16 element such as, Compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table such as magnesium sulfide (MgS) and magnesium selenide (MgSe), cadmium (II) oxide (Chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), chalcogen spinels such as copper (II) sulfide chromium (III) (CuCr 2 S4) , mercury selenide (II) chromium (III) (HgCr 2 Se 4 ) And barium titanate (BaTiO 3 ). In addition, G. Schmid et al .; Adv. Mater. 4, 494 (1991) (BN) 75 (BF2) 15F15 and D.C. Fenske et al .; Angew. Chem. Int. Ed. Engl. 29, page 1452 (1990), a semiconductor cluster having a fixed structure such as Cu146Se73 (triethylphosphine) 22 reported in the same manner is also exemplified.
 なお、無機成分の一例として用いる無機粒子の形状は、特に限定されるものではないが、球状の無機粒子が好適に用いられる。具体的には、無機粒子の最小径(無機粒子の外周に接する2本の接線を引く場合における当該接線間の距離の最小値)/最大径(無機粒子の外周に接する2本の接線を引く場合における当該接線間の距離の最大値)が0.5~1.0であることが好ましく、0.7~1.0であることが更に好ましい。 In addition, the shape of the inorganic particles used as an example of the inorganic component is not particularly limited, but spherical inorganic particles are preferably used. Specifically, the minimum diameter of the inorganic particles (the minimum value of the distance between the tangents when drawing two tangents in contact with the outer periphery of the inorganic particles) / the maximum diameter (the two tangents in contact with the outer periphery of the inorganic particles) In this case, the maximum value of the distance between the tangents) is preferably 0.5 to 1.0, and more preferably 0.7 to 1.0.
 また、粒子径の分布に関しても特に制限されるものではないが、本発明の効果をより効率よく発現させるためには、広範な分布を有するものよりも、比較的狭い分布を持つものが好適に用いられる。
≪基材≫
 基材26は、サブマスター20の成形部22のみでは強度に劣る場合でも、成形部22に基材26を貼り付けることでサブマスター20の強度が上がり、何回も成形することができるという、裏打ち材のことである。
Further, the particle size distribution is not particularly limited, but in order to achieve the effect of the present invention more efficiently, a particle having a relatively narrow distribution is preferably used rather than a particle having a wide distribution. Used.
≪Base material≫
Even if the base material 26 is inferior in strength only by the molding part 22 of the sub master 20, the strength of the sub master 20 is increased by sticking the base material 26 to the molding part 22, and can be molded many times. It is a backing material.
 基材26は、成形部22と異なる材料で構成されてもよいし、成形部22と同一の材料で一体的に構成されてもよい。基材26を成形部22と異なる材料で構成する場合には、例えば石英、シリコーンウェハ、金属、ガラス、樹脂等、平滑性を有するものならいずれでもよい。基材26を成形部22と同一材料で一体的に構成するとは、実質的には成形部22だけでサブマスター20を構成することである。 The base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22. When the base material 26 is made of a material different from that of the molding portion 22, any material having smoothness such as quartz, silicone wafer, metal, glass, resin, etc. may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the sub-master 20 is substantially constituted only by the molding part 22.
 次に、図3を参照しながら、ウエハレンズ1の製造方法(レンズ部5の成形方法を含む。)について説明する。 Next, a method for manufacturing the wafer lens 1 (including a method for forming the lens portion 5) will be described with reference to FIG.
 図3(a)に示す通り、マスター10上に有機無機材料22Aを塗布し、マスター10の凸部14を有機無機材料22Aに転写し、有機無機材料22Aを硬化させ、有機無機材料22Aに対し複数の凹部24を形成する。これにより、成形部22が形成される。 As shown in FIG. 3A, an organic / inorganic material 22A is applied on the master 10, the convex portions 14 of the master 10 are transferred to the organic / inorganic material 22A, the organic / inorganic material 22A is cured, and the organic / inorganic material 22A is cured. A plurality of recesses 24 are formed. Thereby, the shaping | molding part 22 is formed.
 有機無機材料22A(成形部22の樹脂成分)、樹脂5A(レンズ部5の材料)が硬化性樹脂である場合において、マスター10の光学面形状(凸部14)は、好ましくは有機無機材料22Aの硬化収縮や樹脂5Aの硬化収縮を見越して設計する。 When the organic inorganic material 22A (resin component of the molding part 22) and the resin 5A (material of the lens part 5) are curable resins, the optical surface shape (convex part 14) of the master 10 is preferably an organic inorganic material 22A. Is designed in anticipation of curing shrinkage of the resin and curing shrinkage of the resin 5A.
 マスター10上に有機無機材料22Aを塗布する場合には、スプレーコート、スピンコート、滴下、吐出等の手法を用いる。この場合、真空引きしながら有機無機材料22Aを塗布してもよい。真空引きしながら有機無機材料22Aを塗布すれば、有機無機材料22Aに気泡を混入させずに有機無機材料22Aを硬化させることができる。 When the organic / inorganic material 22A is applied on the master 10, a technique such as spray coating, spin coating, dropping, or discharging is used. In this case, the organic / inorganic material 22A may be applied while evacuating. If the organic-inorganic material 22A is applied while evacuating, the organic-inorganic material 22A can be cured without introducing bubbles into the organic-inorganic material 22A.
 また、マスター10から硬化した有機無機材料22Aを容易に剥離するためには、マスター10の表面に離型剤を塗布することが好ましい。 Further, in order to easily peel the cured organic / inorganic material 22A from the master 10, it is preferable to apply a release agent to the surface of the master 10.
 有機無機材料22Aの樹脂成分が光硬化性樹脂である場合には、マスター10の上方に配置した光源50を点灯させ光照射する。 When the resin component of the organic inorganic material 22A is a photocurable resin, the light source 50 disposed above the master 10 is turned on and irradiated with light.
 光源50としては、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ハロゲンランプ、蛍光灯、ブラックライト、Gランプ、Fランプ等が挙げられ、線状光源であってもよいし点状光源であってもよい。高圧水銀ランプは、365nm、436nmに狭いスペクトルを持つランプである。メタルハライドランプは、水銀灯の一種で、紫外域における出力は高圧水銀ランプよりも数倍高い。キセノンランプは、最も太陽光に近いスペクトルを持つランプである。ハロゲンランプは長波長の光を多く含んでおり、近赤外光がほとんどであるランプである。蛍光灯は光の三原色に均等な照射強度を持っている。ブラックライトはピークトップを351nmに持ち、300nm~400nmの近紫外光を放射するライトである。 Examples of the light source 50 include a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a black light, a G lamp, and an F lamp, and may be a linear light source or a point light source. Good. The high-pressure mercury lamp is a lamp having a narrow spectrum at 365 nm and 436 nm. A metal halide lamp is a kind of mercury lamp, and its output in the ultraviolet region is several times higher than that of a high-pressure mercury lamp. A xenon lamp is a lamp having a spectrum closest to sunlight. Halogen lamps contain a lot of long-wavelength light and are mostly near-infrared light. Fluorescent lamps have uniform illumination intensity for the three primary colors of light. Black light has a peak top at 351 nm and emits near-ultraviolet light of 300 nm to 400 nm.
 光源50から光照射する場合には、複数の線状又は点状の光源50を格子状に配置して有機無機材料22Aの全面に一度に光が到達するようにしてもよいし、線状又は点状の光源50を有機無機材料22Aの表面に対し平行にスキャニングして有機無機材料22Aに順次光が到達するようにしてもよい。この場合、好ましくは光照射時の輝度分布や照度(強度)分布を測定し、その測定結果に基づき照射回数、照射量、照射時間等を制御する。 In the case of irradiating light from the light source 50, a plurality of linear or point light sources 50 may be arranged in a lattice shape so that the light reaches the entire surface of the organic-inorganic material 22A at a time. The point light source 50 may be scanned in parallel to the surface of the organic / inorganic material 22A so that the light sequentially reaches the organic / inorganic material 22A. In this case, preferably, the luminance distribution and the illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, the irradiation amount, the irradiation time, and the like are controlled based on the measurement results.
 有機無機材料22Aを光硬化させた後(サブマスター20の作製後)においては、サブマスター20に対しポストキュア(加熱処理)をおこなってもよい。ポストキュアをおこなえば、サブマスター20の有機無機材料22A(樹脂成分)を完全に硬化させることができ、サブマスター20の型寿命を延ばすことができる。 After photocuring the organic / inorganic material 22A (after the production of the submaster 20), the submaster 20 may be post-cured (heat treatment). If post-cure is performed, the organic inorganic material 22A (resin component) of the submaster 20 can be completely cured, and the mold life of the submaster 20 can be extended.
 有機無機材料22Aの樹脂成分が熱硬化性樹脂である場合には、加熱温度、加熱時間を最適な範囲で制御しながら有機無機材料22Aを加熱する。有機無機材料22Aは射出成形、プレス成形、光照射してその後に冷却する等の手法でも成形することができる。 When the resin component of the organic / inorganic material 22A is a thermosetting resin, the organic / inorganic material 22A is heated while controlling the heating temperature and the heating time within an optimum range. The organic / inorganic material 22A can also be molded by a technique such as injection molding, press molding, light irradiation and then cooling.
 その後、図3(b)に示す通り、成形部22(有機無機材料22A)の裏面(凹部24とは反対の面)に対して基材26を装着し、成形部22を裏打ちする。 Thereafter, as shown in FIG. 3B, the base material 26 is attached to the back surface (the surface opposite to the concave portion 24) of the molded portion 22 (organic inorganic material 22A), and the molded portion 22 is lined.
 基材26は石英であってもよいし、ガラス板であってもよく、十分な曲げ強度とUV透過率を有することが重要である。成形部22と基材26との密着性を高めるために、基材26に対しシランカップリング剤を塗布するなどの処理を行ってもよい。 The substrate 26 may be quartz or a glass plate, and it is important to have sufficient bending strength and UV transmittance. In order to improve the adhesion between the molded portion 22 and the base material 26, a treatment such as applying a silane coupling agent to the base material 26 may be performed.
 成形部22(有機無機材料22A)を基材26で裏打ちする際には、従来公知の真空チャック装置260を用い、この真空チャック装置260の吸引面260Aに基材26を吸引保持しつつ、当該吸引面260Aをマスター10における凸部14の成形面に対し平行な状態として、成形部22を基材26で裏打ちすることが好ましい。これにより、マスター10における凸部14の成形面に対してサブマスター20の裏面20A(基材26側の面)が平行となり、サブマスター20において凹部24の成形面が裏面20Aと平行となる。従って、後述のようにサブマスター20によってレンズ部5を成形する際に、サブマスター20の基準面、つまり裏面20Aを凹部24の成形面と平行にすることができるため、レンズ部5が偏芯したり、厚みにばらつきを有したりするのを防止し、レンズ部5の形状精度を向上させ、レンズ性能を高く維持することができる。また、真空チャック装置260によってサブマスター20を吸引保持するため、真空排気のオン/オフのみによってサブマスター20を着脱することができる。従って、サブマスター20の配置を容易に行うことができる。また、マスター10についても前述真空チャック装置260の吸引面260Aと平行をなす第2の真空チャック装置によって吸引保持されていると、硬化したサブマスター20をマスター10から剥離するという、最も慎重かつ注意が必要となる作業において、両者が硬化密着した状態で真空チャックをOFFにすることで成形装置から簡単にはずすことができ、装置制約が少ない広い環境や別の装置上で確実な剥離作業を行うことができる。また、その作業中に別のマスターとサブマスター基板を真空チャックによって成形装置に取り付けると、サブマスターの成形を連続して行うことができる。 When backing the molding part 22 (organic inorganic material 22A) with the base material 26, a conventionally known vacuum chuck device 260 is used, and the base material 26 is sucked and held on the suction surface 260A of the vacuum chuck device 260, while It is preferable that the molded portion 22 is lined with the base material 26 with the suction surface 260A parallel to the molding surface of the convex portion 14 in the master 10. Thereby, the back surface 20A (surface on the base material 26 side) of the sub master 20 is parallel to the molding surface of the convex portion 14 in the master 10, and the molding surface of the recess 24 in the sub master 20 is parallel to the back surface 20A. Therefore, when the lens unit 5 is molded by the submaster 20 as will be described later, the reference surface of the submaster 20, that is, the back surface 20 </ b> A can be made parallel to the molding surface of the recess 24. Or variation in thickness, the shape accuracy of the lens unit 5 can be improved, and the lens performance can be maintained high. Further, since the sub master 20 is sucked and held by the vacuum chuck device 260, the sub master 20 can be attached and detached only by turning on / off the vacuum exhaust. Therefore, the sub master 20 can be easily arranged. Further, the master 10 is also most cautious and careful that the cured sub-master 20 is peeled off from the master 10 when the master 10 is sucked and held by the second vacuum chuck device parallel to the suction surface 260A of the vacuum chuck device 260. Can be easily removed from the molding equipment by turning off the vacuum chuck while the two are cured and in close contact with each other, and a reliable peeling operation can be performed in a wide environment with little equipment restrictions or on another equipment. be able to. Further, when another master and a sub master substrate are attached to the molding apparatus by a vacuum chuck during the operation, the sub master can be continuously molded.
 ここで、凹部24の成形面に対して裏面20Aが平行であるとは、具体的には、凹部24の成形面における中心軸に対して裏面20Aが垂直であることをいう。 Here, that the back surface 20A is parallel to the molding surface of the recess 24 specifically means that the back surface 20A is perpendicular to the central axis of the molding surface of the recess 24.
 また、真空チャック装置260の吸引面260Aはセラミック材料で作るのが好ましい。この場合には、吸引面260Aの硬度が高くなり、サブマスター20(基材26)の着脱によって当該吸引面260Aに傷が付き難いため、吸引面260Aの面精度を高く維持することができる。また、このようなセラミック材料としては、窒化珪素やサイアロンを用いるのが好ましい。この場合には、線膨張係数が1.3ppmと小さいため、温度変化に対して吸引面260Aの平面度を高く維持することができる。 Further, the suction surface 260A of the vacuum chuck device 260 is preferably made of a ceramic material. In this case, since the hardness of the suction surface 260A is high and the suction surface 260A is hardly damaged by the attachment / detachment of the submaster 20 (base material 26), the surface accuracy of the suction surface 260A can be maintained high. Moreover, it is preferable to use silicon nitride or sialon as such a ceramic material. In this case, since the linear expansion coefficient is as small as 1.3 ppm, the flatness of the suction surface 260A can be kept high with respect to the temperature change.
 なお、本実施の形態においては、マスター10における凸部14の成形面に対して吸引面260Aを平行な状態にする手法としては、以下のような手法を用いている。 In the present embodiment, the following method is used as a method for bringing the suction surface 260A into a parallel state with respect to the molding surface of the convex portion 14 in the master 10.
 まず、マスター10の表裏面を高精度に平行化しておく。これにより、マスター10において、凸部14の成形面と裏面とが平行となる。 First, the front and back surfaces of the master 10 are parallelized with high accuracy. Thereby, in the master 10, the shaping | molding surface and back surface of the convex part 14 become parallel.
 また、このマスター10を裏面(凸部14とは反対側の面)側から支持する支持面260Bと、吸引面260Aとに対して、それぞれ基準部材260C、260Dを突設しておく。ここで、これらの基準部材260C、260Dの形状は、支持面260B及び吸引面260Aが互いに平行な状態でマスター10とサブマスター20とが当接したときにガタツキ無く互いに当接する形状とする。 Further, reference members 260C and 260D are provided so as to protrude from the support surface 260B that supports the master 10 from the back surface (surface opposite to the convex portion 14) and the suction surface 260A, respectively. Here, the shapes of these reference members 260C and 260D are such that when the master 10 and the sub master 20 come into contact with each other in a state where the support surface 260B and the suction surface 260A are parallel to each other, there is no backlash.
 これにより、基準部材260C、260D同士を当接させることによって、吸引面260Aに対してマスター10の支持面260B、ひいてはマスター10における凸部14の成形面が平行となる。 Thus, by bringing the reference members 260C and 260D into contact with each other, the support surface 260B of the master 10 and thus the molding surface of the convex portion 14 of the master 10 are parallel to the suction surface 260A.
 ただし、上記のような手法において、基準部材は支持面260B及び吸引面260Aの少なくとも一方に設ければ良く、例えば支持面260Bのみに基準部材を設ける場合には、この基準部材の形状は、支持面260B及び吸引面260Aが互いに平行な状態でマスター10とサブマスター20とが当接したときに、吸引面260Aに対してガタツキ無く当接する形状とすれば良い。同様に、吸引面260Aのみに基準部材を設ける場合には、この基準部材の形状は、支持面260B及び吸引面260Aが互いに平行な状態でマスター10とサブマスター20とが当接したときに、支持面260Bに対してガタツキ無く当接する形状とすれば良い。このような機械的な当接による平行度は、特別なアライメント装置を有することなく、数秒角程度の再現性を実現できる。 However, in the above-described method, the reference member may be provided on at least one of the support surface 260B and the suction surface 260A. For example, when the reference member is provided only on the support surface 260B, the shape of the reference member is When the master 10 and the sub master 20 are in contact with each other with the surface 260B and the suction surface 260A being parallel to each other, the shape may be configured to contact the suction surface 260A without backlash. Similarly, when the reference member is provided only on the suction surface 260A, the shape of the reference member is such that when the master 10 and the sub master 20 are in contact with each other with the support surface 260B and the suction surface 260A being parallel to each other, What is necessary is just to make it the shape which contact | abuts with respect to the support surface 260B without backlash. Such parallelism by mechanical contact can realize reproducibility of about a few seconds without having a special alignment device.
 その後、図3(c)に示す通り、マスター10から成形部22と基材26とを離型し、サブマスター20が形成される。 Thereafter, as shown in FIG. 3C, the molding part 22 and the base material 26 are released from the master 10 to form the sub-master 20.
 有機無機材料22Aの樹脂成分としてPDMS(ポリジメチルシロキサン)などの樹脂を使うと、マスター10との離型性が非常によいので、マスター10からの剥離に大きな力を必要とせず、成形光学面を歪ませたりすることがないのでよい。 When a resin such as PDMS (polydimethylsiloxane) is used as the resin component of the organic inorganic material 22A, the releasability from the master 10 is very good. Is not distorted.
 その後、図3(d)に示す通り、サブマスター20とガラス基板3との間に樹脂5Aを充填して硬化させる。より詳細には、サブマスター20の凹部24に対し樹脂5Aを充填し、その上方からガラス基板3を押圧しながら樹脂5Aを硬化させる。 Thereafter, as shown in FIG. 3D, the resin 5A is filled between the sub-master 20 and the glass substrate 3 and cured. More specifically, the resin 5A is filled in the recess 24 of the submaster 20, and the resin 5A is cured while pressing the glass substrate 3 from above.
 サブマスター20の凹部24に樹脂5Aを充填する場合には、真空引きしながら樹脂5Aを充填してもよい。真空引きしながら樹脂5Aを充填すれば、樹脂5Aに気泡を混入させずに樹脂5Aを硬化させることができる。 When filling the resin 5A into the recess 24 of the submaster 20, the resin 5A may be filled while evacuating. If the resin 5A is filled while evacuating, the resin 5A can be cured without introducing bubbles into the resin 5A.
 サブマスター20の凹部24に樹脂5Aを充填するのに代えて、ガラス基板3に樹脂5Aを塗布し、樹脂5Aが塗布されたガラス基板3をサブマスター20に押圧するような構成としてもよい。 Instead of filling the concave portion 24 of the submaster 20 with the resin 5A, the resin 5A may be applied to the glass substrate 3, and the glass substrate 3 coated with the resin 5A may be pressed against the submaster 20.
 ガラス基板3を押圧する場合に、ガラス基板3は、サブマスター20と軸合わせをするための構造が付与されているのが好ましい。ガラス基板3が円形状を呈している場合には、例えばDカット、Iカット、マーキング、切欠き部等を形成しておくのが好ましい。ガラス基板3を多角形状としてもよく、この場合にはサブマスター20との軸合わせが容易である。また、ガラス基板3の裏面成形時に表面側の成形光学面との同軸度をあわせるためのマーカーパターンを、表面側の成形時に光学面と同時に成形転写しても良い。 When the glass substrate 3 is pressed, the glass substrate 3 is preferably provided with a structure for axial alignment with the submaster 20. When the glass substrate 3 has a circular shape, for example, it is preferable to form a D cut, an I cut, a marking, a notch, or the like. The glass substrate 3 may have a polygonal shape, and in this case, the axis alignment with the submaster 20 is easy. Further, a marker pattern for matching the coaxiality with the front-side molding optical surface at the time of molding the back surface of the glass substrate 3 may be molded and transferred simultaneously with the optical surface at the time of molding the front-surface side.
 樹脂5Aを硬化させる場合において、樹脂5Aが熱硬化性樹脂である場合には、加熱により硬化させる。他方、樹脂5Aが光硬化性樹脂である場合には、サブマスター20の下方に配置した光源52を点灯させサブマスター20側から光照射してもよいし、ガラス基板3の上方に配置した光源54を点灯させガラス基板3側から光照射してもよいし、光源52、54の両方を同時に点灯させサブマスター20側とガラス基板3側との両側から光照射してもよい。 When the resin 5A is cured, if the resin 5A is a thermosetting resin, it is cured by heating. On the other hand, when the resin 5A is a photocurable resin, the light source 52 disposed below the sub master 20 may be turned on to emit light from the sub master 20 side, or the light source disposed above the glass substrate 3. 54 may be turned on and light may be irradiated from the glass substrate 3 side, or both the light sources 52 and 54 may be turned on simultaneously and light may be irradiated from both sides of the submaster 20 side and the glass substrate 3 side.
 光源52、54としては、上述した光源50と同様の高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ハロゲンランプ、蛍光灯、ブラックライト、Gランプ、Fランプ等を使用でき、線状光源であってもよいし点状光源であってもよい。 As the light sources 52 and 54, the same high pressure mercury lamp, metal halide lamp, xenon lamp, halogen lamp, fluorescent lamp, black light, G lamp, and F lamp as the light source 50 described above can be used. It may be a point light source.
 光源52、54から光照射する場合には、複数の線状又は点状の光源52、54を格子状に配置して樹脂5Aに一度に光が到達するようにしてもよいし、線状又は点状の光源52、54をサブマスター20、ガラス基板3に対し平行にスキャニングして樹脂5Aに順次光が到達するようにしてもよい。この場合、好ましくは光照射時の輝度分布や照度(強度)分布を測定し、その測定結果に基づき照射回数、照射量、照射時間等を制御する。 When irradiating light from the light sources 52 and 54, a plurality of linear or point light sources 52 and 54 may be arranged in a lattice shape so that the light reaches the resin 5A at a time. The point light sources 52 and 54 may be scanned in parallel to the sub master 20 and the glass substrate 3 so that the light sequentially reaches the resin 5A. In this case, preferably, the luminance distribution and the illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, the irradiation amount, the irradiation time, and the like are controlled based on the measurement results.
 樹脂5Aが硬化すると、レンズ部5が形成される。その後、レンズ部5とガラス基板3とをサブマスター20から離型し、ウエハレンズ1が製造される(当該ウエハレンズ1はガラス基板3の表面にのみレンズ部5が形成されたものである。)。 When the resin 5A is cured, the lens portion 5 is formed. Thereafter, the lens unit 5 and the glass substrate 3 are released from the sub-master 20 to manufacture the wafer lens 1 (the wafer lens 1 has the lens unit 5 formed only on the surface of the glass substrate 3). ).
 ウエハレンズ1をサブマスター20から離型する場合に、予めウエハレンズ1(ガラス基板3)とサブマスター20との間に引張りシロ60を設けておき、引張りシロ60を引っ張ることでウエハレンズ1をサブマスター20から離型するようにしてもよい。 When the wafer lens 1 is released from the sub-master 20, the tension lens 60 is provided in advance between the wafer lens 1 (glass substrate 3) and the sub-master 20, and the tension lens 60 is pulled to remove the wafer lens 1. The mold may be released from the sub master 20.
 サブマスター20の基材26が弾性素材(樹脂)である場合には、これをやや折り曲げてウエハレンズ1をサブマスター20から離型するようにしてもよいし、ガラス基板3がガラスに代わり弾性素材(樹脂)である場合にも、これをやや折り曲げてウエハレンズ1をサブマスター20から離型するようにしてもよい。 When the base material 26 of the submaster 20 is an elastic material (resin), it may be bent slightly to release the wafer lens 1 from the submaster 20, or the glass substrate 3 is elastic instead of glass. Even in the case of a material (resin), the wafer lens 1 may be released from the sub master 20 by slightly bending it.
 ウエハレンズ1をサブマスター20からやや剥離して両部材間に隙間が形成されたら、エア又は純水をその隙間に圧送に、ウエハレンズ1をサブマスター20から離型するようにしてもよい。 When the wafer lens 1 is slightly separated from the sub master 20 and a gap is formed between both members, air or pure water may be pumped into the gap and the wafer lens 1 may be released from the sub master 20.
 なお、以上の説明ではガラス基板3の片面にレンズ部5を設ける方法について説明したが、両面に設ける場合には、まず、ガラス基板3の一方の面のレンズ部5の光学面形状に対応するポジ形状の成形面を複数有するマスター(図示せず)と、他方の面のレンズ部5の光学面形状に対応するポジ形状の成形面を複数有するマスターとを用意し、これらの各マスターを用いてサブマスター20C、20D(図3(e)、(f)参照)を形成する。これによりサブマスター20Cはガラス基板3の一方の面のレンズ部5の光学面形状に対応するネガ形状の成形面を有し、サブマスター20Dは他方の面のレンズ部5の光学面形状に対応するネガ形状の成形面を有することとなる。そして、各サブマスター20C、20Dと、ガラス基板3との間に樹脂5Aを充填した後、樹脂5Aを同時に硬化させてガラス基板3の両面にレンズ部5を成形する。これによれば、ガラス基板3の片面だけで樹脂5Aが硬化収縮することなく、両面で樹脂5Aが同時に硬化収縮してそれぞれレンズ部5となるため、各面に順にレンズ部5を設ける場合と異なり、ガラス基板3の反りを防止することができるため、レンズ部5の形状精度を向上させることができる。なお、ガラス基板3の両面の樹脂5Aを同時に硬化させるとは、同一の硬化プロセスにおいて樹脂5Aを完全に硬化させることを言い、必ずしも同時に硬化を開始・終了させる必要はなく、例えばサブマスター20Cとガラス基板3との間の樹脂5Aを所定の粘度まで増粘した後、この樹脂5Aと、他方の樹脂5Aとを完全に硬化させることとしても良い。 In the above description, the method of providing the lens unit 5 on one side of the glass substrate 3 has been described. However, when the lens unit 5 is provided on both sides, first, it corresponds to the optical surface shape of the lens unit 5 on one side of the glass substrate 3. A master (not shown) having a plurality of positive molding surfaces and a master having a plurality of positive molding surfaces corresponding to the optical surface shape of the lens portion 5 on the other surface are prepared, and each of these masters is used. Thus, the sub masters 20C and 20D (see FIGS. 3E and 3F) are formed. Accordingly, the sub master 20C has a negative molding surface corresponding to the optical surface shape of the lens portion 5 on one surface of the glass substrate 3, and the sub master 20D corresponds to the optical surface shape of the lens portion 5 on the other surface. Will have a negative shaped molding surface. And after filling resin 5A between each submaster 20C and 20D and the glass substrate 3, the resin 5A is hardened simultaneously and the lens part 5 is shape | molded on both surfaces of the glass substrate 3. FIG. According to this, the resin 5A does not cure and shrink on only one side of the glass substrate 3, and the resin 5A cures and shrinks simultaneously on both sides to become the lens parts 5, respectively. In contrast, since the warp of the glass substrate 3 can be prevented, the shape accuracy of the lens portion 5 can be improved. Note that the simultaneous curing of the resin 5A on both surfaces of the glass substrate 3 means that the resin 5A is completely cured in the same curing process, and it is not always necessary to start and end the curing simultaneously. After the resin 5A between the glass substrate 3 is thickened to a predetermined viscosity, the resin 5A and the other resin 5A may be completely cured.
 以上の本実施形態によれば、サブマスター20において、少なくとも成型面を含む成形部22の構成材料を樹脂成分に無機成分を分散させた有機無機材料22Aとすることにより、ウエハレンズ1のレンズ部5の形状誤差や製造ロットごとのばらつきの発生を抑えることができる。 According to the present embodiment described above, in the sub master 20, the constituent material of the molding part 22 including at least the molding surface is the organic inorganic material 22A in which the inorganic component is dispersed in the resin component, whereby the lens part of the wafer lens 1 is obtained. The occurrence of the shape error 5 and the variation of each production lot can be suppressed.
 特に、レンズ部5の樹脂5Aが光硬化性樹脂である場合に、点光源を用いて硬化を行う場合には光強度のばらつきが発生するため、十分な硬度が得られなかったり、成型後のレンズ部5が硬化収縮により形状誤差を発生したりする場合があるが、サブマスター20の成形部22において無機粒子による散乱により成形物に均一に光が照射されることとなるため、レンズ部5をより均一に硬化させることができる。 In particular, when the resin 5A of the lens unit 5 is a photocurable resin, when curing is performed using a point light source, variation in light intensity occurs, so that sufficient hardness cannot be obtained or after molding Although the lens unit 5 may cause a shape error due to curing shrinkage, the molded product 22 is irradiated with light uniformly due to scattering by inorganic particles in the molding unit 22 of the sub-master 20, and thus the lens unit 5. Can be cured more uniformly.
 他方、レンズ部5の樹脂5Aが熱硬化性樹脂である場合には、サブマスター20の成形部22において一般的に無機成分は樹脂成分に比べて熱伝導性が高いため、レンズ部5の硬化を効率的に且つ均一に行うことが可能となり、精密な成形が可能となる。 On the other hand, when the resin 5A of the lens unit 5 is a thermosetting resin, since the inorganic component generally has higher thermal conductivity than the resin component in the molding unit 22 of the submaster 20, the lens unit 5 is cured. Can be performed efficiently and uniformly, and precise molding becomes possible.
[実施例1]
(1)成形型の耐久性の評価方法とその結果
 表1に記載の熱硬化性、熱可塑性樹脂に対し無機粒子を分散させた6種の成形型(実施例1~3,比較例1~3)を用いて、ウエハレンズを作製した。
[Example 1]
(1) Durability Evaluation Method of Mold and its Results Six types of molds in which inorganic particles are dispersed in the thermosetting and thermoplastic resins listed in Table 1 (Examples 1 to 3, Comparative Examples 1 to Using 3), a wafer lens was produced.
 詳しくは、ウエハレンズのガラス基板としてShott社製テンパックスフロート(厚さ300μm)を使用し、実施例1~3、比較例1~3の成形型に対して光硬化性樹脂(エポキシ樹脂(ダイセル化学製セロキサイド2021P)、UV開始剤(ダウケミカル社製UVI-6992)を1wt%添加)を充填し、高圧水銀ランプにて6000mJ/cm2程度の光を照射し、当該ガラス基板上に光硬化性樹脂製の複数のレンズ部をアレイ状(レンズ部の部位数は2000部位程度、各レンズ部は高さ250μm、φ4.0程度)に形成した。 Specifically, Shotak's Tempax float (thickness 300 μm) was used as the glass substrate of the wafer lens, and a photocurable resin (epoxy resin (Daicel) was used for the molds of Examples 1 to 3 and Comparative Examples 1 to 3. Chemical ceroxide 2021P), UV initiator (UVI-6992 manufactured by Dow Chemical Co., Ltd. added 1 wt%), irradiated with light of about 6000 mJ / cm 2 with a high-pressure mercury lamp, and photocurable on the glass substrate. A plurality of resin-made lens parts were formed in an array (the number of parts of the lens parts was about 2000 parts, and each lens part had a height of about 250 μm and about φ4.0).
 その後、各成形型から作製したウエハレンズ(レンズ部)の表面形状を測定し、各成形型の耐久性(使用頻度に応じた劣化度)を評価した。 Then, the surface shape of the wafer lens (lens part) produced from each mold was measured, and the durability (deterioration degree according to the use frequency) of each mold was evaluated.
 詳しくは、各成形型で成形した1回目のレンズ部表面のPV値であって設計値からのズレのPV値を100%として、各成形型で成形した10回目、100回目のレンズ部表面のPV値を測定した。その後、1回目に測定したPV値に対する10回目、100回目に測定したPV値の相対的なズレを算出し、その算出値から各成形型の耐久性を評価した。PV値の測定には、パナソニック製UA3P(超高精度三次元測定器)を使用した。PV値の測定では、ウエハレンズ中の2000部位のレンズ部の中から任意に10部位を選択し、その平均値を求めてこれをPV値とした。 Specifically, the PV value of the first lens part surface molded with each mold and the PV value of the deviation from the design value is 100%, and the 10th and 100th lens part surface surfaces molded with each mold PV value was measured. Thereafter, relative deviations of the PV values measured at the 10th and 100th times with respect to the PV value measured at the first time were calculated, and the durability of each mold was evaluated from the calculated values. For the measurement of the PV value, Panasonic UA3P (ultra-high precision three-dimensional measuring device) was used. In the measurement of the PV value, 10 parts were arbitrarily selected from the 2000 lens parts in the wafer lens, and the average value thereof was obtained and used as the PV value.
 以上の評価方法による評価結果を表1に示す。表1中、「○」、「△」、「×」の基準は下記の通りである。 Table 1 shows the evaluation results of the above evaluation methods. In Table 1, the criteria for “◯”, “Δ”, and “×” are as follows.
  ○ … PV値のズレ(対1回目)が±5%以内
  △ … PV値のズレ(対1回目)が±20%未満
  × … PV値のズレ(対1回目)が±20%以上
○… PV value deviation (vs. 1st) is within ± 5% △… PV value deviation (vs. 1st) is less than ± 20% ×… PV value deviation (vs. 1st) is ± 20% or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、「シルポット184」は東レダウコーニング製PDMS(ポリジメチルシロキサン)含有シリコーン樹脂であり、「APEL」は三井化学社製シクロオレフィンポリマーであり、「Zeonex」は日本ゼオン社製シクロオレフィンポリマーである。「シリカRX300」は日本アエロジル社製RX300(粒径7nm)である。無機粒子としてのシリカRX300の添加量は各樹脂に対し50wt%とした。
(2)まとめ
 表1に示す通り、実施例1~3の成形型を用いてレンズ部を成形した場合、それら成形型の耐久性が良好であり、そのレンズ部表面のPV値のズレが低く抑えられている。このことから、成形型(成形部)を、樹脂成分に対し無機粒子を分散させた有機無機材料で構成することは、レンズ部の形状誤差や製造ロットごとのばらつきを抑えるのに有用であることがわかる。
[実施例2]
(1)サンプル(成形型)の作製
(1.1)実施例21
 アクリル系硬化性樹脂(A-DCP(新中村化学製)及び、A-IB(新中村化学製)の1:1混合品)にシリカ粒子(RX300(アエロジル製))を50wt%添加し、硬化剤としてパーブチルO(日本油脂製)を1wt%添加し、150℃で5分間加熱して成形型を作製した。その後、その成形型を190℃で3時間ポストキュア(加熱)し、これを「実施例21」の成形型とした。
(1.2)比較例21
 シリカ粒子を添加しない以外は、実施例21と同様にして成形型を作製した。その後、その成形型を190℃で5時間ポストキュア(加熱)し、これを「比較例21」の成形型とした。
(1.3)実施例22
 シリコーン樹脂SR7010(東レダウ製)にシリカ粒子(RX300)を50wt%添加して150℃で1時間加熱し、成形型を作製した。その後、その成形型を190℃で1時間ポストキュア(加熱)し、これを「実施例22」の成形型とした。
(1.4)比較例22
 シリカ粒子を添加しない以外は、実施例22と同様にして成形型を作製した。その後、その成形型を190℃で3時間ポストキュア(加熱)し、これを「比較例22」の成形型とした。
(1.5)実施例23
 新日鐵化学製シルプラスMHD2510にシリカ粒子(RX300)を50wt%添加し、高圧水銀ランプにおける365nmの光を100mW/cm2の強度で1分間照射し、成形型を作製した。その後、その成形型を190℃で3時間ポストキュア(加熱)し、これを「実施例23」の成形型とした。
(1.6)比較例23
 シリカ粒子を添加しない以外は、実施例23と同様にして成形型を作製した。その後、その成形型を190℃で6時間ポストキュア(加熱)し、これを「比較例23」の成形型とした。
(2)成形型の耐久性の評価方法とその結果
 実施例21~23、比較例21~23の成形型を使用し、熱硬化性樹脂(JER製YX8000)を用い、レンズアレイを成形し、そのレンズ部表面の形状を測定して各成形型の耐久性(使用頻度に応じた劣化度)を評価した。その評価結果を表2に示す。
In Table 1, “Silpot 184” is a PDMS (polydimethylsiloxane) -containing silicone resin manufactured by Toray Dow Corning, “APEL” is a cycloolefin polymer manufactured by Mitsui Chemicals, and “Zeonex” is a cycloolefin polymer manufactured by Zeon Corporation. It is. “Silica RX300” is RX300 (particle size: 7 nm) manufactured by Nippon Aerosil Co., Ltd. The amount of silica RX300 added as inorganic particles was 50 wt% with respect to each resin.
(2) Summary As shown in Table 1, when the lens parts were molded using the molds of Examples 1 to 3, the durability of the molds was good, and the deviation of the PV value on the lens part surface was low. It is suppressed. For this reason, it is useful to suppress the shape error of the lens part and the variation of each production lot by forming the mold (molding part) with an organic inorganic material in which inorganic particles are dispersed in the resin component. I understand.
[Example 2]
(1) Production of sample (mold) (1.1) Example 21
Add 50 wt% silica particles (RX300 (Aerosil)) to acrylic curable resin (1: 1 mixture of A-DCP (Shinnakamura Chemical) and A-IB (Shin Nakamura Chemical)) and cure. 1 wt% of perbutyl O (manufactured by Nippon Oil & Fats) was added as an agent, and heated at 150 ° C. for 5 minutes to prepare a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 3 hours to obtain a mold of “Example 21”.
(1.2) Comparative Example 21
A mold was produced in the same manner as in Example 21 except that silica particles were not added. Thereafter, the mold was post-cured (heated) at 190 ° C. for 5 hours, and this was used as the mold of “Comparative Example 21”.
(1.3) Example 22
50 wt% of silica particles (RX300) were added to silicone resin SR7010 (manufactured by Toray Dow) and heated at 150 ° C. for 1 hour to produce a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 1 hour, and this was used as the mold of “Example 22”.
(1.4) Comparative Example 22
A mold was produced in the same manner as in Example 22 except that silica particles were not added. Thereafter, the mold was post-cured (heated) at 190 ° C. for 3 hours to obtain a mold of “Comparative Example 22”.
(1.5) Example 23
Silica particles (RX300) of 50 wt% was added to Nippon Steel Chemical's Silplus MHD2510, and 365 nm light from a high pressure mercury lamp was irradiated at an intensity of 100 mW / cm 2 for 1 minute to produce a mold. Thereafter, the mold was post-cured (heated) at 190 ° C. for 3 hours to obtain a mold of “Example 23”.
(1.6) Comparative Example 23
A mold was produced in the same manner as in Example 23 except that silica particles were not added. Thereafter, the mold was post-cured (heated) at 190 ° C. for 6 hours to obtain a mold of “Comparative Example 23”.
(2) Method for evaluating durability of mold and results thereof Using molds of Examples 21 to 23 and Comparative Examples 21 to 23, a thermosetting resin (YX8000 manufactured by JER) was used to mold a lens array, The shape of the lens surface was measured to evaluate the durability (deterioration depending on the frequency of use) of each mold. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3)まとめ
 表2に示す通り、本実施例においても、実施例21~23の成形型を用いてレンズ部を成形した場合、それら成形型の耐久性が良好であり、そのレンズ部表面のPV値のズレが低く抑えられている。このことから、成形型(成形部)を、樹脂成分に対し無機粒子を分散させた有機無機材料で構成することは、レンズ部の形状誤差や製造ロットごとのばらつきを抑えるのに有用であることがわかる。
[実施例3]
(1)成形型の光拡散性の評価方法とその結果
 表3に記載の熱硬化性、熱可塑性樹脂に対し無機粒子を分散させた6種の成形型(実施例31~33、比較例31~33)を準備した。各成形型には、200mm四方で、幅250μm、高さ250μmの溝を250μm間隔で形成している。その後、各成形型に対し光硬化性樹脂を充填し、その成形物の厚さが500μmとなるように、離型処理されたガラス平板を裏打ちして、成形型側から光を照射して光硬化性樹脂を硬化させ、硬化後にガラス平板を剥がして成形物裏面の未硬化部の有無を検出した(図4参照)。その検出結果を表3に示す。表3中、「○」、「×」の基準は下記の通りとした。
(3) Summary As shown in Table 2, also in this example, when the lens parts were molded using the molds of Examples 21 to 23, the durability of the molds was good, and the surface of the lens part was good. The deviation of the PV value is kept low. For this reason, it is useful to suppress the shape error of the lens part and the variation of each production lot by forming the mold (molding part) with an organic inorganic material in which inorganic particles are dispersed in the resin component. I understand.
[Example 3]
(1) Evaluation method and result of light diffusibility of molds Six types of molds in which inorganic particles are dispersed in the thermosetting and thermoplastic resins listed in Table 3 (Examples 31 to 33, Comparative Example 31) To 33) were prepared. Each mold is formed with grooves of 200 mm square, 250 μm wide and 250 μm high at intervals of 250 μm. After that, each mold is filled with a photo-curable resin, and the glass plate that has been subjected to the mold release treatment is lined so that the thickness of the molded product becomes 500 μm, and light is irradiated from the mold side to emit light. The curable resin was cured, the glass flat plate was peeled off after curing, and the presence or absence of an uncured portion on the back of the molded product was detected (see FIG. 4). The detection results are shown in Table 3. In Table 3, the criteria for “◯” and “x” were as follows.
  ○ … 未硬化部無し
  × … 未硬化部有り
○… No uncured part ×… Uncured part
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)まとめ
 表3に示す通り、実施例31~33、比較例31~33のいずれの成形型を用いた場合においても、成形物裏面の薄い部分では未硬化部を検出されなかったが、実施例31~33の成形型を用いた場合においては、厚い部分でも未硬化部は検出されなかった。これは、図4に示す通り、成形型に入射した光が無機粒子の存在により均一に拡散して成形物裏面の厚い部分に伝播したためと考えられる(点線部参照)。このことから、成形型(成形部)を、樹脂成分に対し無機粒子を分散させた有機無機材料で構成することは、成形型(成形部)の光拡散性を向上させ、成形物の厚み方向における均一な硬化を図るのに有用であることがわかる。
(2) Summary As shown in Table 3, even when any of the molds of Examples 31 to 33 and Comparative Examples 31 to 33 was used, an uncured part was not detected in the thin part on the back of the molded product. When the molds of Examples 31 to 33 were used, no uncured part was detected even in the thick part. This is presumably because the light incident on the mold was uniformly diffused by the presence of the inorganic particles and propagated to the thick part on the back of the molded product as shown in FIG. 4 (see dotted line). For this reason, forming the mold (molded part) with an organic inorganic material in which inorganic particles are dispersed in the resin component improves the light diffusibility of the mold (molded part) and increases the thickness direction of the molded product. It turns out that it is useful for aiming at uniform hardening in.
 1 ウエハレンズ
 3 ガラス基板
 5 レンズ部
 5A 樹脂
 10 マスター
 12 ベース部
 14 凸部
 16 凹部
 20 サブマスター(精密加工用成形型の一例)
 22 成形部
 22A 有機無機材料
 24 凹部
 26 基材
DESCRIPTION OF SYMBOLS 1 Wafer lens 3 Glass substrate 5 Lens part 5A Resin 10 Master 12 Base part 14 Convex part 16 Concave part 20 Submaster (an example of a precision processing mold)
22 Molding part 22A Organic inorganic material 24 Concave part 26 Base material

Claims (11)

  1.  基材と成形部とを有する硬化性樹脂成形物の精密加工用成形型において、
     前記成形型の少なくとも成形部は、樹脂成分と、該樹脂成分に分散された無機成分を含有することを特徴とする精密加工用成形型。
    In a mold for precision processing of a curable resin molding having a base and a molding part,
    At least a molding part of the molding die contains a resin component and an inorganic component dispersed in the resin component.
  2.  前記成形型は、光硬化性樹脂成形物の精密加工用成形型であり、
     前記成形型は、前記光硬化性樹脂成形物を硬化する際に使用される光に対して透過性を有することを特徴とする請求項1に記載の精密加工用成形型。
    The mold is a mold for precision processing of a photocurable resin molding,
    2. The mold for precision processing according to claim 1, wherein the mold has transparency to light used when the photocurable resin molded product is cured.
  3.  前記無機成分は、前記光硬化性樹脂成形物を硬化する際に使用される光の波長よりも粒径が小さい無機粒子であることを特徴とする請求項2に記載の精密加工用成形型。 3. The precision processing mold according to claim 2, wherein the inorganic component is an inorganic particle having a particle size smaller than a wavelength of light used when the photocurable resin molded product is cured.
  4.  前記成形型は、熱硬化性樹脂組成物の精密加工用成形型であり、
     前記成形型は、前記熱硬化性樹脂性成形物を硬化する際の成形温度よりも高い軟化点を有することを特徴とする請求項1に記載の精密加工用成形型。
    The mold is a mold for precision processing of a thermosetting resin composition,
    The mold for precision machining according to claim 1, wherein the mold has a softening point higher than a molding temperature at the time of curing the thermosetting resin molding.
  5.  前記無機成分が無機粒子であることを特徴とする請求項4に記載の精密加工用成形型。 The mold for precision machining according to claim 4, wherein the inorganic component is inorganic particles.
  6.  前記基材と前記成形部が同一の材料により一体的に形成されていることを特徴とする請求項1~5の何れか1項に記載の精密加工用成形型。 The precision processing mold according to any one of claims 1 to 5, wherein the base material and the molding part are integrally formed of the same material.
  7.  前記基材は、前記成形部とは異なる材料で形成されており、
     前記基材がガラス製であることを特徴とする請求項1~5の何れか1項に記載の精密加工用成形型。
    The base material is formed of a material different from the molded part,
    6. The precision processing mold according to claim 1, wherein the substrate is made of glass.
  8.  前記基材は、前記成形部とは異なる材料で形成されており、
     前記基材が樹脂製であることを特徴とする請求項1~5の何れか1項に記載の精密加工用成形型。
    The base material is formed of a material different from the molded part,
    The precision processing mold according to any one of claims 1 to 5, wherein the substrate is made of a resin.
  9.  前記樹脂成分が、硬化性樹脂であることを特徴とする請求項1~8の何れか1項に記載の精密加工用成形型。 The mold for precision processing according to any one of claims 1 to 8, wherein the resin component is a curable resin.
  10.  基材と成形部とを有し、該成形部が樹脂成分と該樹脂成分に分散された無機成分を含有する成形型に硬化性樹脂材料を充填し、光または熱により硬化することを特徴とする硬化性樹脂成形物の成形方法。 It has a base material and a molded part, and the molded part fills a mold containing a resin component and an inorganic component dispersed in the resin component with a curable resin material, and is cured by light or heat. A method for forming a curable resin molded product.
  11.  請求項10に記載の硬化性樹脂成形物の成形方法により得られた成形物。 A molded product obtained by the method for molding a curable resin molded product according to claim 10.
PCT/JP2009/058714 2008-05-21 2009-05-09 Forming die for precision processing, method of forming molded curable resin, and formed object WO2009142116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-133510 2008-05-21
JP2008133510 2008-05-21

Publications (1)

Publication Number Publication Date
WO2009142116A1 true WO2009142116A1 (en) 2009-11-26

Family

ID=41340048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058714 WO2009142116A1 (en) 2008-05-21 2009-05-09 Forming die for precision processing, method of forming molded curable resin, and formed object

Country Status (1)

Country Link
WO (1) WO2009142116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207192A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Manufacturing method of master
JP2011235461A (en) * 2010-05-06 2011-11-24 Asahi Kasei E-Materials Corp Method for producing plastic lens or optical waveguide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272127A (en) * 1996-04-05 1997-10-21 Mitsubishi Rayon Co Ltd Resin mold
JP2002187135A (en) * 2000-12-21 2002-07-02 Toppan Printing Co Ltd Method for manufacturing mold for resin molding and resin molding using the same
JP2004090304A (en) * 2002-08-30 2004-03-25 Canon Inc Mold for molding optical member, manufacturing method therefor and manufacturing method for optical member
JP2005309441A (en) * 2004-04-23 2005-11-04 Schott Ag Method for producing master, master, method for producing optical element, and optical element
JP2006182011A (en) * 2004-11-30 2006-07-13 Asahi Glass Co Ltd Mold for optically hardening resin molding, and manufacturing method of hardened article using the mold
JP2008068412A (en) * 2006-09-12 2008-03-27 Seiko Epson Corp Plastic lens manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272127A (en) * 1996-04-05 1997-10-21 Mitsubishi Rayon Co Ltd Resin mold
JP2002187135A (en) * 2000-12-21 2002-07-02 Toppan Printing Co Ltd Method for manufacturing mold for resin molding and resin molding using the same
JP2004090304A (en) * 2002-08-30 2004-03-25 Canon Inc Mold for molding optical member, manufacturing method therefor and manufacturing method for optical member
JP2005309441A (en) * 2004-04-23 2005-11-04 Schott Ag Method for producing master, master, method for producing optical element, and optical element
JP2006182011A (en) * 2004-11-30 2006-07-13 Asahi Glass Co Ltd Mold for optically hardening resin molding, and manufacturing method of hardened article using the mold
JP2008068412A (en) * 2006-09-12 2008-03-27 Seiko Epson Corp Plastic lens manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207192A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Manufacturing method of master
JP2011235461A (en) * 2010-05-06 2011-11-24 Asahi Kasei E-Materials Corp Method for producing plastic lens or optical waveguide

Similar Documents

Publication Publication Date Title
JP5617636B2 (en) Wafer lens manufacturing method
JP5429159B2 (en) Wafer lens manufacturing method
Lan et al. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds
TWI615258B (en) Light-transmitting stamping die and imprinting method
US8542309B2 (en) Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit
JP5440492B2 (en) Wafer lens manufacturing method
Lan Soft UV nanoimprint lithography and its applications
JP5327221B2 (en) Method for manufacturing wafer lens or wafer lens assembly
JP5212463B2 (en) Wafer lens manufacturing method
WO2009142116A1 (en) Forming die for precision processing, method of forming molded curable resin, and formed object
JP2010107891A (en) Wafer lens assemblage and method of manufacturing the same, lens unit, and imaging device
JP2009226638A (en) Method for manufacturing wafer lens
JP2010105357A (en) Molding device, molding die member, wafer lens, and method of manufacturing wafer lens molding die
JP5488464B2 (en) OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2006150741A (en) Method for forming pattern on transfer layer
JP2011161727A (en) Molding die of optical molded product, method of molding optical molded product, and lens array
JP5315737B2 (en) Wafer lens manufacturing method
JP5450174B2 (en) Wafer level lens array molding method, mold, wafer level lens array, lens module, and imaging unit
JP2014210361A (en) Mother die for forming fine structure, and method for manufacturing the same
JP5130977B2 (en) Sub master mold manufacturing method
JP2009226637A (en) Method for manufacturing master molding die
JP2009202510A (en) Microprocessed resin sheet
WO2017195879A1 (en) Molded resin article molding method and molded resin article
KR20220159021A (en) Manufacturing method of engineering and optics functional surface treatment using two photon polymerization and nanoimprint
CN114806062A (en) Polymerizable composition, optical element and method for manufacturing same, optical apparatus, and image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP