WO2009141254A2 - Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant - Google Patents

Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant Download PDF

Info

Publication number
WO2009141254A2
WO2009141254A2 PCT/EP2009/055766 EP2009055766W WO2009141254A2 WO 2009141254 A2 WO2009141254 A2 WO 2009141254A2 EP 2009055766 W EP2009055766 W EP 2009055766W WO 2009141254 A2 WO2009141254 A2 WO 2009141254A2
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
propeller
rotor
motor
drive device
Prior art date
Application number
PCT/EP2009/055766
Other languages
German (de)
English (en)
Other versions
WO2009141254A3 (fr
Inventor
Dierk SCHRÖDER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09749744.0A priority Critical patent/EP2280862B1/fr
Priority to ES09749744.0T priority patent/ES2561041T3/es
Priority to DK09749744.0T priority patent/DK2280862T3/en
Publication of WO2009141254A2 publication Critical patent/WO2009141254A2/fr
Publication of WO2009141254A3 publication Critical patent/WO2009141254A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1256Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with mechanical power transmission to propellers

Definitions

  • the invention relates to an azimuth propeller drive device with low installation height for a floating device such. a ship or an offshore platform with
  • a housing to be arranged below a structure of the floating device in the water, in which at least one propeller shaft is rotatably mounted, with which at least one propeller is coupled,
  • At least one electric motor with a stator and a rotor for driving the at least one propeller, a hollow shaft which rotatably supports the housing,
  • the electric motor is arranged outside the housing and drives with its rotor a drive shaft which is coupled to the at least one propeller shaft and which extends at least partially through the hollow shaft.
  • propeller propulsion devices are used in particular in the form of azimuth propulsion systems for ships, i.
  • the propeller drive is used both for propulsion and for the control of the ship, more and more frequently and with ever higher performance, since they significantly extend the range of use of many types of ships and thus provide a ship for a wider range of applications.
  • azimuth propulsion systems examples include rudder propellers, POD drives and thrusters.
  • the shaft and the attached propeller housing in the form of a nacelle by means of an actuator with respect to a substantially vertical axis of rotation relative to the ship's structure is rotatable.
  • the at least one propeller shaft is mounted substantially horizontally in this gondola-shaped housing.
  • the electric motor for driving the drive shaft is here at the upper end of the shaft usually on the shaft or on a non-rotatably mounted in the ship support structure be strengthens and has a stator and a rotor, wherein the rotor is connected to the drive shaft which extends at least partially through the hollow shaft.
  • the transmission of the torque of the electric motor from the drive shaft to the propeller shaft can then take place, for example, via a bevel gear, which is arranged in the gondola-shaped housing.
  • the motor Since in such motors the length of the motor in the axial direction, i. in the direction of the axis of rotation of the rotor, is relatively large, the motor extends with a relatively large length above the shaft into the floating device inside.
  • the propeller driving device thus has a considerable installation height, which results in restrictions on the positioning of the propeller drive device on the floating device and the space available in the floating device.
  • a jet propulsion system for water vehicles is known, which is based on the drive concept of an electric ring motor.
  • Such an electric ring motor is an electric machine having a ring-shaped rotor and a stator, which is arranged in a ring around the rotor in such a way that it forms an electrical machine with the rotor.
  • On the inside of the ring of the rotor blades are arranged.
  • the jet engine does not have a central rotor shaft, i. it is free of a component which passes along the axis of rotation of the rotor therethrough.
  • the electric motor is designed as an electric ring motor, which is arranged annularly around the drive shaft, wherein the rotor of the ring motor is rotatably connected via a rotor carrier with the drive shaft.
  • a ring motor is understood as meaning a motor which, in relation to the axis of rotation of the rotor, has a significantly greater extent in the radial direction than in the axial direction.
  • the rotor is annular in this case and the stator is arranged in a ring around the rotor.
  • An annular arrangement of the rotor about the drive shaft is here understood to mean that the drive shaft runs along the axis of rotation of the rotor and preferably even through the rotor, i. through the surface spanned by the rotor.
  • the ring motor is preferably adapted to the outside diameter of a support structure of the floating device for the azimuth propeller drive device.
  • the outer diameter of the ring motor is less than or equal to the outer diameter of the support structure.
  • the ring motor can in this case be mounted above or inside the support structure (also called "support cone").
  • the rotor carrier comprises a hub, a circular support ring and a connecting element for connecting the Hub with the support ring, wherein the hub is rotatably connected to the drive shaft and the support ring carries the rotor.
  • the connecting element is designed as a disc wheel.
  • the disc wheel may be provided with holes or slots.
  • the connecting element can also be designed as a spoke wheel.
  • the rotor carrier can also be a gear, e.g. a planetary gear, include. As a result, the size of the motor can be reduced.
  • the drive shaft is rotatably mounted in the shaft.
  • the rotor can also be rotatably mounted in the shaft. With a suitable mounting of the rotor in the shaft may possibly be dispensed with an (additional) storage of the drive shaft in the shaft.
  • the hollow shaft may be rotatable about an axis of rotation via at least one electric or hydraulic motor (hereinafter referred to as "rotary motor").
  • the rotary motor designed as an electric motor is designed as an electric ring motor which is arranged annularly about the axis of rotation of the shaft, wherein the rotor of the electric motor is connected to the shaft and the stator of the electric motor connected to the structure of the floating device has.
  • a particularly large power of the electric drive used for driving the drive shaft or the actuator ring motor in a small footprint is in this case possible that the ring motor designed as an electric motor is designed as a permanent magnet synchronous machine.
  • the coupling of the drive shaft with the propeller shaft via a bevel gear since such bevel gearboxes are characterized by a good torque transmission and high reliability.
  • the housing is closed, in particular shaped like a pod, and forms in its interior a cavity in which then, for example, the bevel gear can be accommodated.
  • the figure shows in diagrammatic form a longitudinal section of an azimuth propeller driving device 1 according to the invention for a floating device, such as e.g. a ship or an offshore platform.
  • the propeller drive device 1 comprises a hollow shaft 2, which is supported by bearings 13 at its lower and upper end about a substantially vertical axis 3 rotatably supported by a support structure 4 of the floating device. Seals 14 seal a gap 15 between the shaft 2 and the support structure 4 against ingress of water.
  • a substantially horizontally extending propeller shaft. 7 by means of bearings 8 rotatably mounted about an axis 9.
  • the axis of rotation 3 of the shaft 2 and the axis of rotation 9 of the propeller shaft 7 are thus substantially perpendicular to each other.
  • the propeller shaft 7 is guided at one end 10 to outside the housing 5 and has at this end 10 an attached thereto propeller 11.
  • An electric motor 20 drives the propeller shaft 7 via a drive shaft 21 and a bevel gear 28 arranged in the housing 5, consisting of a bevel gear 29a and a ring gear 29b.
  • the electric motor 20 drives the propeller shaft 7 via a drive shaft 21 and a bevel gear 28 arranged in the housing 5, consisting of a bevel gear 29a and a ring gear 29b.
  • the floating device 20 is disposed outside of the shaft 2 and the housing 5 in the interior of the floating device.
  • the floating device is a non-illustrated generator or other power source, the or the electric motor, possibly powered by an inverter with the necessary power.
  • the propeller drive device shown is a rotatable about a vertical axis 3 azimuth Propulsionsstrom in the form of a rudder propeller. It is possible that the propeller shaft 7 at its second end or an additional propeller shaft, via a suitable gear with the propeller shaft 7 or the Drive shaft 21 is coupled, is guided outside of the housing 5 and there also has an attached thereto propeller. The two propellers can then rotate (i.e., contrarotate) in the same or in opposite directions.
  • the electric motor 20 is designed as an electric ring motor and has an annular rotor 22 and an annular stator 23, which encloses the rotor 22 annularly to form an air gap.
  • the rotor 22 and the drive shaft 21 are rotatably supported about the same axis 3 as the shaft 2.
  • the rotor 22 is arranged annularly around the drive shaft 21, that is, that the drive shaft 21 along the axis of rotation 3 of the rotor 22 and thereby even through the rotor 22 through, that is, by the area spanned by the rotor 22 extends.
  • the electric motor 20 designed as a ring motor has, in relation to the axis of rotation 3 of the rotor 22 in the radial direction, a diameter A which is significantly greater than the length B of the motor in its axial longitudinal direction.
  • the annular stator 23 of the motor 20 is rotationally fixed to the shaft 2, here a support structure 24 (often referred to as “support cone”) at the upper end of the shaft 2, attached.
  • the ratio A / B depends essentially on the diameter of the supporting structure 24, on the torque to be applied to the propeller 11, and on the ratio of a gear possibly arranged between the motor 20 and the drive shaft 21 and that of the angular gear.
  • a gear may optionally be employed within the vertical extent of the motor 20, allowing for optimum tuning of the motor 20 to the drive torque required by the propeller.
  • the ring motor 20 is adapted in terms of its outer diameter to the outer diameter of the support structure 24 of the floating device for the azimuth propeller drive device and has an outer diameter which is approximately equal to the outer diameter of the support structure 24.
  • the annular rotor 22 is non-rotatably connected to the drive shaft 21 via a rotor carrier 25 fastened to its ring inner side.
  • the rotor carrier 25 thus carries on its outer side the rotor 22.
  • the rotor carrier 25 comprises a hub 40, a circular support ring 41 and a connecting element 42 for connecting the hub 40 with the support ring 41.
  • the hub 40 is rotatably connected to the drive shaft 21 and the support ring 41 carries on its outer side the rotor 22.
  • the connecting element 42 may be formed, for example, as a disk wheel, which is preferably provided for weight saving with holes or slots.
  • the rotor carrier may also include a transmission, eg a planetary gear.
  • Several bearings 26 are used for rotatable mounting and horizontal and vertical fixation of the drive shaft 21, the rotor carrier 25 and the rotor 22 relative to the stator 23 and the shaft second
  • the rotation of the propeller drive device 1 about the vertical axis 3 takes place by means of an electric motor 30, which is likewise designed as an electric ring motor.
  • the motor 30 has a ring-shaped rotor 32 and an annular stator 33, which surrounds the rotor 32 annularly to form an air gap.
  • the rotor 32 is rotatably mounted about the same axis 3 as the shaft 2, the drive shaft 21 and the rotor 22 of the electric motor 20.
  • the electric motor 30 designed as a ring motor has, in relation to the axis of rotation 3 of the rotor 32 in the radial direction, a diameter C which is significantly greater than the length D of the motor in its axial longitudinal direction.
  • the annular stator 33 of the motor 30 is rotationally fixed to a fixed part of the propeller driving device 1 or the floating device, e.g. the support structure 4, and the annular rotor 32 of the motor 30 is rotatably connected by means of a mounted on its inner ring rotor arm 45, which carries the rotor 32 with the shaft 2, here a flange 34 at the upper end of the shaft 2.
  • the connection between the motor 30 and the shaft 2 or between the motor 30 and the floating device can also take place via a suitable transmission. In this way, an optimal adaptation of the motor 30 to the required rotational speed and the required torque for rotating the propeller drive system is possible.
  • the electric motors 20, 30 are preferably designed as permanent-magnet synchronous machines.
  • the propeller drive device 1 can also be arranged retractable and extendable in a floating device.
  • a shaft into which the propeller drive device 1 is received in the retracted state can be formed in the floating device.

Abstract

L'invention concerne un dispositif d'entraînement d'hélice azimutal (1) pour un dispositif flottant. Le dispositif d'entraînement d'hélice selon l'invention comprend une enveloppe (5) à placer dans l'eau en dessous d'une structure du dispositif flottant et dans laquelle est logé à rotation au moins un arbre d'hélice (7) auquel au moins une hélice (11) est accouplée, au moins un moteur électrique (20) comprenant un stator (23) et un rotor (22) pour l'entraînement de l'hélice (11), ainsi qu'une jambe creuse (2) qui maintient l'enveloppe (5) de manière solidaire en rotation. Le moteur électrique (20) est placé en dehors de l'enveloppe (5) et entraîne avec son rotor (22) un arbre d'entraînement (21) qui est accouplé à l'arbre d'hélice (7) et qui s'étend au moins partiellement à travers la jambe creuse (2). L'invention vise à créer un dispositif d'entraînement d'hélice dont l'encombrement en hauteur soit le plus faible possible. A cet effet, le moteur électrique (20) est réalisé sous forme de moteur électrique annulaire qui est placé en anneau autour de l'arbre d'entraînement (21), le rotor (22) du moteur électrique (20) étant relié à l'arbre d'entraînement (21) de manière solidaire en rotation par le biais d'un support de rotor (25).
PCT/EP2009/055766 2008-05-21 2009-05-13 Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant WO2009141254A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09749744.0A EP2280862B1 (fr) 2008-05-21 2009-05-13 Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant
ES09749744.0T ES2561041T3 (es) 2008-05-21 2009-05-13 Instalación de accionamiento de hélice azimutal con altura de montaje reducida para una instalación flotante
DK09749744.0T DK2280862T3 (en) 2008-05-21 2009-05-13 Azimut-PROPELDRIVINDRETNING Low built TO A FLOATING INTERIOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008024540.2 2008-05-21
DE102008024540A DE102008024540A1 (de) 2008-05-21 2008-05-21 Azimut-Propellerantriebseinrichtung mit niedriger Einbauhöhe für eine schwimmende Einrichtung

Publications (2)

Publication Number Publication Date
WO2009141254A2 true WO2009141254A2 (fr) 2009-11-26
WO2009141254A3 WO2009141254A3 (fr) 2010-11-25

Family

ID=41050938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/055766 WO2009141254A2 (fr) 2008-05-21 2009-05-13 Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant

Country Status (5)

Country Link
EP (1) EP2280862B1 (fr)
DE (1) DE102008024540A1 (fr)
DK (1) DK2280862T3 (fr)
ES (1) ES2561041T3 (fr)
WO (1) WO2009141254A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690616B2 (en) 2009-04-07 2014-04-08 Zf Friedrichshafen Ag Ship propulsion system
EP2995550A1 (fr) 2014-09-11 2016-03-16 ABB Technology AG Unité de propulsion
CN107235135A (zh) * 2017-04-27 2017-10-10 武汉船用机械有限责任公司 一种全回转推进器的转舵装置
WO2018151598A1 (fr) * 2017-02-16 2018-08-23 Veth Propulsion B.V. Propulseur pour la propulsion d'un véhicule nautique
CN109733581A (zh) * 2018-12-20 2019-05-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种船用吊舱推进单元

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002264A1 (de) * 2009-04-07 2010-10-14 Zf Friedrichshafen Ag Hybridantrieb eines Segelschiffes
DE102012210727A1 (de) 2012-06-25 2014-01-02 Zf Friedrichshafen Ag Bootsantrieb
EP3428055B1 (fr) * 2017-07-11 2020-08-26 Aetc Sapphire Procédé et dispositif de détermination de la direction et de l'amplitude d'un effort appliqué sur une nacelle de propulsion pour bateau
DE102017216818A1 (de) 2017-09-22 2019-03-28 Siemens Aktiengesellschaft Azimutverstellung einer Gondel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142576A (ja) 1998-11-02 2000-05-23 Niigata Eng Co Ltd 船舶推進装置
EP1687201B1 (fr) 2003-11-14 2007-04-11 Air Fertigung-Technologie GmbH & Co. KG Propulsion par reaction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013519A (en) * 1955-02-14 1961-12-19 Reiners Walter Ship propulsion and steering systems
US20010051475A1 (en) * 1996-11-07 2001-12-13 Reinhold Reuter Twin-propeller drive for watercraft
FI110599B (fi) * 1998-12-22 2003-02-28 Rolls Royce Oy Ab Kääntyvä potkurilaite alusta, offshore-rakennetta tai vastaavaa varten
DE20021466U1 (de) * 2000-12-19 2001-05-03 Schottel Gmbh & Co Kg Wasserfahrzeug mit einem unter seinem Boden außenbords angeordneten Ruderpropeller
NL1020217C1 (nl) * 2002-03-21 2002-05-23 Wouter Steusel Elektrische voortstuwings- en watergenerator-eenheid voor zeilschepen.
US6836036B2 (en) * 2002-06-14 2004-12-28 Dube Jean-Yves Electric motor with modular stator ring and improved heat dissipation
DE102005029895A1 (de) * 2005-06-27 2007-01-04 Siemens Ag Direktantrieb für Großantriebe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142576A (ja) 1998-11-02 2000-05-23 Niigata Eng Co Ltd 船舶推進装置
EP1687201B1 (fr) 2003-11-14 2007-04-11 Air Fertigung-Technologie GmbH & Co. KG Propulsion par reaction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690616B2 (en) 2009-04-07 2014-04-08 Zf Friedrichshafen Ag Ship propulsion system
EP2995550A1 (fr) 2014-09-11 2016-03-16 ABB Technology AG Unité de propulsion
WO2018151598A1 (fr) * 2017-02-16 2018-08-23 Veth Propulsion B.V. Propulseur pour la propulsion d'un véhicule nautique
NL2018388B1 (en) * 2017-02-16 2018-09-06 Veth Propulsion B V Thruster for propelling a watercraft
RU2721035C1 (ru) * 2017-02-16 2020-05-15 Вет Пропалшн Б.В. Подруливающее устройство для продвижения плавучего средства
US10780963B2 (en) 2017-02-16 2020-09-22 Veth Propulsion B.V. Thruster for propelling a watercraft
CN107235135A (zh) * 2017-04-27 2017-10-10 武汉船用机械有限责任公司 一种全回转推进器的转舵装置
CN109733581A (zh) * 2018-12-20 2019-05-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种船用吊舱推进单元

Also Published As

Publication number Publication date
ES2561041T3 (es) 2016-02-24
EP2280862B1 (fr) 2015-12-23
WO2009141254A3 (fr) 2010-11-25
DK2280862T3 (en) 2016-03-14
DE102008024540A1 (de) 2009-12-03
EP2280862A2 (fr) 2011-02-09

Similar Documents

Publication Publication Date Title
EP2280862B1 (fr) Dispositif d'entraînement d'hélice azimutal à faible encombrement en hauteur pour un dispositif flottant
DE10392908B4 (de) Windenergieanlage und Lageranordnung dafür
DE60109447T3 (de) Vorrichtung zur Erzeugung elektrischen Stroms aus Windenergie
EP2310664B1 (fr) Procede de montage d'une centrale electrique submergee
DE60131764T3 (de) Windmühle
EP2279111B1 (fr) Sous-marin doté d'un mécanisme de propulsion comportant un moteur annulaire électrique
EP2419630B1 (fr) Éolienne et dispositif d'entraînement pour le réglage d'une pale de rotor
EP2279112B1 (fr) Turbomachine presentant au moins deux rotors tournant en sens opposes et une compensation mecanique du couple
EP2605958B1 (fr) Engin électrique de changement du pas d'hélice
DE10255745A1 (de) Direkt angetriebene Windenergieanlage mit im Generator integriertem Lager
EP1425840A2 (fr) Generatrice de courant a energie eolienne
WO2010130342A1 (fr) Dispositif de réglage du carrossage et/ou de la voie
EP2630370B1 (fr) Module pour le découplage de l'énergie de rotation du moyeu de rotor de la roue éolienne d'une éolienne
EP2379879B1 (fr) Ensemble génératrice pour éolienne
EP2662278B1 (fr) Dispositif de pivotement pour une nacelle à hélice de bateau
EP1759987B1 (fr) Propulseur électrique pour bateaux
EP2729361B1 (fr) Moyens d'actionnement
DE102019123725B4 (de) Auftriebs- und Flugsteuerungseinheit für ein Fluggerät und Fluggerät
EP2238019B1 (fr) Propulseur electrique pour bateau
DE102021100135B4 (de) Schiffsantrieb und damit ausgerüstetes Schiff
EP2665642A1 (fr) Hélice de gouvernail équipée d'un engrenage sous-marin comprenant un engrenage planétaire
DE102019123726A1 (de) Auftriebseinheit für ein Fluggerät und Fluggerät
EP3807517B1 (fr) Turbine
EP2781449B1 (fr) Hélice de navire sans moyeu à entraînement mécanique
DE202023106188U1 (de) Impeller mit Außenantrieb für ein Luftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749744

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009749744

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE