WO2009139215A1 - Scintillator panel and radiological image detector - Google Patents

Scintillator panel and radiological image detector Download PDF

Info

Publication number
WO2009139215A1
WO2009139215A1 PCT/JP2009/054290 JP2009054290W WO2009139215A1 WO 2009139215 A1 WO2009139215 A1 WO 2009139215A1 JP 2009054290 W JP2009054290 W JP 2009054290W WO 2009139215 A1 WO2009139215 A1 WO 2009139215A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
scintillator
protective layer
resin
substrate
Prior art date
Application number
PCT/JP2009/054290
Other languages
French (fr)
Japanese (ja)
Inventor
成人 後藤
武彦 庄子
貴文 柳多
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010511914A priority Critical patent/JP5353884B2/en
Publication of WO2009139215A1 publication Critical patent/WO2009139215A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/10Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a protective film

Definitions

  • the present invention relates to a scintillator panel and a radiation image detector used when forming a radiation image of a subject.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history.
  • the image information is so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like the digital image information that has been developed in recent years.
  • a scintillator panel made of an X-ray phosphor having a characteristic of emitting light by radiation is used.
  • luminous efficiency is used. It is necessary to use a high scintillator panel.
  • the scintillator panel light emission efficiency is determined by the thickness of the scintillator layer (phosphor layer) and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the light emitted from the phosphor layer. Scattering occurs and the sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
  • CsI cesium iodide
  • CsI alone has a low luminous efficiency
  • a mixture of CsI and sodium iodide (NaI) in an arbitrary molar ratio is used for the substrate by vapor deposition as described in, for example, Japanese Patent Publication No. 54-3560.
  • a method for making the substrate on which the scintillator is formed reflective for example, see Patent Document 1
  • a method for providing a reflective layer on the substrate for example, see Patent Document 2
  • a method for providing on the substrate for example, see Patent Document 3.
  • a method of forming a scintillator on a reflective metal thin film and a transparent organic film covering the metal thin film has been proposed, but these methods increase the amount of light obtained, but are sharp. There is a drawback that the performance is significantly reduced.
  • Patent Document 4 a method using a polyimide or polyparaxylene film (see, for example, Patent Document 4), and a technology having a light absorption layer between the reflective layer and the scintillator layer ( For example, see Patent Document 5), and a radiation detector having a planarizing resin layer, a scintillator layer, a reflective layer, and a protective layer on an electrode substrate having a photoelectric conversion element has been proposed (see Patent Document 6).
  • Japanese Patent Publication No. 7-21560 Japanese Patent Publication No. 1-240887 JP 2000-356679 A JP 2007-279051 A JP 2008-107222 A JP 2008-215951 A
  • the present invention has been made in view of the above situation, and its object is to provide a scintillator panel and a radiation image detector that are excellent in storage stability.
  • a scintillator panel comprising: a protective layer containing at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a radiation transmissive substrate an intermediate layer provided on the substrate, a reflective layer provided on the intermediate layer, a protective layer provided on the reflective layer, and provided on the protective layer
  • a scintillator panel comprising a scintillator layer and a moisture-resistant protective layer covering the scintillator layer, wherein the intermediate layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. Scintillator panel.
  • the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 ⁇ m. .
  • a radiation image detector comprising: a photoelectric conversion element formed on a substrate; an organic resin layer provided on the photoelectric conversion element; and a scintillator layer provided on the organic resin layer.
  • the radiation image detector wherein the layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • the reflection layer comprises: A radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a radiological image detector comprising a photoelectric conversion element formed on a substrate, a scintillator layer provided on the photoelectric conversion element, and a moisture-resistant protective layer provided on the scintillator layer, the moisture-resistant protective layer
  • a radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and a film thickness of 12 to 60 ⁇ m.
  • Sectional view showing schematic configuration of scintillator panel Partial enlarged sectional view of the scintillator panel The figure which shows schematic structure of the vapor deposition apparatus 61 Partially cutaway perspective view showing a schematic configuration of a radiation image detection apparatus including a scintillator panel Expanded sectional view of the imaging panel of the radiation image detection device Expanded sectional view of the imaging panel of the radiation image detector
  • the present invention includes a radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and the scintillator layer.
  • a scintillator panel comprising a moisture-resistant protective layer for covering, wherein the protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a scintillator plate having excellent storage stability can be provided by including at least one set of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more.
  • the scintillator panel of the present invention has a reflective layer provided on a substrate and a protective layer provided on the reflective layer, and at least one organic resin having a glass transition temperature of 5 ° C. or more is different from the protective layer. It is necessary to contain a set.
  • a coating film with high Young's modulus and flexibility can be formed, handling panels under harsh conditions, and long-term storage under high humidity Stable panel performance can be obtained without occurrence of cracks or the like even if the operation is performed.
  • the thickness of the protective layer is preferably 0.2 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, in view of obtaining sufficient storage characteristics and suppressing light scattering. It is particularly preferably 7 to 3.5 ⁇ m.
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • polyurethane polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
  • the temperature of the glass transition point according to the present invention is a value obtained by (2) DSC method of JIS C 6481, and is measured using a differential scanning calorimeter (DSC method) under the condition of increasing the temperature at 20 ° C./min. It refers to the glass transition temperature obtained.
  • test piece is heated from room temperature at a rate of 20 ° C./min, the calorific value is measured with a differential scanning calorimeter, an endothermic curve (or exothermic curve) is created, and the endothermic curve (or exothermic curve) is 2
  • endothermic curve or exothermic curve
  • the two kinds of organic resins contained in at least one pair in the protective layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. -80 ° C, particularly preferably 30 ° C-70 ° C.
  • the content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C. with respect to the protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the protective layer described below are all in one set. It is an organic resin.
  • the substrate temperature is 150 ° C. to 250 ° C.
  • the protective layer contains an organic resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C.
  • the protective layer effectively functions as an adhesive layer.
  • Solvents used for preparing the protective layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, toluene , Aromatic compounds such as benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester and the like Can be mentioned.
  • lower alcohols such as methanol, ethanol, n-propanol and n-butanol
  • hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride
  • the protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm.
  • the protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
  • the protective layer preferably contains a dispersant and the like in addition to the organic resin.
  • a dispersant having a maximum absorption wavelength between 560 and 650 nm
  • known ones described in various documents can be used in addition to commercially available ones.
  • colorant those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
  • purple to blue organic colorants are purple: dioxazine, blue: phthalocyanine blue, indanthrene blue, and the like.
  • Zabon First Blue 3G manufactured by Hoechst
  • Estrol Brill Blue N- 3RL manufactured by Sumitomo Chemical Co., Ltd.
  • Sumiacryl Blue F-GSL manufactured by Sumitomo Chemical Co., Ltd.
  • D & C Blue No. 1 made by National Aniline
  • Spirit Blue made by Hodogaya Chemical Co., Ltd.
  • purple-blue-blue-green inorganic colorants include ultramarine, cobalt blue, cerulean blue, chromium oxide, and TiO 2 —ZnO—CoO—NiO pigments, but the present invention is not limited thereto.
  • Preferred as the colorant is a metal phthalocyanine pigment.
  • metal phthalocyanine pigments include copper phthalocyanine.
  • other metal-containing phthalocyanine pigments such as those based on zinc, cobalt, iron, nickel, and other such metals can be used as long as the maximum absorption wavelength is in the range of 570 to 650 nm.
  • Suitable phthalocyanine pigments may be unsubstituted or substituted (eg, with one or more alkyl, alkoxy, halogen such as chlorine, or other substituents typical of phthalocyanine pigments).
  • the crude phthalocyanine can be prepared by any of several methods known in the art, but preferably a metal donor, nitrogen donor (eg urea or phthalonitrile itself) of phthalic anhydride, phthalonitrile or derivatives thereof, Preferably, it can be produced by reacting in an organic solvent at any time in the presence of a catalyst.
  • the pigment is preferably used dispersed in the organic resin.
  • Various dispersants can be used according to the organic resin and the pigment to be used.
  • dispersant examples include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
  • a known dispersion technique used in ink production or toner production can be used.
  • the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
  • the protective layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
  • the substrate according to the present invention is a plate that is radiolucent and can carry a scintillator layer, and various kinds of glass, polymer materials, metals, and the like can be used.
  • plate glass such as quartz, borosilicate glass, chemically strengthened glass, ceramic substrate such as sapphire, silicon nitride, silicon carbide, semiconductor substrate such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, and cellulose acetate film , Polyester film, polyethylene terephthalate film, polyamide film, polyimide film, triacetate film, polycarbonate film, polymer film (plastic film) such as carbon fiber reinforced resin sheet, metal sheet such as aluminum sheet, iron sheet, copper sheet or the metal A metal sheet having an oxide coating layer can be used.
  • ceramic substrate such as sapphire, silicon nitride, silicon carbide, semiconductor substrate such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, and cellulose acetate film
  • Polyester film polyethylene terephthalate film, polyamide film, polyimide film, triacetate film, polycarbonate film, polymer film (plastic film) such as carbon fiber reinforced resin sheet, metal sheet such as
  • a polymer film containing polyimide or polyethylene naphthalate is suitable for forming a columnar scintillator by a vapor phase method using cesium iodide as a raw material.
  • the substrate is preferably a flexible polymer film having a thickness of 50 to 500 ⁇ m.
  • the “substrate having flexibility” means a substrate having an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 , and a polymer film containing polyimide or polyethylene naphthalate as such a substrate. Is preferred.
  • the “elastic modulus” is the slope of the stress with respect to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS-C2318 and the corresponding stress have a linear relationship using a tensile tester. Is what we asked for. This is a value called Young's modulus, and in the present invention, this Young's modulus is defined as an elastic modulus.
  • Substrate used in the present invention it is preferable elastic modulus at the 120 ° C. as described above (E120) is 1000N / mm 2 ⁇ 6000N / mm 2. More preferably, it is 1200 N / mm 2 to 5000 N / mm 2 .
  • a polymer film containing polyimide or polyethylene naphthalate is preferable as described above.
  • the reflective layer according to the present invention is for reflecting the light emitted from the scintillator of the scintillator layer to increase the light extraction efficiency.
  • the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • a metal thin film made of the above elements for example, an Ag film, an Al film, or the like. Two or more such metal thin films may be formed.
  • the lower layer is a layer containing Cr from the viewpoint of improving the adhesion to the substrate.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
  • the reflection layer reflects the light from the scintillator layer as described above, and at the same time is transparent to radiation.
  • the reflective layer according to the present invention is preferably a metal thin film that is radiation transmissive and reflects predetermined light (light emitted from a scintillator) as described above.
  • the thickness of the reflective layer is preferably 0.01 to 0.3 ⁇ m from the viewpoint of the emission light extraction efficiency.
  • an intermediate layer may be provided between the substrate and the protective layer.
  • the intermediate layer is preferably a layer containing a resin.
  • the resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, Polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin , Phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like.
  • the thickness of the intermediate layer is preferably 1.0 ⁇ m to 30 ⁇ m, more preferably 2.0 ⁇ m to 25 ⁇ m, and particularly preferably 5.0 ⁇ m to 20 ⁇ m.
  • the scintillator layer (also referred to as “phosphor layer”) is a layer composed of a scintillator that emits fluorescence when irradiated with radiation.
  • the scintillator absorbs energy of incident radiation such as X-rays and emits electromagnetic waves having a wavelength of 300 nm to 800 nm, that is, electromagnetic waves (light) ranging from ultraviolet light to infrared light centering on visible light.
  • incident radiation such as X-rays
  • electromagnetic waves having a wavelength of 300 nm to 800 nm, that is, electromagnetic waves (light) ranging from ultraviolet light to infrared light centering on visible light.
  • electromagnetic waves light
  • CsI cesium iodide
  • CsI alone has low luminous efficiency
  • various activators are added.
  • a mixture of CsI and sodium iodide (NaI) at an arbitrary molar ratio can be mentioned.
  • CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na CsI containing an activating substance such as) is preferred.
  • CsI scintillator layer containing thallium an additive containing one or more kinds of thallium compounds and cesium iodide are preferably used.
  • Thallium activated cesium iodide (CsI: Tl) is preferable because it has a broad emission wavelength from 400 nm to 750 nm.
  • thallium compound as an additive containing one or more kinds of thallium compounds, various thallium compounds (compounds having oxidation numbers of + I and + III) can be used.
  • a preferable thallium compound is thallium bromide (TlBr), thallium chloride (TlCl), thallium fluoride (TlF, TlF 3 ), or the like.
  • the melting point of the thallium compound is preferably in the range of 400 to 700 ° C. from the viewpoint of luminous efficiency.
  • fusing point is melting
  • the molecular weight of the thallium compound is preferably in the range of 206 to 300.
  • the content of the additive is desirably an optimum amount according to the target performance and the like, but is 0.001 mol% to 50 mol%, more preferably 0.1 to 0.1% with respect to the content of cesium iodide. It is preferable that it is 10.0 mol%.
  • the thickness of the scintillator layer is preferably 100 to 800 ⁇ m, and more preferably 120 to 700 ⁇ m from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
  • the moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
  • CsI cesium iodide
  • the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the protective layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the protective layer.
  • the thickness of the moisture-resistant protective layer is preferably 12 ⁇ m or more and 60 ⁇ m or less, more preferably 20 ⁇ m or more and 40 ⁇ m or less, taking into consideration the protection, sharpness, moisture resistance, workability, etc. of the scintillator (phosphor) layer.
  • the moisture resistant protective layer preferably contains an organic resin as a main component.
  • the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polyamide resin Polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea Examples thereof include resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
  • the moisture-resistant protective layer is preferably formed by applying a coating solution containing the above resin and drying, and the solvent used for the coating is the same as that used for the protective layer described above. Can do.
  • the moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm.
  • the protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
  • the moisture-resistant protective layer preferably contains a dispersant and the like in addition to the organic resin.
  • the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones.
  • the colorant those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
  • purple to blue organic colorants the same colorants as those used for the protective layer described above can be used.
  • the most preferable colorant is a metal phthalocyanine pigment.
  • metal phthalocyanine pigment examples include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
  • the pigment is preferably used dispersed in the organic resin.
  • Various dispersants can be used according to the organic resin and the pigment to be used.
  • dispersant examples include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
  • a known dispersion technique used in ink production or toner production can be used.
  • the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
  • the moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like.
  • a haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
  • the moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 ⁇ day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 ⁇ day (40 ° C./90% RH) or less is industrial.
  • the present invention includes a radiation transmissive substrate, an intermediate layer provided on the substrate, a reflective layer provided on the intermediate layer, a protective layer provided on the reflective layer, and the protective layer.
  • the intermediate layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more It is characterized by.
  • a scintillator plate having excellent storage stability can be provided by including at least one pair of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more.
  • the intermediate layer according to the present invention is a layer provided between the substrate and the reflective layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a coating film with high Young's modulus and flexibility can be formed. Panels can be handled under severe conditions and stored for a long time under high humidity. Even if it performs, the generation
  • the intermediate layer preferably has a thickness of 1.0 ⁇ m to 30 ⁇ m, more preferably 2.0 ⁇ m to 25 ⁇ m, and more preferably 5.0 ⁇ m from the viewpoint that sufficient storage characteristics can be obtained and light scattering can be suppressed. It is particularly preferable that the thickness is ⁇ 20 ⁇ m.
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • the two kinds of organic resins contained in at least one set in the intermediate layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably It is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
  • the content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the intermediate layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C. with respect to the intermediate layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content of the two kinds of organic resins having different glass transition temperatures of 5 ° C. or more with respect to the intermediate layer is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the intermediate layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the following intermediate layer are the one set. It is.
  • the substrate temperature is 150 ° C. to 250 ° C., but by including an organic resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C. in the intermediate layer,
  • the protective layer effectively functions as an adhesive layer.
  • the solvent used for preparing the intermediate layer a solvent similar to the solvent used for preparing the protective layer can be used.
  • the intermediate layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
  • the substrate As the substrate, the reflective layer, the scintillator, and the moisture-resistant protective layer according to the present invention, those similar to those used in the above means 1 can be used.
  • the present invention includes a radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and the scintillator layer.
  • a scintillator panel comprising a covering moisture-resistant protective layer, wherein the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 ⁇ m.
  • the scintillator having excellent storability particularly when the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and the film thickness of the moisture-resistant protective layer is 12 to 60 ⁇ m. Plates can be provided.
  • the moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
  • CsI cesium iodide
  • the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the protective layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the protective layer.
  • the moisture-resistant protective layer according to the present invention needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, and the moisture-resistant protective layer needs to have a thickness of 12 to 60 ⁇ m.
  • a coating film with high Young's modulus and flexibility can be formed.
  • the panel can be handled under severe conditions and stored for a long time under high humidity. Even if it performs, the generation
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, Examples include urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
  • the two kinds of organic resins contained in at least one set in the moisture-resistant protective layer must have different glass transition temperatures of 5 ° C. or more, but the difference in glass transition temperatures is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. C. to 80.degree. C., particularly preferably 30.degree. C. to 70.degree.
  • it contains a resin having a glass transition temperature of 140 to 350 ° C. (more preferably 150 to 300 ° C.) and a resin having a glass transition temperature of 60 to 135 ° C. (more preferably a resin having a temperature of 80 to 120 ° C.). It is preferable.
  • the content of the resin having a glass transition temperature of 140 to 350 ° C. with respect to the moisture-resistant protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of 60 ° C. to 135 ° C. with respect to the moisture-resistant protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the moisture-resistant protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the moisture-resistant protective layer described below are used. One set.
  • the moisture-resistant protective layer is preferably formed by applying and drying a coating solution for the moisture-resistant protective layer, and the solvent used can be the same solvent as used in the protective layer described above. .
  • the moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm.
  • the protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
  • the protective layer preferably contains a dispersant and the like in addition to the organic resin.
  • the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones.
  • the colorant those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
  • purple to blue organic colorants the same colorants as those used for the protective layer described above can be used.
  • the most preferable colorant is a metal phthalocyanine pigment.
  • metal phthalocyanine pigment examples include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
  • the pigment is preferably used dispersed in the organic resin.
  • Various dispersants can be used according to the organic resin and the pigment to be used.
  • dispersant examples include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
  • a known dispersion technique used in ink production or toner production can be used.
  • the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
  • the moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like.
  • a haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
  • the moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 ⁇ day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 ⁇ day (40 ° C./90% RH) or less is industrial.
  • the film thickness of the moisture-resistant protective layer according to the present invention is required to be 12 to 60 ⁇ m from the viewpoint of storage stability, but is particularly preferably 20 to 60 ⁇ m.
  • an intermediate layer may be provided between the substrate and the protective layer.
  • the resin used for the intermediate layer the same resin as described in the above means 1 can be used.
  • the substrate, the reflective layer, and the scintillator layer according to the present invention can be the same as those used in the above means 1, and the protective layer can be the same as that described in the above means 2.
  • the present invention relates to a radiation image detector comprising a photoelectric conversion element formed on an output substrate, an organic resin layer provided on the photoelectric conversion element, and a scintillator layer provided on the organic resin layer.
  • the organic resin layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • the organic resin layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, a radiation image detector excellent in storage stability can be provided.
  • the organic resin layer according to the present invention is a layer provided between the output substrate and the scintillator layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
  • the thickness of the organic resin layer is preferably 1.0 ⁇ m to 50 ⁇ m, more preferably 2.0 ⁇ m to 40 ⁇ m, from the viewpoint that sufficient storage characteristics are obtained and light scattering is suppressed. A thickness of 0 to 30 ⁇ m is particularly preferable.
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • the two organic resins contained in at least one set in the organic resin layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably Is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
  • the content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the organic resin layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C. with respect to the organic resin layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content (in total of the two types) of two types of organic resins having glass transition temperatures different by 5 ° C. or more is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass. .
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the organic resin layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all of the organic resin layers except for the additives contained in the organic resin layer are One set.
  • the output substrate temperature is 150 ° C. to 250 ° C.
  • the organic resin layer should contain an organic resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C.
  • the protective layer effectively functions as an adhesive layer.
  • the solvent used for preparing the organic resin layer a solvent similar to the solvent used for preparing the protective layer can be used.
  • the organic resin layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
  • the same substrate and scintillator layer used in the above-mentioned means 1 can be used.
  • the present invention relates to a radiation image detector comprising a photoelectric conversion element formed on an output substrate, a scintillator layer provided on the photoelectric conversion element, and a reflective layer provided on the scintillator layer.
  • the reflective layer contains at least one set of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more, in particular, the reflective layer has two kinds of organics having glass transition temperatures of 5 ° C. or more different.
  • the reflective layer according to the present invention is a layer provided on the scintillator layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  • a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
  • the thickness of the reflective layer is preferably 50 to 800 ⁇ m, more preferably 50 to 500 ⁇ m, and more preferably 70 to 300 ⁇ m from the viewpoint that sufficient storage characteristics can be obtained and light scattering can be suppressed. Particularly preferred.
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • the two kinds of organic resins contained in at least one pair in the reflective layer are required to have glass transition temperatures different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably It is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
  • the content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the reflective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of ⁇ 20 ° C. to 45 ° C. with respect to the reflective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the reflective layer is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the reflective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the reflective layer described below are included in this set. It is.
  • a white pigment is preferable.
  • white pigments include titanium oxide, zinc oxide, aluminum oxide, calcium carbonate, barium sulfate, and titanium oxide and calcium carbonate are preferred.
  • the solvent used for preparing the reflective layer a solvent similar to the solvent used for preparing the protective layer can be used.
  • the reflective layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
  • the scintillator having excellent storability particularly when the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and the film thickness of the moisture-resistant protective layer is 12 to 60 ⁇ m. Plates can be provided.
  • the moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
  • CsI cesium iodide
  • the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the organic resin layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the organic resin layer.
  • the cross section of the scintillator layer may or may not be covered with a moisture-resistant protective layer.
  • the moisture-resistant protective layer according to the present invention needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, and the moisture-resistant protective layer needs to have a thickness of 12 to 60 ⁇ m.
  • a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
  • organic resin examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, Examples include urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
  • the two kinds of organic resins contained in at least one set in the moisture-resistant protective layer must have different glass transition temperatures of 5 ° C. or more, but the difference in glass transition temperatures is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. C. to 80.degree. C., particularly preferably 30.degree. C. to 70.degree.
  • it contains a resin having a glass transition temperature of 140 to 350 ° C. (more preferably 150 to 300 ° C.) and a resin having a glass transition temperature of 60 to 135 ° C. (more preferably a resin having a temperature of 80 to 120 ° C.). It is preferable.
  • the content of the resin having a glass transition temperature of 140 to 350 ° C. with respect to the moisture-resistant protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
  • the content of the resin having a glass transition temperature of 60 ° C. to 135 ° C. with respect to the moisture-resistant protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
  • the content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of ⁇ 20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
  • the moisture-resistant protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the moisture-resistant protective layer described below are used. One set.
  • the moisture-resistant protective layer is preferably formed by applying and drying a coating solution for the moisture-resistant protective layer, and the solvent used can be the same solvent as used in the protective layer described above. .
  • the moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm.
  • the protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
  • the protective layer preferably contains a dispersant and the like in addition to the organic resin.
  • the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones.
  • the colorant those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
  • purple to blue organic colorants the same colorants as those used for the protective layer described above can be used.
  • the most preferable colorant is a metal phthalocyanine pigment.
  • metal phthalocyanine pigment examples include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
  • the pigment is preferably used dispersed in the organic resin.
  • Various dispersants can be used according to the organic resin and the pigment to be used.
  • dispersant examples include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
  • a known dispersion technique used in ink production or toner production can be used.
  • the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
  • the moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like.
  • a haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
  • the moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 ⁇ day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 ⁇ day (40 ° C./90% RH) or less is industrial.
  • the film thickness of the moisture-resistant protective layer according to the present invention is required to be 12 to 60 ⁇ m from the viewpoint of storage stability, but is particularly preferably 20 to 60 ⁇ m.
  • an organic resin layer may be provided between the output substrate and the scintillator layer.
  • the resin used for the organic resin layer the same resin as described in the above means 4 can be used.
  • the same substrate as that used in the above means 1 and the scintillator layer can be used.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the radiation scintillator panel 10.
  • FIG. 2 is an enlarged cross-sectional view of the radiation scintillator panel 10.
  • FIG. 3 is a diagram showing a schematic configuration of the vapor deposition apparatus 61.
  • the vapor deposition apparatus 61 has a box-shaped vacuum vessel 62, and a vacuum vapor deposition boat 63 is disposed inside the vacuum vessel 62.
  • the boat 63 is a member to be filled as an evaporation source, and an electrode is connected to the boat 63. When a current flows through the electrode to the boat 63, the boat 63 generates heat due to Joule heat.
  • a mixture containing cesium iodide and an activator compound is filled in the boat 63, and an electric current flows through the boat 63, whereby the mixture can be heated and evaporated. ing.
  • an alumina crucible around which a heater is wound may be applied, or a refractory metal heater may be applied.
  • a holder 64 for holding the substrate 1 (not shown) provided with an intermediate layer, a reflective layer, and a protective layer in advance is disposed inside the vacuum vessel 62 and directly above the boat 63.
  • the holder 64 is provided with a heater (not shown), and the substrate 1 mounted on the holder 64 can be heated by operating the heater.
  • the holder 64 is provided with a rotation mechanism 65 that rotates the holder 64.
  • the rotating mechanism 65 is composed of a rotating shaft 65a connected to the holder 64 and a motor (not shown) as a driving source for the rotating shaft 65. When the motor is driven, the rotating shaft 65a rotates to displace the holder 64 in the boat. It can be rotated in a state of being opposed to 63.
  • a vacuum pump 66 is disposed in the vacuum vessel 62.
  • the vacuum pump 66 exhausts the inside of the vacuum container 62 and introduces gas into the vacuum container 62.
  • the inside of the vacuum container 62 has a gas atmosphere at a constant pressure. Can be maintained below.
  • the evaporator 61 described above can be suitably used.
  • a method for manufacturing the scintillator panel 10 using the evaporator 61 will be described.
  • the intermediate layer 2 can be formed on one surface of the substrate 1 by extrusion coating.
  • a matting agent or filler may be added as necessary to control the surface properties and Young's modulus of the intermediate layer.
  • a metal thin film (Al film, Ag film, etc.) as the reflective layer 3 is formed on the surface of the substrate 1 provided with the intermediate layer 2 by sputtering.
  • Al film, Ag film, etc. a metal thin film as the reflective layer 3 is formed on the surface of the substrate 1 provided with the intermediate layer 2 by sputtering.
  • Various types of films in which an Al film is sputter-deposited on a polymer film are available on the market, and these films can also be used.
  • the protective layer 4 is formed by applying and drying a composition obtained by dispersing and dissolving a colorant and an organic resin in the organic solvent.
  • the substrate 1 provided with the intermediate layer 2, the reflective layer 3, and the protective layer 4 is attached to the holder 64, and the boat 63 is filled with a powdery mixture containing cesium iodide and thallium iodide (preparation) Process).
  • the distance between the boat 63 and the substrate 1 is set to 100 to 1500 mm, and the later-described vapor deposition process is performed within the set value range.
  • under vacuum atmosphere means under a pressure atmosphere of 100 Pa or less, and preferably under a pressure atmosphere of 0.1 Pa or less.
  • an inert gas such as argon is introduced into the vacuum vessel 62, and the inside of the vacuum vessel 62 is maintained in a vacuum atmosphere of 0.1 Pa to 5 Pa. Thereafter, the heater of the holder 64 and the motor of the rotation mechanism 65 are driven, and the substrate 1 attached to the holder 64 is rotated while being heated while facing the boat 63.
  • an electric current is passed from the electrode to the boat 63, and the mixture containing cesium iodide and thallium iodide is heated at about 700 to 800 ° C. for a predetermined time to evaporate the mixture.
  • innumerable columnar crystals 5a are sequentially grown on the surface of the substrate 1 to form a scintillator layer 5 having a desired thickness (evaporation process).
  • the scintillator panel 10 according to the present invention can be manufactured.
  • the temperature for heating the vapor deposition source is preferably 500 ° C. to 800 ° C., and particularly preferably 630 ° C. to 750 ° C.
  • the substrate temperature is preferably 100 ° C. to 250 ° C., more preferably 150 ° C. to 250 ° C. By setting the substrate temperature within this range, the shape of the columnar crystal is improved and the luminance characteristics are improved.
  • the moisture resistant protective layer 6 is preferably formed by applying and drying a composition in which an organic resin is dispersed and dissolved in the above organic solvent on the scintillator layer. You may add a coloring agent and a mat agent to the said composition as needed. Alternatively, the scintillator layer may be sealed with a sealing film formed by applying and drying a composition in which an organic resin is dispersed and dissolved on a support (PET, PEN, aramid, etc.).
  • FIG. 4 is a partially broken perspective view showing a schematic configuration of the radiation image detection apparatus 100.
  • FIG. 5 is an enlarged cross-sectional view of the imaging panel 51.
  • the radiation image detection apparatus 100 includes an imaging panel 51, a control unit 52 that controls the operation of the radiation image detection apparatus 100, a rewritable dedicated memory (for example, a flash memory), and the like.
  • a memory unit 53 that is a storage unit that stores the output image signal
  • a power supply unit 54 that is a power supply unit that supplies power necessary to obtain the image signal by driving the imaging panel 51, and the like 55 is provided inside.
  • the housing 55 includes a communication connector 56 for performing communication from the radiation image detection apparatus 100 to the outside as necessary, an operation unit 57 for switching the operation of the radiation image detection apparatus 100, and completion of preparation for radiographic image capturing.
  • a display unit 58 indicating that a predetermined amount of image signal has been written in the memory unit 53 is provided.
  • the radiographic image detection apparatus 100 is provided with a power supply unit 54 and a memory unit 53 for storing an image signal of the radiographic image, and the radiographic image detection apparatus 100 is detachable via a connector 56, the radiographic image detection apparatus. It can be set as the portable structure which can carry 100.
  • the imaging panel 51 includes a scintillator panel 10 and an output substrate 20 that absorbs electromagnetic waves from the scintillator panel 10 and outputs an image signal.
  • the scintillator panel 10 is disposed on the radiation irradiation surface side and is configured to emit an electromagnetic wave corresponding to the intensity of incident radiation.
  • the output substrate 20 is provided on the surface opposite to the radiation irradiation surface of the scintillator panel 10, and includes a diaphragm 20a, a photoelectric conversion element 20b, an image signal output layer 20c, and a substrate 20d in this order from the scintillator panel 10 side. Yes.
  • the diaphragm 20a is for separating the scintillator panel 10 from other layers.
  • the photoelectric conversion element 20 b includes a transparent electrode 21, a charge generation layer 22 that is excited by electromagnetic waves that have passed through the transparent electrode 21 to enter the light, and generates a charge, and a counter electrode 23 that is a counter electrode for the transparent electrode 21.
  • the transparent electrode 21, the charge generation layer 22, and the counter electrode 23 are arranged in this order from the diaphragm 20a side.
  • the transparent electrode 21 is an electrode that transmits an electromagnetic wave that is photoelectrically converted, and is formed using a conductive transparent material such as indium tin oxide (ITO), SnO 2 , or ZnO.
  • ITO indium tin oxide
  • SnO 2 SnO 2
  • ZnO ZnO
  • the charge generation layer 22 is formed in a thin film on one surface side of the transparent electrode 21, and contains an organic compound that separates charges by light as a compound capable of photoelectric conversion. Each of them contains a conductive compound as an electron acceptor. In the charge generation layer 22, when an electromagnetic wave is incident, the electron donor is excited to emit electrons, and the emitted electrons move to the electron acceptor, and charge, that is, holes in the charge generation layer 22. And electron carriers are generated.
  • examples of the conductive compound as the electron donor include a p-type conductive polymer compound.
  • examples of the p-type conductive polymer compound include polyphenylene vinylene, polythiophene, poly (thiophene vinylene), polyacetylene, polypyrrole, Those having a basic skeleton of polyfluorene, poly (p-phenylene) or polyaniline are preferred.
  • Examples of the conductive compound as the electron acceptor include an n-type conductive polymer compound.
  • the n-type conductive polymer compound those having a basic skeleton of polypyridine are preferable, and in particular, poly (p-pyridyl) Those having a basic skeleton of vinylene) are preferred.
  • the film thickness of the charge generation layer 22 is preferably 10 nm or more (especially 100 nm or more) from the viewpoint of securing the amount of light absorption, and is preferably 1 ⁇ m or less (particularly 300 nm or less) from the viewpoint that the electric resistance does not become too large. .
  • the counter electrode 23 is disposed on the opposite side of the surface of the charge generation layer 22 where the electromagnetic wave is incident.
  • the counter electrode 23 can be selected and used from, for example, a general metal electrode such as gold, silver, aluminum, and chromium, or the transparent electrode 21. Small (4.5 eV or less) metals, alloys, electrically conductive compounds and mixtures thereof are preferably used as electrode materials.
  • a buffer layer may be provided between each electrode (transparent electrode 21 and counter electrode 23) sandwiching the charge generation layer 22 so as to act as a buffer zone so that the charge generation layer 22 and these electrodes do not react.
  • the buffer layer include lithium fluoride and poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate), 2,9-dimethyl-4,7-diphenyl [1,10] phenanthroline, and the like. Formed using.
  • the image signal output layer 20c performs accumulation of charges obtained by the photoelectric conversion element 20b and output of a signal based on the accumulated charges. Charge for accumulating the charges generated by the photoelectric conversion element 20b for each pixel.
  • the capacitor 24 is a storage element
  • the transistor 25 is an image signal output element that outputs the stored charge as a signal.
  • a TFT Thin Film Transistor
  • This TFT may be an inorganic semiconductor type used in a liquid crystal display or the like, or an organic semiconductor, and is preferably a TFT formed on a plastic film.
  • an amorphous silicon type is known, but in addition, it was made of FSA (Fluidic Self Assembly) technology developed by Alien Technology in the United States, that is, made of single crystal silicon.
  • FSA Fluid Self Assembly
  • a TFT may be formed on a flexible plastic film by arranging micro CMOS (Nanoblocks) on an embossed plastic film.
  • a TFT using an organic semiconductor as described in documents such as Lett, 771488 (1998), Nature, 403, 521 (2000) may be used.
  • the transistor 25 is preferably a TFT manufactured by the FSA technique and a TFT using an organic semiconductor, and a TFT using an organic semiconductor is particularly preferable. If a TFT is formed using this organic semiconductor, equipment such as a vacuum deposition apparatus is not required as in the case where a TFT is formed using silicon, and the TFT can be formed by utilizing printing technology or inkjet technology. Cost is low. Furthermore, since the processing temperature can be lowered, it can also be formed on a plastic substrate that is vulnerable to heat.
  • the transistor 25 accumulates electric charges generated in the photoelectric conversion element 20b and is electrically connected to a collecting electrode (not shown) which is one electrode of the capacitor 24.
  • the capacitor 24 accumulates charges generated by the photoelectric conversion element 20 b and reads the accumulated charges by driving the transistor 25. That is, by driving the transistor 25, a signal for each pixel of the radiation image can be output.
  • the substrate 20d functions as a support for the imaging panel 51, and can be made of the same material as the substrate 1.
  • the radiation incident on the radiation image detection apparatus 100 is incident from the radiation scintillator panel 10 side of the imaging panel 51 toward the substrate 20d side.
  • the radiation incident on the scintillator panel 10 is absorbed by the scintillator layer 5 in the radiation scintillator panel 10 and emits an electromagnetic wave corresponding to its intensity.
  • the electromagnetic wave incident on the output substrate 20 passes through the diaphragm 20 a and the transparent electrode 21 of the output substrate 20 and reaches the charge generation layer 22.
  • the electromagnetic wave is absorbed in the charge generation layer 22 and a hole-electron pair (charge separation state) is formed according to the intensity.
  • the generated charges are transported to different electrodes (transparent electrode film and conductive layer) by an internal electric field generated by application of a bias voltage by the power supply unit 54, and a photocurrent flows.
  • the holes carried to the counter electrode 23 side are accumulated in the capacitor 24 of the image signal output layer 20c.
  • the accumulated holes output an image signal when the transistor 25 connected to the capacitor 24 is driven, and the output image signal is stored in the memory unit 53.
  • FIG. 6 is an enlarged cross-sectional view of the imaging panel portion of the radiation image detector.
  • the image signal output layer 202 is provided on the output substrate 201, and the photoelectric conversion element 203 including the counter electrode 203c, the charge generation layer 203b, and the transparent electrode 203a is provided on the image signal output layer.
  • the imaging panel has a scintillator layer on the photoelectric conversion element, but the configuration of the radiation image detector 200 including the scintillator layer 205 directly or via the organic resin layer 204 on the transparent electrode 203a will be described.
  • the scintillator layer 205 can be formed in the same manner as described in ⁇ Scintillator layer formation >> in the above-described method of manufacturing the scintillator panel 10, and directly on the transparent electrode 203b of the output substrate 201 or the organic resin layer 204.
  • a scintillator layer can be provided via
  • the moisture-resistant protective layer 207 may be divided into two layers (moisture-resistant protective layer-1 and moisture-resistant protective layer-2), and the moisture-resistant protective layer-1, the reflective layer, and the moisture-resistant protective layer-2 are formed on the scintillator layer. Each layer may be provided in order.
  • the order of the layers can be changed as appropriate, and a moisture-resistant protective layer and a reflective layer may be provided on the scintillator layer so that the reflective layer is the outermost layer.
  • the reflective layer and the moisture-resistant protective layer may be separated from each other, and a layer serving as the reflective layer and the moisture-resistant protective layer may be provided.
  • Example 1 (Production of reflective layer) A reflection layer (0.02 ⁇ m) was formed by sputtering aluminum on a 125 ⁇ m-thick polyimide film (UPILEX-125S manufactured by Ube Industries).
  • This coating solution was applied to the aluminum reflective layer surface of the substrate by an extrusion coater so that the dry film thickness was 2.5 ⁇ m.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 ⁇ m, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
  • the coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was 20 ⁇ m, and scintillator panel samples 101 to 112 were obtained.
  • Example 2 (Preparation of intermediate layer) Organic resin of the kind described in Table 2 is added in Table 2. Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. A coating solution for coating was obtained.
  • MEK Methyl ethyl ketone
  • This coating solution was applied on a substrate (made of amorphous carbon, thickness 1 mm) using an extrusion coater so that the dry film thickness was 10 ⁇ m.
  • a reflective layer (0.02 ⁇ m) was formed by sputtering aluminum on the substrate provided with the intermediate layer.
  • Byron 200 manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.
  • Phthalocyanine blue 0.1 part by weight
  • Methyl ethyl ketone (MEK) 100 parts by weight
  • Toluene 100 parts by weight
  • the above formulation is mixed and dispersed in a bead mill for 15 hours for protection A coating solution for layer coating was obtained.
  • This coating solution was applied onto the aluminum reflective layer by an extrusion coater so that the dry film thickness was 2.5 ⁇ m.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 ⁇ m, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
  • the coating solution was applied onto the scintillator layer with an extrusion coater so that the dry film thickness was 20 ⁇ m, and scintillator panel samples 201 to 212 were obtained.
  • Example 3 (Production of reflective layer) A reflection layer (0.02 ⁇ m) was formed by sputtering aluminum on a 125 ⁇ m-thick polyimide film (UPILEX-125S manufactured by Ube Industries).
  • Byron 200 manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.
  • Phthalocyanine blue 0.1 part by weight
  • Methyl ethyl ketone (MEK) 100 parts by weight
  • Toluene 100 parts by weight
  • the above formulation is mixed and dispersed in a bead mill for 15 hours for protection A coating solution for layer coating was obtained.
  • the coating solution was applied on the aluminum reflective layer of the substrate by an extrusion coater so that the dry film thickness was 2.5 ⁇ m.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 ⁇ m, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
  • the coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was a value shown in Table 3, and samples of scintillator panels 301 to 319 were obtained.
  • moisture-resistant protective layer of the sample 319 a moisture-resistant protective film made of polyparaxylylene formed by the CVD method described in “0022” of JP-A-2007-279051 was used.
  • the scintillator panel was set in PaxScan2520 (Varian FPD), and the sharpness and brightness were evaluated by the methods shown below.
  • Tables 1 to 3 show the ratio of the value after being left to the value before being left for brightness and sharpness. The value is closer to 1.0 as the property is less degraded under the environment of 30 ° C. and 70% RH.
  • the scintillator plate of the present invention is excellent in preservability with little deterioration in brightness and sharpness.
  • Example 4 A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 20 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 ⁇ m.
  • Titanium oxide (average particle size 0.20 ⁇ m) 15 parts by mass Polyvinyl butyral 2 parts by mass Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass Toluene 40 parts by mass For 15 hours to obtain a coating solution for coating a protective layer.
  • MEK Methyl ethyl ketone
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 100 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • the coating solution was applied on the reflective layer by an extrusion coater so that the dry film thickness was 20 ⁇ m. Thereafter, it was covered with a casing made of a glass substrate and sealed under reduced pressure to obtain radiation image detectors 401 to 412.
  • Example 5 A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
  • Byron 200 manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.
  • MEK Methyl ethyl ketone
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 20 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 ⁇ m.
  • Titanium oxide (average particle size 0.20 ⁇ m) 15 parts by mass Organic resin of the type shown in Table 5 Addition amount is shown in Table 5 Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass 40 parts by mass of toluene
  • MEK Methyl ethyl ketone
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 100 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • the coating solution was applied on the reflective layer by an extrusion coater so that the dry film thickness was 20 ⁇ m. Thereafter, it was covered with a casing made of a glass substrate, and sealed under reduced pressure to obtain radiation image detectors 501 to 512.
  • Example 6 A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
  • Byron 200 manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.
  • MEK Methyl ethyl ketone
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 20 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • a scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
  • the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm.
  • the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 ⁇ m.
  • Titanium oxide (average particle size 0.20 ⁇ m) 15 parts by mass Polyvinyl butyral 2 parts by mass Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass Toluene 40 parts by mass For 15 hours to obtain a coating solution for coating a protective layer.
  • MEK Methyl ethyl ketone
  • the coating solution was applied by an extrusion coater so that the dry film thickness was 100 ⁇ m on the side of the substrate on which the photoelectric conversion element was provided.
  • the coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was as shown in Table 6. Thereafter, it was covered with a casing made of a glass substrate and sealed under reduced pressure to obtain radiation image detectors 601 to 619.
  • a moisture-proof layer (trade name: GX film (PET) manufactured by Toppan Printing Co., Ltd.) described in “0071” of JP-A-2008-215951 was used.
  • the obtained radiographic image detector was evaluated.
  • the radiographic image detector of the present invention is excellent in storage stability with little deterioration in brightness and sharpness.

Abstract

A scintillator panel is provided with a radiotransparent substrate; a reflection layer arranged on the substrate; a protection layer arranged on the reflection layer; a scintillator layer arranged on the protection layer; and a humidity resistant protection layer covering the scintillator layer. The protection layer contains at least a pair of organic resins of two types having a glass transition temperature difference of 5°C or more, and has excellent storage stability.

Description

シンチレータパネル及び放射線画像検出器Scintillator panel and radiation image detector
 本発明は、被写体の放射線画像を形成する際に用いられるシンチレータパネル及び放射線画像検出器に関する。 The present invention relates to a scintillator panel and a radiation image detector used when forming a radiation image of a subject.
 従来、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、今なお、世界中の医療現場で用いられている。しかしながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送が出来ない。 Conventionally, radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field. In particular, radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in the medical field. However, the image information is so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like the digital image information that has been developed in recent years.
 そして、近年ではコンピューテッドラジオグラフィ(computed radiography:CR)やフラットパネル型の放射線ディテクタ(flat panel detector:FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。 In recent years, digital radiological image detection devices represented by computed radiography (CR), flat panel type radiation detectors (FPD), and the like have appeared. In these, since a digital radiographic image is directly obtained and an image can be directly displayed on an image display device such as a cathode tube or a liquid crystal panel, image formation on a photographic film is not necessarily required. As a result, these digital X-ray image detection devices reduce the need for image formation by the silver halide photography method, and greatly improve the convenience of diagnosis work in hospitals and clinics.
 X線画像のデジタル技術の一つとしてコンピューテッド・ラジオグラフィ(CR)が現在医療現場で受け入れられている。しかしながら鮮鋭性が十分でなく空間分解能も不十分であり、スクリーン・フィルムシステムの画質レベルには到達していない。そして、更に新たなデジタルX線画像技術として、例えば雑誌Physics Today,1997年11月号24頁のジョン・ローランズ論文“Amorphous Semiconductor Usher in Digital X-ray Imaging”や、雑誌SPIEの1997年32巻2頁のエル・イー・アントヌクの論文“Development of a High Resolution,Active Matrix,Flat-Panel Imager with Enhanced Fill Factor”等に記載された、薄膜トランジスタ(TFT)を用いた平板X線検出装置(FPD)が開発されている。 * Computed radiography (CR) is currently accepted in the medical field as one of the digital technologies for X-ray images. However, the sharpness is insufficient and the spatial resolution is insufficient, and the image quality level of the screen / film system has not been reached. Further, as new digital X-ray imaging techniques, for example, the magazine Physics Today, November 1997, page 24, John Laurans' paper “Amorphous Semiconductor User in Digital X-ray Imaging”, magazine SPIE Vol. 32, 1997. Thin-film transistors (TFTs) using thin-film transistors (TFTs) using a thin-film transistor (TFT) detection device (TFT), which is described in El E. Antonuk's paper “Development of a High Resolution, Active Matrix, Flat-Panel Imager with Enhanced Fill Factor”, etc. Has been developed.
 放射線を可視光に変換するために、放射線により発光する特性を有するX線蛍光体で作られたシンチレータパネルが使用されるが、低線量の撮影においてのSN比を向上するためには、発光効率の高いシンチレータパネルを使用することが必要になってくる。一般にシンチレータパネル発光効率は、シンチレータ層(蛍光体層)の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど、蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると、膜厚が決定する。 In order to convert radiation into visible light, a scintillator panel made of an X-ray phosphor having a characteristic of emitting light by radiation is used. In order to improve the S / N ratio in low-dose imaging, luminous efficiency is used. It is necessary to use a high scintillator panel. In general, the scintillator panel light emission efficiency is determined by the thickness of the scintillator layer (phosphor layer) and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the light emitted from the phosphor layer. Scattering occurs and the sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
 なかでもヨウ化セシウム(CsI)はX線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成出来るため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であった。 In particular, cesium iodide (CsI) has a relatively high rate of change from X-rays to visible light, and phosphors can be easily formed into a columnar crystal structure by vapor deposition. Therefore, it was possible to increase the thickness of the phosphor layer.
 しかしながらCsIのみでは発光効率が低いために、例えば特公昭54-35060号公報に記載の方法の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものを、蒸着を用いて基板上にナトリウム賦活ヨウ化セシウム(CsI:Na)として堆積、又近年ではCsIとヨウ化タリウム(TlI)を任意のモル比で混合したしたものを、蒸着を用いて基板上にタリリウム賦活ヨウ化セシウム(CsI:Tl)として堆積したものに、後工程としてアニールを行うことで可視変換効率を向上させ、X線蛍光体として使用している。 However, since CsI alone has a low luminous efficiency, a mixture of CsI and sodium iodide (NaI) in an arbitrary molar ratio is used for the substrate by vapor deposition as described in, for example, Japanese Patent Publication No. 54-3560. Deposited as sodium-activated cesium iodide (CsI: Na) on the substrate, and recently mixed with any molar ratio of CsI and thallium iodide (TlI) on the substrate using vapor deposition. Visible conversion efficiency is improved by performing annealing as a post-process on those deposited as (CsI: Tl) and used as an X-ray phosphor.
 また他の光出力を増大する手段として、シンチレータを形成する基板を反射性とする方法(例えば特許文献1参照)、基板上に反射層を設ける方法(例えば特許文献2参照)、基板上に設けられた反射性金属薄膜と、金属薄膜を覆う透明有機膜上にシンチレータを形成する方法(例えば特許文献3参照)などが提案されているが、これらの方法は得られる光量は増加するが、鮮鋭性が著しく低下するという欠点がある。 As another means for increasing the light output, a method for making the substrate on which the scintillator is formed reflective (for example, see Patent Document 1), a method for providing a reflective layer on the substrate (for example, see Patent Document 2), and a method for providing on the substrate. A method of forming a scintillator on a reflective metal thin film and a transparent organic film covering the metal thin film (see, for example, Patent Document 3) has been proposed, but these methods increase the amount of light obtained, but are sharp. There is a drawback that the performance is significantly reduced.
 また基板や反射膜、シンチレータ層の安定性を向上させるために、ポリイミドやポリパラキシレン膜を使用する方法(例えば特許文献4参照)、反射層とシンチレータ層の間に光吸収層を有する技術(例えば特許文献5参照)、光電変換素子を有する電極基板上に平坦化樹脂層、シンチレータ層、反射層、保護層をもつ放射線検出器が提案されている(特許文献6参照)。
特公平7-21560号公報 特公平1-240887号公報 特開2000-356679号公報 特開2007-279051号公報 特開2008-107222号公報 特開2008-215951号公報
In addition, in order to improve the stability of the substrate, the reflective film, and the scintillator layer, a method using a polyimide or polyparaxylene film (see, for example, Patent Document 4), and a technology having a light absorption layer between the reflective layer and the scintillator layer ( For example, see Patent Document 5), and a radiation detector having a planarizing resin layer, a scintillator layer, a reflective layer, and a protective layer on an electrode substrate having a photoelectric conversion element has been proposed (see Patent Document 6).
Japanese Patent Publication No. 7-21560 Japanese Patent Publication No. 1-240887 JP 2000-356679 A JP 2007-279051 A JP 2008-107222 A JP 2008-215951 A
 しかしながら、上記従来技術を用いても、基板や反射膜、シンチレータ層の安定性の改良は十分ではなく、特に高湿条件下で保存した場合に輝度や鮮鋭性の劣化が見られた。本発明は、上記状況に鑑み成されたものであり、その課題は保存性に優れたシンチレータパネル及び放射線画像検出器を提供することである。 However, even when the above-described conventional technology is used, the stability of the substrate, the reflective film, and the scintillator layer is not sufficiently improved, and particularly when stored under high humidity conditions, the luminance and sharpness are deteriorated. The present invention has been made in view of the above situation, and its object is to provide a scintillator panel and a radiation image detector that are excellent in storage stability.
 本発明に係る上記課題は下記の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とするシンチレータパネル。 1. A radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and a moisture-resistant protective layer covering the scintillator layer A scintillator panel comprising: a protective layer containing at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 2.放射線透過性の基板と、該基板上に設けられた中間層と、該中間層上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該中間層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とするシンチレータパネル。 2. A radiation transmissive substrate, an intermediate layer provided on the substrate, a reflective layer provided on the intermediate layer, a protective layer provided on the reflective layer, and provided on the protective layer A scintillator panel comprising a scintillator layer and a moisture-resistant protective layer covering the scintillator layer, wherein the intermediate layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. Scintillator panel.
 3.放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とするシンチレータパネル。 3. A radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and a moisture-resistant protective layer covering the scintillator layer And the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 μm. .
 4.基板上に形成された光電変換素子と、該光電変換素子上に設けられた有機樹脂層と、該有機樹脂層上に設けられたシンチレータ層と、を備えた放射線画像検出器において、該有機樹脂層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする放射線画像検出器。 4. A radiation image detector comprising: a photoelectric conversion element formed on a substrate; an organic resin layer provided on the photoelectric conversion element; and a scintillator layer provided on the organic resin layer. The radiation image detector, wherein the layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 5.基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた反射層と、を備えた放射線画像検出器において、該反射層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする放射線画像検出器。 5. In a radiation image detector comprising a photoelectric conversion element formed on a substrate, a scintillator layer provided on the photoelectric conversion element, and a reflection layer provided on the scintillator layer, the reflection layer comprises: A radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 6.基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた耐湿保護層と、を備えた放射線画像検出器において、該耐湿保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とする放射線画像検出器。 6. In a radiological image detector comprising a photoelectric conversion element formed on a substrate, a scintillator layer provided on the photoelectric conversion element, and a moisture-resistant protective layer provided on the scintillator layer, the moisture-resistant protective layer However, a radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and a film thickness of 12 to 60 μm.
 本発明の上記手段により、特に輝度、鮮鋭性の劣化が少なく保存性に優れたシンチレータプレート及び放射線画像検出器を提供することができる。 By the above means of the present invention, it is possible to provide a scintillator plate and a radiation image detector which are particularly excellent in storage stability with little deterioration in brightness and sharpness.
シンチレータパネルの概略構成を示す断面図Sectional view showing schematic configuration of scintillator panel シンチレータパネルの一部の拡大断面図Partial enlarged sectional view of the scintillator panel 蒸着装置61の概略構成を示す図The figure which shows schematic structure of the vapor deposition apparatus 61 シンチレータパネルを具備する放射線画像検出装置の概略構成を示す一部破断斜視図Partially cutaway perspective view showing a schematic configuration of a radiation image detection apparatus including a scintillator panel 放射線画像検出装置の撮像パネルの拡大断面図Expanded sectional view of the imaging panel of the radiation image detection device 放射線画像検出器の撮像パネル部の拡大断面図Expanded sectional view of the imaging panel of the radiation image detector
符号の説明Explanation of symbols
 1 基板
 2 中間層
 3 反射層
 4 保護層
 5 シンチレータ層
 6 耐湿保護層
 10 シンチレータパネル
 61 蒸着装置
 62 真空容器
 63 ボート(被充填部材)
 64 ホルダ
 65 回転機構
 66 真空ポンプ
 100 放射線画像検出装置
 201 出力基板
 202 画像信号出力層
 203 光電変換素子
 204 有機樹脂層
 205 シンチレータ層
 206 反射層
 207 耐湿保護層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Intermediate layer 3 Reflective layer 4 Protective layer 5 Scintillator layer 6 Moisture-resistant protective layer 10 Scintillator panel 61 Deposition apparatus 62 Vacuum vessel 63 Boat (filled member)
64 Holder 65 Rotating mechanism 66 Vacuum pump 100 Radiation image detection device 201 Output substrate 202 Image signal output layer 203 Photoelectric conversion element 204 Organic resin layer 205 Scintillator layer 206 Reflective layer 207 Moisture resistant protective layer
 以下、本発明とその構成要素等について詳細な説明をする。 Hereinafter, the present invention and its components will be described in detail.
 <上記手段1について>
 本発明は、放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする。
<About the above means 1>
The present invention includes a radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and the scintillator layer. A scintillator panel comprising a moisture-resistant protective layer for covering, wherein the protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 本発明においては、特に保護層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することにより、保存性に優れたシンチレータプレートが提供できる。 In the present invention, a scintillator plate having excellent storage stability can be provided by including at least one set of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more.
 (保護層)
 本発明のシンチレータパネルは、基板上に設けられた反射層と、反射層上に設けられた保護層を有し、当該保護層にガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することが必要である。
(Protective layer)
The scintillator panel of the present invention has a reflective layer provided on a substrate and a protective layer provided on the reflective layer, and at least one organic resin having a glass transition temperature of 5 ° C. or more is different from the protective layer. It is necessary to contain a set.
 ガラス転移温度が5℃以上異なる2種の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件でパネルを取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定したパネル性能を得ることができる。 By including two organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed, handling panels under harsh conditions, and long-term storage under high humidity Stable panel performance can be obtained without occurrence of cracks or the like even if the operation is performed.
 十分な保存特性が得られ、かつ光の散乱が抑えられる点から、前記保護層の厚みは0.2~5.0μmであるのが好ましく、0.5~4.0μmがより好ましく、0.7~3.5μmであるのが特に好ましい。 The thickness of the protective layer is preferably 0.2 to 5.0 μm, more preferably 0.5 to 4.0 μm, in view of obtaining sufficient storage characteristics and suppressing light scattering. It is particularly preferably 7 to 3.5 μm.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルアセタール、ポリエステル、セルロース誘導体(ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, Examples include melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like.
 なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロース、ポリイミド、ポリパラキシリレンを使用することが好ましい。 Among these, it is preferable to use polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
 本発明に係るガラス転移点の温度は、JIS C 6481の(2)DSC方により求めた値であり、示差走査熱量計を用い(DSC法)、20℃/分で昇温させる条件にて測定して得られたガラス転移温度をいう。 The temperature of the glass transition point according to the present invention is a value obtained by (2) DSC method of JIS C 6481, and is measured using a differential scanning calorimeter (DSC method) under the condition of increasing the temperature at 20 ° C./min. It refers to the glass transition temperature obtained.
 即ち、試験片を室温から20℃/分の割合で昇温させ、示差走査熱量計にて発熱量を測定し、吸熱曲線(または発熱曲線)を作成し、吸熱曲線(または発熱曲線)に2本の延長線を引き、延長線間の1/2直線と吸熱曲線の交点からガラス転移温度(Tg)を求める。 That is, the test piece is heated from room temperature at a rate of 20 ° C./min, the calorific value is measured with a differential scanning calorimeter, an endothermic curve (or exothermic curve) is created, and the endothermic curve (or exothermic curve) is 2 The extension line of the book is drawn, and the glass transition temperature (Tg) is obtained from the intersection of the 1/2 straight line between the extension lines and the endothermic curve.
 保護層に少なくとも1組含有される、2種の有機樹脂はガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two kinds of organic resins contained in at least one pair in the protective layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. -80 ° C, particularly preferably 30 ° C-70 ° C.
 特にガラス転移温度が50~100℃(より好ましくは60~90℃)である樹脂とガラス転移温度が-20℃~45℃である樹脂(より好ましくは-10℃~35℃である樹脂)を含有することが好ましい。 In particular, a resin having a glass transition temperature of 50 to 100 ° C. (more preferably 60 to 90 ° C.) and a resin having a glass transition temperature of −20 ° C. to 45 ° C. (more preferably a resin having a temperature of −10 ° C. to 35 ° C.). It is preferable to contain.
 これらの樹脂を用いる場合、ガラス転移温度が50~100℃である樹脂の保護層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 When these resins are used, the content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が-20℃~45℃である樹脂の保護層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of −20 ° C. to 45 ° C. with respect to the protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の保護層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer (total of the two types) is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の保護層に含まれる添加剤を除いた全てがこの1組の有機樹脂である。 Further, the protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the protective layer described below are all in one set. It is an organic resin.
 通常、蒸着によるシンチレータを形成するにあたっては、基板温度は150℃~250℃で実施されるが、保護層にガラス転移温度が-20℃~45℃である有機樹脂を含有しておくことで、保護層が接着層としても有効に機能するようになる。 Normally, when forming a scintillator by vapor deposition, the substrate temperature is 150 ° C. to 250 ° C., but the protective layer contains an organic resin having a glass transition temperature of −20 ° C. to 45 ° C. The protective layer effectively functions as an adhesive layer.
 保護層作製に用いる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル及びそれらの混合物を挙げることができる。 Solvents used for preparing the protective layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, toluene , Aromatic compounds such as benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester and the like Can be mentioned.
 本発明に係る保護層は、光吸収層であることが好ましく、極大吸収波長は560~650nmであることが好ましい。当該保護層は、極大吸収波長が560~650nmの範囲にあるようにするために顔料及び染料の少なくとも一方を含有することが好ましい。 The protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm. The protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
 また、当該保護層は上記有機樹脂の他に、分散剤等を含有することが好ましい。560~650nmの間に極大吸収波長を有する着色剤としては、市販のものの他、各種文献に記載されている公知のものが利用できる。 The protective layer preferably contains a dispersant and the like in addition to the organic resin. As a colorant having a maximum absorption wavelength between 560 and 650 nm, known ones described in various documents can be used in addition to commercially available ones.
 着色剤としては、560~650nmの波長範囲に吸収をもつものが好ましく、着色剤としては、紫~青の有機系もしくは無機系の着色剤が好ましく用いられる。 As the colorant, those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
 紫~青の有機系着色剤の例としては、紫色:ジオキサジン、青色:フタロシアニンブルー、インダンスレンブルーなどであり具体的には、ザボンファーストブルー3G(ヘキスト社製)、エストロールブリルブルーN-3RL(住友化学(株)製)、スミアクリルブルーF-GSL(住友化学(株)製)、D&CブルーNo.1(ナショナル・アニリン社製)、スピリットブルー(保土谷化学(株)製)、オイルブルーNo.603(オリエント(株)製)、キトンブルーA(チバ・ガイギー社製)、アイゼンカチロンブルーGLH(保土谷化学(株)製)、レイクブルーA、F、H(協和産業(株)製)、ローダリンブルー6GX(協和産業(株)製)、ブリモシアニン6GX(稲畑産業(株)製)、ブリルアシッドグリーン6BH(保土谷化学(株)製)、シアニンブルーBNRS(東洋インキ(株)製)、ライオノルブルーSL(東洋インキ(株)製)が挙げられる。 Examples of purple to blue organic colorants are purple: dioxazine, blue: phthalocyanine blue, indanthrene blue, and the like. Specifically, Zabon First Blue 3G (manufactured by Hoechst), Estrol Brill Blue N- 3RL (manufactured by Sumitomo Chemical Co., Ltd.), Sumiacryl Blue F-GSL (manufactured by Sumitomo Chemical Co., Ltd.), D & C Blue No. 1 (made by National Aniline), Spirit Blue (made by Hodogaya Chemical Co., Ltd.), Oil Blue No. 1 603 (manufactured by Orient Co., Ltd.), Kitten Blue A (manufactured by Ciba-Geigy), Eisen Cachilon Blue GLH (manufactured by Hodogaya Chemical Co., Ltd.), Lake Blue A, F, H (manufactured by Kyowa Sangyo Co., Ltd.) Rhodaline Blue 6GX (manufactured by Kyowa Sangyo Co., Ltd.), Brimocyanin 6GX (manufactured by Inabata Sangyo Co., Ltd.), Brill Acid Green 6BH (manufactured by Hodogaya Chemical Co., Ltd.), Cyanine Blue BNRS (manufactured by Toyo Ink Co., Ltd.) And Lionol Blue SL (manufactured by Toyo Ink Co., Ltd.).
 紫~青~青緑の無機系着色剤の例としては、群青、コバルトブルー、セルリアンブルー、酸化クロム、TiO-ZnO-CoO-NiO系顔料が挙げられるが、本発明はこれらに限定されない。 Examples of purple-blue-blue-green inorganic colorants include ultramarine, cobalt blue, cerulean blue, chromium oxide, and TiO 2 —ZnO—CoO—NiO pigments, but the present invention is not limited thereto.
 着色剤として、好ましいものは金属フタロシアニン系顔料である。 Preferred as the colorant is a metal phthalocyanine pigment.
 金属フタロシアニン系顔料としては、具体的には、銅フタロシアニンが挙げられる。しかし、極大吸収波長が570~650nmの範囲内にある限り、他の金属含有フタロシアニン顔料、例えば亜鉛、コバルト、鉄、ニッケル、及び他のそのような金属に基づくものも使用できる。 Specific examples of metal phthalocyanine pigments include copper phthalocyanine. However, other metal-containing phthalocyanine pigments such as those based on zinc, cobalt, iron, nickel, and other such metals can be used as long as the maximum absorption wavelength is in the range of 570 to 650 nm.
 適当なフタロシアニン系顔料は未置換でも、(例えば1つまたはそれ以上のアルキル、アルコキシ、ハロゲン例えば塩素、または他のフタロシアニン顔料に典型的な置換基で)置換されていてもよい。粗フタロシアニンは、技術的に公知のいくつかの方法のいずれかで製造できるが、好ましくは無水フタル酸、フタロニトリルまたはそれらの誘導体の、金属ドナー、窒素ドナー(例えば尿素またはフタロニトリル自体)と、好ましくは有機溶媒中随時触媒の存在下に反応させることによって製造できる。 Suitable phthalocyanine pigments may be unsubstituted or substituted (eg, with one or more alkyl, alkoxy, halogen such as chlorine, or other substituents typical of phthalocyanine pigments). The crude phthalocyanine can be prepared by any of several methods known in the art, but preferably a metal donor, nitrogen donor (eg urea or phthalonitrile itself) of phthalic anhydride, phthalonitrile or derivatives thereof, Preferably, it can be produced by reacting in an organic solvent at any time in the presence of a catalyst.
 例えばW.ハーブスト(Herbst)及びK.ハンガー(Hunger)、「工業有機顔料」[VCH出版、ニューヨーク、1993年]、418~427ページ、H.ゾリンガー(Zollinger)、「色剤化学」(VCH出版、1973年)101~104ページ、及びN.M.ピゲロー(Pigelow)及びM.A.パーキンス(Perkins)、H.A.ラブス(Lubs)編「合成染料及び顔料の化学」[ロバート(Robert)E.クリーガー(Krieger)出版、1955年]、584~587ページにおける「フタロシアニン顔料」、更に米国特許第4158572号、第4257951号、及び第5175282号、並びに英国特許第1502884号を参照。 For example, W. Herbst and K.K. Hunger, “Industrial Organic Pigments” [VCH Publishing, New York, 1993], pages 418-427, H.C. Zollinger, “Colorant Chemistry” (VCH Publishing, 1973) 101-104, and N.C. M.M. Pigerou and M.P. A. Perkins, H.C. A. Edited by Lubs, “Chemistry of Synthetic Dyes and Pigments” [Robert E. See Krieger Publication, 1955], “phthalocyanine pigments” on pages 584-587, further U.S. Pat. Nos. 4,158,572, 4,257,951, and 5,175,282, and British Patent 1502884.
 顔料は、上記有機樹脂中に分散されて用いられることが好ましい。分散剤は、用いる有機樹脂と顔料とに合わせて種々のものを用いることができる。 The pigment is preferably used dispersed in the organic resin. Various dispersants can be used according to the organic resin and the pigment to be used.
 分散剤としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。 Examples of the dispersant include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
 顔料を有機樹脂中へ分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーサー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。 As a method for dispersing the pigment in the organic resin, a known dispersion technique used in ink production or toner production can be used. Examples of the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
 本発明に係る保護層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい。 The protective layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
 (基板)
 本発明に係る基板は、放射線透過性であり、シンチレータ層を担持可能な板状体であり、各種のガラス、高分子材料、金属等を用いることができる。
(substrate)
The substrate according to the present invention is a plate that is radiolucent and can carry a scintillator layer, and various kinds of glass, polymer materials, metals, and the like can be used.
 例えば、石英、ホウ珪酸ガラス、化学的強化ガラスなどの板ガラス、サファイア、チッ化珪素、炭化珪素などのセラミック基板、シリコン、ゲルマニウム、ガリウム砒素、ガリウム燐、ガリウム窒素など半導体基板、又、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)、アルミニウムシート、鉄シート、銅シート等の金属シート或いは該金属酸化物の被覆層を有する金属シートなどを用いることができる。 For example, plate glass such as quartz, borosilicate glass, chemically strengthened glass, ceramic substrate such as sapphire, silicon nitride, silicon carbide, semiconductor substrate such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, and cellulose acetate film , Polyester film, polyethylene terephthalate film, polyamide film, polyimide film, triacetate film, polycarbonate film, polymer film (plastic film) such as carbon fiber reinforced resin sheet, metal sheet such as aluminum sheet, iron sheet, copper sheet or the metal A metal sheet having an oxide coating layer can be used.
 特に、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルム等が、ヨウ化セシウムを原材料として気相法にて柱状シンチレータを形成する場合に、好適である。 Particularly, a polymer film containing polyimide or polyethylene naphthalate is suitable for forming a columnar scintillator by a vapor phase method using cesium iodide as a raw material.
 特に基板が厚さ50~500μmの可とう性を有する高分子フィルムであることが好ましい。ここで、「可とう性を有する基板」とは、120℃での弾性率(E120)が1000~6000N/mmである基板をいい、かかる基板としてポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。 In particular, the substrate is preferably a flexible polymer film having a thickness of 50 to 500 μm. Here, the “substrate having flexibility” means a substrate having an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 , and a polymer film containing polyimide or polyethylene naphthalate as such a substrate. Is preferred.
 なお、「弾性率」とは、引張試験機を用い、JIS-C2318に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、本発明では、かかるヤング率を弾性率と定義する。 Note that the “elastic modulus” is the slope of the stress with respect to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS-C2318 and the corresponding stress have a linear relationship using a tensile tester. Is what we asked for. This is a value called Young's modulus, and in the present invention, this Young's modulus is defined as an elastic modulus.
 本発明に用いられる基板は、上記のように120℃での弾性率(E120)が1000N/mm~6000N/mmであることが好ましい。より好ましくは1200N/mm~5000N/mmである。 Substrate used in the present invention, it is preferable elastic modulus at the 120 ° C. as described above (E120) is 1000N / mm 2 ~ 6000N / mm 2. More preferably, it is 1200 N / mm 2 to 5000 N / mm 2 .
 具体的には、ポリエチレンナフタレート(E120=4100N/mm)、ポリエチレンテレフタレート(E120=1500N/mm)、ポリブチレンナフタレート(E120=1600N/mm)、ポリカーボネート(E120=1700N/mm)、シンジオタクチックポリスチレン(E120=2200N/mm)、ポリエーテルイミド(E120=1900N/mm)、ポリアリレート(E120=1700N/mm)、ポリスルホン(E120=1800N/mm)、ポリエーテルスルホン(E120=1700N/mm)等からなる高分子フィルムが挙げられる。 Specifically, polyethylene naphthalate (E120 = 4100N / mm 2) , polyethylene terephthalate (E120 = 1500N / mm 2) , polybutylene naphthalate (E120 = 1600N / mm 2) , polycarbonate (E120 = 1700N / mm 2) , Syndiotactic polystyrene (E120 = 2200 N / mm 2 ), polyetherimide (E120 = 1900 N / mm 2 ), polyarylate (E120 = 1700 N / mm 2 ), polysulfone (E120 = 1800 N / mm 2 ), polyethersulfone Examples thereof include a polymer film made of (E120 = 1700 N / mm 2 ).
 これらは単独で用いてもよく積層あるいは混合して用いてもよい。中でも、特に好ましい高分子フィルムとしては、上述のように、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。 These may be used singly or may be laminated or mixed. Among them, as a particularly preferable polymer film, a polymer film containing polyimide or polyethylene naphthalate is preferable as described above.
 (反射層)
 本発明に係る反射層は、シンチレータ層のシンチレータから発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。金属薄膜を2層以上とする場合は、下層をCrを含む層とすることが基板との接着性を向上させる点から好ましい。また、金属薄膜上にSiO、TiO等の金属酸化物からなる層をこの順に設けてさらに反射率を向上させても良い。
(Reflective layer)
The reflective layer according to the present invention is for reflecting the light emitted from the scintillator of the scintillator layer to increase the light extraction efficiency. The reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au. In particular, it is preferable to use a metal thin film made of the above elements, for example, an Ag film, an Al film, or the like. Two or more such metal thin films may be formed. When the metal thin film has two or more layers, it is preferable that the lower layer is a layer containing Cr from the viewpoint of improving the adhesion to the substrate. Further, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
 反射層は、上記のようにシンチレータ層からの光を反射すると同時に放射線透過性である。本発明に係る反射層は、放射線透過性であり、上記のように所定の光(シンチレータから発した光)を反射する金属薄膜であることが好ましい態様である。 The reflection layer reflects the light from the scintillator layer as described above, and at the same time is transparent to radiation. The reflective layer according to the present invention is preferably a metal thin film that is radiation transmissive and reflects predetermined light (light emitted from a scintillator) as described above.
 なお、反射層の厚さは、0.01~0.3μmであることが、発光光取り出し効率の観点から好ましい。 The thickness of the reflective layer is preferably 0.01 to 0.3 μm from the viewpoint of the emission light extraction efficiency.
 本発明においては、基板と保護層の間に中間層を有してもよい。中間層としては、樹脂を含有する層であることが好まし。樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルアセタール、ポリエステル、セルロース誘導体(ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロース、ポリイミド、ポリパラキシリレンを使用することが好ましい。 In the present invention, an intermediate layer may be provided between the substrate and the protective layer. The intermediate layer is preferably a layer containing a resin. Specific examples of the resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, Polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin , Phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among them, it is preferable to use polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
 中間層の厚みは1.0μm~30μmであるのが好ましく、2.0μm~25μmであるのがより好ましく、5.0μm~20μmであるのが特に好ましい。 The thickness of the intermediate layer is preferably 1.0 μm to 30 μm, more preferably 2.0 μm to 25 μm, and particularly preferably 5.0 μm to 20 μm.
 (シンチレータ層)
 シンチレータ層(「蛍光体層」ともいう。)は、放射線の照射により、蛍光を発するシンチレータから成る層である。
(Scintillator layer)
The scintillator layer (also referred to as “phosphor layer”) is a layer composed of a scintillator that emits fluorescence when irradiated with radiation.
 即ち、シンチレータとは、X線等の入射された放射線のエネルギーを吸収して、波長が300nmから800nmの電磁波、すなわち、可視光線を中心に紫外光から赤外光にわたる電磁波(光)を発光する蛍光体をいう。 That is, the scintillator absorbs energy of incident radiation such as X-rays and emits electromagnetic waves having a wavelength of 300 nm to 800 nm, that is, electromagnetic waves (light) ranging from ultraviolet light to infrared light centering on visible light. Refers to phosphor.
 シンチレータ層を形成する材料としては、種々の公知の蛍光体材料を使用することができるが、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成出来るため、光ガイド効果により結晶内での発光光の散乱が抑えられ、シンチレータ層(蛍光体層)の厚さを厚くすることが可能であることから、ヨウ化セシウム(CsI)が好ましい。 As a material for forming the scintillator layer, various known phosphor materials can be used, but the rate of change from X-ray to visible light is relatively high, and the phosphor can be easily formed into a columnar crystal structure by vapor deposition. For this reason, cesium iodide (CsI) is preferable because scattering of the emitted light in the crystal is suppressed by the light guide effect and the thickness of the scintillator layer (phosphor layer) can be increased.
 但し、CsIのみでは発光効率が低いために、各種の賦活剤が添加される。例えば、特公昭54-35060号の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば特開2001-59899号公報に開示されているようなCsIを蒸着で、インジウム(In)、タリウム(Tl)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。 However, since CsI alone has low luminous efficiency, various activators are added. For example, as shown in Japanese Examined Patent Publication No. 54-35060, a mixture of CsI and sodium iodide (NaI) at an arbitrary molar ratio can be mentioned. Further, for example, CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na CsI containing an activating substance such as) is preferred.
 また、タリウムを含有するCsIのシンチレータ層を形成するための、原材料としては、1種類以上のタリウム化合物を含む添加剤とヨウ化セシウムとが、好ましく用いられる。タリウム賦活ヨウ化セシウム(CsI:Tl)は400nmから750nmまでの広い発光波長をもつことから好ましい。 Also, as a raw material for forming a CsI scintillator layer containing thallium, an additive containing one or more kinds of thallium compounds and cesium iodide are preferably used. Thallium activated cesium iodide (CsI: Tl) is preferable because it has a broad emission wavelength from 400 nm to 750 nm.
 1種類以上のタリウム化合物を含有する添加剤のタリウム化合物としては、種々のタリウム化合物(+Iと+IIIの酸化数の化合物)を使用することができる。 As the thallium compound as an additive containing one or more kinds of thallium compounds, various thallium compounds (compounds having oxidation numbers of + I and + III) can be used.
 好ましいタリウム化合物は、臭化タリウム(TlBr)、塩化タリウム(TlCl)、又はフッ化タリウム(TlF,TlF)等である。 A preferable thallium compound is thallium bromide (TlBr), thallium chloride (TlCl), thallium fluoride (TlF, TlF 3 ), or the like.
 また、タリウム化合物の融点は、発光効率の面から、400~700℃の範囲内にあることが好ましい。なお、融点とは、常温常圧下における融点である。 The melting point of the thallium compound is preferably in the range of 400 to 700 ° C. from the viewpoint of luminous efficiency. In addition, melting | fusing point is melting | fusing point under normal temperature normal pressure.
 また、タリウム化合物の分子量は206~300の範囲内にあることが好ましい。 The molecular weight of the thallium compound is preferably in the range of 206 to 300.
 シンチレータ層において、当該添加剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して、0.001mol%~50mol%、更に0.1~10.0mol%であることが好ましい。 In the scintillator layer, the content of the additive is desirably an optimum amount according to the target performance and the like, but is 0.001 mol% to 50 mol%, more preferably 0.1 to 0.1% with respect to the content of cesium iodide. It is preferable that it is 10.0 mol%.
 なお、シンチレータ層の厚さは、100~800μmであることが好ましく、120~700μmであることが、輝度と鮮鋭性の特性をバランスよく得られる点からより好ましい。 The thickness of the scintillator layer is preferably 100 to 800 μm, and more preferably 120 to 700 μm from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
 (耐湿性保護層)
 本発明に係る耐湿性保護層は、シンチレータ層の保護を主眼とするものである。すなわち、ヨウ化セシウム(CsI)などの蛍光体は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
(Moisture resistant protective layer)
The moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
 本発明において、耐湿保護層はシンチレータ層を覆うが、シンチレータ層を覆うとは、シンチレータ層の、保護層と接する部分を除いた部分を覆うことである。即ち、シンチレータ層は、保護層と接する部分を除いて、耐湿保護層で覆われている。 In the present invention, the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the protective layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the protective layer.
 耐湿性保護層の厚さは、シンチレータ(蛍光体)層の保護性、鮮鋭性、防湿性、作業性等を考慮し、12μm以上、60μm以下が好ましく、更には20μm以上、40μm以下が好ましい。 The thickness of the moisture-resistant protective layer is preferably 12 μm or more and 60 μm or less, more preferably 20 μm or more and 40 μm or less, taking into consideration the protection, sharpness, moisture resistance, workability, etc. of the scintillator (phosphor) layer.
 耐湿性保護層としては、有機樹脂を主成分として含むことが好ましい。有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(酢酸セルロース、ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリパラキシリレン、セルロース誘導体、アクリル系樹脂、ポリウレタン、ポリイミドを使用することが好ましい。 The moisture resistant protective layer preferably contains an organic resin as a main component. Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. , Polyamide resin, polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea Examples thereof include resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
 耐湿性保護層は上記樹脂などを含む塗布液を塗布し、乾燥して設層されることが好ましく、塗布に用いる溶剤としては、前記した保護層で使用したのと同様な溶剤を使用することができる。 The moisture-resistant protective layer is preferably formed by applying a coating solution containing the above resin and drying, and the solvent used for the coating is the same as that used for the protective layer described above. Can do.
 本発明に係る耐湿性保護層は、光吸収層であることが好ましく、極大吸収波長は560~650nmであることが好ましい。当該保護層は、極大吸収波長が560~650nmの範囲にあるようにするために顔料及び染料の少なくとも一方を含有することが好ましい。 The moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm. The protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
 また、耐湿性保護層は上記有機樹脂の他に、分散剤等を含有することが好ましい。 The moisture-resistant protective layer preferably contains a dispersant and the like in addition to the organic resin.
 本発明において好ましく使用できる560~650nmの間に極大吸収波長を有する着色剤としては、市販のものの他、各種文献に記載されている公知のものが利用できる。着色剤としては、560~650nmの波長範囲に吸収をもつものが好ましく、着色剤としては、紫~青の有機系もしくは無機系の着色剤が好ましく用いられる。 As the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones. As the colorant, those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
 紫~青の有機系着色剤の例としては、前記した保護層に使用するものと同様な着色剤を使用することができる。 As examples of purple to blue organic colorants, the same colorants as those used for the protective layer described above can be used.
 着色剤として最も好ましいものは金属フタロシアニン系顔料である。 The most preferable colorant is a metal phthalocyanine pigment.
 金属フタロシアニン系顔料としては、具体的には、銅フタロシアニンが挙げられ、前記した保護層中で使用する着色剤と同様な着色剤を使用することができる。 Specific examples of the metal phthalocyanine pigment include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
 顔料は、上記有機樹脂中に分散されて用いられることが好ましい。分散剤は、用いる有機樹脂と顔料とに合わせて種々のものを用いることができる。 The pigment is preferably used dispersed in the organic resin. Various dispersants can be used according to the organic resin and the pigment to be used.
 分散剤としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。 Examples of the dispersant include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
 顔料を有機樹脂中へ分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーサー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。 As a method for dispersing the pigment in the organic resin, a known dispersion technique used in ink production or toner production can be used. Examples of the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
 本発明に係る耐湿性保護層は、上記のように塗布、乾燥して、形成することが好ましいが、CVD法等の気相堆積法を用いて形成することもできる。 The moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
 また、ヘイズ率が、鮮鋭性、放射線画像ムラ、製造安定性、作業性等を考慮し、3%以上40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、日本電色工業株式会社NDH 5000Wにより測定した値を示す。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。 The haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like. A haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W. The required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
 耐湿性保護層の光透過率は、光電変換効率、シンチレータ発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%~70%が好ましい。 The light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
 耐湿性保護層の透湿度は、シンチレータ層の保護性、潮解性等を考慮し50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m・day(40℃・90%RH)以上、50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m・day(40℃・90%RH)以上、10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。 The moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 · day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 · day (40 ° C./90% RH) or less is industrial. Since it is difficult to obtain, it is substantially 0.01 g / m 2 · day (40 ° C./90% RH) or more, 50 g / m 2 · day (40 ° C./90% RH) (according to JIS Z0208). Measurement) is preferably 0.1 g / m 2 · day (40 ° C./90% RH) or more and 10 g / m 2 · day (40 ° C./90% RH) (measured according to JIS Z0208) or less. preferable.
 <上記手段2について>
 本発明は、放射線透過性の基板と、該基板上に設けられた中間層と、該中間層上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該中間層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする。
<About the above means 2>
The present invention includes a radiation transmissive substrate, an intermediate layer provided on the substrate, a reflective layer provided on the intermediate layer, a protective layer provided on the reflective layer, and the protective layer. In the scintillator panel provided with a scintillator layer provided on and a moisture-resistant protective layer covering the scintillator layer, the intermediate layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more It is characterized by.
 本発明においては、特に中間層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することにより、保存性に優れたシンチレータプレートが提供できる。 In the present invention, a scintillator plate having excellent storage stability can be provided by including at least one pair of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more.
 <中間層>
 本発明に係る中間層は、基板と反射層の間に設けられた層であり、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することが必要である。
<Intermediate layer>
The intermediate layer according to the present invention is a layer provided between the substrate and the reflective layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 ガラス転移温度が5℃以上異なる2種以上の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件でパネルを取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定したパネル性能を得ることができる。 By including two or more organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed. Panels can be handled under severe conditions and stored for a long time under high humidity. Even if it performs, the generation | occurrence | production of a crack etc. does not occur and the stable panel performance can be obtained.
 十分な保存特性が得られ、かつ光の散乱が抑えられる点から、前記中間層の厚みは1.0μm~30μmであるのが好ましく、2.0μm~25μmであるのがより好ましく、5.0μm~20μmであるのが特に好ましい。 The intermediate layer preferably has a thickness of 1.0 μm to 30 μm, more preferably 2.0 μm to 25 μm, and more preferably 5.0 μm from the viewpoint that sufficient storage characteristics can be obtained and light scattering can be suppressed. It is particularly preferable that the thickness is ˜20 μm.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルアセタール、ポリエステル、セルロース誘導体(ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロース、ポリイミド、ポリパラキシリレンを使用することが好ましい。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, Examples include melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among them, it is preferable to use polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
 中間層に少なくとも1組含有される、2種の有機樹脂は、各々ガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two kinds of organic resins contained in at least one set in the intermediate layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably It is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
 特にガラス転移温度が50~100℃(より好ましくは60~90℃)である樹脂とガラス転移温度が-20℃~45℃である樹脂(より好ましくは-10℃~35℃である樹脂)を含有することが好ましい。 In particular, a resin having a glass transition temperature of 50 to 100 ° C. (more preferably 60 to 90 ° C.) and a resin having a glass transition temperature of −20 ° C. to 45 ° C. (more preferably a resin having a temperature of −10 ° C. to 35 ° C.). It is preferable to contain.
 ガラス転移温度が50~100℃である樹脂の中間層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 The content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the intermediate layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が-20℃~45℃である樹脂の中間層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of −20 ° C. to 45 ° C. with respect to the intermediate layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の中間層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content of the two kinds of organic resins having different glass transition temperatures of 5 ° C. or more with respect to the intermediate layer (total of the two kinds) is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、中間層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の中間層に含まれる添加剤を除いた全てがこの1組であり。 Further, the intermediate layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the following intermediate layer are the one set. It is.
 通常、蒸着によるシンチレータを形成するにあたっては、基板温度は150℃~250℃で実施されるが、中間層にガラス転移温度が-20℃~45℃である有機樹脂を含有しておくことで、保護層が接着層としても有効に機能するようになる。 Normally, when forming a scintillator by vapor deposition, the substrate temperature is 150 ° C. to 250 ° C., but by including an organic resin having a glass transition temperature of −20 ° C. to 45 ° C. in the intermediate layer, The protective layer effectively functions as an adhesive layer.
 中間層作製に用いる溶剤としては、保護層作製に用いる溶剤と同様な溶剤を用いることができる。 As the solvent used for preparing the intermediate layer, a solvent similar to the solvent used for preparing the protective layer can be used.
 本発明に係る中間層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい態様である。 The intermediate layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
 本発明に係る基板、反射層、シンチレータ、耐湿保護層としては、上記の手段1に用いられるものと同様のものを用いることができる。 As the substrate, the reflective layer, the scintillator, and the moisture-resistant protective layer according to the present invention, those similar to those used in the above means 1 can be used.
 <上記手段3について>
 本発明は、放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とする。
<About the above means 3>
The present invention includes a radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and the scintillator layer. A scintillator panel comprising a covering moisture-resistant protective layer, wherein the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 μm. And
 本発明では、特に耐湿保護層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、耐湿保護層の膜厚を12~60μmとすることにより、保存性に優れたシンチレータプレートが提供できる。 In the present invention, the scintillator having excellent storability, particularly when the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and the film thickness of the moisture-resistant protective layer is 12 to 60 μm. Plates can be provided.
 (耐湿性保護層)
 本発明に係る耐湿性保護層は、シンチレータ層の保護を主眼とするものである。すなわち、ヨウ化セシウム(CsI)などの蛍光体は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
(Moisture resistant protective layer)
The moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
 本発明において、耐湿保護層はシンチレータ層を覆うが、シンチレータ層を覆うとは、シンチレータ層の、保護層と接する部分を除いた部分を覆うことである。即ち、シンチレータ層は、保護層と接する部分を除いて、耐湿保護層で覆われている。 In the present invention, the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the protective layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the protective layer.
 本発明に係る耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、耐湿保護層の膜厚が12~60μmであることが必要である。 The moisture-resistant protective layer according to the present invention needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, and the moisture-resistant protective layer needs to have a thickness of 12 to 60 μm.
 ガラス転移温度が5℃以上異なる2種以上の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件でパネルの取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定したパネル性能を得ることができる。 By including two or more organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed. The panel can be handled under severe conditions and stored for a long time under high humidity. Even if it performs, the generation | occurrence | production of a crack etc. does not occur and the stable panel performance can be obtained.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(酢酸セルロース、ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリパラキシリレン、セルロース誘導体、アクリル系樹脂、ポリウレタン、ポリイミドを使用することが好ましい。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, Examples include urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
 耐湿保護層に少なくとも1組含有される、2種の有機樹脂はガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two kinds of organic resins contained in at least one set in the moisture-resistant protective layer must have different glass transition temperatures of 5 ° C. or more, but the difference in glass transition temperatures is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. C. to 80.degree. C., particularly preferably 30.degree. C. to 70.degree.
 特にガラス転移温度が140~350℃(より好ましくは150~300℃)である樹脂とガラス転移温度が60℃~135℃である樹脂(より好ましくは80℃~120℃である樹脂)を含有することが好ましい。 In particular, it contains a resin having a glass transition temperature of 140 to 350 ° C. (more preferably 150 to 300 ° C.) and a resin having a glass transition temperature of 60 to 135 ° C. (more preferably a resin having a temperature of 80 to 120 ° C.). It is preferable.
 これらの樹脂を用いる場合、ガラス転移温度が140~350℃である樹脂の耐湿保護層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 When these resins are used, the content of the resin having a glass transition temperature of 140 to 350 ° C. with respect to the moisture-resistant protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が60℃~135℃である樹脂の耐湿保護層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of 60 ° C. to 135 ° C. with respect to the moisture-resistant protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の保護層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer (total of the two types) is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の耐湿保護層に含まれる添加剤を除いた全てがこの1組であり。 In addition, the moisture-resistant protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the moisture-resistant protective layer described below are used. One set.
 耐湿性保護層は、耐湿性保護層用の塗布液を塗布し、乾燥して形成することが好ましく、用いる溶剤としては、前記した保護層で使用したのと同様な溶剤を使用することができる。 The moisture-resistant protective layer is preferably formed by applying and drying a coating solution for the moisture-resistant protective layer, and the solvent used can be the same solvent as used in the protective layer described above. .
 本発明に係る耐湿性保護層は、光吸収層であることが好ましく、極大吸収波長は560~650nmであることが好ましい。当該保護層は、極大吸収波長が560~650nmの範囲にあるようにするために顔料及び染料の少なくとも一方を含有することが好ましい。 The moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm. The protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
 また、当該保護層は上記有機樹脂の他に、分散剤等を含有することが好ましい。 The protective layer preferably contains a dispersant and the like in addition to the organic resin.
 本発明において好ましく使用できる560~650nmの間に極大吸収波長を有する着色剤としては、市販のものの他、各種文献に記載されている公知のものが利用できる。着色剤としては、560~650nmの波長範囲に吸収をもつものが好ましく、着色剤としては、紫~青の有機系もしくは無機系の着色剤が好ましく用いられる。 As the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones. As the colorant, those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
 紫~青の有機系着色剤の例としては、前記した保護層に使用するものと同様な着色剤を使用することができる。 As examples of purple to blue organic colorants, the same colorants as those used for the protective layer described above can be used.
 着色剤として最も好ましいものは金属フタロシアニン系顔料である。 The most preferable colorant is a metal phthalocyanine pigment.
 金属フタロシアニン系顔料としては、具体的には、銅フタロシアニンが挙げられ、前記した保護層中で使用する着色剤と同様な着色剤を使用することができる。 Specific examples of the metal phthalocyanine pigment include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
 顔料は、上記有機樹脂中に分散されて用いられることが好ましい。分散剤は、用いる有機樹脂と顔料とに合わせて種々のものを用いることができる。 The pigment is preferably used dispersed in the organic resin. Various dispersants can be used according to the organic resin and the pigment to be used.
 分散剤としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。 Examples of the dispersant include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
 顔料を有機樹脂中へ分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーサー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。 As a method for dispersing the pigment in the organic resin, a known dispersion technique used in ink production or toner production can be used. Examples of the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
 本発明に係る耐湿性保護層は、上記のように塗布、乾燥して形成することが好ましいが、CVD法等の気相堆積法を用いて形成することもできる。 The moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
 また、ヘイズ率が、鮮鋭性、放射線画像ムラ、製造安定性、作業性等を考慮し、3%以上40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、日本電色工業株式会社NDH 5000Wにより測定した値を示す。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。 The haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like. A haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W. The required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
 耐湿性保護層の光透過率は、光電変換効率、シンチレータ発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%~70%が好ましい。 The light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
 耐湿性保護層の透湿度は、シンチレータ層の保護性、潮解性等を考慮し50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m・day(40℃・90%RH)以上、50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m・day(40℃・90%RH)以上、10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。 The moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 · day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 · day (40 ° C./90% RH) or less is industrial. Since it is difficult to obtain, it is substantially 0.01 g / m 2 · day (40 ° C./90% RH) or more, 50 g / m 2 · day (40 ° C./90% RH) (according to JIS Z0208). Measurement) is preferably 0.1 g / m 2 · day (40 ° C./90% RH) or more and 10 g / m 2 · day (40 ° C./90% RH) (measured according to JIS Z0208) or less. preferable.
 本発明に係る、耐湿保護層の膜厚は、保存性の面から、12~60μmであることが必要であるが、特に20~60μmであることが好ましい。 The film thickness of the moisture-resistant protective layer according to the present invention is required to be 12 to 60 μm from the viewpoint of storage stability, but is particularly preferably 20 to 60 μm.
 本発明においては、基板と保護層の間に中間層を有してもよい。中間層に用いられる樹脂としては、上記の手段1に記載のものと同様のものを用いることができる。 In the present invention, an intermediate layer may be provided between the substrate and the protective layer. As the resin used for the intermediate layer, the same resin as described in the above means 1 can be used.
 本発明に係る、基板、反射層、シンチレータ層は、上記の手段1に用いられるものと同様のものを、保護層は、上記の手段2に記載のものと同様のものを用いることができる。 The substrate, the reflective layer, and the scintillator layer according to the present invention can be the same as those used in the above means 1, and the protective layer can be the same as that described in the above means 2.
 <上記手段4について>
 本発明は、出力基板上に形成された光電変換素子と、該光電変換素子上に設けられた有機樹脂層と、該有機樹脂層上に設けられたシンチレータ層と、を備えた放射線画像検出器(「放射線検出装置」ともいう。)において、該有機樹脂層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする。
<About the above means 4>
The present invention relates to a radiation image detector comprising a photoelectric conversion element formed on an output substrate, an organic resin layer provided on the photoelectric conversion element, and a scintillator layer provided on the organic resin layer. (Also referred to as “radiation detector”), the organic resin layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 本発明においては、特に有機樹脂層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することにより、保存性に優れた放射線画像検出器が提供できる。 In the present invention, in particular, when the organic resin layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, a radiation image detector excellent in storage stability can be provided.
 <有機樹脂層>
 本発明に係る有機樹脂層は、出力基板とシンチレータ層の間に設けられた層であり、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することが必要である。
<Organic resin layer>
The organic resin layer according to the present invention is a layer provided between the output substrate and the scintillator layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 ガラス転移温度が5℃以上異なる2種以上の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件で放射線画像検出器を取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定した性能を得ることができる。 By including two or more organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
 十分な保存特性が得られ、かつ光の散乱が抑えられる点から、前記有機樹脂層の厚みは1.0μm~50μmであるのが好ましく、2.0μm~40μmであるのがより好ましく、5.0μm~30μmであるのが特に好ましい。 4. The thickness of the organic resin layer is preferably 1.0 μm to 50 μm, more preferably 2.0 μm to 40 μm, from the viewpoint that sufficient storage characteristics are obtained and light scattering is suppressed. A thickness of 0 to 30 μm is particularly preferable.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルアセタール、ポリエステル、セルロース誘導体(ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロース、ポリイミド、ポリパラキシリレンを使用することが好ましい。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, Examples include melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among them, it is preferable to use polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
 有機樹脂層に少なくとも1組含有される、2種の有機樹脂は、各々ガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two organic resins contained in at least one set in the organic resin layer are required to have a glass transition temperature different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably Is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
 特にガラス転移温度が50~100℃(より好ましくは60~90℃)である樹脂とガラス転移温度が-20℃~45℃である樹脂(より好ましくは-10℃~35℃である樹脂)を含有することが好ましい。 In particular, a resin having a glass transition temperature of 50 to 100 ° C. (more preferably 60 to 90 ° C.) and a resin having a glass transition temperature of −20 ° C. to 45 ° C. (more preferably a resin having a temperature of −10 ° C. to 35 ° C.). It is preferable to contain.
 ガラス転移温度が50~100℃である樹脂の有機樹脂層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 The content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the organic resin layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が-20℃~45℃である樹脂の有機樹脂層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of −20 ° C. to 45 ° C. with respect to the organic resin layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の有機樹脂層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content (in total of the two types) of two types of organic resins having glass transition temperatures different by 5 ° C. or more is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass. .
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、有機樹脂層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の有機樹脂層に含まれる添加剤を除いた全てがこの1組である。 In addition, the organic resin layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all of the organic resin layers except for the additives contained in the organic resin layer are One set.
 通常、蒸着によるシンチレータを形成するにあたっては、出力基板温度は150℃~250℃で実施されるが、有機樹脂層にガラス転移温度が-20℃~45℃である有機樹脂を含有しておくことで、保護層が接着層としても有効に機能するようになる。 Usually, when forming a scintillator by vapor deposition, the output substrate temperature is 150 ° C. to 250 ° C., but the organic resin layer should contain an organic resin having a glass transition temperature of −20 ° C. to 45 ° C. Thus, the protective layer effectively functions as an adhesive layer.
 有機樹脂層作製に用いる溶剤としては、保護層作製に用いる溶剤と同様な溶剤を用いることができる。 As the solvent used for preparing the organic resin layer, a solvent similar to the solvent used for preparing the protective layer can be used.
 本発明に係る有機樹脂層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい態様である。 The organic resin layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
 本発明に係る出力基板、シンチレータ層としては、上記の手段1に用いられる基板、シンチレータ層ものと同様のものを用いることができる。 As the output substrate and scintillator layer according to the present invention, the same substrate and scintillator layer used in the above-mentioned means 1 can be used.
 <上記手段5について>
 本発明は、出力基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた反射層と、を備えた放射線画像検出器において、該反射層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする本発明においては、特に反射層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することにより、保存性に優れた放射線画像検出器が提供できる。
<About the above means 5>
The present invention relates to a radiation image detector comprising a photoelectric conversion element formed on an output substrate, a scintillator layer provided on the photoelectric conversion element, and a reflective layer provided on the scintillator layer. In the present invention, wherein the reflective layer contains at least one set of two kinds of organic resins having different glass transition temperatures of 5 ° C. or more, in particular, the reflective layer has two kinds of organics having glass transition temperatures of 5 ° C. or more different. By containing at least one set of resins, a radiation image detector excellent in storage stability can be provided.
 <反射層>
 本発明に係る反射層は、シンチレータ層上に設けられた層であり、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することが必要である。
<Reflective layer>
The reflective layer according to the present invention is a layer provided on the scintillator layer, and needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
 ガラス転移温度が5℃以上異なる2種以上の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件で放射線画像検出器を取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定した性能を得ることができる。 By including two or more organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
 十分な保存特性が得られ、かつ光の散乱が抑えられる点から、前記反射層の厚みは50~800μmであるのが好ましく、50~500μmであるのがより好ましく、70~300μmであるのが特に好ましい。 The thickness of the reflective layer is preferably 50 to 800 μm, more preferably 50 to 500 μm, and more preferably 70 to 300 μm from the viewpoint that sufficient storage characteristics can be obtained and light scattering can be suppressed. Particularly preferred.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルアセタール、ポリエステル、セルロース誘導体(ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロース、ポリイミド、ポリパラキシリレンを使用することが好ましい。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl acetal, polyester, cellulose derivative (nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, Examples include melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among them, it is preferable to use polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose, polyimide, and polyparaxylylene.
 反射層に少なくとも1組含有される、2種の有機樹脂は、各々ガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two kinds of organic resins contained in at least one pair in the reflective layer are required to have glass transition temperatures different by 5 ° C. or more, but the difference in glass transition temperature is preferably 5 ° C. to 80 ° C., more preferably It is 20 ° C. to 80 ° C., particularly preferably 30 ° C. to 70 ° C.
 特にガラス転移温度が50~100℃(より好ましくは60~90℃)である樹脂とガラス転移温度が-20℃~45℃である樹脂(より好ましくは-10℃~35℃である樹脂)を含有することが好ましい。 In particular, a resin having a glass transition temperature of 50 to 100 ° C. (more preferably 60 to 90 ° C.) and a resin having a glass transition temperature of −20 ° C. to 45 ° C. (more preferably a resin having a temperature of −10 ° C. to 35 ° C.). It is preferable to contain.
 ガラス転移温度が50~100℃である樹脂の反射層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 The content of the resin having a glass transition temperature of 50 to 100 ° C. with respect to the reflective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が-20℃~45℃である樹脂の反射層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of −20 ° C. to 45 ° C. with respect to the reflective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の反射層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the reflective layer (total of the two types) is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、反射層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の反射層に含まれる添加剤を除いた全てがこの1組である。 Further, the reflective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the reflective layer described below are included in this set. It is.
 反射層に用いるフィラーとしては白色顔料が好ましい。白色顔料としては酸化チタン、酸化亜鉛、酸化アルミニウム、炭酸カルシウム、硫酸バリウム等が挙げられ、中でも酸化チタン、炭酸カルシウムが好ましい。 As the filler used for the reflective layer, a white pigment is preferable. Examples of white pigments include titanium oxide, zinc oxide, aluminum oxide, calcium carbonate, barium sulfate, and titanium oxide and calcium carbonate are preferred.
 反射層作製に用いる溶剤としては、保護層作製に用いる溶剤と同様な溶剤を用いることができる。 As the solvent used for preparing the reflective layer, a solvent similar to the solvent used for preparing the protective layer can be used.
 本発明に係る反射層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい態様である。 The reflective layer according to the present invention is preferably formed by applying and drying a resin dissolved in a solvent.
 本発明に係る出力基板、シンチレータ層としては、上記の手段1に用いられるものと同様のものを用いることができる。 As the output substrate and scintillator layer according to the present invention, those similar to those used in the above means 1 can be used.
 <上記手段6について>
 本発明は、出力基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた耐湿保護層と、を備えた放射線画像検出器において、該耐湿保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とする。
<About the above means 6>
The present invention relates to a radiation image detector comprising a photoelectric conversion element formed on an output substrate, a scintillator layer provided on the photoelectric conversion element, and a moisture-resistant protective layer provided on the scintillator layer. The moisture-resistant protective layer is characterized in that it contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 μm.
 本発明では、特に耐湿保護層がガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、耐湿保護層の膜厚を12~60μmとすることにより、保存性に優れたシンチレータプレートが提供できる。 In the present invention, the scintillator having excellent storability, particularly when the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and the film thickness of the moisture-resistant protective layer is 12 to 60 μm. Plates can be provided.
 (耐湿性保護層)
 本発明に係る耐湿性保護層は、シンチレータ層の保護を主眼とするものである。すなわち、ヨウ化セシウム(CsI)などの蛍光体は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
(Moisture resistant protective layer)
The moisture-resistant protective layer according to the present invention focuses on protecting the scintillator layer. That is, phosphors such as cesium iodide (CsI) have high hygroscopicity, and when exposed to moisture, they absorb water vapor in the air and deliquesce, so the main purpose is to prevent this.
 本発明において、耐湿保護層はシンチレータ層を覆うが、シンチレータ層を覆うとは、シンチレータ層の、有機樹脂層と接する部分を除いた部分を覆うことである。即ち、シンチレータ層は、有機樹脂層と接する部分を除いて、耐湿保護層で覆われている。但しシンチレータ層の断面は耐湿保護層で覆われていても、覆われていなくても良い。 In the present invention, the moisture-resistant protective layer covers the scintillator layer, but covering the scintillator layer means covering a portion of the scintillator layer excluding a portion in contact with the organic resin layer. That is, the scintillator layer is covered with the moisture-resistant protective layer except for the portion in contact with the organic resin layer. However, the cross section of the scintillator layer may or may not be covered with a moisture-resistant protective layer.
 本発明に係る耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、耐湿保護層の膜厚が12~60μmであることが必要である。 The moisture-resistant protective layer according to the present invention needs to contain at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more, and the moisture-resistant protective layer needs to have a thickness of 12 to 60 μm.
 ガラス転移温度が5℃以上異なる2種以上の有機樹脂が含まれることでヤング率が高くかつ柔軟性もある塗膜が形成され、厳しい条件で放射線画像検出器を取り扱ったり、高湿下で長期間の保存を行ってもクラック等の発生がなく安定した性能を得ることができる。 By including two or more organic resins with glass transition temperatures of 5 ° C or higher, a coating film with high Young's modulus and flexibility can be formed, handling radiation image detectors under harsh conditions, and long under high humidity Even if the period is preserved, cracks and the like are not generated, and stable performance can be obtained.
 前記有機樹脂としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(酢酸セルロース、ニトロセルロース等)、ポリイミド、ポリアミド、ポリパラキシリレン、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリパラキシリレン、セルロース誘導体、アクリル系樹脂、ポリウレタン、ポリイミドを使用することが好ましい。 Specific examples of the organic resin include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl butyral, polyester, cellulose derivatives (cellulose acetate, nitrocellulose, etc.), polyimide, polyamide, polyparaxylylene, styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, Examples include urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like. Of these, polyparaxylylene, cellulose derivatives, acrylic resins, polyurethane, and polyimide are preferably used.
 耐湿保護層に少なくとも1組含有される、2種の有機樹脂はガラス転移温度が5℃以上異なることが必要であるが、ガラス転移温度の差は好ましくは5℃~80℃、より好ましくは20℃~80℃、特に好ましくは30℃~70℃である。 The two kinds of organic resins contained in at least one set in the moisture-resistant protective layer must have different glass transition temperatures of 5 ° C. or more, but the difference in glass transition temperatures is preferably 5 ° C. to 80 ° C., more preferably 20 ° C. C. to 80.degree. C., particularly preferably 30.degree. C. to 70.degree.
 特にガラス転移温度が140~350℃(より好ましくは150~300℃)である樹脂とガラス転移温度が60℃~135℃である樹脂(より好ましくは80℃~120℃である樹脂)を含有することが好ましい。 In particular, it contains a resin having a glass transition temperature of 140 to 350 ° C. (more preferably 150 to 300 ° C.) and a resin having a glass transition temperature of 60 to 135 ° C. (more preferably a resin having a temperature of 80 to 120 ° C.). It is preferable.
 これらの樹脂を用いる場合、ガラス転移温度が140~350℃である樹脂の耐湿保護層に対する含有量としては、30質量%~95質量%が好ましく、特に50質量%~85質量%が好ましい。 When these resins are used, the content of the resin having a glass transition temperature of 140 to 350 ° C. with respect to the moisture-resistant protective layer is preferably 30% by mass to 95% by mass, and particularly preferably 50% by mass to 85% by mass.
 また、ガラス転移温度が60℃~135℃である樹脂の耐湿保護層に対する含有量としては、5質量%~70質量%が好ましく、特に15質量%~50質量%が好ましい。 The content of the resin having a glass transition temperature of 60 ° C. to 135 ° C. with respect to the moisture-resistant protective layer is preferably 5% by mass to 70% by mass, and particularly preferably 15% by mass to 50% by mass.
 ガラス転移温度が5℃以上異なる2種の有機樹脂の保護層に対する含有量としては(2種の合計で)、80質量%~100質量%が好ましく、特に90質量%~100質量%が好ましい。 The content of the two types of organic resins having a glass transition temperature of 5 ° C. or more with respect to the protective layer (total of the two types) is preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
 ガラス転移温度が50~100℃である樹脂とガラス転移温度が-20℃~45℃である樹脂の使用比率(質量%)は30:70~90:10であるのが好ましく、50:50~80:20であるのがより好ましい。 The use ratio (% by mass) of the resin having a glass transition temperature of 50 to 100 ° C. and the resin having a glass transition temperature of −20 to 45 ° C. is preferably 30:70 to 90:10, and 50:50 to More preferably, it is 80:20.
 また、耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を1組含有することが好ましく、この場合には、下記の耐湿保護層に含まれる添加剤を除いた全てがこの1組である。 In addition, the moisture-resistant protective layer preferably contains one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. In this case, all except for the additives contained in the moisture-resistant protective layer described below are used. One set.
 耐湿性保護層は、耐湿性保護層用の塗布液を塗布し、乾燥して形成することが好ましく、用いる溶剤としては、前記した保護層で使用したのと同様な溶剤を使用することができる。 The moisture-resistant protective layer is preferably formed by applying and drying a coating solution for the moisture-resistant protective layer, and the solvent used can be the same solvent as used in the protective layer described above. .
 本発明に係る耐湿性保護層は、光吸収層であることが好ましく、極大吸収波長は560~650nmであることが好ましい。当該保護層は、極大吸収波長が560~650nmの範囲にあるようにするために顔料及び染料の少なくとも一方を含有することが好ましい。 The moisture-resistant protective layer according to the present invention is preferably a light absorption layer, and the maximum absorption wavelength is preferably 560 to 650 nm. The protective layer preferably contains at least one of a pigment and a dye so that the maximum absorption wavelength is in the range of 560 to 650 nm.
 また、当該保護層は上記有機樹脂の他に、分散剤等を含有することが好ましい。 The protective layer preferably contains a dispersant and the like in addition to the organic resin.
 本発明において好ましく使用できる560~650nmの間に極大吸収波長を有する着色剤としては、市販のものの他、各種文献に記載されている公知のものが利用できる。着色剤としては、560~650nmの波長範囲に吸収をもつものが好ましく、着色剤としては、紫~青の有機系もしくは無機系の着色剤が好ましく用いられる。 As the colorant having a maximum absorption wavelength between 560 and 650 nm that can be preferably used in the present invention, known ones described in various documents can be used in addition to commercially available ones. As the colorant, those having absorption in the wavelength range of 560 to 650 nm are preferable, and as the colorant, purple to blue organic or inorganic colorants are preferably used.
 紫~青の有機系着色剤の例としては、前記した保護層に使用するものと同様な着色剤を使用することができる。 As examples of purple to blue organic colorants, the same colorants as those used for the protective layer described above can be used.
 着色剤として最も好ましいものは金属フタロシアニン系顔料である。 The most preferable colorant is a metal phthalocyanine pigment.
 金属フタロシアニン系顔料としては、具体的には、銅フタロシアニンが挙げられ、前記した保護層中で使用する着色剤と同様な着色剤を使用することができる。 Specific examples of the metal phthalocyanine pigment include copper phthalocyanine, and the same colorant as that used in the protective layer can be used.
 顔料は、上記有機樹脂中に分散されて用いられることが好ましい。分散剤は、用いる有機樹脂と顔料とに合わせて種々のものを用いることができる。 The pigment is preferably used dispersed in the organic resin. Various dispersants can be used according to the organic resin and the pigment to be used.
 分散剤としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。 Examples of the dispersant include phthalic acid, stearic acid, caproic acid, and lipophilic surfactant.
 顔料を有機樹脂中へ分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーサー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。 As a method for dispersing the pigment in the organic resin, a known dispersion technique used in ink production or toner production can be used. Examples of the disperser include a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Application Technology" (CMC Publishing, 1986).
 本発明に係る耐湿性保護層は、上記のように塗布、乾燥して形成することが好ましいが、CVD法等の気相堆積法を用いて形成することもできる。 The moisture-resistant protective layer according to the present invention is preferably formed by coating and drying as described above, but can also be formed by using a vapor deposition method such as a CVD method.
 また、ヘイズ率が、鮮鋭性、放射線画像ムラ、製造安定性、作業性等を考慮し、3%以上40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、日本電色工業株式会社NDH 5000Wにより測定した値を示す。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。 The haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like. A haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W. The required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
 耐湿性保護層の光透過率は、光電変換効率、シンチレータ発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%~70%が好ましい。 The light transmittance of the moisture-resistant protective layer is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, scintillator emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
 耐湿性保護層の透湿度は、シンチレータ層の保護性、潮解性等を考慮し50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m・day(40℃・90%RH)以上、50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m・day(40℃・90%RH)以上、10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。 The moisture permeability of the moisture-resistant protective layer is preferably 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g in consideration of the protection and deliquescence properties of the scintillator layer. / M 2 · day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film with a moisture permeability of 0.01 g / m 2 · day (40 ° C./90% RH) or less is industrial. Since it is difficult to obtain, it is substantially 0.01 g / m 2 · day (40 ° C./90% RH) or more, 50 g / m 2 · day (40 ° C./90% RH) (according to JIS Z0208). Measurement) is preferably 0.1 g / m 2 · day (40 ° C./90% RH) or more and 10 g / m 2 · day (40 ° C./90% RH) (measured according to JIS Z0208) or less. preferable.
 本発明に係る、耐湿保護層の膜厚は、保存性の面から、12~60μmであることが必要であるが、特に20~60μmであることが好ましい。 The film thickness of the moisture-resistant protective layer according to the present invention is required to be 12 to 60 μm from the viewpoint of storage stability, but is particularly preferably 20 to 60 μm.
 本発明においては、出力基板とシンチレータ層の間に有機樹脂層を有してもよい。有機樹脂層に用いられる樹脂としては、上記の手段4に記載のものと同様のものを用いることができる。 In the present invention, an organic resin layer may be provided between the output substrate and the scintillator layer. As the resin used for the organic resin layer, the same resin as described in the above means 4 can be used.
 本発明に係る、出力基板、シンチレータ層は、上記の手段1に用いられる基板、シンチレータ層のものと同様のものを用いることができる。 As the output substrate and scintillator layer according to the present invention, the same substrate as that used in the above means 1 and the scintillator layer can be used.
 (シンチレータパネル及び放射線画像検出器の作製方法)
 本発明のシンチレータパネル及び放射線画像検出器を作製する、作製方法の典型的例について、図を参照しながら説明する。なお、図1は、放射線用シンチレータパネル10の概略構成を示す断面図である。図2は、放射線用シンチレータパネル10の拡大断面図である。図3は、蒸着装置61の概略構成を示す図面である。
(Method for producing scintillator panel and radiation image detector)
A typical example of a production method for producing the scintillator panel and the radiation image detector of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of the radiation scintillator panel 10. FIG. 2 is an enlarged cross-sectional view of the radiation scintillator panel 10. FIG. 3 is a diagram showing a schematic configuration of the vapor deposition apparatus 61.
 〈蒸着装置〉
 図3に示す通り、蒸着装置61は箱状の真空容器62を有しており、真空容器62の内部には真空蒸着用のボート63が配されている。ボート63は蒸着源の被充填部材であり、当該ボート63には電極が接続されている。当該電極を通じてボート63に電流が流れると、ボート63がジュール熱で発熱するようになっている。シンチレータパネル10の製造時においては、ヨウ化セシウムと賦活剤化合物とを含む混合物がボート63に充填され、そのボート63に電流が流れることで、上記混合物を加熱・蒸発させることができるようになっている。
<Vapor deposition equipment>
As shown in FIG. 3, the vapor deposition apparatus 61 has a box-shaped vacuum vessel 62, and a vacuum vapor deposition boat 63 is disposed inside the vacuum vessel 62. The boat 63 is a member to be filled as an evaporation source, and an electrode is connected to the boat 63. When a current flows through the electrode to the boat 63, the boat 63 generates heat due to Joule heat. At the time of manufacturing the scintillator panel 10, a mixture containing cesium iodide and an activator compound is filled in the boat 63, and an electric current flows through the boat 63, whereby the mixture can be heated and evaporated. ing.
 なお、被充填部材として、ヒータを巻回したアルミナ製のるつぼを適用してもよいし、高融点金属製のヒータを適用してもよい。 In addition, as the member to be filled, an alumina crucible around which a heater is wound may be applied, or a refractory metal heater may be applied.
 真空容器62の内部であってボート63の直上には、予め中間層、反射層、保護層が設けられた(図示せず)基板1を保持するホルダ64が配されている。ホルダ64にはヒータ(図示略)が配されており、当該ヒータを作動させることでホルダ64に装着した基板1を加熱することができるようになっている。 A holder 64 for holding the substrate 1 (not shown) provided with an intermediate layer, a reflective layer, and a protective layer in advance is disposed inside the vacuum vessel 62 and directly above the boat 63. The holder 64 is provided with a heater (not shown), and the substrate 1 mounted on the holder 64 can be heated by operating the heater.
 ホルダ64には当該ホルダ64を回転させる回転機構65が配されている。回転機構65は、ホルダ64に接続された回転軸65aとその駆動源となるモータ(図示略)から構成されたもので、当該モータを駆動させると、回転軸65aが回転してホルダ64をボート63に対向させた状態で回転させることができるようになっている。 The holder 64 is provided with a rotation mechanism 65 that rotates the holder 64. The rotating mechanism 65 is composed of a rotating shaft 65a connected to the holder 64 and a motor (not shown) as a driving source for the rotating shaft 65. When the motor is driven, the rotating shaft 65a rotates to displace the holder 64 in the boat. It can be rotated in a state of being opposed to 63.
 蒸着装置61では、上記構成の他に、真空容器62に真空ポンプ66が配されている。真空ポンプ66は、真空容器62の内部の排気と真空容器62の内部へのガスの導入とを行うもので、当該真空ポンプ66を作動させることにより、真空容器62の内部を一定圧力のガス雰囲気下に維持することができるようになっている。 In the vapor deposition apparatus 61, in addition to the above configuration, a vacuum pump 66 is disposed in the vacuum vessel 62. The vacuum pump 66 exhausts the inside of the vacuum container 62 and introduces gas into the vacuum container 62. By operating the vacuum pump 66, the inside of the vacuum container 62 has a gas atmosphere at a constant pressure. Can be maintained below.
 〈シンチレータパネル〉
 次に、本発明の請求の範囲1~3に係るシンチレータパネル10の作製方法について説明する。
<Scintillator panel>
Next, a method for manufacturing the scintillator panel 10 according to claims 1 to 3 of the present invention will be described.
 シンチレータパネル10を作製する作製方法においては、上記で説明した蒸発装置61を好適に用いることができる。蒸発装置61を用いてシンチレータパネル10を作製する方法について説明する。 In the production method for producing the scintillator panel 10, the evaporator 61 described above can be suitably used. A method for manufacturing the scintillator panel 10 using the evaporator 61 will be described.
 《中間層の形成》
 基板1の一方の表面に中間層2を押し出し塗布により形成することができる。なお中間層の表面性やヤング率を制御するために必要に応じてマット剤やフィラーを添加しても良い。
《Formation of intermediate layer》
The intermediate layer 2 can be formed on one surface of the substrate 1 by extrusion coating. A matting agent or filler may be added as necessary to control the surface properties and Young's modulus of the intermediate layer.
 《反射層の形成》
 基板1の中間層2が設けられた面に、反射層3としての金属薄膜(Al膜、Ag膜等)をスパッタ法により形成する。また高分子フィルム上にAl膜をスパッタ蒸着したフィルムは、各種の品種が市場で流通しており、これらを使用することも可能である。
<Formation of reflective layer>
A metal thin film (Al film, Ag film, etc.) as the reflective layer 3 is formed on the surface of the substrate 1 provided with the intermediate layer 2 by sputtering. Various types of films in which an Al film is sputter-deposited on a polymer film are available on the market, and these films can also be used.
 《保護層の形成》
 保護層4は、上記の有機溶剤に着色剤及び有機樹脂を分散・溶解した組成物を塗布、乾燥して形成する。
<Formation of protective layer>
The protective layer 4 is formed by applying and drying a composition obtained by dispersing and dissolving a colorant and an organic resin in the organic solvent.
 《シンチレータ層の形成》
 上記のように、中間層2、反射層3、保護層4を設けた基板1をホルダ64に取り付けるとともに、ボート63にヨウ化セシウムとヨウ化タリウムとを含む粉末状の混合物を充填する(準備工程)。この場合、ボート63と基板1との間隔を100~1500mmに設定し、その設定値の範囲内のままで後述の蒸着工程の処理をおこなうのが好ましい。
<Formation of scintillator layer>
As described above, the substrate 1 provided with the intermediate layer 2, the reflective layer 3, and the protective layer 4 is attached to the holder 64, and the boat 63 is filled with a powdery mixture containing cesium iodide and thallium iodide (preparation) Process). In this case, it is preferable that the distance between the boat 63 and the substrate 1 is set to 100 to 1500 mm, and the later-described vapor deposition process is performed within the set value range.
 準備工程の処理を終えたら、真空ポンプ66を作動させて真空容器62の内部を排気し、真空容器62の内部を0.1Pa以下の真空雰囲気下にする(真空雰囲気形成工程)。ここでいう「真空雰囲気下」とは、100Pa以下の圧力雰囲気下のことを意味し、0.1Pa以下の圧力雰囲気下であるのが好適である。 When the preparation process is completed, the vacuum pump 66 is operated to evacuate the inside of the vacuum vessel 62, and the inside of the vacuum vessel 62 is brought to a vacuum atmosphere of 0.1 Pa or less (vacuum atmosphere forming step). Here, “under vacuum atmosphere” means under a pressure atmosphere of 100 Pa or less, and preferably under a pressure atmosphere of 0.1 Pa or less.
 その後、アルゴン等の不活性ガスを真空容器62の内部に導入し、当該真空容器62の内部を0.1Pa~5Paの真空雰囲気下に維持する。その後、ホルダ64のヒータと回転機構65のモータとを駆動させ、ホルダ64に取付け済みの基板1をボート63に対向させた状態で加熱しながら回転させる。 Thereafter, an inert gas such as argon is introduced into the vacuum vessel 62, and the inside of the vacuum vessel 62 is maintained in a vacuum atmosphere of 0.1 Pa to 5 Pa. Thereafter, the heater of the holder 64 and the motor of the rotation mechanism 65 are driven, and the substrate 1 attached to the holder 64 is rotated while being heated while facing the boat 63.
 この状態において、電極からボート63に電流を流し、ヨウ化セシウムとヨウ化タリウムとを含む混合物を700~800℃程度で所定時間加熱してその混合物を蒸発させる。 In this state, an electric current is passed from the electrode to the boat 63, and the mixture containing cesium iodide and thallium iodide is heated at about 700 to 800 ° C. for a predetermined time to evaporate the mixture.
 その結果、基板1の表面に無数の柱状結晶体5aが順次成長して所望の厚さのシンチレータ層5が形成される(蒸着工程)。これにより、本発明に係るシンチレータパネル10を製造することができる。 As a result, innumerable columnar crystals 5a are sequentially grown on the surface of the substrate 1 to form a scintillator layer 5 having a desired thickness (evaporation process). Thereby, the scintillator panel 10 according to the present invention can be manufactured.
 蒸着源を加熱する温度としては、500℃~800℃が好ましく、特に630℃~750℃が好ましい。基板温度は100℃~250℃が好ましく、特に150℃~250℃とするのが好ましい。基板温度をこの範囲とすることで、柱状結晶の形状が良好となり、輝度特性が向上する。 The temperature for heating the vapor deposition source is preferably 500 ° C. to 800 ° C., and particularly preferably 630 ° C. to 750 ° C. The substrate temperature is preferably 100 ° C. to 250 ° C., more preferably 150 ° C. to 250 ° C. By setting the substrate temperature within this range, the shape of the columnar crystal is improved and the luminance characteristics are improved.
 《耐湿保護層の形成》
 耐湿保護層6は、シンチレータ層上に上記の有機溶剤に有機樹脂を分散・溶解した組成物を塗布、乾燥して形成することが好ましい。前記組成物には必要に応じて着色剤やマット剤を添加しても良い。また支持体(PET、PEN、アラミド等)上に有機樹脂を分散・溶解した組成物を塗布、乾燥して形成した封止フィルムでシンチレータ層を封止しても良い。
<Formation of moisture-resistant protective layer>
The moisture resistant protective layer 6 is preferably formed by applying and drying a composition in which an organic resin is dispersed and dissolved in the above organic solvent on the scintillator layer. You may add a coloring agent and a mat agent to the said composition as needed. Alternatively, the scintillator layer may be sealed with a sealing film formed by applying and drying a composition in which an organic resin is dispersed and dissolved on a support (PET, PEN, aramid, etc.).
 (放射線画像検出装置)
 以下に、上記シンチレータパネル10の一適用例として、図4及び図5を参照しながら、当該シンチレータプレート10を具備した放射線画像検出装置100の構成について説明する。なお、図4は放射線画像検出装置100の概略構成を示す一部破断斜視図である。また、図5は撮像パネル51の拡大断面図である。
(Radiation image detector)
Hereinafter, as an application example of the scintillator panel 10, a configuration of the radiation image detection apparatus 100 including the scintillator plate 10 will be described with reference to FIGS. 4 and 5. FIG. 4 is a partially broken perspective view showing a schematic configuration of the radiation image detection apparatus 100. FIG. 5 is an enlarged cross-sectional view of the imaging panel 51.
 図4に示す通り、放射線画像検出装置100には、撮像パネル51、放射線画像検出装置100の動作を制御する制御部52、書き換え可能な専用メモリ(例えばフラッシュメモリ)等を用いて撮像パネル51から出力された画像信号を記憶する記憶手段であるメモリ部53、撮像パネル51を駆動して画像信号を得るために必要とされる電力を供給する電力供給手段である電源部54、等が筐体55の内部に設けられている。筐体55には必要に応じて放射線画像検出装置100から外部に通信を行うための通信用のコネクタ56、放射線画像検出装置100の動作を切り換えるための操作部57、放射線画像の撮影準備の完了やメモリ部53に所定量の画像信号が書き込まれたことを示す表示部58、等が設けられている。 As shown in FIG. 4, the radiation image detection apparatus 100 includes an imaging panel 51, a control unit 52 that controls the operation of the radiation image detection apparatus 100, a rewritable dedicated memory (for example, a flash memory), and the like. A memory unit 53 that is a storage unit that stores the output image signal, a power supply unit 54 that is a power supply unit that supplies power necessary to obtain the image signal by driving the imaging panel 51, and the like 55 is provided inside. The housing 55 includes a communication connector 56 for performing communication from the radiation image detection apparatus 100 to the outside as necessary, an operation unit 57 for switching the operation of the radiation image detection apparatus 100, and completion of preparation for radiographic image capturing. In addition, a display unit 58 indicating that a predetermined amount of image signal has been written in the memory unit 53 is provided.
 ここで、放射線画像検出装置100に電源部54を設けるとともに放射線画像の画像信号を記憶するメモリ部53を設け、コネクタ56を介して放射線画像検出装置100を着脱自在にすれば、放射線画像検出装置100を持ち運びできる可搬構造とすることができる。 Here, if the radiographic image detection apparatus 100 is provided with a power supply unit 54 and a memory unit 53 for storing an image signal of the radiographic image, and the radiographic image detection apparatus 100 is detachable via a connector 56, the radiographic image detection apparatus. It can be set as the portable structure which can carry 100.
 図5に示すように、撮像パネル51は、シンチレータパネル10と、シンチレータパネル10からの電磁波を吸収して画像信号を出力する出力基板20と、から構成されている。 As shown in FIG. 5, the imaging panel 51 includes a scintillator panel 10 and an output substrate 20 that absorbs electromagnetic waves from the scintillator panel 10 and outputs an image signal.
 シンチレータパネル10は、放射線照射面側に配置されており、入射した放射線の強度に応じた電磁波を発光するように構成されている。 The scintillator panel 10 is disposed on the radiation irradiation surface side and is configured to emit an electromagnetic wave corresponding to the intensity of incident radiation.
 出力基板20は、シンチレータパネル10の放射線照射面と反対側の面に設けられており、用シンチレータパネル10側から順に、隔膜20a、光電変換素子20b、画像信号出力層20c及び基板20dを備えている。 The output substrate 20 is provided on the surface opposite to the radiation irradiation surface of the scintillator panel 10, and includes a diaphragm 20a, a photoelectric conversion element 20b, an image signal output layer 20c, and a substrate 20d in this order from the scintillator panel 10 side. Yes.
 隔膜20aは、シンチレータパネル10と他の層を分離するためのものである。 The diaphragm 20a is for separating the scintillator panel 10 from other layers.
 光電変換素子20bは、透明電極21と、透明電極21を透過して入光した電磁波により励起されて電荷を発生する電荷発生層22と、透明電極21に対しての対極になる対電極23とから構成されており、隔膜20a側から順に透明電極21、電荷発生層22、対電極23が配置される。 The photoelectric conversion element 20 b includes a transparent electrode 21, a charge generation layer 22 that is excited by electromagnetic waves that have passed through the transparent electrode 21 to enter the light, and generates a charge, and a counter electrode 23 that is a counter electrode for the transparent electrode 21. The transparent electrode 21, the charge generation layer 22, and the counter electrode 23 are arranged in this order from the diaphragm 20a side.
 透明電極21とは、光電変換される電磁波を透過させる電極であり、例えばインジウムチンオキシド(ITO)、SnO、ZnOなどの導電性透明材料を用いて形成される。 The transparent electrode 21 is an electrode that transmits an electromagnetic wave that is photoelectrically converted, and is formed using a conductive transparent material such as indium tin oxide (ITO), SnO 2 , or ZnO.
 電荷発生層22は、透明電極21の一面側に薄膜状に形成されており、光電変換可能な化合物として光によって電荷分離する有機化合物を含有するものであり、電荷を発生し得る電子供与体及び電子受容体としての導電性化合物をそれぞれ含有している。電荷発生層22では、電磁波が入射されると、電子供与体は励起されて電子を放出し、放出された電子は電子受容体に移動して、電荷発生層22内に電荷、すなわち、正孔と電子のキャリアが発生するようになっている。 The charge generation layer 22 is formed in a thin film on one surface side of the transparent electrode 21, and contains an organic compound that separates charges by light as a compound capable of photoelectric conversion. Each of them contains a conductive compound as an electron acceptor. In the charge generation layer 22, when an electromagnetic wave is incident, the electron donor is excited to emit electrons, and the emitted electrons move to the electron acceptor, and charge, that is, holes in the charge generation layer 22. And electron carriers are generated.
 ここで、電子供与体としての導電性化合物としては、p型導電性高分子化合物が挙げられ、p型導電性高分子化合物としては、ポリフェニレンビニレン、ポリチオフェン、ポリ(チオフェンビニレン)、ポリアセチレン、ポリピロール、ポリフルオレン、ポリ(p-フェニレン)又はポリアニリンの基本骨格を持つものが好ましい。 Here, examples of the conductive compound as the electron donor include a p-type conductive polymer compound. Examples of the p-type conductive polymer compound include polyphenylene vinylene, polythiophene, poly (thiophene vinylene), polyacetylene, polypyrrole, Those having a basic skeleton of polyfluorene, poly (p-phenylene) or polyaniline are preferred.
 また、電子受容体としての導電性化合物としては、n型導電性高分子化合物が挙げられ、n型導電性高分子化合物としては、ポリピリジンの基本骨格を持つものが好ましく、特にポリ(p-ピリジルビニレン)の基本骨格を持つものが好ましい。 Examples of the conductive compound as the electron acceptor include an n-type conductive polymer compound. As the n-type conductive polymer compound, those having a basic skeleton of polypyridine are preferable, and in particular, poly (p-pyridyl) Those having a basic skeleton of vinylene) are preferred.
 電荷発生層22の膜厚は、光吸収量を確保するといった観点から、10nm以上(特に100nm以上)が好ましく、また電気抵抗が大きくなりすぎないといった観点から、1μm以下(特に300nm以下)が好ましい。 The film thickness of the charge generation layer 22 is preferably 10 nm or more (especially 100 nm or more) from the viewpoint of securing the amount of light absorption, and is preferably 1 μm or less (particularly 300 nm or less) from the viewpoint that the electric resistance does not become too large. .
 対電極23は、電荷発生層22の電磁波が入光される側の面と反対側に配置されている。対電極23は、例えば、金、銀、アルミニウム、クロムなどの一般の金属電極や、透明電極21の中から選択して用いることが可能であるが、良好な特性を得るためには仕事関数の小さい(4.5eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするのが好ましい。 The counter electrode 23 is disposed on the opposite side of the surface of the charge generation layer 22 where the electromagnetic wave is incident. The counter electrode 23 can be selected and used from, for example, a general metal electrode such as gold, silver, aluminum, and chromium, or the transparent electrode 21. Small (4.5 eV or less) metals, alloys, electrically conductive compounds and mixtures thereof are preferably used as electrode materials.
 また、電荷発生層22を挟む各電極(透明電極21及び対電極23)との間には、電荷発生層22とこれら電極が反応しないように緩衝地帯として作用させるためのバッファー層を設けてもよい。バッファー層は、例えば、フッ化リチウム及びポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホナート)、2,9-ジメチル-4,7-ジフェニル[1,10]フェナントロリンなどを用いて形成される。 In addition, a buffer layer may be provided between each electrode (transparent electrode 21 and counter electrode 23) sandwiching the charge generation layer 22 so as to act as a buffer zone so that the charge generation layer 22 and these electrodes do not react. Good. Examples of the buffer layer include lithium fluoride and poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate), 2,9-dimethyl-4,7-diphenyl [1,10] phenanthroline, and the like. Formed using.
 画像信号出力層20cは、光電変換素子20bで得られた電荷の蓄積および蓄積された電荷に基づく信号の出力を行うものであり、光電変換素子20bで生成された電荷を画素毎に蓄積する電荷蓄積素子であるコンデンサ24と、蓄積された電荷を信号として出力する画像信号出力素子であるトランジスタ25とを用いて構成されている。 The image signal output layer 20c performs accumulation of charges obtained by the photoelectric conversion element 20b and output of a signal based on the accumulated charges. Charge for accumulating the charges generated by the photoelectric conversion element 20b for each pixel. The capacitor 24 is a storage element, and the transistor 25 is an image signal output element that outputs the stored charge as a signal.
 トランジスタ25は、例えばTFT(薄膜トランジスタ)を用いるものとする。このTFTは、液晶ディスプレイ等に使用されている無機半導体系のものでも、有機半導体を用いたものでもよく、好ましくはプラスチックフィルム上に形成されたTFTである。プラスチックフィルム上に形成されたTFTとしては、アモルファスシリコン系のものが知られているが、その他、米国Alien Technology社が開発しているFSA(Fluidic Self Assembly)技術、即ち、単結晶シリコンで作製した微小CMOS(Nanoblocks)をエンボス加工したプラスチックフィルム上に配列させることで、フレキシブルなプラスチックフィルム上にTFTを形成するものとしても良い。さらに、Science,283,822(1999)やAppl.Phys.Lett,771488(1998)、Nature,403,521(2000)等の文献に記載されているような有機半導体を用いたTFTであってもよい。 As the transistor 25, for example, a TFT (Thin Film Transistor) is used. This TFT may be an inorganic semiconductor type used in a liquid crystal display or the like, or an organic semiconductor, and is preferably a TFT formed on a plastic film. As the TFT formed on the plastic film, an amorphous silicon type is known, but in addition, it was made of FSA (Fluidic Self Assembly) technology developed by Alien Technology in the United States, that is, made of single crystal silicon. A TFT may be formed on a flexible plastic film by arranging micro CMOS (Nanoblocks) on an embossed plastic film. Furthermore, Science, 283, 822 (1999) and Appl. Phys. A TFT using an organic semiconductor as described in documents such as Lett, 771488 (1998), Nature, 403, 521 (2000) may be used.
 このように、トランジスタ25としては、上記FSA技術で作製したTFT及び有機半導体を用いたTFTが好ましく、特に好ましいものは有機半導体を用いたTFTである。この有機半導体を用いてTFTを構成すれば、シリコンを用いてTFTを構成する場合のように真空蒸着装置等の設備が不要となり、印刷技術やインクジェット技術を活用してTFTを形成できるので、製造コストが安価となる。さらに、加工温度を低くできることから熱に弱いプラスチック基板上にも形成できる。 Thus, the transistor 25 is preferably a TFT manufactured by the FSA technique and a TFT using an organic semiconductor, and a TFT using an organic semiconductor is particularly preferable. If a TFT is formed using this organic semiconductor, equipment such as a vacuum deposition apparatus is not required as in the case where a TFT is formed using silicon, and the TFT can be formed by utilizing printing technology or inkjet technology. Cost is low. Furthermore, since the processing temperature can be lowered, it can also be formed on a plastic substrate that is vulnerable to heat.
 トランジスタ25には、光電変換素子20bで発生した電荷を蓄積するとともに、コンデンサ24の一方の電極となる収集電極(図示せず)が電気的に接続されている。コンデンサ24には光電変換素子20bで生成された電荷が蓄積されるとともに、この蓄積された電荷はトランジスタ25を駆動することで読み出される。すなわちトランジスタ25を駆動させることで放射線画像の画素毎の信号を出力させることができる。 The transistor 25 accumulates electric charges generated in the photoelectric conversion element 20b and is electrically connected to a collecting electrode (not shown) which is one electrode of the capacitor 24. The capacitor 24 accumulates charges generated by the photoelectric conversion element 20 b and reads the accumulated charges by driving the transistor 25. That is, by driving the transistor 25, a signal for each pixel of the radiation image can be output.
 基板20dは、撮像パネル51の支持体として機能するものであり、基板1と同様の素材で構成することが可能である。 The substrate 20d functions as a support for the imaging panel 51, and can be made of the same material as the substrate 1.
 次に、放射線画像検出装置100の作用について説明する。 Next, the operation of the radiation image detection apparatus 100 will be described.
 まず、放射線画像検出装置100に対し入射された放射線は、撮像パネル51の放射線用シンチレータパネル10側から基板20d側に向けて放射線を入射する。 First, the radiation incident on the radiation image detection apparatus 100 is incident from the radiation scintillator panel 10 side of the imaging panel 51 toward the substrate 20d side.
 すると、シンチレータパネル10に入射された放射線は、放射線用シンチレータパネル10中のシンチレータ層5が放射線のエネルギーを吸収し、その強度に応じた電磁波を発光する。発光された電磁波のうち、出力基板20に入光される電磁波は、出力基板20の隔膜20a、透明電極21を貫通し、電荷発生層22に到達する。そして、電荷発生層22において電磁波は吸収され、その強度に応じて正孔と電子のペア(電荷分離状態)が形成される。 Then, the radiation incident on the scintillator panel 10 is absorbed by the scintillator layer 5 in the radiation scintillator panel 10 and emits an electromagnetic wave corresponding to its intensity. Of the emitted electromagnetic wave, the electromagnetic wave incident on the output substrate 20 passes through the diaphragm 20 a and the transparent electrode 21 of the output substrate 20 and reaches the charge generation layer 22. Then, the electromagnetic wave is absorbed in the charge generation layer 22 and a hole-electron pair (charge separation state) is formed according to the intensity.
 その後、発生した電荷は、電源部54によるバイアス電圧の印加により生じる内部電界により正孔と電子はそれぞれ異なる電極(透明電極膜及び導電層)へ運ばれ、光電流が流れる。 Thereafter, the generated charges are transported to different electrodes (transparent electrode film and conductive layer) by an internal electric field generated by application of a bias voltage by the power supply unit 54, and a photocurrent flows.
 その後、対電極23側に運ばれた正孔は画像信号出力層20cのコンデンサ24に蓄積される。蓄積された正孔はコンデンサ24に接続されているトランジスタ25を駆動させると、画像信号を出力すると共に、出力された画像信号はメモリ部53に記憶される。 Thereafter, the holes carried to the counter electrode 23 side are accumulated in the capacitor 24 of the image signal output layer 20c. The accumulated holes output an image signal when the transistor 25 connected to the capacitor 24 is driven, and the output image signal is stored in the memory unit 53.
 次に本発明の請求の範囲4~6に係わる放射線画像検出器について、図6を参照して説明する。 Next, a radiation image detector according to claims 4 to 6 of the present invention will be described with reference to FIG.
 なお、図6は放射線画像検出器の撮像パネル部の拡大断面図である。 FIG. 6 is an enlarged cross-sectional view of the imaging panel portion of the radiation image detector.
 出力基板201上に、画像信号出力層202を有し、画像信号出力層上に、対電極203cと電荷発生層203bと透明電極203aからなる光電変換素子203を有する。 The image signal output layer 202 is provided on the output substrate 201, and the photoelectric conversion element 203 including the counter electrode 203c, the charge generation layer 203b, and the transparent electrode 203a is provided on the image signal output layer.
 撮像パネルは、光電変換素子上にシンチレータ層を有するが、透明電極203a上に、直接あるいは有機樹脂層204を介してシンチレータ層205を具備した放射線画像検出器200の構成について説明する。 The imaging panel has a scintillator layer on the photoelectric conversion element, but the configuration of the radiation image detector 200 including the scintillator layer 205 directly or via the organic resin layer 204 on the transparent electrode 203a will be described.
 シンチレータ層205については、上述のシンチレータパネル10の作製方法の中の《シンチレータ層の形成》で説明した方法と同様に行うことができ、出力基板201の透明電極203b上に直接あるいは有機樹脂層204を介してシンチレータ層を設けることができる。 The scintillator layer 205 can be formed in the same manner as described in << Scintillator layer formation >> in the above-described method of manufacturing the scintillator panel 10, and directly on the transparent electrode 203b of the output substrate 201 or the organic resin layer 204. A scintillator layer can be provided via
 シンチレータ層205上に反射層206、耐湿保護層207を設けた場合を図示しているが、例えばシンチレータ層205上に反射層206と耐湿保護層207の間にさらに接着層(図示せず)を設けてもよいし、耐湿保護層207を2層にわけて(耐湿保護層-1、耐湿保護層-2)、シンチレータ層上に、耐湿保護層-1、反射層、耐湿保護層-2の順に各層を設けても良い。 Although the case where the reflective layer 206 and the moisture resistant protective layer 207 are provided on the scintillator layer 205 is illustrated, for example, an adhesive layer (not shown) is further provided between the reflective layer 206 and the moisture resistant protective layer 207 on the scintillator layer 205. The moisture-resistant protective layer 207 may be divided into two layers (moisture-resistant protective layer-1 and moisture-resistant protective layer-2), and the moisture-resistant protective layer-1, the reflective layer, and the moisture-resistant protective layer-2 are formed on the scintillator layer. Each layer may be provided in order.
 また各層の順序は適宜変更可能であり、シンチレータ層上に反射層が最外層となるように耐湿保護層、反射層を設けても良い。 The order of the layers can be changed as appropriate, and a moisture-resistant protective layer and a reflective layer may be provided on the scintillator layer so that the reflective layer is the outermost layer.
 また反射層と耐湿保護層を別々の層にせず、反射層と耐湿保護層を兼ねる層を設ける構成でも良い。 In addition, the reflective layer and the moisture-resistant protective layer may be separated from each other, and a layer serving as the reflective layer and the moisture-resistant protective layer may be provided.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
 実施例1
 (反射層の作製)
 厚さ125μmのポリイミドフィルム(宇部興産製UPILEX-125S)にアルミニウムをスパッタして反射層(0.02μm)を形成した。
Example 1
(Production of reflective layer)
A reflection layer (0.02 μm) was formed by sputtering aluminum on a 125 μm-thick polyimide film (UPILEX-125S manufactured by Ube Industries).
 (保護層の作製)
 表1に記載の種類の有機樹脂                添加量は表1に記載
 ヘキサメチレンジイソシアナート                   3質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Preparation of protective layer)
Addition amount of organic resin described in Table 1 is listed in Table 1. Hexamethylene diisocyanate 3 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight For 15 hours to obtain a coating solution for coating a protective layer.
 この塗布液を上記基板のアルミニウム反射層面に乾燥膜厚が2.5μmになるように押し出しコーターで塗布した。 This coating solution was applied to the aluminum reflective layer surface of the substrate by an extrusion coater so that the dry film thickness was 2.5 μm.
 (シンチレータ層の形成)
 基板の光吸収層側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させシンチレータパネル(放射線像変換パネル)を得た。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 μm, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
 (耐湿性保護層の形成)
 セルロースアセテートブチレート(ガラス転移温度:161℃)   100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Cellulose acetate butyrate (glass transition temperature: 161 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. An installation coating solution was obtained.
 この塗布液を上記シンチレータ層上に乾燥膜厚が20μmになるように押し出しコーターで塗布しシンチレータパネルの試料101~112を得た。 The coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was 20 μm, and scintillator panel samples 101 to 112 were obtained.
 実施例2
 (中間層の作製)
 表2に記載の種類の有機樹脂                添加量は表2に記載
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、中間層塗設用の塗布液を得た。
Example 2
(Preparation of intermediate layer)
Organic resin of the kind described in Table 2 is added in Table 2. Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. A coating solution for coating was obtained.
 この塗布液を基板(アモルファスカーボン製、厚さ1mm)上に乾燥膜厚が10μmとなるように押し出しコーターを用いて塗布した。 This coating solution was applied on a substrate (made of amorphous carbon, thickness 1 mm) using an extrusion coater so that the dry film thickness was 10 μm.
 (反射層の作製)
 前記中間層を設けた基板上にアルミニウムをスパッタして反射層(0.02μm)を形成した。
(Production of reflective layer)
A reflective layer (0.02 μm) was formed by sputtering aluminum on the substrate provided with the intermediate layer.
 (保護層の作製)
 バイロン200(東洋紡社製:ポリエステル樹脂 Tg:67℃)  100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Preparation of protective layer)
Byron 200 (manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours for protection A coating solution for layer coating was obtained.
 この塗布液を上記アルミニウム反射層上に乾燥膜厚が2.5μmとなるように押し出しコーターで塗布した。 This coating solution was applied onto the aluminum reflective layer by an extrusion coater so that the dry film thickness was 2.5 μm.
 (シンチレータ層の形成)
 基板の光吸収層側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させシンチレータパネル(放射線像変換パネル)を得た。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 μm, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
 (耐湿保護層の形成)
 セルロースアセテートブチレート(ガラス転移温度:161℃)   100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Cellulose acetate butyrate (glass transition temperature: 161 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. An installation coating solution was obtained.
 この塗布液を上記シンチレータ層上に乾燥膜厚が20μmになるように押し出しコーターで塗布しシンチレータパネルの試料201~212を得た。 The coating solution was applied onto the scintillator layer with an extrusion coater so that the dry film thickness was 20 μm, and scintillator panel samples 201 to 212 were obtained.
 実施例3
 (反射層の作製)
 厚さ125μmのポリイミドフィルム(宇部興産製UPILEX-125S)にアルミニウムをスパッタして反射層(0.02μm)を形成した。
Example 3
(Production of reflective layer)
A reflection layer (0.02 μm) was formed by sputtering aluminum on a 125 μm-thick polyimide film (UPILEX-125S manufactured by Ube Industries).
 (保護層の作製)
 バイロン200(東洋紡社製:ポリエステル樹脂 Tg:67℃)  100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Preparation of protective layer)
Byron 200 (manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours for protection A coating solution for layer coating was obtained.
 この塗布液を上記基板のアルミニウム反射層上に乾燥膜厚が2.5μmになるように押し出しコーターで塗布した。 The coating solution was applied on the aluminum reflective layer of the substrate by an extrusion coater so that the dry film thickness was 2.5 μm.
 (シンチレータ層の形成)
 基板の光吸収層側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the light absorption layer side of the substrate by using the vapor deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させシンチレータパネル(放射線像変換パネル)を得た。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit a phosphor, and when the scintillator layer had a thickness of 500 μm, the deposition was terminated to obtain a scintillator panel (radiation image conversion panel).
 (耐湿性保護層の形成)
 表3に記載の種類の有機樹脂                表3に記載の添加量
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Organic resins of the types listed in Table 3 Addition amounts listed in Table 3 Phthalocyanine blue 0.1 parts by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours, and a protective layer A coating solution for coating was obtained.
 この塗布液を上記シンチレータ層上に乾燥膜厚が表3の値になるように押し出しコーターで塗布しシンチレータパネルの試料301~319を得た。 The coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was a value shown in Table 3, and samples of scintillator panels 301 to 319 were obtained.
 ただし、試料319の耐湿保護層としては、特開2007-279051号の「0022」に記載のCVD法により形成されたポリパラキシリレンからなる耐湿保護膜を使用した。 However, as the moisture-resistant protective layer of the sample 319, a moisture-resistant protective film made of polyparaxylylene formed by the CVD method described in “0022” of JP-A-2007-279051 was used.
 使用した樹脂の種類を下記に記載する。
B-1  ポリビニルブチラール Tg:65℃
B-2  ポリエステル(バイロン300) Tg:6℃
B-3  ポリエステル(バイロン200) Tg:67℃
B-4  セルロースアセテートブチレート Tg:161℃
B-5  ポリメチルメタクリレート Tg:105℃
B-6  フェノキシ樹脂(PKHH) Tg:105℃
B-7  ポリエステルポリウレタン(カプロラクトン基含有) Tg:20℃
B-8  ポリエステルポリウレタン(シクロヘキシル基含有) Tg:70℃
B-9  ポリエステルポリウレタン(脂肪族ポリエステル含有) Tg:-20℃
B-10 ポリエステルポリウレタン(芳香族ポリエステル含有) Tg:50℃
B-11 セルロースアセテートプロピオネート        Tg:150℃
 なお樹脂のガラス転移温度(Tg)の測定についてはDSC法(示差走査熱量計を使用して吸熱曲線を求めることで測定)を用いた。
The type of resin used is described below.
B-1 Polyvinyl butyral Tg: 65 ° C
B-2 Polyester (Byron 300) Tg: 6 ° C
B-3 Polyester (Byron 200) Tg: 67 ° C
B-4 Cellulose acetate butyrate Tg: 161 ° C
B-5 Polymethylmethacrylate Tg: 105 ° C
B-6 Phenoxy resin (PKHH) Tg: 105 ° C
B-7 Polyester polyurethane (containing caprolactone group) Tg: 20 ° C
B-8 Polyester polyurethane (containing cyclohexyl group) Tg: 70 ° C
B-9 Polyester polyurethane (containing aliphatic polyester) Tg: -20 ° C
B-10 Polyester polyurethane (including aromatic polyester) Tg: 50 ° C
B-11 Cellulose acetate propionate Tg: 150 ° C
In addition, about the measurement of the glass transition temperature (Tg) of resin, DSC method (it measured by calculating | requiring an endothermic curve using a differential scanning calorimeter) was used.
 〈評価〉
 (耐湿性の評価)
 上記で得られた各シンチレータパネルの試料を封止した後、30℃70%の環境下に30日間放置し、放置前と放置後の鮮鋭性と輝度を比較した。評価は各々後述する方法で実施し、シンチレータの面内の20箇所の平均値を求めこれを各試料の値とした。
<Evaluation>
(Evaluation of moisture resistance)
Each of the scintillator panel samples obtained above was sealed, and then left for 30 days in an environment of 30 ° C. and 70%, and the sharpness and luminance before and after being left were compared. The evaluation was carried out by the methods described later, and an average value at 20 points within the surface of the scintillator was obtained and used as the value of each sample.
 シンチレータパネルを、PaxScan2520(Varian社製FPD)にセットし鮮鋭性及び輝度を、以下に示す方法で評価した。 The scintillator panel was set in PaxScan2520 (Varian FPD), and the sharpness and brightness were evaluated by the methods shown below.
 「鮮鋭性の評価」
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。MTFはModulation Transfer Functionの略号を示す。
"Evaluation of sharpness"
X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. MTF is an abbreviation for Modulation Transfer Function.
 「輝度の評価」
 電圧80kVpのX線を試料の裏面(シンチレータ層が形成されていない面)から照射し、画像データをシンチレータを配置したFPDで検出し、画像の平均シグナル値を発光輝度とした。
"Evaluation of brightness"
X-rays having a voltage of 80 kVp were irradiated from the back surface of the sample (surface on which the scintillator layer was not formed), the image data was detected by an FPD provided with a scintillator, and the average signal value of the image was defined as the emission luminance.
 表1~表3に輝度、鮮鋭性について、放置後の値の、放置前の値に対する比を示した。30℃70%RHの環境下での特性の劣化が少ないものほど値は1.0に近くなる。 Tables 1 to 3 show the ratio of the value after being left to the value before being left for brightness and sharpness. The value is closer to 1.0 as the property is less degraded under the environment of 30 ° C. and 70% RH.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3から、本発明のシンチレータプレートは、輝度、鮮鋭性の劣化が少なく保存性に優れることが分かる。 From Tables 1 to 3, it can be seen that the scintillator plate of the present invention is excellent in preservability with little deterioration in brightness and sharpness.
 実施例4
 ガラス基板上に複数のフォトダイオードと複数のTFT素子を形成し、全体を下記組成の有機樹脂層で被覆した。
Example 4
A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
 (有機樹脂層の作製)
 表4に記載の種類の有機樹脂                添加量は表4に記載
 ヘキサメチレンジイソシアナート                   3質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Preparation of organic resin layer)
Addition amount of organic resin described in Table 4 is listed in Table 4. Hexamethylene diisocyanate 3 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight For 15 hours to obtain a coating solution for coating a protective layer.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が20μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 20 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (シンチレータ層の形成)
 基板の有機樹脂層が設けられた側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させた。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 μm.
 (反射層の作製)
 酸化チタン(平均粒径0.20μm)                15質量部
 ポリビニルブチラール                        2質量部
 ヘキサメチレンジイソシアナート                 0.2質量部
 シクロヘキサノン                        100質量部
 メチルエチルケトン(MEK)                   60質量部
 トルエン                             40質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Production of reflective layer)
Titanium oxide (average particle size 0.20 μm) 15 parts by mass Polyvinyl butyral 2 parts by mass Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass Toluene 40 parts by mass For 15 hours to obtain a coating solution for coating a protective layer.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が100μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 100 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (耐湿性保護層の形成)
 セルロースアセテートブチレート(ガラス転移温度:161℃)   100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Cellulose acetate butyrate (glass transition temperature: 161 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. An installation coating solution was obtained.
 この塗布液を上記反射層上に乾燥膜厚が20μmになるように押し出しコーターで塗布した。その後、ガラス基板からなる筐体で覆い、減圧封止を行い、放射線画像検出器401~412を得た。 The coating solution was applied on the reflective layer by an extrusion coater so that the dry film thickness was 20 μm. Thereafter, it was covered with a casing made of a glass substrate and sealed under reduced pressure to obtain radiation image detectors 401 to 412.
 実施例5
 ガラス基板上に複数のフォトダイオードと複数のTFT素子を形成し、全体を下記組成の有機樹脂層で被覆した。
Example 5
A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
 (有機樹脂層の作製)
 バイロン200(東洋紡社製:ポリエステル樹脂 Tg:67℃)  100質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、有機樹脂層塗設用の塗布液を得た。
(Preparation of organic resin layer)
Byron 200 (manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.) 100 parts by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours, and applied for coating an organic resin layer. A liquid was obtained.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が20μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 20 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (シンチレータ層の形成)
 基板の有機樹脂層が設けられた側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させた。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 μm.
 (反射層の作製)
 酸化チタン(平均粒径0.20μm)                15質量部
 表5に記載の種類の有機樹脂                添加量は表5に記載
 ヘキサメチレンジイソシアナート                 0.2質量部
 シクロヘキサノン                        100質量部
 メチルエチルケトン(MEK)                   60質量部
 トルエン                             40質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Production of reflective layer)
Titanium oxide (average particle size 0.20 μm) 15 parts by mass Organic resin of the type shown in Table 5 Addition amount is shown in Table 5 Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass 40 parts by mass of toluene The above formulation was mixed and dispersed in a bead mill for 15 hours to obtain a coating solution for coating a protective layer.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が100μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 100 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (耐湿性保護層の形成)
 セルロースアセテートブチレート(ガラス転移温度:161℃)   100質量部
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Cellulose acetate butyrate (glass transition temperature: 161 ° C.) 100 parts by weight Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours. An installation coating solution was obtained.
 この塗布液を上記反射層上に乾燥膜厚が20μmになるように押し出しコーターで塗布した。その後、ガラス基板からなる筐体で覆い、減圧封止を行い、放射線画像検出器501~512を得た。 The coating solution was applied on the reflective layer by an extrusion coater so that the dry film thickness was 20 μm. Thereafter, it was covered with a casing made of a glass substrate, and sealed under reduced pressure to obtain radiation image detectors 501 to 512.
 ただし、試料512の反射層としては、特開2008-215951号の「0070」に記載の反射層を使用した。 However, as the reflective layer of the sample 512, a reflective layer described in “0070” of JP-A-2008-215951 was used.
 実施例6
 ガラス基板上に複数のフォトダイオードと複数のTFT素子を形成し、全体を下記組成の有機樹脂層で被覆した。
Example 6
A plurality of photodiodes and a plurality of TFT elements were formed on a glass substrate, and the whole was covered with an organic resin layer having the following composition.
 (有機樹脂層の作製)
 バイロン200(東洋紡社製:ポリエステル樹脂 Tg:67℃)  100質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、有機樹脂層塗設用の塗布液を得た。
(Preparation of organic resin layer)
Byron 200 (manufactured by Toyobo Co., Ltd .: polyester resin Tg: 67 ° C.) 100 parts by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours, and applied for coating an organic resin layer. A liquid was obtained.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が20μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 20 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (シンチレータ層の形成)
 基板の有機樹脂層が設けられた側にシンチレータ蛍光体(CsI:0.003モルTl)を、図3に示す蒸着装置を使用して蒸着させシンチレータ(蛍光体)層を形成した。
(Formation of scintillator layer)
A scintillator phosphor (CsI: 0.003 mol Tl) was deposited on the side of the substrate on which the organic resin layer was provided by using the deposition apparatus shown in FIG. 3 to form a scintillator (phosphor) layer.
 すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに支持体を設置し、支持体と蒸発源との間隔を400mmに調節した。 That is, first, the above-mentioned phosphor raw material was filled in a resistance heating crucible as an evaporation material, and a support was placed on a rotating support holder, and the distance between the support and the evaporation source was adjusted to 400 mm.
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で支持体を回転しながら基板の温度を150℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着しシンチレータ層の膜厚が500μmとなったところで蒸着を終了させた。 Subsequently, the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate temperature was maintained at 150 ° C. while rotating the support at a speed of 10 rpm. Next, the resistance heating crucible was heated to deposit the phosphor, and the deposition was terminated when the scintillator layer had a thickness of 500 μm.
 (反射層の作製)
 酸化チタン(平均粒径0.20μm)                15質量部
 ポリビニルブチラール                        2質量部
 ヘキサメチレンジイソシアナート                 0.2質量部
 シクロヘキサノン                        100質量部
 メチルエチルケトン(MEK)                   60質量部
 トルエン                             40質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Production of reflective layer)
Titanium oxide (average particle size 0.20 μm) 15 parts by mass Polyvinyl butyral 2 parts by mass Hexamethylene diisocyanate 0.2 parts by mass Cyclohexanone 100 parts by mass Methyl ethyl ketone (MEK) 60 parts by mass Toluene 40 parts by mass For 15 hours to obtain a coating solution for coating a protective layer.
 この塗布液を上記基板の光電変換素子が設けられた側に乾燥膜厚が100μmになるように押し出しコーターで塗布した。 The coating solution was applied by an extrusion coater so that the dry film thickness was 100 μm on the side of the substrate on which the photoelectric conversion element was provided.
 (耐湿性保護層の形成)
 表6に記載の種類の有機樹脂                表6に記載の添加量
 フタロシアニンブルー                      0.1質量部
 メチルエチルケトン(MEK)                  100質量部
 トルエン                            100質量部
 上記処方を混合し、ビーズミルにて15時間分散し、保護層塗設用の塗布液を得た。
(Formation of moisture-resistant protective layer)
Organic resin of the type described in Table 6 Addition amount described in Table 6 Phthalocyanine blue 0.1 part by weight Methyl ethyl ketone (MEK) 100 parts by weight Toluene 100 parts by weight The above formulation is mixed and dispersed in a bead mill for 15 hours, and a protective layer A coating solution for coating was obtained.
 この塗布液を上記シンチレータ層上に乾燥膜厚が表6の値になるように押し出しコーターで塗布した。その後、ガラス基板からなる筐体で覆い、減圧封止を行い、放射線画像検出器601~619を得た。 The coating solution was applied onto the scintillator layer by an extrusion coater so that the dry film thickness was as shown in Table 6. Thereafter, it was covered with a casing made of a glass substrate and sealed under reduced pressure to obtain radiation image detectors 601 to 619.
 ただし耐湿性保護層としては、特開2008-215951号の「0071」に記載の防湿層(凸版印刷社製商品名:GXフィルム(PET))を使用した。 However, as the moisture-resistant protective layer, a moisture-proof layer (trade name: GX film (PET) manufactured by Toppan Printing Co., Ltd.) described in “0071” of JP-A-2008-215951 was used.
 得られた放射線画像検出器について評価を行った。 The obtained radiographic image detector was evaluated.
 〈評価〉
 (耐湿性の評価)
 上記で得られた各放射線画像検出器を、30℃70%の環境下に30日間放置し、放置前と放置後の鮮鋭性と輝度を比較した。評価は各々後述する方法で実施し、シンチレータの面内の20箇所の平均値を求めこれを各試料の値とした。
<Evaluation>
(Evaluation of moisture resistance)
Each of the radiation image detectors obtained above was left in an environment of 30 ° C. and 70% for 30 days, and the sharpness and brightness before and after being left were compared. The evaluation was carried out by the methods described later, and an average value at 20 points within the surface of the scintillator was obtained and used as the value of each sample.
 「鮮鋭性の評価」
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。MTFはModulation Transfer Functionの略号を示す。
"Evaluation of sharpness"
X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. MTF is an abbreviation for Modulation Transfer Function.
 「輝度の評価」
 電圧80kVpのX線を試料の裏面(シンチレータ層が形成されていない面)から照射し、画像データをシンチレータを配置したFPDで検出し、画像の平均シグナル値を発光輝度とした。
"Evaluation of brightness"
X-rays having a voltage of 80 kVp were irradiated from the back surface of the sample (surface on which the scintillator layer was not formed), the image data was detected by an FPD provided with a scintillator, and the average signal value of the image was defined as the emission luminance.
 結果を、表4~表6に示す。 The results are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~表6から、本発明の放射線画像検出器は、輝度、鮮鋭性の劣化が少なく保存性に優れることが分かる。 From Tables 4 to 6, it can be seen that the radiographic image detector of the present invention is excellent in storage stability with little deterioration in brightness and sharpness.

Claims (6)

  1. 放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とするシンチレータパネル。 A radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and a moisture-resistant protective layer covering the scintillator layer A scintillator panel comprising: a protective layer containing at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  2. 放射線透過性の基板と、該基板上に設けられた中間層と、該中間層上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該中間層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とするシンチレータパネル。 A radiation transmissive substrate, an intermediate layer provided on the substrate, a reflective layer provided on the intermediate layer, a protective layer provided on the reflective layer, and provided on the protective layer A scintillator panel comprising a scintillator layer and a moisture-resistant protective layer covering the scintillator layer, wherein the intermediate layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more. Scintillator panel.
  3. 放射線透過性の基板と、該基板上に設けられた反射層と、該反射層上に設けられた保護層と、該保護層上に設けられたシンチレータ層と、該シンチレータ層を覆う耐湿保護層と、を備えたシンチレータパネルにおいて、該耐湿保護層は、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とするシンチレータパネル。 A radiation transmissive substrate, a reflective layer provided on the substrate, a protective layer provided on the reflective layer, a scintillator layer provided on the protective layer, and a moisture-resistant protective layer covering the scintillator layer And the moisture-resistant protective layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and has a film thickness of 12 to 60 μm. .
  4. 基板上に形成された光電変換素子と、該光電変換素子上に設けられた有機樹脂層と、該有機樹脂層上に設けられたシンチレータ層と、を備えた放射線画像検出器において、該有機樹脂層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする放射線画像検出器。 A radiation image detector comprising: a photoelectric conversion element formed on a substrate; an organic resin layer provided on the photoelectric conversion element; and a scintillator layer provided on the organic resin layer. The radiation image detector, wherein the layer contains at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  5. 基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた反射層と、を備えた放射線画像検出器において、該反射層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有することを特徴とする放射線画像検出器。 In a radiation image detector comprising a photoelectric conversion element formed on a substrate, a scintillator layer provided on the photoelectric conversion element, and a reflection layer provided on the scintillator layer, the reflection layer comprises: A radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more.
  6. 基板上に形成された光電変換素子と、該光電変換素子上に設けられたシンチレータ層と、該シンチレータ層上に設けられた耐湿保護層と、を備えた放射線画像検出器において、該耐湿保護層が、ガラス転移温度が5℃以上異なる2種の有機樹脂を少なくとも1組含有し、膜厚が12~60μmであることを特徴とする放射線画像検出器。 In a radiological image detector comprising a photoelectric conversion element formed on a substrate, a scintillator layer provided on the photoelectric conversion element, and a moisture-resistant protective layer provided on the scintillator layer, the moisture-resistant protective layer However, a radiation image detector comprising at least one set of two kinds of organic resins having glass transition temperatures of 5 ° C. or more and a film thickness of 12 to 60 μm.
PCT/JP2009/054290 2008-05-13 2009-03-06 Scintillator panel and radiological image detector WO2009139215A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511914A JP5353884B2 (en) 2008-05-13 2009-03-06 Scintillator panel and radiation image detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-125827 2008-05-13
JP2008125827 2008-05-13
JP2008-315568 2008-12-11
JP2008315568 2008-12-11

Publications (1)

Publication Number Publication Date
WO2009139215A1 true WO2009139215A1 (en) 2009-11-19

Family

ID=41318588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054290 WO2009139215A1 (en) 2008-05-13 2009-03-06 Scintillator panel and radiological image detector

Country Status (2)

Country Link
JP (1) JP5353884B2 (en)
WO (1) WO2009139215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074249A1 (en) * 2009-12-18 2011-06-23 株式会社 東芝 Radiation detector and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180555A (en) * 1998-12-21 2000-06-30 Hitachi Metals Ltd Radiation detector and radiation ct device using it
JP2006052983A (en) * 2004-08-10 2006-02-23 Canon Inc Radiation detector, its manufacturing method, scintillator panel, and radiation detection system
JP2006052982A (en) * 2004-08-10 2006-02-23 Canon Inc Radiation detector, manufacturing method for the same, scintillator panel and radiation detection system
JP2006098242A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
WO2007034661A1 (en) * 2005-09-20 2007-03-29 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and its production method
JP2007279051A (en) * 2001-01-30 2007-10-25 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180555A (en) * 1998-12-21 2000-06-30 Hitachi Metals Ltd Radiation detector and radiation ct device using it
JP2007279051A (en) * 2001-01-30 2007-10-25 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
JP2006052983A (en) * 2004-08-10 2006-02-23 Canon Inc Radiation detector, its manufacturing method, scintillator panel, and radiation detection system
JP2006052982A (en) * 2004-08-10 2006-02-23 Canon Inc Radiation detector, manufacturing method for the same, scintillator panel and radiation detection system
JP2006098242A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
WO2007034661A1 (en) * 2005-09-20 2007-03-29 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074249A1 (en) * 2009-12-18 2011-06-23 株式会社 東芝 Radiation detector and method for manufacturing same
CN102667525A (en) * 2009-12-18 2012-09-12 株式会社东芝 Radiation detector and method for manufacturing same
US8497481B2 (en) 2009-12-18 2013-07-30 Kabushiki Kaisha Toshiba Radiation detector and method for manufacturing same
JP5940302B2 (en) * 2009-12-18 2016-06-29 株式会社東芝 Manufacturing method of radiation detector

Also Published As

Publication number Publication date
JP5353884B2 (en) 2013-11-27
JPWO2009139215A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5353886B2 (en) Radiation scintillator and radiation image detector
JP4725533B2 (en) Scintillator panel
JP2008107222A (en) Scintillator panel
WO2010103917A1 (en) Radiation detector
JP5369979B2 (en) Radiation image detection device
JP5668776B2 (en) Scintillator panel and manufacturing method thereof
JP5343970B2 (en) Radiation image detection device
WO2010050358A1 (en) Scintillator panel, radiation detector, and processes for producing these
JP5720566B2 (en) Scintillator panel, scintillator panel manufacturing method, radiographic image detector, and radiographic image detector manufacturing method
WO2010023970A1 (en) Radiation image conversion panel and method for producing the same
WO2010061727A1 (en) Scintillator panel
JP2008107279A (en) Scintillator panel
JP2010127628A (en) Scintillator panel and radiation detecting device
JP5353884B2 (en) Scintillator panel and radiation image detector
WO2010026789A1 (en) Radiation scintillator and radiation image sensor
JP5267458B2 (en) Scintillator panel and radiation image sensor
JP5577644B2 (en) Radiation image detection apparatus and manufacturing method thereof
JP5597930B2 (en) Radiation image detection apparatus and manufacturing method thereof
JP5347967B2 (en) Scintillator plate
WO2010032504A1 (en) Radiation image conversion panel and method for producing the same
JPWO2008102645A1 (en) Scintillator panel and radiation image sensor
JPWO2008149659A1 (en) Scintillator panel and image sensor
JP2009025175A (en) Scintillator panel and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511914

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746422

Country of ref document: EP

Kind code of ref document: A1