WO2009139214A1 - 表示装置および制御方法 - Google Patents

表示装置および制御方法 Download PDF

Info

Publication number
WO2009139214A1
WO2009139214A1 PCT/JP2009/054269 JP2009054269W WO2009139214A1 WO 2009139214 A1 WO2009139214 A1 WO 2009139214A1 JP 2009054269 W JP2009054269 W JP 2009054269W WO 2009139214 A1 WO2009139214 A1 WO 2009139214A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
display device
image
unit
touch operation
Prior art date
Application number
PCT/JP2009/054269
Other languages
English (en)
French (fr)
Inventor
良治 吉本
和行 名古
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010511913A priority Critical patent/JPWO2009139214A1/ja
Priority to CN2009801171584A priority patent/CN102027439A/zh
Priority to EP09746421A priority patent/EP2282254A1/en
Priority to US12/936,236 priority patent/US20110043489A1/en
Publication of WO2009139214A1 publication Critical patent/WO2009139214A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present invention relates to a display device provided with a display unit such as a touch panel.
  • a display device capable of touch input can be typically realized by superimposing one sheet of a resistive film type or a capacitive type on an LCD (Liquid Crystal Display).
  • This type of display device is an interface that enables intuitive input in various situations such as ATMs installed in banks, ticket machines for purchasing tickets, car navigation systems, portable devices, game devices, etc. It is used as
  • the user can input at one point or a plurality of points.
  • the display device can determine only which position on the display screen is touched.
  • Patent Document 1 describes an LCD with a built-in light sensor.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-47534 (Patent Document 2), in a dual view LCD type in-vehicle car navigation system capable of displaying different images to the viewer from the left and right sides, of the driver's seat and the passenger's seat. It has been proposed that which side determines which touch operation has been performed on the display screen, and that display control is performed according to the determination result. In this system, different signals are transmitted to the display device in the driver's seat and the passenger's seat through a human body grounded to a chair or a steering wheel in a car, thereby determining which of the left and right seats is a touch operation by a person sitting on the seat. doing. JP, 2006-244446, A JP, 2006-47534, A
  • Patent Document 2 in addition to a method of transmitting a discrimination signal through a human body, a camera is installed in a rear ceiling portion of a vehicle interior, and an image obtained by capturing a display screen of a display from behind a passenger seat and a driver seat is analyzed. Thus, a method of determining the touch operation direction has also been proposed.
  • the above system detects exactly which direction the touch is made. It is difficult.
  • the method can not be applied to a scene carried outside such as a mobile device, as in the method of placing the signal transmission device outside the display device.
  • the present invention has been made to solve the above-described problems, and an object thereof is to detect a touch operation direction (a touch on a display screen in a touch operation) in the display device itself when the touch operation is detected. It is an object of the present invention to provide a display device capable of specifying the direction) and a control method in the display device.
  • a display device includes a display unit having a display screen, an imaging unit for capturing a touch operation on the display screen from inside the display unit, and a touch position for detecting a touch position on the display screen in the touch operation.
  • the detection unit may include a direction determination unit that determines a touch direction on the display screen in the touch operation based on an image obtained by imaging by the imaging unit.
  • the direction determination unit determines the touch operation direction based on an image in a predetermined range based on the touch position among the images captured by the imaging unit.
  • the direction determination unit determines the touch based on a density change of a peripheral image of the touch position. Determine the operation direction.
  • the imaging unit is a light sensor or a temperature sensor.
  • the touch position detection unit detects a touch position based on an image captured by the imaging unit.
  • the touch operation on the display screen is imaged from the inside of the display unit, and based on the imaged image, the touch operation direction to the touch position is determined. Therefore, when the touch operation is detected, the display device itself can specify the touch operation direction.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device 1 according to Embodiment 1. It is a figure for demonstrating the function of optical sensor built-in LCD. It is a figure which shows the example of a captured image. It is a figure for demonstrating the principle of the discrimination
  • 1, 2, 11 display device 10, 18 LCD with built-in light sensor, 14 touch position detection unit, 15 touch direction determination unit, 17 capacitive touch panel, 20 dual view LCD with built-in light sensor.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device 1 according to a first embodiment of the present invention.
  • the display device 1 is applicable to, for example, a game machine.
  • the display device 1 includes an optical sensor built-in LCD (liquid crystal panel / display) 10 in which an optical sensor is incorporated in each pixel, and which can capture not only display but also an image.
  • the display device 1 further includes a touch position detection unit 14 that analyzes an image captured by the photosensor built-in LCD 10 and detects a touch position.
  • the display device 1 further includes a touch operation direction determination unit 15 that analyzes an image captured by the photosensor built-in LCD 10 and determines from which direction the touch is made.
  • the display device 1 further includes a control unit 19 which receives data indicating a touch position and a touch operation direction, and controls all of the display device 1.
  • the display device 1 further includes a memory unit 12 that stores data and instructions.
  • the display device 1 further includes an image generation unit 13 that generates an image to be displayed on the screen.
  • the photosensor built-in LCD 10 captures an image at the time of the touch operation from the inside of the display screen.
  • the photosensor built-in LCD 10 inputs the captured image to the touch position detection unit 14.
  • the touch position detection unit 14 detects a touch position by analyzing an image.
  • the touch position detection unit 14 can detect the plurality of touch positions. Therefore, the operator can simultaneously operate the plurality of operation objects displayed on the screen. Moreover, it is also possible to operate simultaneously with two or more persons.
  • the touch operation direction determination unit 15 analyzes an image obtained by the photosensor built-in LCD 10 based on the touch position detected by the touch position detection unit 14. Based on the analysis, the touch operation direction determination unit 15 determines the touch operation direction.
  • Control unit 19 controls display device 1 as a game machine, for example, using the touch position obtained by touch position detection unit 14 and the touch operation direction obtained by touch operation direction determination unit 15.
  • the photosensor built-in LCD 10 incorporates a photosensor (not shown) that responds mainly to the frequency in the visible light region, corresponding to each pixel. As illustrated in FIG. 2, each light sensor of the light sensor built-in LCD 10 reflects external light such as room light and sunlight and light emitted from the backlight 16 to the finger 100 placed on the display screen or the like. Are designed to receive the reflected light.
  • the light sensor built-in LCD 10 converts the light received by the light sensor into a digital value by means of an AD converter, and the light value is output as a gray image of black and white.
  • the image at the time of touch operation obtained by the light sensor differs depending on the external light, the intensity of the backlight, the placement of the finger, and the like. Three typical examples are illustrated in FIG.
  • the portion of the finger where the outside light is not blocked receives the change in the brightness of the outside light as it is. For this reason, the contrast of the portion where external light is not blocked by the finger is relatively darkened or whitened as compared to the belly portion of the finger.
  • FIG. 3A is an example of an image in a case where the display screen of the display device 1 is illuminated with relatively bright external light. As shown in FIG. 3 (a), the outer part where the light is not blocked by the finger is white. The finger belly image 101 partially in contact with the screen is slightly whitened by the reflected light of the backlight 16. The finger shadow image 102 is blackened because the light is blocked.
  • FIG. 3B is an example of an image in the case of relatively dark ambient light. As shown in FIG. 3B, only the belly image 101 of the finger whose part is in contact with the screen is slightly whitened by the reflected light of the backlight 16, and the other part is blackened.
  • FIG. 3C is an image example in the case where the outside light is very bright with parallel light like sunlight. Since the external light around the finger belly image 101 is stronger than the reflected light by the backlight 16 of the finger belly image 101 partially touching the screen, only the finger belly image 101 is blackened. There is.
  • the touch operation direction determination unit 15 determines the touch operation direction based on an image in a predetermined range based on the touch position among the images captured by the photosensor built-in LCD 10.
  • the touch operation direction determination unit 15 determines the touch operation direction based on an image in a predetermined range based on the touch position among the images captured by the photosensor built-in LCD 10.
  • FIG. 4 is a diagram for explaining the principle of the determination method for determining the touch operation direction by specifying the density gradient direction.
  • the touch operation is performed by examining the density gradient directions of the black and white gray images around the touch position in the image of the entire display screen captured by the photosensor built-in LCD 10 based on the detected touch position. Determine the direction.
  • FIG. 4A shows an image around the touch position in the image captured by the photosensor built-in LCD 10.
  • a belly image 101 of a finger partially in contact with the screen and a shadow image 102 of the finger are displayed.
  • the cross mark 105 in the drawing is a mark for explaining the touch position detected by the touch position detection unit 14.
  • the touch position is indicated by the cross center position.
  • the cross mark 105 is not displayed on the actual image.
  • the direction in which the image density is high is the direction of the finger base toward the arm or the direction toward the operator. Therefore, in the example of FIG. 4A, the density gradient direction in which the image density is high may be specified, and the direction may be determined as the touch operation direction.
  • FIG. 4B shows a determination criterion for determining which of the four directions of the touch operation is in the upper, lower, left, or right direction based on this principle.
  • the touch operation direction is any of the four directions of left, right, top, and bottom. Can be determined.
  • FIG. 4B only the touch operation directions in four directions are illustrated for the sake of simplicity. However, by finely calculating the density gradient directions, eight directions including the oblique directions, and further, sixteen directions, etc. It is also possible to determine the touch operation direction in more detail.
  • the direction in which the gray image goes from white to black is determined as the touch operation direction, but the direction from black to white (fingertip direction) is determined as the touch operation direction You may
  • the display device 1 can determine the touch operation direction with high accuracy by determining the touch operation direction from the density gradient direction of the gray image in this manner.
  • FIG. 5 is a flowchart for explaining the touch operation direction determination process P1 executed by the display device 1.
  • FIG. 6 is a conceptual diagram for explaining the touch operation direction determination process P1.
  • the display device 1 first acquires a grayscale image centered on the coordinates of the touch position (S1).
  • the gray-scale image to be acquired has L and L1 centered on the coordinates of the touch position shown at the cross center of the cross mark 105 as shown in FIG. It is an image included in the square analysis area 80 of L1.
  • the length of L1 is predetermined so as to include the belly image 101 of the finger on the basis of the standard finger size.
  • the display device 1 may be provided with a function of registering the size of the user's finger, and the display device 1 may determine the size of the analysis area 80 based on the registered size. Further, the shape of the analysis area 80 is not limited to a square, and may be a rectangle, a circle, or an ellipse.
  • the display device 1 performs Sobel filter processing for each of the horizontal direction (x direction) and the vertical direction (y direction) on the obtained gray-scale image ( S2, S3).
  • Sobel filter processing for each of the horizontal direction (x direction) and the vertical direction (y direction) on the obtained gray-scale image ( S2, S3).
  • FIG. 6 (b) An example of the Sobel filter corresponding to each of the horizontal direction (x direction) and the vertical direction (y direction) is shown in FIG. 6 (b).
  • any filter may be used as long as it is a filter for edge extraction.
  • the display device 1 calculates the sobel values in the horizontal direction (x direction) and the vertical direction (y direction) for each pixel constituting the gray image by applying the Sobel filter to the gray image in the analysis area 80.
  • FIG. 6B shows a density gradient vector 111 having a density gradient angle ⁇ obtained from the Sobel value Gx in the horizontal direction (x direction) and the Sobel value Gy in the vertical direction (y direction) for a specific pixel.
  • FIG. 6B shows a density gradient vector 111 having a density gradient angle ⁇ obtained from the Sobel value Gx in the horizontal direction (x direction) and the Sobel value Gy in the vertical direction (y direction) for a specific pixel.
  • the display device 1 classifies the density gradient direction of each pixel into any of four directions, upper, lower, left, and right ( S4).
  • the Sobel value Gx in the horizontal direction (x direction) and the Sobel value Gy in the vertical direction (y direction) are calculated corresponding to each pixel.
  • the direction based on the larger one of Gx and Gy is determined as the density gradient direction of the pixel.
  • the horizontal Sobel value indicates the left direction when positive
  • the vertical Sobel value indicates upward when positive
  • the display device 1 determines the Gy direction, that is, the upper direction corresponding to the vertical direction and the + direction as the density gradient direction of the pixel. However, in consideration of the influence of noise or the like, the display device 1 does not determine the density gradient direction corresponding to the pixel when the absolute value is less than or equal to a predetermined threshold value.
  • the display device 1 classifies the density gradient direction of each pixel in any of the four directions, upper, lower, left, and right, in this way, and the image included in the analysis area 80 is shown in the conceptual diagram of FIG. Thus, the density gradient direction for each pixel is calculated.
  • the display device 1 calculates the direction having the largest number among the density gradient directions in the vertical and horizontal directions, determines the value as the touch operation direction (S5), and ends the process.
  • the diagonal direction may be defined according to the values of the Sobel values in the horizontal direction and the vertical direction calculated for each pixel. For example, from the processing results of S2 and S3, the display device 1 calculates the density gradient vector 111 for each pixel. Then, the display device 1 compares the gradient angle of the combined vector obtained by combining the density gradient vectors 111 of the respective pixels with the upper, lower, left, and right diagonal directions, and determines the direction with the smallest angular difference as the touch operation direction. .
  • the gradient angle of the composite vector is compared with the upper, lower, left, and right directions, and the direction with the smallest angular difference is taken as the touch operation direction. You may judge.
  • the discrimination method based on the density gradient direction described above assumes that an image as shown in FIG. 3A is captured. However, in practice, a captured image as shown in FIG. 3B or 3C may be input to the touch operation direction determination unit 15.
  • the touch operation direction is determined based on the density gradient direction.
  • the determination direction is opposite to that in FIG. 3 (a). This is because in the belly image of the finger, the belly portion of the finger directed from the touch position toward the finger base is illuminated with strong external light than the touch position on the belly of the finger illuminated close to the backlight. This is because the image density in the vicinity of the touch position of the finger pad is higher in pixel density than the image on the finger base side of the finger pad.
  • the display device 1 does not discriminate the touch operation direction only by the image of the belly portion of the finger based on the touch position, but the image other than the belly portion of the finger is also added to the conditions as a determination material. It is desirable to determine the direction.
  • an image other than the belly portion of the finger also has a processing procedure for determining the reference of the touch operation direction in FIG. 7 in order to enable the display device 1 to determine the touch operation direction.
  • Fig. 6 shows a flowchart shown.
  • the display device 1 determines whether or not there is a shadow of a finger in an image captured when a touch operation is detected (S11). Whether or not there is a finger shadow is determined, for example, as follows. Pixel density distribution data such as a histogram for an image in the case where a finger shadow is present is collected in advance and stored in the display device 1. In S11, the display device 1 generates pixel density distribution data based on a histogram or the like based on the captured image and compares it with the pixel density distribution data stored in advance, and a certain degree of similarity or more is obtained. It is determined that the finger is shadowed.
  • Pixel density distribution data such as a histogram for an image in the case where a finger shadow is present is collected in advance and stored in the display device 1.
  • the display device 1 generates pixel density distribution data based on a histogram or the like based on the captured image and compares it with the pixel density distribution data stored in advance, and a certain degree of similarity or more is obtained. It
  • the display device 1 determines the direction in which the image density is high (see FIG. 4B) as the touch operation direction (see FIG. 4A). S14). On the other hand, if there is no shadow image of the finger in the image, the display device 1 determines whether the background of the belly image 101 of the finger is white (S12).
  • the determination is NO in S12
  • the determination is YES in S12.
  • the display apparatus 1 advances the process to Step S14, and determines the direction in which the image density is high as the touch operation direction. On the other hand, when it is determined as YES in S12, the display device 1 determines the direction in which the image density becomes thinner as the touch operation direction (S13).
  • the display device 1 determines the direction in which the image density decreases as the touch operation direction, the vertical direction and the left and right direction in the touch operation direction determination process P1 shown in FIG. Judgment of direction is reversed. For this reason, the display device 1 determines that the horizontal Sobel value represents the right direction when it is positive, the left direction when it is negative, the downward direction when the sobel value is positive, and the upper direction when it is negative.
  • FIG. 8 is a diagram for explaining the principle of the determination method for determining the touch operation direction based on the edge feature amount distribution.
  • the display device 1 generates a gray image of white and black around the touch position on the basis of the detected touch position in the image of the entire display screen captured by the photosensor built-in LCD 10. The edge is extracted to determine the touch operation direction.
  • FIG. 8A An image around the touch position is shown on the left side of FIG. 8A.
  • the belly image 101 of the finger partially in contact with the screen, the shadow image 102 of the finger, and the touch position detected by the touch position detection unit 14 are cross-centered
  • a cross mark 105 indicated by position is shown.
  • the shadow image 102 of the finger has a high density value at the tip of the fingertip, and while the density difference with the background is clear, the density value becomes thinner toward the finger base direction. Therefore, when the display device 1 performs edge extraction on such an image, the display device 1 obtains an edge 103 as shown on the right side of FIG. 8A. Since the edge 103 indicates a fingertip portion, the opening at a position facing the edge 103 represents the fingering direction, that is, the direction of the operator, based on the touch position.
  • FIG. 8 (b) shows a determination criterion for determining which of the four directions of the touch operation is in the upper, lower, left or right direction based on this principle.
  • the display device 1 may have any one of the left, right, upper, and lower touch operation directions. Can be determined.
  • the display apparatus 1 also calculates the opening directions of the edges more finely, and also adds eight oblique directions. It is also possible to determine the touch operation direction in more detail, such as 16 directions.
  • the display device 1 is configured to determine the finger base direction (edge opening direction) as the touch operation direction, but the display device 1 is configured to determine the finger tip direction as the touch operation direction. It is also good.
  • the display device 1 has an edge feature in the vicinity of the touch position which is different depending on, for example, a portion in which the finger is strongly in contact with the display screen, a portion in slight contact, and a slightly floating portion. An amount is obtained.
  • the display device 1 can accurately determine the touch operation direction from the degree of slight contact of a finger or the like installed on the display screen by determining the touch operation direction by examining the distribution of the edge feature amount. It becomes.
  • FIG. 9 is a flowchart for explaining the touch operation direction determination process P2 performed by the display device 1.
  • the display device 1 first obtains a gray-scale image centered on the coordinates of the touch position (S21).
  • the gray-scale image to be acquired is, for example, a square centering on the coordinates of the touch position shown at the cross center of the cross mark 105 as shown in FIG. It is an image included in the analysis area.
  • the size of the analysis area is predetermined so as to include a belly image 101 of the finger and a part of the shadow image 102 of the finger on the basis of a standard finger size.
  • the display device 1 has a function of registering the size of the user's finger, and the display device 1 determines the size of the analysis area here based on the registered size. May be Further, the shape of the analysis area is not limited to a square, and may be a rectangle, a circle, or an ellipse.
  • the display device 1 executes a process of extracting an edge feature based on the acquired gray-scale image (S22).
  • the display device 1 uses a Sobel filter or another filter for edge extraction to extract an edge feature. Then, the display device 1 extracts an edge feature amount using a predetermined threshold.
  • the display device 1 identifies a direction in which the edge feature amount is small as viewed from the center coordinates (coordinates of touch position), that is, the opening direction, and determines the identified opening direction as the touch operation direction (S23). Thus, the display device 1 ends the process.
  • the display device 1 may determine the touch operation direction by obtaining the coordinates of the centers of gravity of a plurality of pixels having edge feature amounts. Specifically, first, the display device 1 extracts a plurality of pixels having edge feature amounts equal to or greater than a predetermined threshold. Next, the display device 1 calculates the barycentric coordinates after adding a weight corresponding to the magnitude of the pixel value to each of the extracted pixels. The display device 1 sets a direction from the barycentric coordinate position to the touch position coordinate position as a touch operation direction on a straight line connecting the calculated barycentric coordinate and the center coordinate (coordinate of the touch position) of the analysis area.
  • the determination of the touch operation direction using the edge feature amount is, of course, not limited to the above example, and any technique that can determine the touch operation direction by the edge feature amount may be adopted. Good.
  • the display device 1 calculates the Sobel value for each pixel using a Sobel filter or the like, as in the discrimination method based on the density gradient direction, for the belly image of the finger.
  • the display device 1 calculates the direction to be assigned to each pixel based on the calculated Sobel value, as in the determination method based on the density gradient direction.
  • the display device 1 specifies the fingertip portion and the finger root portion from the distribution of the direction assigned to each calculated pixel.
  • the fingerprint is not always imaged in the direction of FIG. 10, but is inclined depending on the touch operation direction, but since the pattern in the vertical direction and the pattern in the horizontal direction are orthogonal to each other, By examining the distribution, it is possible to roughly identify the direction of the fingertips and the finger roots. Thereby, the display device 1 can determine the touch operation direction.
  • the display device 1 reads the pattern of the fingerprint from the gray-scale image when the touch operation is performed with the finger, and determines the direction from the pattern. Thereby, the display device 1 can accurately determine the touch operation direction.
  • the determination method for determining the touch operation direction based on the fingerprint is not limited to the above.
  • the fingerprint of the operator is registered in advance in display device 1, and display device 1 compares the fingerprint image of the imaged finger with the registered fingerprint by pattern matching to determine the touch operation direction. It is also conceivable.
  • control of the display device 1 Next, an example in which the various determination methods described above are applied to control of the display device 1 will be described.
  • control of the hockey game is taken as an example.
  • the display device 1 displays a screen of a hockey game that can be enjoyed by the operation of the operator from the left and right direction on the display screen.
  • a person who operates the piece from the left direction (the goal 30a side of the drawing) of the display screen shown in FIG. 11 is a person who operates the piece from the "operator A” and the right direction Is referred to as “operator B”, the team of operator A in the hockey game as “team A”, and the team of operator B as “team B”.
  • the operator A operates from the left side of FIG. 11 and the operator B operates from the right side.
  • the display device 1 displays an image of the goal 30 a of the team A and the goal 30 b of the team B on both sides of the display screen.
  • the display device 1 includes, between both goals, five pieces 20a of the team A displayed as a pentagonal graphic, five pieces 20b of the team B displayed as an octagonal graphic, and pieces 20a and 20b.
  • the ball 30 whose moving direction changes due to the collision is displayed as an image.
  • the display device 1 displays the spine numbers 1 to 5 for each piece 20a, 20b.
  • a finger 100a indicates the finger of the operator A
  • a finger 100b indicates the finger of the operator B.
  • a frame having a profile number n (n is a natural number of 1 or more and 5 or less) is referred to as a “frame n”.
  • the operators A and B manipulate the pieces 20a and 20b of their own team with the fingers 100a and 100b to advance the ball 30 to the goals 30a and 30b of the opposing team.
  • the display device 1 adds points.
  • the above game control based on the operation of the operators A and B is executed by, for example, the control unit 19 (see FIG. 1) of the display device 1.
  • the display device 1 assigns the operation authority as illustrated in FIG. 12 to each frame.
  • the display device 1 controls the operation of the display device 1 so that the team 20a of team A can only be operated by the operator A.
  • the display device 1 controls the operation of the display device 1 such that the B team piece 20 b can be operated only by the operator B.
  • this control is realized by the display device 1 identifying the presence or absence of the operation authority in the touch operation direction (right, left). That is, the display device 1 validates the operation of the piece 20a of the team A only when the touch operation direction is left. On the other hand, the display device 1 makes the operation effective for the piece 20b of team B only when the touch operation direction is right. In addition, since the ball 30 is basically operated via the pieces 20a and 20b, the display device 1 does not assign the operation authority to either the A or B operator.
  • the operation authority data shown in FIG. 12 is stored, for example, in the memory unit 12 of the display device 1.
  • FIG. 13 is a flowchart showing a processing procedure for the display device 1 to determine the validity / invalidity of the operation of the piece based on the operation authority data.
  • the display device 1 determines whether a touch operation on a piece is detected by the touch position detection unit 14 (S31). The display device 1 ends the process when the touch operation on the piece is not detected.
  • the operator A tries to operate the “piece 1” and the “piece 2” of the pieces 20a of the team A.
  • the operator B is going to operate the "piece 3" and the "piece 5" among the pieces 20b of the team B.
  • the display device 1 determines that the touch operation is present in step S31.
  • the display device 1 determines the type (ID in FIG. 12) of the piece in which the touch operation is detected (S32). In the case of FIG. 11, the display device 1 has “1”, “2”, “1”, “2”, “ID” of “piece” that the operator is trying to operate from the four detected touch positions and the current position of each piece 20 a, 20 b. Identify "8" and "10".
  • the display device 1 identifies the touch operation direction determined by the touch operation direction determination unit 15 for each of the identified pieces (S33). Subsequently, the display device 1 collates the touch operation direction specified for each frame with the touch operation direction stored corresponding to each frame (S34). The display device 1 determines whether or not the touch operation directions coincide with each other for each frame (S35).
  • the display device 1 identifies the touch operation direction for “piece 1” and “piece 2” of team A as the left, and determines that the operator A is operating. .
  • the display device 1 specifies that the touch operation direction with respect to “piece 3” and “piece 5” of team B is right, and determines that the operator B is operating.
  • the specified information matches the operation authority data of FIG.
  • step S35 it is determined that the determined touch operation direction and the touch operation direction stored corresponding to the pieces are identical for any of the pieces.
  • the display device 1 validates the operation of each frame (S36). Therefore, in the case of the example of FIG. 11, both of the operators A and B can move the piece to be operated.
  • the display apparatus 1 determines NO in S35. As a result, the display device 1 invalidates the operation of “piece 1” of the team B by the operator A. As a result, the operator A can not move by moving the "piece 1" of the team B.
  • the display device 1 identifies the “piece” in which the touch operation is detected between the touch position detected by the touch position detection unit 14 and the current position of each piece 20 a and 20 b.
  • the display device 1 identifies the “operator” by the direction determined by the touch operation direction determination unit 15. Thereby, the display device 1 can perform control such that the operator can operate only the “piece” to which the operation authority is given.
  • the display device 1 can clearly specify who tried to operate when there are a plurality of operators by determining the operation input person.
  • the display device 1 when there are a plurality of operation objects on the same screen and a plurality of operation input persons operate it, the display device 1 operates only those whose operation authority matches the operation authority of the operation input person. By making this impossible, it is possible to prevent the operation input person from performing an erroneous operation. Furthermore, the display device 1 can add a restriction that only the team piece can be operated on each other in a game or the like.
  • the touch position can be detected and the touch operation direction can be determined by analyzing the image of the input finger or pen. Therefore, based on the signal indicating the touch position and the signal indicating the touch operation direction, and the information stored in the memory unit 12, the control unit 19 determines which direction the operator in the direction has operated. Can. Therefore, the control unit 19 can perform information processing according to the operation authority given to the operator.
  • the image obtained by the light sensor installed behind the display screen is analyzed, and the person in which direction is viewed from the screen is displayed on the display screen. It is possible to determine whether the operation target has been operated. For this reason, the display device 1 can accurately determine the operation direction with a small scale configuration.
  • the display device 1 does not need to have a device for transmitting a signal through the human body outside the display device as in the system introduced in the background art section. For this reason, the display device 1 can determine the touch operation direction with a small-scale and simple configuration of a single display device, and perform information processing thereafter.
  • the touch position is detected by analyzing the image obtained from the optical sensor built-in LCD 10 has been described as an example.
  • the configuration for detecting the touch position is, of course, not limited to this, and various other forms are conceivable.
  • a capacitive touch panel 17 may be provided on the photosensor built-in LCD 18 as in the display device 11 illustrated in FIG. 14 by changing the configuration of the display device 1 of FIG. In this case, the display device 11 detects the touch position with the capacitive touch panel 17. Further, the display device 11 determines the touch operation direction by analyzing the touch position obtained by the capacitive touch panel 17 and the image obtained by the photosensor built-in LCD 18.
  • any of various touch panel methods such as a resistive film method, an infrared method, an electromagnetic induction method, and an ultrasonic method may be used as long as the touch position can be detected.
  • the LCD with a built-in light sensor that mainly responds to the frequency of light in the visible light region is described as an example
  • the configuration of is not limited to this, and various other configurations can be considered.
  • the display devices 1 and 11 reflect infrared light emitted from the rear of the display screen with a finger, a pen or the like, and input the reflected infrared light to the light sensor. Furthermore, the display devices 1 and 11 convert the input infrared rays into an image.
  • the display devices 1 and 11 obtain an image of a finger belly and a finger shadow without being affected by external light such as room light. Will be able to
  • an image obtained by an optical sensor that responds to infrared light utilizes reflection of a finger, it is basically the same as an image obtained by an optical sensor that responds to frequencies in the visible light region.
  • the display devices 1 and 11 use the light sensor to acquire the reflected light to the operation input object such as the finger by the backlight as an image, and thereby the operation input object such as the finger or the touch pen on the display screen. It becomes possible to grasp the degree of contact in detail.
  • the display devices 1 and 11 may incorporate a temperature sensor instead of the light sensor to convert a temperature change when a finger or a pen is placed into an image as an input image.
  • a temperature sensor instead of the light sensor to convert a temperature change when a finger or a pen is placed into an image as an input image.
  • the image obtained by the temperature sensor for example, as shown in FIG. 3B and FIG. 3C, only the part where the finger is placed is warmed or cooled, and only the part where the finger is placed is different from the surroundings. An image with contrast can be obtained.
  • the image of the belly part of the finger has a gradation of white and black as shown in FIG. . That is, the image obtained by the temperature sensor is an image similar to the image obtained by the light sensor.
  • the display devices 1 and 11 can grasp the degree that the operation input object such as the finger and the touch pen is in contact with the display screen in detail by acquiring the image by the temperature sensor. In addition, unlike the light sensor, it is not so influenced by external light such as indoor light and sunlight. Therefore, the display devices 1 and 11 can acquire only the temperature change due to the operation input object.
  • the display devices 1 and 11 use an algorithm for detecting the touch position and the touch direction from the image obtained by the above-described light sensor that mainly responds to the visible light region, and thus the light sensor such as infrared light and It is also possible to detect the touch position and determine the touch direction from the image obtained by the temperature sensor.
  • any type of sensor or camera that can capture an image when a finger or a pen is placed may be used as the imaging device.
  • Embodiment 1 the example which applied the display apparatus 1 to a game machine was demonstrated as one embodiment of the display apparatus 1.
  • FIG. Furthermore, it is also possible to apply the display device to a car navigation system by forming the display device in a configuration in which the dual sensor LCD with a light sensor is incorporated instead of the LCD with a light sensor 10.
  • FIG. 15 is a block diagram showing a schematic configuration of a display device 2 according to the second embodiment of the present invention.
  • the display device 2 is a car navigation system provided with a dual view LCD 20 with an optical sensor.
  • the display device 2 includes a photosensor built-in dual view LCD 20 (hereinafter, simply referred to as “LCD 20”) and the touch position detection unit 14 described above.
  • the display device 2 further includes a control unit 21 which performs identification of the operator in the left-right direction based on the signal input from the touch operation direction determination unit 15, control of the LCD 20, and the like.
  • the display device 2 further includes a memory unit 22 that stores various information related to control.
  • the display device 2 further includes output devices 26 to 28 (television receiver 26, navigation device 27, DVD player 28) for outputting various viewing data.
  • the display device 2 further includes an image selection unit 25 for selectively distributing the data output from the output devices 26 to a left-direction image and a right-direction image.
  • the display device 2 is a left direction display control unit that performs display control of an image to be displayed on the LCD screen corresponding to the left direction and the right direction on the LCD 20 based on the image data output from the image selection unit 25 And a right direction display control unit 24.
  • FIG. 16 is a view showing an example of a display screen of the LCD 20.
  • the display device 2 has a channel button (a “2ch” can be seen in the figure) 401 for selecting a television channel on a television screen on which a mountain landscape with clouds is projected. Is displayed.
  • the display device 2 further displays a scroll button 301 for scrolling the map on the navigation map.
  • the dual view LCD 20 has a function to simultaneously display the screen of FIG. 16 (c) for the person viewed from the front passenger side and the screen of FIG. 16 (d) for the person viewed from the driver side. There is.
  • the operator on the passenger seat side can arbitrarily change the television channel by touching his / her finger 100L on the channel button 401.
  • the operator at the driver's seat can arbitrarily scroll the map by touching the scroll button 301 with his finger 100R.
  • the channel button 401 and the scroll button 301 are redundantly arranged at the same position on the screen. Therefore, when the operator on the passenger seat side operates the channel button 401, the display device 2 needs to be able to determine that the operation is performed by the operator on the passenger seat side.
  • the display device 2 needs to be able to determine whether the finger touching the button is the finger 100R of the driver on the driver's seat side or the finger 100L of the operator on the passenger's seat side. Furthermore, it is necessary for the display device 2 to activate the function of the button corresponding to the operator among the buttons 301 and 401.
  • the display device 2 Similar to the display devices 1 and 11 described in the first embodiment, the display device 2 according to the second embodiment includes the touch operation direction determination unit 15 in addition to the touch position detection unit 14. For this purpose, the display device 2 detects a touch operation on the buttons 301 and 401, and can further specify whether the touch operation is a touch operation from the passenger seat or a touch operation from the driver's seat .
  • the touch operation direction determination unit 15 can determine that the operation has been performed from the left side where the front passenger seat is located. Therefore, the display device 2 only performs channel operation of the TV program and does not respond as operation on the map.
  • the display device 2 is displayed by the two touch positions detected by the touch position detection unit 14 and the touch operation direction determined by the touch operation direction determination unit 15. It can be determined that the button pressed by the left passenger's seat is the channel button 401 and the button pressed by the right driver's seat is the scroll button 301.
  • the operation performed by the person on the left passenger seat is reflected only in the selection operation of the TV program.
  • the operation performed by the driver on the right side can be reflected only on the map scroll operation.
  • buttons relating to the operation of the television and the buttons relating to the navigation have been described as an example, but the car navigation system and the sources related thereto are merely examples. . It goes without saying that it can be applied to a system in which a source whose operation is entrusted to one side (for example, the driver's seat side) and a source whose operation is entrusted to the other side (for example, the passenger side) Nor.
  • the determination method by the touch operation direction determination unit 15 in the second embodiment the “determination method by the density gradient direction”, “the determination method by the edge feature distribution”, and “the fingerprint shape” described in the first embodiment Any of the determination methods may be adopted.
  • the determination method by the touch operation direction determination unit 15 it is also possible to adopt the “determination method based on the elliptical major axis direction” described below.
  • FIG. 17 is a diagram for explaining the principle of the “determination method based on the major axis direction of the ellipse”.
  • a screen is disposed between the driver's seat and the front passenger's seat. Therefore, the touch operation direction of the finger when touching the screen from the driver's side and the passenger's side is limited within a certain range in consideration of the normal operation. Furthermore, the range of the touch operation direction does not overlap with each other.
  • an angle (touch operation direction angle) ⁇ is in the range of more than 0 degree and less than 90 degrees.
  • the range of the touch operation direction angle of the finger 100R of the operator (operator on the driver's seat side) operating from the right side is symmetrical to that of the operator operating from the left side. For this reason, the angle of the touch operation direction of the operator operating from the left side and the angle of the touch operation direction of the operator operating from the right side do not overlap.
  • the display device 2 when the display device 2 captures the belly images 101L and 101R of the finger when the touch operation is detected, the display device 2 starts from the belly images 101L and 101R of the elliptical finger.
  • the major axis 52 is calculated as shown in FIG. Furthermore, for example, the display device 2 determines that the touch operation direction is “left” if the inclination of the major axis 52 is plus, and the touch operation direction is “right” if the inclination of the major axis is minus. That is, the display device 2 determines the touch operation directions on the left and right from the inclination of the major axis.
  • the display device 2 determines the touch operation direction from the orientation of the major axis of this ellipse. It becomes possible to determine the touch operation direction well.
  • the display device 2 determines the touch operation direction from the inclination of the major axis 52 of the ellipse here, it is a matter of course that the display device 2 is not limited to the major axis 52 of the ellipse.
  • the display device 2 may determine the touch operation direction from the minor axis of the ellipse.
  • the major axis of the ellipse can be calculated, for example, as follows.
  • the display device 2 calculates a circumscribed rectangle and a diagonal line from the elliptical image obtained by the binarization process or the edge detection process.
  • the pair of diagonal lines calculated here become the major axis and the minor axis.
  • FIG. 17D in the long axis direction, more pixels with high density values are distributed due to the antinode of the finger than in the short axis direction.
  • the display device 2 calculates the distribution between the pixels on the major axis and the pixels on the minor axis, and sets the diagonal of the pixel value binarized in black and white to the one with more black as the major axis direction of the ellipse. Determine.
  • the display device 2 first determines whether a touch operation on the button 301 or 401 is detected (S41). When the touch operation is detected, the display device 2 determines the inclination direction of the major axis based on the belly image of the elliptical finger at the touch operation position (S42).
  • the display device 2 determines whether the inclination direction of the major axis is a positive direction (whether 0 in FIG. 17 satisfies 0 ° ⁇ ⁇ 90 °) (S43).
  • the display device 2 activates the function assigned to the button 401 corresponding to the operator on the left side, that is, the passenger seat side (S44).
  • the display device 2 activates the function assigned to the button 301 corresponding to the operator on the right side, that is, the driver's seat side (S45).
  • the display device 2 it is not necessary to install a camera outside the display device or to install a signal transmission device on a chair or a handle in order to specify the operator. Therefore, it is possible to determine which of the left and right the operator is operating with only the display device 2.
  • the image is captured from the inside of the display screen, it is possible to eliminate obstacles that interfere with the determination. For this reason, for example, as shown in FIG. 16 (a), the touch operation direction can be accurately determined regardless of any obstacle in front of the display screen, such as when the hands of the passenger and the driver are overlapped. It becomes possible to distinguish.
  • the display device 2 can accurately determine which of the person on the passenger seat side and the person on the driver's seat has pressed a button or the like arranged in an overlapping manner with a small-scale configuration. It becomes.
  • the front passenger seat and the driver seat buttons may be arranged so as not to overlap so that it is possible to distinguish which one of the front passenger side and the driver side has pressed the button.
  • the area for displaying the button is limited, and the display device 2 according to the second embodiment is effective also in this point.
  • the display device it is not necessary to install a camera, a signal transmission device, and the like outside the display device. Therefore, the display device can accurately determine from which direction the touch is made in any situation regardless of which obstacle is in front of the display screen, whether standing or sleeping. Therefore, the display device can accurately perform the subsequent information processing using the determined information. In addition, since it is possible to accurately determine from which direction a touch is made with a simple configuration of only the display device, the cost can be suppressed to the same extent as that of a conventional display device with a touch panel. Therefore, the display device according to each embodiment can be used in various situations such as a mobile application that carries the display device.
  • the display device may analyze the image based on the touch position detected by the touch position detection unit 14 to determine the touch operation direction.
  • the display device performs image analysis on an image in a predetermined range among the captured images to determine the touch operation direction.
  • the display device since the display device processes only the image around the touch position to determine the touch operation direction, simplification and speeding up of the processing can be achieved. Furthermore, the display does not have to look at unnecessary image areas. Therefore, the display device can also increase the accuracy of the touch operation direction determination. Further, simplification of the process can reduce the number of gates in circuitization. Therefore, the manufacturing cost of the display device can also be reduced.
  • the display device may analyze all the captured images.
  • the determination method by the touch operation direction determination unit 15 is of course not limited to the example described in the above embodiment, and any determination method can be used as long as the method can determine the touch operation direction from the image. May be
  • the first and second embodiments are also applicable when the touch operation is performed by a member such as a touch pen. Even when a touch operation is performed with a touch pen or the like, an image of a shadow centered on the coordinate position at which the touch operation is detected is captured as shown in FIG.
  • the display device 2 according to the second embodiment may be configured without including the television receiver 26, the navigation device 27, and the DVD player 28 in the configuration.
  • the “determination method based on the major axis direction of the ellipse” described in the second embodiment may be adopted in the display devices 1 and 11 according to the first embodiment.
  • determination method may be employ

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 タッチ操作が検出された場合に、表示装置それ自体でタッチ操作方向を特定可能な表示装置を提供する。表示装置(1)に、表示画面に対するタッチ操作を前記表示部の内部から撮像する光センサ内蔵LCD(10)と、撮像された画像に基づいてタッチ位置に対するタッチ操作方向を判別するタッチ操作方向判別部(15)とを設けた。

Description

表示装置および制御方法
 本発明は、タッチパネル等の表示部を備える表示装置に関する。
 タッチ入力が可能な表示装置は、典型的にはLCD(Liquid Crystal Display)の上に抵抗膜方式や静電容量方式などのシートを1枚重ねることで実現することができる。この種の表示装置は、銀行などに設置されているATM、乗車券などを購入するための券売機、カーナビゲーションシステム、携帯機器、ゲーム機器など、様々な場面において、直観的な入力ができるインタフェースとして利用されている。
 基本的に、これらのタッチ入力が可能な表示装置では、ユーザは、1点または複数点で入力することができる。当該表示装置は、表示画面のどの位置に触れたか否かのみを判断することが可能である。
 タッチ入力を実現する技術としては、抵抗膜方式、静電容量方式、赤外線方式、電磁誘導方式、超音波方式などの他、光センサ内蔵LCDで撮像した画像を解析してタッチ位置を検出することによりタッチ入力を実現する方式も知られている。たとえば、特開2006-244446号公報(特許文献1)には、光センサ内蔵LCDについて説明されている。
 このように、タッチ位置を検出するための技術は多数知られている。しかしながら、タッチ位置の検出のみでは、タッチ位置に対するタッチ操作方向を判別できない。
 そこで、特開2006-47534号公報(特許文献2)には、左右から見る人に各々違う画像を表示可能なデュアルビューLCD型の車載用カーナビゲーションシステムにおいて、運転席と助手席とのうちのどちら側から表示画面に対するタッチ操作が行なわれたかを判別し、その判別結果に応じた表示制御を行なうことが提案されている。このシステムは、車内の椅子またはハンドルに接地した人体を通して運転席と助手席とで各々異なる信号を表示装置に伝達することにより、左右どちらの席に座っている人のタッチ操作であるかを判別している。
特開2006-244446号公報 特開2006-47534号公報
 しかしながら、特許文献2で提案されたシステムでは、人間が常に椅子に座っているか、ハンドルを触っているなどして、表示装置以外に仕込まれた信号伝達装置に接触していることが必須となる。このため、上記システムは、特定の状況においてのみしか、タッチ操作方向を判別することができない。また、上記システムは、表示装置の外部に、信号を伝達するための比較的大掛かりな装置が必要となる。このため、外で持ち歩くような場面で利用するモバイル機器などに上記システムを応用するには、非現実的である。
 特許文献2には、人体を通して判別信号を伝達する方式以外に、車室内の後方天井部にカメラを設置して、助手席および運転席の後方から表示装置の表示画面を撮影した画像を解析することにより、タッチ操作方向を判別する方式についても提案されている。
 しかしながら、この方式では、頭や背中などの障害物でタッチしている部分が隠されたり、人と人の手が交錯したりした場合、正確にどの方向からタッチしたかを上記システムが検出することは困難である。また、表示装置の外部に信号伝達装置を置く方式と同様に、モバイル機器など外で持ち歩くような場面に当該方法を応用することはできない。
 本発明は、上記のような問題を解決するためになされたものであって、その目的は、タッチ操作が検出された場合に、表示装置それ自体でタッチ操作方向(タッチ操作における表示画面に対するタッチ方向)を特定可能な表示装置、および当該表示装置における制御方法を提供することである。
 本発明に係る表示装置は、表示画面を有する表示部と、前記表示画面に対するタッチ操作を前記表示部の内部から撮像する撮像部と、前記タッチ操作における前記表示画面に対するタッチ位置を検出するタッチ位置検出部と、前記撮像部による撮像で得られた画像に基づいて、前記タッチ操作における前記表示画面に対するタッチ方向を判別する方向判別部とを備える。
 好ましくは、前記方向判別部は、前記撮像部により撮像された画像のうち、前記タッチ位置を基準とした所定範囲の画像に基づいて、前記タッチ操作方向を判別する。
 好ましくは、前記方向判別部は、タッチ操作のために前記表示画面に接触した指またはタッチ部材が前記撮像部により撮像されたときに、前記タッチ位置の周辺画像の濃度変化に基づいて、前記タッチ操作方向を判別する。
 好ましくは、前記撮像部は、光センサまたは温度センサである。
 好ましくは、前記タッチ位置検出部は、前記撮像部により撮像された画像に基づいてタッチ位置を検出する。
 本発明によれば、表示画面に対するタッチ操作が表示部の内部から撮像され、その撮像画像に基づいて、タッチ位置に対するタッチ操作方向が判別される。このため、タッチ操作が検出された場合に、表示装置それ自体でタッチ操作方向を特定可能となる。
実施の形態1に従う表示装置1の概略構成を示すブロック図である。 光センサ内蔵LCDの機能を説明するための図である。 撮像画像の例を示す図である。 濃度勾配方向を特定することによってタッチ操作方向を判別する判別手法の原理を説明するための図である。 タッチ操作方向判別処理P1を説明するためのフローチャートである。 タッチ操作方向判別処理P1を説明するための概念図である。 タッチ操作方向の基準を決定するための処理手順を示すフローチャートである。 エッジ特徴量分布に基づいてタッチ操作方向を判別する判別手法の原理を説明するための図である。 タッチ操作方向判別処理P2を説明するためのフローチャートである。 指紋の特徴を説明するための図である。 表示装置をゲーム機に応用したときの画面図である。 操作権限データの概念図である。 表示装置が駒の操作の有効・無効を判定するための処理手順を示すフローチャートである。 静電容量方式のタッチパネルを設けた表示装置の概略構成を示すブロック図である。 本発明の実施の形態2に従う表示装置の概略構成を示すブロック図である。 LCDの表示画面例を示す図である。 「楕円長軸方向による判別手法」の原理を説明するための図である。 「楕円長軸方向による判別手法」による処理手順を示すフローチャートである。
符号の説明
 1,2,11 表示装置、10,18 光センサ内蔵LCD、14 タッチ位置検出部、15 タッチ操作方向判別部、17 静電容量方式タッチパネル、20 光センサ内蔵デュアルビューLCD。
 以下に図面を参照しつつ、本発明の実施の形態について説明する。以下の説明においては同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同一であるものとする。
 (実施の形態1)
 図1は、本発明の実施の形態1に従う表示装置1の概略構成を示すブロック図である。表示装置1は、たとえば、ゲーム機に応用可能である。
 表示装置1は、各画素に光センサが内蔵され、表示だけではなく画像の撮像が可能な光センサ内蔵LCD(液晶パネル/ディスプレイ)10を備える。表示装置1は、光センサ内蔵LCD10によって撮像された画像を解析してタッチ位置を検出するタッチ位置検出部14をさらに備える。表示装置1は、光センサ内蔵LCD10によって撮像された画像を解析してどの方向からタッチされたかを判別するタッチ操作方向判別部15をさらに備える。表示装置1は、タッチ位置やタッチ操作方向を示すデータを受け取り表示装置1の全ての制御を行なう制御部19をさらに備える。表示装置1は、データや命令を格納するメモリ部12をさらに備える。表示装置1は、画面へ表示する画像を生成する画像生成部13をさらに備える。
 表示画面に対するタッチ操作が検出されると、光センサ内蔵LCD10は、タッチ操作の際の画像を表示画面の内部から撮像する。光センサ内蔵LCD10は、撮像した画像を、タッチ位置検出部14に入力する。タッチ位置検出部14は、画像を解析することによりタッチ位置を検出する。
 タッチ位置を検出する手法として、たとえば、エッジ特徴量抽出、パターンマッチングなどの技術を採用することができる。このように画像処理によってタッチ位置を検出することで、画面の複数箇所が同時にタッチされても、タッチ位置検出部14は、それら複数のタッチ位置を検出することが可能である。このため、操作者は、画面上に表示されている複数の操作対象物を同時に操作することができる。また複数人で同時に操作することも可能である。
 タッチ操作方向判別部15は、タッチ位置検出部14で検出されたタッチ位置を基準として、光センサ内蔵LCD10によって得られた画像を解析する。当該解析により、タッチ操作方向判別部15は、タッチ操作方向を判別する。
 制御部19は、タッチ位置検出部14によって得られたタッチ位置と、タッチ操作方向判別部15によって得られたタッチ操作方向とを用いて、たとえば、ゲーム機としての表示装置1の制御を行なう。
 光センサ内蔵LCD10は、主に可視光領域の周波数に反応する光センサ(図示省略)を各画素に対応して内蔵している。図2に例示するように、光センサ内蔵LCD10の各光センサは、室内光や太陽光などの外光と、バックライト16から照射される光が表示画面上に置かれた指100などに反射して成る反射光とを受け取るように設計されている。光センサ内蔵LCD10は、光センサで受け取った光をADコンバータでデジタル値に変換し、白と黒の濃淡画像として出力される。
 光センサによって得られるタッチ操作の際の画像は、外光やバックライトの強さ、指の置き方などによって異なる。図3に典型的な例を3つ例示する。
 外光の強度が変化しても、表示画面に接するか若しくはその近傍に位置する指の腹部分の明るさはあまり変化しない。これに対して、指で外光が遮断されない部分は外光の明るさの変化をそのまま受ける。このため、指で外光が遮断されない部分は、指の腹部分と比べて相対的に黒くなったり、白くなったりと、コントラストが変化する。
 図3(a)は、表示装置1の表示画面が比較的明るい外光で照らされているような場合の画像例である。図3(a)に示されるように、指で光が遮断されていない外側部分は白くなる。画面に一部が接している指の腹画像101は、バックライト16の反射光でやや白くなる。指の影画像102は、光が遮断されているので黒くなる。
 図3(b)は、比較的暗い外光の場合の画像例である。図3(b)に示されるように、画面にその一部が接している指の腹画像101だけがバックライト16の反射光によってやや白くなっており、他の部分は黒くなっている。
 図3(c)は、外光が太陽光のように平行光で非常に明るい場合の画像例である。画面にその一部が接している指の腹画像101のバックライト16による反射光よりも、指の腹画像101のまわりの外光のほうが強いために、指の腹画像101のみが黒くなっている。
 次に、タッチ操作方向判別部15がタッチ操作方向を判別する手法について、詳細に説明する。タッチ操作方向判別部15は、光センサ内蔵LCD10により撮像された画像のうち、タッチ位置を基準とした、所定範囲の画像に基づいて、タッチ操作方向を判別する。タッチ操作方向判別部15がタッチ操作方向を判別する手法として、以下では、「濃度勾配方向による判別手法」、「エッジ特徴量分布による判別手法」、「指紋形状による判別手法」の3手法を順に説明する。
 (濃度勾配方向による判別手法)
 図4は、濃度勾配方向を特定することによってタッチ操作方向を判別する判別手法の原理を説明するための図である。
 この判別手法は、光センサ内蔵LCD10によって撮像された表示画面全体の画像のうち、検出されたタッチ位置を基準として、タッチ位置周辺の白と黒の濃淡画像の濃度勾配方向を調べることでタッチ操作方向を判別する。
 図4(a)には、光センサ内蔵LCD10によって撮像された画像のうち、タッチ位置周辺の画像が示されている。この画像には、図3(a)と同様に、画面に一部が接している指の腹画像101と、指の影画像102とが表示されている。なお、図中の十字マーク105は、タッチ位置検出部14によって検出されたタッチ位置を説明するためのマークである。タッチ位置は、十字中心位置で示される。十字マーク105は、実際の画像には表示されていない。
 図4(a)の指の腹画像101を詳細に観察すると、「指の腹部分の拡大図」に示されるように、タッチ位置を基準として指先方向は指が画面に近いために反射光によって白く撮像される一方、指元方向に向かう程、反射光の強度が弱まって画像の濃度が濃くなり、黒く撮像されるという特徴があることに気づく。これは、指が腕から斜め下に向かう角度を持って画面にタッチされることによる。なお、指でなく、タッチペンでタッチ操作が行なわれた場合にも、同様の特徴が現れることはいうまでもない。
 このため、図4(a)の例では、指の腹画像101のうち、画像濃度が濃くなる方向が腕側に向かう指元方向、あるいは操作者の方向に向かう方向であるといえる。そこで、図4(a)の例では、画像濃度が濃くなる濃度勾配方向を特定してその方向をタッチ操作方向として判別してやればよい。
 図4(b)には、この原理に基づいて、タッチ操作方向を上下左右の4方向のいずれであるかを判別する判別基準が示されている。図4(b)に示されるように、指の腹画像101の濃度勾配方向(図中の「白→黒」)に基づいて、タッチ操作方向が左、右、上、下の4方向のいずれであるかを判別できる。
 なお、図4(b)では、簡単のために4方向のタッチ操作方向しか例示していないが、濃度勾配方向をより細かく算出することによって、斜め方向も加えた8方向、さらには16方向などと、より詳細にタッチ操作方向を判別することも可能である。
 また、ここでは、濃淡画像が白から黒へ向かう方向(指元方向)をタッチ操作方向と判別するようにしているが、黒から白へ向かう方向(指先方向)をタッチ操作方向と判別するようにしてもよい。
 一般に、タッチ位置近傍では、たとえば指が表示画面上に強く接している部分、軽く接している部分、少し浮いている部分などにより異なる濃淡画像が得られる。このため、表示装置1は、このように濃淡画像の濃度勾配方向からタッチ操作方向を判別することで、精度よくタッチ操作方向を判別することが可能となる。
 次に、図5および図6を参照して、図4に示される判定原理に基づいて表示装置1がタッチ操作方向を判別する具体的手順について説明する。図5は、表示装置1によって実行されるタッチ操作方向判別処理P1を説明するためのフローチャートである。また、図6は、タッチ操作方向判別処理P1を説明するための概念図である。
 タッチ操作方向判別処理P1においては、表示装置1は、最初に、タッチ位置の座標を中心とした濃淡画像を取得する(S1)。取得される濃淡画像は、たとえば、光センサ内蔵LCD10によって撮像された画像のうち、図6(a)に示されるように十字マーク105の十字中心に示されるタッチ位置の座標を中心とした縦横L1×L1の正方形の解析エリア80に含まれる画像である。ここで、L1の長さは、標準的な指の大きさを基準にして、指の腹画像101が含まれるように予め定められている。
 なお、表示装置1にユーザの指のサイズを登録する機能を設けて、その登録サイズに基づいて解析エリア80のサイズを表示装置1が定めるようにしてもよい。また、解析エリア80の形状は、正方形に限られるものではなく、長方形であっても、円であっても、楕円であってもよい。
 次に、取得された濃淡画像に対して、濃度勾配方向を算出するために、表示装置1は、横方向(x方向)および縦方向(y方向)それぞれについて、ソーベルフィルタ処理を実行する(S2、S3)。横方向(x方向)および縦方向(y方向)それぞれに対応するソーベルフィルタの一例を図6(b)に示す。なお、ここでは、ソーベルフィルタを用いる例を示すが、エッジ抽出用のフィルタであれば、いずれのフィルタを用いてもよい。
 表示装置1は、解析エリア80内の濃淡画像にソーベルフィルタを適用することによって、濃淡画像を構成する画素毎に、横方向(x方向)および縦方向(y方向)のソーベル値を算出する。図6(b)は、特定の画素に対して、横方向(x方向)のソーベル値Gxと縦方向(y方向)のソーベル値Gyとから求められる、濃度勾配角θを有する濃度勾配ベクトル111を示す図である。
 次に、S2およびS3にて画素毎に算出された横方向および縦方向のソーベル値に基づいて、表示装置1は、各画素の濃度勾配方向を上下左右の4方向のいずれかに分類する(S4)。図6(b)に示されるように、各画素に対応して、横方向(x方向)のソーベル値Gxと縦方向(y方向)のソーベル値Gyとが算出されているが、表示装置1は、濃度勾配方向を上下左右の4方向に分類するため、GxとGyとのうちで絶対値が大きい方の値に基づいた方向をその画素の濃度勾配方向として決定する。ここで、横方向のソーベル値はプラスのとき左方向、マイナスのとき右方向、縦方向のソーベル値はプラスのとき上方向、マイナスのとき下方向を表す。
 たとえば、(Gx,Gy)=(-10,+15)であれば、表示装置1は、Gy方向すなわち、縦方向でかつ+方向に対応する上方向をその画素の濃度勾配方向として決定する。ただし、ノイズ等の影響を考慮して、絶対値が予め定めた閾値以下のときには、表示装置1は、その画素に対応する濃度勾配方向を定めないものとする。
 表示装置1は、このようにして各画素の濃度勾配方向を上下左右の4方向のいずれかに分類することによって、解析エリア80に含まれる画像について、図6(c)の概念図に示されるように画素毎の濃度勾配方向を算出する。
 次に、表示装置1は、上下左右方向の濃度勾配方向のうちで、一番多い方向を算出し、その値をタッチ操作方向と判別し(S5)、処理を終える。
 なお、表示装置1が4方向以上の方向を判別するときは、各画素で算出した横方向と縦方向のソーベル値の値に応じて斜め方向も定義すればよい。たとえば、S2およびS3の処理結果から、表示装置1は、画素毎に濃度勾配ベクトル111を算出する。そして、表示装置1は、各画素の濃度勾配ベクトル111を合成して得られる合成ベクトルの勾配角と、上下左右斜め方向とを比較して、最も角度差が少ない方向をタッチ操作方向として判別する。
 あるいは、表示装置1は、タッチ操作方向を4方向のうちから判別する場合であっても、合成ベクトルの勾配角と上下左右方向とを比較して、最も角度差が少ない方向をタッチ操作方向として判別してもよい。
 以上、説明した濃度勾配方向による判別手法は、図3(a)に示したような画像が撮像された場合を想定したものである。ところが、実際には、図3(b)や図3(c)のような撮像画像がタッチ操作方向判別部15に入力される場合もある。
 特に、図3(c)のように、画像中に指の影画像ができず、指の腹画像101の背景が白くなる場合には、濃度勾配方向に基づいてタッチ操作方向を判定する場合の判定方向が図3(a)の場合とは逆になる。なぜなら、バックライトの間近で照射される指の腹のタッチ位置よりも、タッチ位置から指元方向に向かう指の腹部分の方が、強い外光で照射されるため、指の腹画像中、指の腹のタッチ位置付近の画像の方が指の腹の指元側の画像よりも画素濃度が濃くなるからである。
 このため、表示装置1は、タッチ位置を基準とした指の腹部分の画像のみでタッチ操作方向を判別するのではなく、指の腹部分以外の画像も判断材料として条件に加えて、タッチ操作方向を判別するのが望ましい。
 そこで、指の腹部分以外の画像も判断材料として条件に加えて、表示装置1がタッチ操作方向を判別可能にするために、図7に、タッチ操作方向の基準を決定するための処理手順を示すフローチャートを示す。
 図7を参照して、最初に、タッチ操作が検出された際に撮像された画像に、表示装置1は、指の影があるか否かを判定する(S11)。指の影があるか否かは、たとえば、次のようにして判定する。指の影が存在する場合の画像を対象とするヒストグラムなどによる画素濃度分布データを予め採取し、これを表示装置1に記憶しておく。S11では、表示装置1は、撮像画像に基づいてヒストグラムなどによる画素濃度分布データを生成し、これを予め記憶している画素濃度分布データと比較して、一定以上の類似度が得られた場合に指の影有と判定する。
 図3(a)のように画像中に指の影画像102が存在する場合には、表示装置1は、画像濃度が濃くなる方向(図4(b)参照)をタッチ操作方向として決定する(S14)。これに対して、画像中に指の影画像が存在しない場合には、表示装置1は、指の腹画像101の背景が白であるか否かを判断する(S12)。
 たとえば、図3(b)のような場合には、S12においてNOと判断され、図3(c)のような場合には、S12においてYESと判断される。
 S12においてNOと判断されたときには、表示装置1は、処理をステップS14に進め、画像濃度が濃くなる方向をタッチ操作方向として決定する。これに対して、S12においてYESと判断されたときには、表示装置1は、画像濃度が薄くなる方向をタッチ操作方向として決定する(S13)。
 以上、説明した図7の処理手順において、表示装置1が、画像濃度が薄くなる方向をタッチ操作方向として決定した場合には、図5に示されるタッチ操作方向判別処理P1での上下方向および左右方向の判断が逆になる。このため、表示装置1は、横方向のソーベル値はプラスのとき右方向、マイナスのとき左方向、縦方向のソーベル値はプラスのとき下方向、マイナスのとき上方向を表すものと判断する。
 (エッジ特徴量分布による判別手法)
 次に、エッジ特徴量分布に基づいて表示装置1がタッチ操作方向を判別する判別手法を説明する。図8は、エッジ特徴量分布に基づいてタッチ操作方向を判別する判別手法の原理を説明するための図である。
 この判別手法では、光センサ内蔵LCD10によって撮像された表示画面全体の画像のうち、検出されたタッチ位置を基準として、表示装置1は、タッチ位置周辺の白と黒の濃淡画像から指先周辺部分のエッジを抽出してタッチ操作方向を判別する。
 図8(a)の左側には、光センサ内蔵LCD10によって撮像された画像のうち、タッチ位置周辺の画像が示されている。この画像には、図4(a)と同様に、画面に一部が接している指の腹画像101と、指の影画像102と、タッチ位置検出部14によって検出されたタッチ位置を十字中心位置で示す十字マーク105とが示されている。
 指の影画像102は、図示のとおり、指先の先端部分で高い濃度値となり、背景との濃度差が明確となる一方、指元方向に向かうほど、その濃度値が薄れる。したがって、表示装置1は、このような画像を対象としてエッジの抽出を行なうと、図8(a)の右側に示されるようなエッジ103を得る。エッジ103は指先部分を示すため、エッジ103と対向する位置にある開口は、タッチ位置を基準にすると、指元方向、すなわち、操作者の方向を表すことになる。
 図8(b)には、この原理に基づいて、タッチ操作方向を上下左右の4方向のいずれであるかを判別する判別基準が示されている。図8(b)に示されるように、表示装置1は、エッジ抽出処理により得られたエッジの開口方向に基づいて、タッチ操作方向が左、右、上、下の4方向のいずれであるかを判別できる。
 なお、図8(b)では、簡単のために4方向のタッチ操作方向しか例示していないが、表示装置1は、エッジの開口方向をより細かく算出することによって、斜め方向も加えた8方向、さらには16方向などと、より詳細にタッチ操作方向を判別することも可能である。
 また、ここでは、指元方向(エッジ開口方向)をタッチ操作方向と判別するように表示装置1を構成しているが、指先方向をタッチ操作方向と判別するように表示装置1を構成してもよい。
 このようにエッジ検出技術を適用することにより、表示装置1は、たとえば指が表示画面上に強く接している部分、軽く接している部分、少し浮いている部分などにより異なるタッチ位置近傍のエッジ特徴量が得られる。表示装置1は、そのエッジ特徴量の分布を調べることにより、タッチ操作方向を判別することで、表示画面上に設置する指などの微妙な接触度合いから精度よくタッチ操作方向を判別することが可能となる。
 次に、図9を参照して、図8に示される判定原理に基づいて表示装置1がタッチ操作方向を判別する具体的手順について説明する。図9は、表示装置1によって実行されるタッチ操作方向判別処理P2を説明するためのフローチャートである。
 タッチ操作方向判別処理P2においては、表示装置1は、最初に、タッチ位置の座標を中心とした濃淡画像を取得する(S21)。取得される濃淡画像は、たとえば、光センサ内蔵LCD10によって撮像された画像のうち、図8(a)に示されるように十字マーク105の十字中心に示されるタッチ位置の座標を中心とした正方形の解析エリアに含まれる画像である。ここで、解析エリアのサイズは、標準的な指の大きさを基準にして、指の腹画像101と指の影画像102の一部が含まれるように予め定められている。なお、図5のステップS1と同様に、表示装置1にユーザの指のサイズを登録する機能を設けて、その登録サイズに基づいて、ここでの解析エリアのサイズを表示装置1が定めるようにしてもよい。また、解析エリアの形状は、正方形に限られるものではなく、長方形であっても、円であっても、楕円であってもよい。
 次に、表示装置1は、取得した濃淡画像に基づいて、エッジ特徴量を抽出する処理を実行する(S22)。エッジ特徴量の抽出には、表示装置1は、ソーベルフィルタその他のエッジ抽出用のフィルタを用いる。そして、表示装置1は、所定の閾値を用いて、エッジ特徴量を抽出する。
 次に、表示装置1は、中心座標(タッチ位置の座標)から見てエッジ特徴量が少ない方向、すなわち開口方向を特定し、特定した開口方向がタッチ操作方向と判別する(S23)。これにより、表示装置1は、処理を終了する。
 あるいは、ステップS23において、表示装置1は、エッジ特徴量を有する複数の画素の重心の座標を求めて、タッチ操作方向を判別してもよい。具体的には、最初に、表示装置1は、所定の閾値以上のエッジ特徴量を有する複数の画素を抽出する。次に、表示装置1は、抽出画素の各々に対して、画素値の大きさに対応した重み付けを加えた上で、重心座標を算出する。表示装置1は、算出した重心座標と、解析エリアの中心座標(タッチ位置の座標)とを結ぶ直線において、重心座標位置からタッチ位置座標位置に向かう方向をタッチ操作方向とする。
 なお、エッジ特徴量を使ったタッチ操作方向の判別は、上記の例に限定されないことはもちろんであり、エッジ特徴量によりタッチ操作方向を判別できる手法であればどのような手法を採用してもよい。
 (指紋による判別手法)
 次に、表示装置1が、指紋に基づいてタッチ操作方向を判別する判別手法を説明する。図10に示されるように、人間の指紋には、指先になるほど横方向の線の模様が多く、指付根部分になるほど縦方向の線の模様が多くなるという特徴がある。ここでは、表示装置1は、このような指紋の特徴を利用してタッチ操作方向を判別する。
 具体的には、最初に、表示装置1は、指の腹画像を対象にして、濃度勾配方向による判別手法と同様に、ソーベルフィルタ等を用いて画素毎にソーベル値を算出する。次に、表示装置1は、算出されたソーベル値に基づいて、濃度勾配方向による判別手法と同様に、各画素に割り当てる方向を算出する。次に、表示装置1は、算出した各画素に割り当てた方向の分布から指先部分と指付根部分とを特定する。
 指紋は、常に図10の方向には撮像されるとは限らず、タッチ操作方向によって傾きが生じたものとなるが、縦方向の模様と横方向の模様とは直交するため、これら2方向の分布を調べることによって、指先と指付根との方向をおおまかに特定できる。これにより、表示装置1は、タッチ操作方向を判別することが可能となる。
 このように、表示装置1は、指でタッチ操作した際の濃淡画像から指紋の模様を読み取り、その模様から方向を判別する。これにより、表示装置1は、精度よくタッチ操作方向を判別することが可能となる。
 指紋に基づいてタッチ操作方向を判別する判別手法としては、上記のものに限られない。たとえば、予め、操作者の指紋を表示装置1に登録しておき、表示装置1が、撮像された指の腹画像と登録された指紋とをパターンマッチングにより比較して、タッチ操作方向を判別することも考えられる。
 次に、上記の各種判別手法を表示装置1の制御に応用した例を説明する。ここでは、ホッケーゲームの制御を例に挙げる。
 図11に示されるように、表示装置1は、表示画面に、左右方向からの操作者の操作によって楽しめるホッケーゲームの画面を表示する。以下の説明において、図11に示される表示画面の左方向(図面のゴール30a側)から駒を操作する者を「操作者A」、右方向(図面のゴール30b側)から駒を操作する者を「操作者B」、ホッケーゲームでの操作者Aのチームを「チームA」、操作者Bのチームを「チームB」と称する。表示装置1においては、操作者Aは図11の左側から、操作者Bは右側から操作する決まりとなっている。
 表示装置1は、表示画面の両はじに、チームAのゴール30a、およびチームBのゴール30bを画像表示している。また、表示装置1は、両ゴール間に、五角形の図形で表示されたチームAの5つの駒20aと、八角形の図形で表示されたチームBの5つの駒20bと、駒20a,20bに衝突することで移動方向が変化する玉30とを画像表示している。表示装置1は、各駒20a,20bに対して1~5の背番号を表示する。図において、指100aは操作者Aの指を、指100bは操作者Bの指を、それぞれ示す。なお、以下では、背番号がn(nは1以上5以下の自然数)の駒を、「駒n」と称する。
 操作者A、Bは、互いに自身のチームの駒20a,20bを指100a,100bにより操作して、玉30を相手チームのゴール30a,30bへと進める。玉が相手チームのゴールに入ると、表示装置1は得点を加算する。操作者A、Bの操作に基づいた以上のゲーム制御は、たとえば、表示装置1の制御部19(図1参照)によって実行される。
 表示装置1は、各駒に対して、図12に例示されるような操作権限を割り当てている。表示装置1は、Aチームの駒20aが操作者Aにしか操作できないように、表示装置1の動作を制御する。また、表示装置1は、Bチームの駒20bが操作者Bにしか操作できないように、表示装置1の動作を制御する。
 この制御は、図12に示されるように、操作権限の有無を表示装置1がタッチ操作方向(右、左)で識別することによって実現されている。すなわち、表示装置1は、Aチームの駒20aについては、タッチ操作方向が左であるときにのみ、操作を有効とする。一方、表示装置1は、Bチームの駒20bについては、タッチ操作方向が右であるときにのみ、操作を有効とする。なお、玉30は、基本的に駒20a,20bを介して操作されるため、表示装置1は、操作権限をA、Bいずれの操作者にも割り当てていない。図12に示される操作権限データは、たとえば、表示装置1のメモリ部12に格納されている。
 図13は、操作権限データに基づいて、表示装置1が駒の操作の有効・無効を判定するための処理手順を示すフローチャートである。
 最初に、表示装置1は、駒へのタッチ操作がタッチ位置検出部14により検出されたか否かを判定する(S31)。表示装置1は、駒へのタッチ操作が検出されない場合には処理を終了する。
 図11に示される例では、操作者Aは、Aチームの駒20aのうち、「駒1」と「駒2」とを操作しようとしている。操作者Bは、Bチームの駒20bのうち、「駒3」と「駒5」とを操作しようとしている。この場合、表示装置1は、ステップS31においてタッチ操作有と判断する。
 次に、表示装置1は、タッチ操作が検出された駒の種類(図12のID)を判別する(S32)。図11の場合、表示装置1は、検出された4つのタッチ位置と各駒20a,20bの現在位置とから、操作者が操作しようとしている「駒」のIDが「1」、「2」、「8」、「10」であることを特定する。
 次に、表示装置1は、特定された各駒別に、タッチ操作方向判別部15で判別されたタッチ操作方向を特定する(S33)。続いて、表示装置1は、各駒別に特定されたタッチ操作方向と、各駒に対応して記憶されているタッチ操作方向とを照合する(S34)。表示装置1は、タッチ操作方向が一致しているか否かを各駒別に判定される(S35)。
 図11の例の場合では、表示装置1は、Aチームの「駒1」、「駒2」についてのタッチ操作方向を左であると特定し、操作者Aが操作しているものと判断する。これに対して、表示装置1は、Bチームの「駒3」、「駒5」についてのタッチ操作方向を右と特定し、操作者Bが操作していると判断する。これら特定された情報は、図12の操作権限データとマッチしている。この場合、ステップS35においていずれの駒についても、判別されたタッチ操作方向と、駒に対応して記憶されているタッチ操作方向とが一致していると判定され。その結果、表示装置1は、各駒の操作を有効化する(S36)。したがって、図11の例の場合には、操作者A・Bともに操作しようとしている駒を動かすことができる。
 しかし、たとえば操作者AがBチームの「駒1」を操作しようとしても、図12の操作権限データとマッチしないので、表示装置1は、S35においてNOと判断する。その結果、表示装置1は、操作者AによるBチームの「駒1」の操作を無効化する。これにより、操作者AはBチームの「駒1」を操作して動かすことができない。
 このように、表示装置1は、タッチ位置検出部14で検出したタッチ位置と各駒20a,20bの現在位置とでタッチ操作が検出された「駒」を特定する。表示装置1は、タッチ操作方向判別部15で判別した方向により「操作者」を特定する。これにより、表示装置1は、操作権限が与えられた「駒」しか操作者が操作することができないといった制御をすることが可能となる。
 このため、表示装置1は、操作入力者を判別することによって、操作者が複数人いた場合に誰が操作しようとしたのかを明確に特定できる。
 また、同じ画面上に複数の操作対象物があり、それを複数人の操作入力者が操作するような場合、表示装置1は、操作対象物と操作入力者の操作権限が一致するものしか操作できないようにすることで、操作入力者が誤った操作をしてしまうことを防止できる。さらに、表示装置1は、ゲームなどにおいてお互いにチームの駒しか操作できないような制限を加えたりすることが可能となる。
 以上、説明した実施の形態に係る表示装置1によれば、入力された指やペンなどの画像を解析することにより、タッチ位置の検出とタッチ操作方向の判別とが可能である。このため、制御部19は、タッチ位置を示す信号およびタッチ操作方向を示す信号と、メモリ部12に格納されている情報とに基づいて、どの方向にいる操作者が操作したかを判断することができる。このため、制御部19は、操作者に与えられた操作権限に応じた情報処理を行なうことができる。
 また、本実施の形態に係る表示装置1によれば、表示画面の後方に設置した光センサで得られた画像を解析して、画面から見てどの方向にいる人が表示画面上に表示されている操作対象を操作したかを判別できるようにしている。このため、表示装置1は、小規模な構成で、かつ正確に操作方向を判別することができる。
 つまり、表示装置1では、表示画面の前方にどのような障害物があろうが操作方向を判別するための入力画像に障害物が写り込んで判別の邪魔をすることがない。また、表示装置1は、背景技術欄において紹介したようシステムのように表示装置の外部に人体を通して信号を伝達するような装置を設置する必要がない。このため、表示装置1は、表示装置単体の小規模で単純な構成でタッチ操作方向を判別し、その後の情報処理を行なうことが可能となる。
 上述した実施の形態では、光センサ内蔵LCD10から得られた画像を解析することでタッチ位置の検出を行なう場合を例にとって説明した。しかしながら、タッチ位置を検出するための構成はこれに限定されないことはもちろんであり、他にも様々な形態が考えられる。
 たとえば、図1の表示装置1の構成を変更して、図14に例示する表示装置11のように、光センサ内蔵LCD18の上に静電容量方式のタッチパネル17を設けてもよい。この場合、表示装置11は、静電容量方式のタッチパネル17でタッチ位置を検出する。また、表示装置11は、静電容量方式のタッチパネル17で得られたタッチ位置と光センサ内蔵LCD18で得られた画像とを解析することで、タッチ操作方向を判別する。
 また、タッチパネルについては、タッチ位置が検出できるものであれば、抵抗膜方式、赤外線方式、電磁誘導方式、超音波方式などの各種タッチパネルの方式のいずれを用いてもよい。
 しかし、タッチ操作方向の判別を光センサ内蔵LCDで得た画像を解析することによって行なう場合、静電容量方式などのタッチパネルを使わずに、光センサ内蔵LCDでタッチ位置も併せて検出できたほうが好ましい。これは、抵抗膜のようなタッチパネルの部材や、表示画面上に抵抗膜を配置する行程を削減できるなどの理由によって、表示装置の構成が簡単になるためである。さらには、構成が簡単になるため、コストが安く済むといったメリットがあるためである。
 また上述した実施形態では、画像を撮像する撮像装置(画像を入力する入力装置)として、主に可視光領域の光の周波数に反応する光センサ内蔵LCDを例に挙げて説明したが、撮像装置の構成はこれに限定されないことはもちろんであり、他にも様々な構成が考えられる。
 たとえば、可視光領域以外の周波数で、主に赤外線の周波数に反応する光センサを表示装置1,11に内蔵しておく。そして、表示装置1,11は、表示画面の後方から照射した赤外線を指やペンなどで反射させ、当該反射した赤外線を光センサに入力する。さらに、表示装置1、11は、当該入力された赤外線を画像に変換する。このように可視光以外の主に赤外線に反応する光センサを用いると、表示装置1、11は、室内光などの外光に影響受けずに指の腹の反射や指の影の画像を得ることができるようになる。また、赤外線に反応する光センサで得られる画像は指の反射を利用するものなので、可視光領域の周波数に反応する光センサで得られる画像と基本的に同じである。
 このように、表示装置1、11は、光センサでバックライトによる指などの操作入力物体への反射光などを画像として取得することで、表示画面上への指やタッチペンなどの操作入力物体の接触度合いを詳細に把握することが可能となる。
 あるいは、表示装置1、11は、光センサの代わりに温度センサを内蔵することにより、指やペンなどを置いた場合の温度変化を画像に変換して入力画像にするようにしてもよい。温度センサで得られる画像は、たとえば図3(b)や図3(c)のように指を置いた部分だけが温められるか、冷やされるかして、指を置いた部分だけが周囲と異なるコントラストを持つ画像を得ることができる。また、表示画面上に指が強く接している部分と指が軽く接している部分とで温度差ができるので、指の腹部分の画像は図4で示したような白と黒のグラデーションになる。つまり、温度センサで得られる画像は光センサで得られる画像と同じような画像になる。
 表示装置1、11は、温度センサで画像を取得することで、指やタッチペンなどの操作入力物体が表示画面上に接触している度合いを詳細に把握することが可能となる。また、光センサのように室内光や太陽光といった外光にあまり影響されることない。このため、表示装置1、11は、操作入力物体による温度変化だけを取得することが可能となる。
 よって、表示装置1、11は、上述した主に可視光領域に反応する光センサで得られた画像からタッチ位置の検出およびタッチ方向の判別を行なうアルゴリズムを用いることで、赤外線などの光センサおよび温度センサで得られた画像からタッチ位置の検出およびタッチ方向の判別も行なうことも可能である。
 なお、撮像装置としては、指やペンなどを置いた場合に画像が撮像できるセンサやカメラであればどのような方式のものを用いてもよい。
 (実施の形態2)
 実施の形態1では、表示装置1の一実施形態として、表示装置1をゲーム機に応用する例を説明した。さらに、光センサ内蔵LCD10の代わりに光センサ内蔵デュアルビューLCDを組み込んだ構成に表示装置をすることで、当該表示装置をカーナビゲーションシステムに応用することも可能である。
 図15は、本発明の実施の形態2に従う表示装置2の概略構成を示すブロック図である。表示装置2は、光センサ内蔵デュアルビューLCD20を備えるカーナビゲーションシステムである。
 表示装置2は、光センサ内蔵デュアルビューLCD20(以下、単に「LCD20」と称する)および既に説明したタッチ位置検出部14を備える。表示装置2は、タッチ操作方向判別部15から入力される信号に基づいた左右方向の操作者の識別及びLCD20の制御等を行なう制御部21をさらに備える。表示装置2は、制御に関わる各種情報を記憶するメモリ部22さらに備える。表示装置2は、各種の視聴用のデータを出力する出力装置26~28(テレビ受信機26、ナビゲーション装置27、DVDプレーヤ28)さらに備える。表示装置2は、各出力装置26~28から出力されたデータを左方向用の画像と右方向用の画像とに振り分けて選択的に出力する画像選択部25さらに備える。表示装置2は、画像選択部25から出力された画像データに基づいてLCD20に対し、それぞれ左方向および右方向に対応させてLCD画面上に表示させるべき画像の表示制御を行なう左方向表示制御部23および右方向表示制御部24をさらに備える。
 図16は、LCD20の表示画面例を示す図である。図16(c)に示すように、表示装置2は、雲が掛かった山の風景が映し出されたテレビ画面上にテレビのチャネルを選択するためのチャネルボタン(図では「2ch」が見える)401を表示している。これに対して、図16(d)に示すように、表示装置2は、ナビゲーション用の地図上に地図をスクロールさせるためのスクロールボタン301をさらに表示している。デュアルビューのLCD20は、助手席側から見た者には図16(c)の画面を、運転席側から見た者には図16(d)の画面を、それぞれ同時に表示する機能を備えている。
 図16(c)に示される画面において、助手席側の操作者は、自身の指100Lをチャネルボタン401に触れることによってテレビチャネルを任意に変更できる。他方、図16(d)に示される画面において、運転席側の操作者は、自身の指100Rをスクロールボタン301に触れることによって地図を任意にスクロールできる。
 しかしながら、図16(a)に示されるように、画面上でチャネルボタン401とスクロールボタン301とが同じ位置に重複して配置されている。したがって、助手席側の操作者がチャネルボタン401を操作したときに、当該操作が助手席側の操作者によるものであることを表示装置2が判別できることが必要となる。
 また、図16(b)に示されるように、運転席側の操作者がスクロールボタン301を、助手席側の操作者がチャネルボタン401を、夫々同時に操作したときにおいても、以下のことが必要となる。すなわち、ボタンにタッチした指が運転席側の操作者の指100Rであるか助手席側の操作者の指100Lであるかを表示装置2が判別できることが必要となる。さらに、ボタン301,401のうち、操作者に対応するボタンの機能を表示装置2が起動させることが必要となる。
 本実施の形態2に係る表示装置2は、実施の形態1として説明した表示装置1,11と同様にタッチ位置検出部14に加えてタッチ操作方向判別部15を備える。このために、表示装置2は、ボタン301,401へのタッチ操作を検出し、さらにそのタッチ操作が助手席側からのタッチ操作であるか、運転席側からのタッチ操作であるかを特定できる。
 その結果、たとえば、図16(a)に示されるようなケースでも、タッチ操作方向判別部15により、助手席のある左側から操作されたことを判別できる。それゆえ、表示装置2は、TV番組のチャンネル操作だけが実行され、地図に対する操作として反応しない。あるいは、図16(b)に示されるようなケースでも、タッチ位置検出部14によって検出された2点のタッチ位置と、タッチ操作方向判別部15によって判別されたタッチ操作方向とにより、表示装置2は、左側の助手席の人が押したボタンがチャネルボタン401であり、右側の運転席の人が押したボタンがスクロールボタン301であることを判別できる。よって、TV番組のチャネルボタン401と地図操作のスクロールボタン301とが同じ位置に重複して配置されている場合でも、左側の助手席の人がした操作はTV番組の選択操作にだけ反映され、右側の運転席の人がした操作は地図のスクロール操作にだけ反映させることが可能となる。
 なお、ここでは、車内に配置されるカーナビゲーションシステムを前提として、テレビの操作に関するボタンとナビゲーションに関するボタンとを例に挙げて説明したが、カーナビゲーションシステムおよびこれに関連するソースは一例に過ぎない。デュアルビュー表示画面を中心にして一方側(たとえば、運転席側)に操作が委ねられるソースと他方側(たとえば、助手席側)に操作が委ねられるソースとが異なるシステムについて、適用できることはいうまでもない。
 また、実施の形態2におけるタッチ操作方向判別部15による判別手法としては、実施の形態1として説明した、「濃度勾配方向による判別手法」、「エッジ特徴量分布による判別手法」、「指紋形状による判別手法」のいずれを採用してもよい。
 あるいは、タッチ操作方向判別部15による判別手法として、次に説明する「楕円長軸方向による判別手法」を採用することも可能である。
 図17は、「楕円長軸方向による判別手法」の原理を説明するための図である。表示装置2をカーナビゲーションシステムに応用する場合には、画面が運転席と助手席との間に配置される。このため、運転席側および助手席側から画面にタッチするときの指のタッチ操作方向は、通常の操作の仕方を考慮すると、一定範囲内に制限される。さらに、タッチ操作方向の範囲は、両者で重複しない。
 たとえば、図17(a)に示されるように、画面の左側から操作する操作者(助手席側の操作者)の指100Lの先端と指元とを結ぶ直線と、画面のx軸方向線とのなす角(タッチ操作方向角)φは、0度を超えて90度未満の範囲にあると考えることができる。同様の理由により、右側から操作する操作者(運転席側の操作者)の指100Rのタッチ操作方向角の範囲は、左側から操作する操作者のそれとは左右対称の範囲となる。このため、左側から操作する操作者のタッチ操作方向の角度と右側から操作する操作者のタッチ操作方向の角度とは重複しない。
 そのため、図17(b)に示されるように、表示装置2は、タッチ操作が検出された際の指の腹画像101L、101Rを撮像したときに、楕円形状の指の腹画像101L、101Rから、図17(c)のように長軸52を算出する。さらに、表示装置2は、たとえば、長軸52の傾きがプラスならタッチ操作方向を「左」、長軸の傾きがマイナスならタッチ操作方向を「右」と判別する。つまり、表示装置2は、長軸の傾きから左右のタッチ操作方向を判別する。
 このように、指でタッチ操作した場合の指の腹部分の形状が楕円状になることに注目し、表示装置2は、この楕円の長軸の向きからタッチ操作方向を判別することで、精度よくタッチ操作方向を判別することが可能となる。
 なお、表示装置2は、ここでは楕円の長軸52の傾きからタッチ操作方向を判別するようにしているが、楕円の長軸52に限定されないことはもちろんである。表示装置2は、楕円の短軸からタッチ操作方向を判別してもよい。
 楕円の長軸は、たとえば、次のようにして算出できる。たとえば図17(d)のように、表示装置2は、2値化処理やエッジ検出処理により求めた楕円画像から外接長方形と対角線を算出する。ここで算出された一対の対角線が長軸および短軸になる。図17(d)に示されるように、長軸方向には、短軸方向よりも、指の腹によって濃度値が高い画素が多く分布している。このため、表示装置2は、たとえば、長軸上の画素と短軸上の画素との分布を演算し、白黒に2値化した画素値の黒が多い方の対角線を楕円の長軸方向と判別する。
 次に、図18に示されるフローチャートを参照して、図17に示される判定原理に基づいた表示装置2の動作を説明する。表示装置2は、最初に、ボタン301,401へのタッチ操作が検出されたか否かを判定する(S41)。タッチ操作が検出されると、表示装置2は、タッチ操作位置の楕円形状の指の腹画像に基づいて、長軸の傾き方向を判別する(S42)。
 次に、表示装置2は、長軸の傾き方向がプラス方向であるか(図17のφが0°<φ<90°を満たすか)否かを判別する(S43)。プラス方向と判別されたときには、表示装置2は、左側の操作者、すなわち助手席側に対応するボタン401に割り当てられた機能を起動する(S44)。これに対して、マイナス方向と判別されたときは、表示装置2は、右側の操作者、すなわち運転席側に対応するボタン301に割り当てられた機能を起動する(S45)。
 実施の形態2に係る表示装置2によれば、操作者を特定するために、表示装置の外部にカメラを設置したり、椅子やハンドルに信号伝達装置を設置したりする必要がなくなる。このため、表示装置2のみで操作者が左右のいずれから操作しているかを判別できる。また、表示画面の内側から画像を撮像しているので、判別の邪魔になる障害物を排除できる。このため、たとえば、図16(a)に示されるように助手席と運転席の人の手が重なったような場合など、表示画面の前方にいかなる障害物があろうと、正確にタッチ操作方向を判別することが可能となる。これにより、表示装置2は、助手席側にいる人と運転席側にいる人のどちらの人が重なって配置されたボタン等を押したかを正確、かつ小規模な構成で判別することが可能となる。
 なお、助手席側にいる人と運転席側にいる人のどちらがボタンを押したかを区別できるように、助手席用と運転席用のボタンを重ならない位置に配置することもできる。しかしながら、ボタンを表示する領域が限られてしまうという問題があり、この点においても本実施の形態2に係る表示装置2は有効である。
 各実施の形態に係る表示装置によれば、表示装置の外部にカメラや信号伝達装置などを設置する必要がない。それゆえ、当該表示装置は、表示画面前方にどのような障害物があろうが、立っていようが寝ていようが、あらゆる状況においてどの方向からタッチされたかを正確に判別できる。このため、表示装置は、その判別した情報を用いてその後の情報処理を正確に行なうことが可能となる。また、表示装置だけの簡単な構成でどの方向からタッチされたかを正確に判別できるので、コストは従来のタッチパネル付きの表示装置と同程度に抑えることができる。それゆえ、表示装置を持ち運ぶようなモバイル用途など、多様な場面で各実施の形態に係る表示装置を利用することが可能となる。
 以上、説明した各実施の形態の変形例や特徴点を列挙する。
 (1) 表示装置は、タッチ位置検出部14で検出されたタッチ位置を基準として画像を解析して、タッチ操作方向を判別してもよい。
 (2) 各実施の形態1,2では、表示装置は、撮像された画像のうち、所定範囲の画像を対象として画像解析を行なって、タッチ操作方向を判別する。このように、表示装置はタッチ位置周辺の画像だけを対象に処理してタッチ操作方向を判別するので、処理の単純化や高速化を図ることができる。さらに、表示装置は、不必要な画像領域を見る必要がない。したがって、表示装置は、タッチ操作方向判別の精度も上げることができる。また、処理が単純化されることにより、回路化の際のゲート数を少なくすることができる。このため、表示装置の製造コストも削減できる。しかしながら、これに代えて、表示装置は、撮像された全画像を解析対象としてもよい。
 (3) タッチ操作方向判別部15による判別手法は、上記実施の形態で挙げた例に限定されないことはもちろんであり、画像からタッチ操作方向を判別できる方法であればどのような判別手法を用いてもよい。
 (4) 各実施の形態1、2では、タッチ操作が指で行なわれる場合を例にして説明した。しかしながら、タッチ操作がタッチペンなどのような部材によって行なわれる場合にも各実施の形態1,2は適用可能である。タッチペン等でタッチ操作が行なわれる場合にも、タッチ操作が検出された座標位置を中心とした影の画像が図4に示されるように撮像されるためである。
 (5) 実施の形態2に係る表示装置2は、テレビ受信機26や、ナビゲーション装置27、DVDプレーヤ28を構成に含めないで構成してもよい。
 (6) 実施の形態2において説明した、「楕円長軸方向による判別手法」は、実施の形態1に係る表示装置1,11に採用してもよい。
 (7) 表示装置1,2,11に対して、「濃度勾配方向による判別手法」、「エッジ特徴量分布による判別手法」、「指紋形状による判別手法」、および「楕円長軸方向による判別手法」のうち、いずれの判別手法を採用してもよい。さらに、表示装置1,2,11は、それら複数の判別手法のうちの任意の複数の判別手法に基づく判別処理を選択的に実行できるように、複数のタッチ操作方向判別部15を設けてもよい。また、表示装置1,2,11は、操作者の操作によって、複数のタッチ操作方向判別部15のいずれかを選択できるように選択操作部をさらに設けてもよい。あるいは、表示装置1,2,11は、複数のタッチ操作方向判別部15を機能させ、その複数の判別結果に基づいて、タッチ操作方向を判別するようにしてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (15)

  1.  表示画面を有する表示部(10,18,20)と、
     前記表示画面に対するタッチ操作を前記表示部(10,18,20)の内部から撮像する撮像部と、
     前記タッチ操作における前記表示画面に対するタッチ位置を検出するタッチ位置検出部(14)と、
     前記撮像部による撮像で得られた画像に基づいて、前記タッチ操作における前記表示画面に対するタッチ方向を判別する方向判別部(15)とを備える、表示装置(1,2,11)。
  2.  前記方向判別部(15)は、前記撮像部による撮像で得られた画像のうち、前記タッチ位置を基準とした所定範囲の画像に基づいて、前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  3.  前記方向判別部(15)は、前記タッチ操作のために前記表示画面に接触した指またはタッチ部材が前記撮像部により撮像されたときに、前記タッチ位置の周辺画像の濃度変化に基づいて、前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  4.  前記方向判別部(15)は、
     前記タッチ操作のために前記表示画面に接触した指またはタッチ部材が前記撮像部(10,18,20)により撮像されたときに、前記タッチ位置の周辺画像の濃度勾配方向を算出する濃度勾配方向算出部を含み、
     前記濃度勾配方向算出部が算出した濃度勾配方向に基づいて前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  5.  前記方向判別部(15)は、
     前記タッチ操作のために前記表示画面に接触した指またはタッチ部材が前記撮像部(10,18,20)により撮像されたときに、前記タッチ位置の周辺画像のエッジ特徴量分布を算出するエッジ特徴量分布算出部を含み、
     前記エッジ特徴量分布算出部が算出したエッジ特徴量分布に基づいて前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  6.  前記方向判別部(15)は、
     前記タッチ操作のために前記表示画面に接触した指が前記撮像部により撮像されたときに、前記タッチ位置周辺の指画像の楕円長軸方向を算出する長軸方向算出部を含み、
     前記長軸方向算出部が算出した楕円長軸方向に基づいて前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  7.  前記方向判別部(15)は、前記タッチ操作のために前記表示画面に接触した指が前記撮像部により撮像されたときに、前記タッチ位置周辺の指画像の指紋形状に基づいて前記タッチ方向を判別する、請求の範囲第1項に記載の表示装置(1,2,11)。
  8.  前記表示部(10,18,20)は、前記タッチ操作に基づいて所定機能が有効化される複数の操作対象画像を前記表示画面に表示可能であり、
     前記表示装置は、
     前記複数の操作対象画像の各々について、前記タッチ操作に基づく機能が有効化されるタッチ方向を記憶する記憶部(12,22)と、
     前記操作対象画像に対するタッチ操作が検出されたときのタッチ方向と当該操作対象画像に対応して前記記憶部(12,22)に記憶されたタッチ方向とが一致したときに、当該操作対象画像に対するタッチ操作に基づく機能を有効化する機能有効化部とをさらに備える、請求の範囲第1項に記載の表示装置(1,2,11)。
  9.  前記表示部(10,18,20)は、
     異なる方向に対して異なる画像を表示可能であって、
     前記表示画面の特定位置において、タッチ操作によって第1の機能が有効化される第1のボタン画像を第1の方向に表示し、前記特定位置において、タッチ操作によって第2の機能が有効化される第2のボタン画像を第2の方向に表示し、
     前記表示装置(1,2,11)は、
     前記タッチ位置検出部(14)により検出されたタッチ位置が前記特定位置であるときに、前記方向判別部(15)により判別されたタッチ方向に基づいて、前記2種類の機能のうちのいずれか一方を有効化する機能選択部をさらに備える、請求の範囲第1項に記載の表示装置(1,2,11)。
  10.  前記撮像部は、光センサである、請求の範囲第1項に記載の表示装置(1,2,11)。
  11.  前記撮像部は、温度センサである、請求の範囲第1項に記載の表示装置(1,2,11)。
  12.  前記タッチ位置検出部は、前記撮像部により撮像された画像に基づいてタッチ位置を検出する、請求の範囲第1項に記載の表示装置(1,2,11)。
  13.  前記表示装置(1,2,11)は、前記表示装置(1,2,11)の動作を制御する制御部(19,21)をさらに備え、
     前記制御部(19,21)は、前記検出された前記タッチ位置と前記判別された前記タッチ方向とに応じた動作を前記表示装置(1,2,11)に実行させる、請求の範囲第1項に記載の表示装置(1,2,11)。
  14.  表示画面を有し、タッチ操作に用いる物体が前記表示画面に接触することにより入力を受付ける表示装置(1,2,11)であって、
     前記表示画面を介して、前記表示画面に接触した前記物体を撮像する撮像部と、
     前記表示画面に対する前記物体の接触位置を検出する検出部(14)と、
     前記撮像部による撮像で得られた画像に基づいて、前記表示画面に対する前記物体の方向を判別する判別部(15)と、
     前記表示装置(1,2,11)の動作を制御する制御部(19,21)とを備え、
     前記制御部(19,21)は、前記接触位置と前記判別した方向とに応じた動作を前記表示装置(1,2,11)に実行させる、表示装置(1,2,11)。
  15.  タッチ操作に用いる物体が表示画面に接触することにより入力を受付ける表示装置(1,2,11)における制御方法であって、
     前記表示画面を介して、前記表示画面に接触した前記物体を撮像するステップと、
     前記表示画面に対する前記物体の接触位置を検出するステップと、
     前記撮像部による撮像で得られた画像に基づいて、前記表示画面に対する前記物体の方向を判別するステップ(S1~S5,S13,S14,S23,S33)と、
     前記接触位置と前記判別した方向とに応じた動作を前記表示装置(1,2,11)に実行させるステップ(S36,S37,S44,S45)とを備える、制御方法。
PCT/JP2009/054269 2008-05-12 2009-03-06 表示装置および制御方法 WO2009139214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010511913A JPWO2009139214A1 (ja) 2008-05-12 2009-03-06 表示装置および制御方法
CN2009801171584A CN102027439A (zh) 2008-05-12 2009-03-06 显示装置和控制方法
EP09746421A EP2282254A1 (en) 2008-05-12 2009-03-06 Display device and control method
US12/936,236 US20110043489A1 (en) 2008-05-12 2009-03-06 Display device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-124654 2008-05-12
JP2008124654 2008-05-12

Publications (1)

Publication Number Publication Date
WO2009139214A1 true WO2009139214A1 (ja) 2009-11-19

Family

ID=41318587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054269 WO2009139214A1 (ja) 2008-05-12 2009-03-06 表示装置および制御方法

Country Status (5)

Country Link
US (1) US20110043489A1 (ja)
EP (1) EP2282254A1 (ja)
JP (1) JPWO2009139214A1 (ja)
CN (1) CN102027439A (ja)
WO (1) WO2009139214A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055576A (ja) * 2008-08-29 2010-03-11 Sharp Corp 画像処理装置、画像処理プログラム、コンピュータ読み取り可能な記録媒体、電子機器及び画像処理方法
WO2011102038A1 (ja) * 2010-02-16 2011-08-25 シャープ株式会社 タッチパネル付き表示装置およびその制御方法、並びに制御プログラムおよび記録媒体
JP2011170440A (ja) * 2010-02-16 2011-09-01 Denso Corp 表示装置
CN102314263A (zh) * 2010-07-08 2012-01-11 原相科技股份有限公司 光学触控屏幕系统、光学距离判断装置及其方法
JP4929414B1 (ja) * 2011-08-31 2012-05-09 楽天株式会社 情報処理装置、情報処理装置の制御方法、プログラム、及び情報記憶媒体
JP2013037678A (ja) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd 表示装置
WO2013039544A1 (en) * 2011-08-10 2013-03-21 Cypress Semiconductor Corporation Methods and apparatus to detect a presence of a conductive object
WO2013047023A1 (ja) * 2011-09-26 2013-04-04 Necカシオモバイルコミュニケーションズ株式会社 表示装置、表示方法およびプログラム
JP2014016803A (ja) * 2012-07-09 2014-01-30 Konica Minolta Inc 操作表示装置およびプログラム
US8743090B2 (en) 2010-03-29 2014-06-03 Sharp Kabushiki Kaisha Display device with input unit, control method for same, control program and recording medium
JP2017142577A (ja) * 2016-02-08 2017-08-17 株式会社アスカネット 非接触表示入力装置及び方法
JP2018026683A (ja) * 2016-08-09 2018-02-15 キヤノン株式会社 撮像装置、その制御方法およびプログラム

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195344B2 (en) * 2002-12-10 2015-11-24 Neonode Inc. Optical surface using a reflected image for determining three-dimensional position information
KR20120094929A (ko) * 2009-10-16 2012-08-27 알피오 피티와이 리미티드 터치 오브젝트를 감지하고 추적하는 방법
CN101776836B (zh) * 2009-12-28 2013-08-07 武汉全真光电科技有限公司 投影显示系统及桌面计算机
JP5113220B2 (ja) * 2010-06-28 2013-01-09 本田技研工業株式会社 車両用画像表示装置
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US8638320B2 (en) * 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US20130009989A1 (en) * 2011-07-07 2013-01-10 Li-Hui Chen Methods and systems for image segmentation and related applications
CN102760030A (zh) * 2011-11-28 2012-10-31 联想(北京)有限公司 一种显示方法、装置及电子终端
CN103294233A (zh) * 2012-02-27 2013-09-11 富泰华工业(深圳)有限公司 触摸屏和具有该触摸屏的触摸显示装置
GB201212685D0 (en) * 2012-07-17 2012-08-29 Elliptic Laboratories As Control of electronic devices
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
CN103677438B (zh) * 2012-09-10 2020-02-21 联想(北京)有限公司 一种数据处理方法及电子设备
TWI489337B (zh) * 2012-11-23 2015-06-21 義隆電子股份有限公司 具虛擬功能鍵之觸控面板的製造方法、干涉判斷方法及觸控裝置
US9367185B2 (en) 2012-12-18 2016-06-14 Logitech Europe S.A. Method and system for discriminating stylus and touch interactions
US9158393B2 (en) 2012-12-18 2015-10-13 Logitech Europe S.A. Active stylus for touch sensing applications
JP6037901B2 (ja) * 2013-03-11 2016-12-07 日立マクセル株式会社 操作検出装置、操作検出方法及び表示制御データ生成方法
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
WO2015120913A1 (en) * 2014-02-17 2015-08-20 Metaio Gmbh Method and device for detecting a touch between a first object and a second object
US10067618B2 (en) 2014-12-04 2018-09-04 Apple Inc. Coarse scan and targeted active mode scan for touch
CN106446643B (zh) * 2015-08-12 2022-01-28 中兴通讯股份有限公司 终端的控制方法及装置
US10325134B2 (en) * 2015-11-13 2019-06-18 Fingerprint Cards Ab Method and system for calibration of an optical fingerprint sensing device
TWI622893B (zh) * 2016-04-11 2018-05-01 宏碁股份有限公司 電子裝置、及其控制方法與製造方法
US10637933B2 (en) 2016-05-26 2020-04-28 Logitech Europe S.A. Method and apparatus for transferring information between electronic devices
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication
US11593918B1 (en) * 2017-05-16 2023-02-28 Apple Inc. Gradient-based noise reduction
US11137896B2 (en) * 2019-12-17 2021-10-05 Harman International Industries, Incorporated System and method for determining a location of a user relative to a user interface for contextual control
FR3108998B1 (fr) * 2020-04-02 2022-02-25 Thales Sa Procede et dispositif pour gerer des appuis « multitouch » sur une surface tactile
US11562638B2 (en) 2020-08-24 2023-01-24 Logitech Europe S.A. Electronic system and method for improving human interaction and activities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346453A (ja) * 2004-06-03 2005-12-15 Ricoh Co Ltd 画像表示装置
JP2006047534A (ja) 2004-08-03 2006-02-16 Alpine Electronics Inc 表示制御システム
JP2006244446A (ja) 2005-02-03 2006-09-14 Toshiba Matsushita Display Technology Co Ltd 表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856824A (en) * 1996-06-25 1999-01-05 International Business Machines Corp. Reshapable pointing device for touchscreens
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
JPH11312053A (ja) * 1998-04-30 1999-11-09 Toyota Motor Corp 画面タッチ式入力装置
CN1768322A (zh) * 2003-03-31 2006-05-03 东芝松下显示技术有限公司 显示装置及信息终端装置
US20080267465A1 (en) * 2004-04-30 2008-10-30 Kabushiki Kaisha Dds Operating Input Device and Operating Input Program
JP4377365B2 (ja) * 2004-10-27 2009-12-02 富士通テン株式会社 表示装置
JP4694352B2 (ja) * 2005-11-10 2011-06-08 三菱電機株式会社 指紋照合装置
JP2007331692A (ja) * 2006-06-19 2007-12-27 Xanavi Informatics Corp 車載電子装置およびタッチパネル装置
JP5074714B2 (ja) * 2006-06-27 2012-11-14 クラリオン株式会社 車載ナビゲーション装置
US8022935B2 (en) * 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
JP2008197934A (ja) * 2007-02-14 2008-08-28 Calsonic Kansei Corp 操作者判別方法
EP2073055A1 (en) * 2007-12-20 2009-06-24 TPO Displays Corp. Detection of an incident light distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346453A (ja) * 2004-06-03 2005-12-15 Ricoh Co Ltd 画像表示装置
JP2006047534A (ja) 2004-08-03 2006-02-16 Alpine Electronics Inc 表示制御システム
JP2006244446A (ja) 2005-02-03 2006-09-14 Toshiba Matsushita Display Technology Co Ltd 表示装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055576A (ja) * 2008-08-29 2010-03-11 Sharp Corp 画像処理装置、画像処理プログラム、コンピュータ読み取り可能な記録媒体、電子機器及び画像処理方法
WO2011102038A1 (ja) * 2010-02-16 2011-08-25 シャープ株式会社 タッチパネル付き表示装置およびその制御方法、並びに制御プログラムおよび記録媒体
JP2011170440A (ja) * 2010-02-16 2011-09-01 Denso Corp 表示装置
US8743090B2 (en) 2010-03-29 2014-06-03 Sharp Kabushiki Kaisha Display device with input unit, control method for same, control program and recording medium
CN102314263B (zh) * 2010-07-08 2014-02-19 原相科技股份有限公司 光学触控屏幕系统、光学距离判断装置及其方法
CN102314263A (zh) * 2010-07-08 2012-01-11 原相科技股份有限公司 光学触控屏幕系统、光学距离判断装置及其方法
JP2013037678A (ja) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd 表示装置
US10338739B1 (en) 2011-08-10 2019-07-02 Cypress Semiconductor Corporation Methods and apparatus to detect a presence of a conductive object
WO2013039544A1 (en) * 2011-08-10 2013-03-21 Cypress Semiconductor Corporation Methods and apparatus to detect a presence of a conductive object
US9501168B2 (en) 2011-08-10 2016-11-22 Cypress Semiconductor Corporation Methods and apparatus to detect a presence of a conductive object
TWI416376B (zh) * 2011-08-31 2013-11-21 Rakuten Inc Information processing apparatus, information processing apparatus control method, computer program product, and information memory medium
JP4929414B1 (ja) * 2011-08-31 2012-05-09 楽天株式会社 情報処理装置、情報処理装置の制御方法、プログラム、及び情報記憶媒体
JPWO2013047023A1 (ja) * 2011-09-26 2015-03-26 Necカシオモバイルコミュニケーションズ株式会社 表示装置、表示方法およびプログラム
US9244556B2 (en) 2011-09-26 2016-01-26 Nec Corporation Display apparatus, display method, and program
WO2013047023A1 (ja) * 2011-09-26 2013-04-04 Necカシオモバイルコミュニケーションズ株式会社 表示装置、表示方法およびプログラム
JP2014016803A (ja) * 2012-07-09 2014-01-30 Konica Minolta Inc 操作表示装置およびプログラム
JP2017142577A (ja) * 2016-02-08 2017-08-17 株式会社アスカネット 非接触表示入力装置及び方法
JP2018026683A (ja) * 2016-08-09 2018-02-15 キヤノン株式会社 撮像装置、その制御方法およびプログラム

Also Published As

Publication number Publication date
JPWO2009139214A1 (ja) 2011-09-15
CN102027439A (zh) 2011-04-20
EP2282254A1 (en) 2011-02-09
US20110043489A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2009139214A1 (ja) 表示装置および制御方法
US8085243B2 (en) Input device and its method
US7847786B2 (en) Multi-view display
CN101971123B (zh) 具有可切换漫射体的交互式表面计算机
US8395600B2 (en) User interface device
US7339516B2 (en) Method to provide graphical representation of Sense Through The Wall (STTW) targets
CN105849673A (zh) 基于自然三维手势的人机导览方法
US20090195372A1 (en) Apparatus for extracting operating object and apparatus for projecting operating hand
US20140139429A1 (en) System and method for computer vision based hand gesture identification
US20120293555A1 (en) Information-processing device, method thereof and display device
KR101961266B1 (ko) 시선 추적 장치 및 이의 시선 추적 방법
KR101105872B1 (ko) 적외선 카메라와 모니터를 이용한 손 인식 방법 및 장치
US20100215287A1 (en) Methods and devices for detecting changes in background of images using multiple binary images thereof and hough transformation
TW201539251A (zh) 電子裝置及其操作方法
JP4088282B2 (ja) コンピュータ入力方法と装置
KR100939831B1 (ko) 입력 에러를 감소시키기 위한 조작 입력 장치 및 정보 기기조작 장치
JPWO2013175603A1 (ja) 操作入力装置、操作入力方法及び操作入力プログラム
RU2410259C2 (ru) Интерактивное устройство управления и способ эксплуатации интерактивного устройства управления
JP2006301534A (ja) ディスプレイ制御装置、ディスプレイ制御方法、ディスプレイ制御プログラム、およびディスプレイ
KR20130003241A (ko) 비접촉식 입력장치
TWI488090B (zh) 光學資訊取樣方法與觸控資訊辨識方法
JP6233941B1 (ja) 非接触式の三次元タッチパネル、非接触式の三次元タッチパネルシステム、非接触式の三次元タッチパネルの制御方法、プログラム及び記録媒体
KR20120050036A (ko) 비접촉식 서명 패드
KR101197284B1 (ko) 터치 시스템 및 그 터치 인식 방법
CN115617178B (zh) 一种手指与车机无接触即可完成按键和功能触发的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117158.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511913

Country of ref document: JP

Ref document number: 12936236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009746421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE