WO2009139059A1 - Conveyance apparatus and work moving distance output method - Google Patents

Conveyance apparatus and work moving distance output method Download PDF

Info

Publication number
WO2009139059A1
WO2009139059A1 PCT/JP2008/058933 JP2008058933W WO2009139059A1 WO 2009139059 A1 WO2009139059 A1 WO 2009139059A1 JP 2008058933 W JP2008058933 W JP 2008058933W WO 2009139059 A1 WO2009139059 A1 WO 2009139059A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
clock pulse
conveyor
distance
clock
Prior art date
Application number
PCT/JP2008/058933
Other languages
French (fr)
Japanese (ja)
Inventor
繁 中島
邦明 飯泉
信久 前田
泉 中島
Original Assignee
有明スチールセンター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有明スチールセンター株式会社 filed Critical 有明スチールセンター株式会社
Priority to JP2009526427A priority Critical patent/JPWO2009139059A1/en
Priority to PCT/JP2008/058933 priority patent/WO2009139059A1/en
Publication of WO2009139059A1 publication Critical patent/WO2009139059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • B65G47/30Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors
    • B65G47/31Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors by varying the relative speeds of the conveyors forming the series

Definitions

  • the present invention relates to a transport device that transports a workpiece, and a work movement distance output method for outputting a travel distance of a workpiece transported by the transport device.
  • this conveyor is a conveyor that connects a plurality of conveyor rollers in parallel with a line on which workpieces are arranged with a chain or belt, and rotates a sprocket or pulley for driving the chain or belt with a motor. Is used.
  • a transport device in order to perform processing such as automatic painting and various processing while transporting, the movement distance of the workpiece being transported is grasped at any time and output to the control device of the processing unit.
  • a metal blade is attached to the roller shaft of the conveying roller, the rotation of the blade is detected by a proximity sensor, and a movement pulse for grasping the moving distance of the workpiece is output.
  • a conveyor line of a transport device may have a plurality of transport conveyors that perform different processes formed on a single line. Even on a single line, the shape and feed system of a roller suitable for processing in each process It may be adopted. In such a case, it is necessary to control the line speed by grasping the operation state for each of the different types of conveyors. For this purpose, a method of attaching a blade to the shaft of the transport roller and detecting rotation by a proximity sensor, or a method of mounting an encoder to the shaft of the transport roller, and a plurality of rotation detection devices that are optimal for each processing step and the incidental for reading them. The device must be installed. For this reason, there is a problem that the construction of the equipment is costly and uneconomical, and the design of the conveyor body is often forced to change in order to install the rotation detection device.
  • the present invention is an example of a problem to deal with such a problem.
  • a single line is formed by a plurality of conveyors having different roller shapes and feeding methods, it is not necessary to detect the rotation of the conveyor rollers in the individual conveyors, which affects the design of the conveyor body economically.
  • Without being able to output the movement distance of the workpiece without the use of expensive incidental equipment that receives high-speed pulses when the pulsation of the conveyor occurs, when high resolution is desired, or when reverse rotation is detected Also, it is possible to grasp the moving distance of the workpiece with high accuracy without being restricted by installation such as wiring length, and to continue without failure due to misalignment of the roller shaft that occurs when a load is placed on the transport roller. That it can perform general conveyance, that the calculation processing for obtaining the moving distance can be simplified, and the subsequent processing program can be simplified, There is an object of the present invention.
  • the transfer device and the workpiece movement distance output method include at least the configurations according to the following independent claims.
  • [Claim 1] A plurality of conveyors forming a conveyor line, driving motors for individually driving the conveyors, motor rotation speed setting means for setting the rotation speeds of the driving motors, and driving motors Control means for setting the line speed of each conveyor and controlling the number of rotations, and outputting a movement pulse according to the unit movement distance of the workpiece based on the operation of the drive motor, the control means,
  • a clock pulse generating means for generating a clock pulse with a fixed period; a driving motor operating means for outputting a stop / start signal for the driving motor in synchronization with the fixed period of the clock pulse; and when the driving motor is in operation
  • Clock pulse accumulating means for accumulating the clock pulses, the set line speed and the accumulated pulse accumulated by the clock pulse accumulating means.
  • a moving distance calculating means for calculating a moving distance of a work moved by the conveyor, and
  • a work movement distance output method in a conveying apparatus comprising a plurality of conveying conveyors forming a conveying line and a driving motor for individually driving each conveying conveyor, wherein the number of rotations of the driving motor is determined.
  • a line speed setting step for controlling and setting the line speed of each conveyor, a clock pulse generating step for generating a fixed period clock pulse, and a stop / start of the driving motor in synchronization with the fixed period of the clock pulse.
  • Workpiece movement distance output method to be.
  • the movement distance of the workpiece is output by software calculation processing without detecting the rotation of the individual transfer conveyors. Therefore, the movement distance of the workpiece can be output economically and without affecting the design of the conveyor body.
  • pulsation of the conveyor occurs, when high resolution is desired, or when reverse rotation is detected, there is no need to use expensive incidental equipment that receives high-speed pulses, and there are no installation restrictions such as wiring length. It is possible to grasp the movement distance of the workpiece with high accuracy.
  • continuous conveyance can be performed without failure due to misalignment of the roller shaft that occurs when a load is placed on the conveyance roller.
  • the calculation process for obtaining the movement distance can be simplified, and the subsequent processing program can be simplified.
  • FIG. 1 is an explanatory diagram showing the overall configuration of a transport apparatus according to an embodiment of the present invention.
  • the transport apparatus according to the embodiment of the present invention includes a plurality of transport conveyors 10 and 20 that form a transport line for transporting workpieces W, drive motors 11 and 21 that individually drive the transport conveyors 10 and 20, Motor rotational speed setting means 12 and 22 for setting the rotational speeds of the driving motors 11 and 21 and the rotational speeds of the respective driving motors 11 and 21 are set to set the line speeds of the respective conveyors 10 and 20 and drive them.
  • the control means 30 which outputs the movement pulse according to the unit movement distance of the workpiece
  • one conveyance line is formed by two conveyors 10 and 20, but the present invention is not limited to this, and one conveyance line is formed by three or more conveyors. And a plurality of transport lines formed by a plurality of transport conveyors in parallel.
  • the conveyance conveyors 10 and 20 include cases where different forms of rollers and feeding methods are employed.
  • a single conveying roller 10 is connected to a large-diameter conveying roller 10A arranged in parallel by an endless transmission means 10B such as a chain, and is driven by a driving motor 11 via a sprocket 10C.
  • One transport roller 20 is rotatably driven by a drive motor 21 while supporting an endless transport band 20B having a support bar 20A rotatably at both ends.
  • the driving motors 11 and 21 may be any motors that can obtain the driving torque of the conveyors 10 and 20, and for example, AC motors such as an induction motor and a synchronous motor can be used.
  • the motor rotation speed setting means 12 and 22 are provided corresponding to the respective drive motors 11 and 21, and individually set the rotation speeds of the drive motors 11 and 21 for driving the conveyors 10 and 20 having different forms. To get any line speed.
  • the degree of wear of the components of the conveyors 10 and 20 varies, and the line speed varies at a constant motor rotation speed.
  • the conveyors 10 and 20 corresponding to the respective processing steps are driven by individual drive motors 11 and 21, and the number of rotations of the drive motors 11 and 21 is controlled to be uniform and arbitrary. Trying to get a line speed of.
  • the drive motors 11 and 21 are AC motors, inverters that generate variable power supply frequencies can be used as the motor rotation speed setting means 12 and 22.
  • the line speed can be accurately controlled by employing an inverter having a vector control function that operates by correcting slippage of the drive motors 11 and 21 due to the load and heat of the conveyors 10 and 20.
  • the control means 30 controls the number of rotations of the drive motors 11 and 21 to set the line speed of each conveyor, and moves pulses corresponding to the unit travel distance of the workpiece W based on the operation of the drive motors 11 and 21.
  • Pw is output.
  • the output movement pulse Pw is input to, for example, a coating processing unit of an automatic coating apparatus, a processing unit of an automatic processing apparatus, or the like, and processing control according to the movement distance of the workpiece is executed.
  • control means 30 can be composed of a PLC (programmable logic controller) that drives the motor speed setting means (inverters) 12 and 22, and has a fixed period as a control function as shown in FIG.
  • Clock pulse generating means 30A for generating a clock pulse
  • driving motor operating means 30B for outputting a stop / start signal of the driving motors 11 and 21 in synchronization with a fixed cycle of the clock pulses, and driving motors 11 and 21
  • the moving distance of the workpiece W moved by the conveyors 10 and 20 is determined by the clock pulse accumulating means 30C for accumulating the clock pulses during the operation, and the set line speed and the accumulated pulse number accumulated by the clock pulse accumulating means 30C.
  • the moving distance calculating means 30D for calculating and the moving pulse Pw every time the moving distance reaches the unit distance
  • the moving pulse transmitting means 30E for transmitting.
  • the control means 30 executes a control operation based on a fixed-cycle clock pulse generated by the clock pulse generating means 30A.
  • the drive motor actuating means 30B (drive motor actuating step) includes a drive motor 11, in order to obtain a signal for starting and stopping the transport conveyors 10, 20 and an arbitrary line speed v of the transport conveyors 10, 20. 21
  • the set values of the individual rotational speeds are output to the motor rotational speed setting means 12 and 22.
  • start / stop signals S1 and S2 of the drive motors 11 and 21 are output.
  • the signals S1 and S2 generate clock pulses as shown in FIG. The signal is output in synchronization with a fixed cycle of the clock pulse generated by the means 30A.
  • each of the drive motors 11 and 21 is controlled to the rotational speed set by the motor rotational speed setting means 12 and 22 by gradually increasing the rotational speed.
  • the time t a taken during acceleration startup so that the time (twice in the illustrated example) even multiple of one clock period in the fixed period as described above, have set the acceleration degree (FIG. 3 (c )reference).
  • the drive motor operating means 30B outputs the stop signal S2
  • each of the drive motors 11 and 21 is gradually stopped from the rotational speed set by the motor rotational speed setting means 12 and 22 and stopped.
  • the degree of deceleration is set so that the time t d required for deceleration stop is also a time that is an even multiple of one clock cycle in the above-described fixed cycle (twice in the illustrated example) (FIG. 3 (c)). )reference).
  • the clock pulse accumulating means 30C (clock pulse accumulating step) counts clock pulses with a fixed period by the start signal S1 of the driving motor operating means 30B, and accumulates the number of pulses when the driving motors 11 and 21 are operated.
  • the moving distance calculating means 30D calculates the moving distance L of the workpiece W by the following equation (1) from the set line speed v and the accumulated pulse number n accumulated by the clock pulse accumulating means 30C. .
  • the cumulative pulse number n is obtained by halving the cumulative pulse number accumulated at the time of acceleration start or deceleration stop, and this cumulative pulse number n
  • the moving distance L is calculated from the equation (1) by At this time, since the time t a taken for acceleration start is set to one clock period even multiple of time, number of pulses accumulated by the time t a has become a number divisible always 2, the cumulative total The pulse number n is always a natural number. In the example shown in FIG.
  • a fixed-period clock pulse is accumulated after the start signal S1 is output, and the accumulated pulse number n obtained by subtracting 1 from the accumulated pulse number is substituted into equation (1) for movement.
  • the distance L is calculated.
  • the accumulated pulse number n obtained by adding 1 to the accumulated pulse number (a value obtained by subtracting 1 for the acceleration start from the actually counted pulse number) until the stop signal S2 is output is expressed by the equation ( By substituting in 1), the moving distance L until the stop can be calculated.
  • the acceleration / deceleration gradient of the transfer conveyors 10 and 20 can be made a straight line, and the movement distance can be calculated in consideration of a decrease in the line speed during acceleration / deceleration.
  • the movement distance can be grasped.
  • the fixed period 2 pulse at the time t a taken for acceleration starting from the translation to the start signal S1 output pulse of fixed period clock pulse
  • a movement pulse Pw1 corresponding to the unit feed distance L1 is output, and thereafter, movement pulses Pw2, Pw3,... Are output each time two fixed-period clock pulses are accumulated. Then, after the stop signal S2 is output, the subsequent two fixed-cycle clock pulses are converted into one pulse.
  • the unit feed distance L1 is set to a multiple (2t S ⁇ v) of the clock pulse cycle, but the unit feed distance L1 itself is set to an arbitrary value regardless of the clock pulse cycle. can do.
  • the calculated movement distance L and the set unit feed distance n ⁇ L1 are compared for each program scan, and the movement pulse Pw is output when the movement distance L reaches n ⁇ L1.
  • FIG. 4 is an explanatory diagram showing a specific control processing flow for performing the movement pulse transmission of the control means 30.
  • the scan time of all the processing programs is smaller than 1 ⁇ 2 of the fixed period of the clock pulse.
  • a set value v [mm / min] is substituted for P4 (step S02: line speed setting step).
  • step S03 it is confirmed whether proper initial settings have been made (whether P2 ⁇ 60000) or whether the setting line speed setting has been changed (step S03). If this confirmation is “NO”, the variable P2, If P3 and P4 have been reset (step S02) and appropriate initial settings have been made and there is no change in the set line speed v (step S03: “YES”), the process proceeds to the next step.
  • step S04 it is confirmed whether or not there is a request for operation of the conveyors 10 and 20 for each scan of the program (step S04), and if there is (step S04: “YES”), when clock pulses with a fixed period are counted At the same time (step S05: “YES”), the above-described start signal S1 is output, and the conveyor is maintained in the subsequent scan (step S06).
  • the start signal S1 is always output in synchronization with a fixed-cycle clock pulse (step S05: “NO”).
  • step S04: “NO” When there is no conveyor operation request in each program scan (step S04: “NO”), the fixed cycle clock pulses are counted (step S07: “YES”), and the stop signal S2 described above is output, and thereafter In this scan, the conveyor OFF is maintained (step S08).
  • the stop signal S2 is also always output in synchronization with a fixed-cycle clock pulse (step S07: “NO”).
  • step S09 If the conveyor is ON (step S09: “YES”), the conveyor ON time after the start signal S1 is output is counted and the conveyor OFF time. Is reset (step S10), and the accumulated conveyor ON time is not performed until the counted conveyor ON time becomes 1/2 or more of the set conveyor acceleration time (step S11: “NO”).
  • step S15: “NO” pulse accumulation is not performed (step S15: “NO”).
  • step S09 to step S15 is a specific processing flow for calculating the moving distance L of the work by reducing the cumulative number of pulses accumulated at the time of acceleration start or deceleration stop to 1/2. It is possible to calculate an accurate movement distance L taking into account a decrease in line speed during acceleration / deceleration.
  • the clock pulse cycle when high resolution is desired, the clock pulse cycle is shortened, and when the resolution may be coarse, the clock pulse cycle is lengthened and the scan time is increased to perform arithmetic processing.
  • the load can be reduced.
  • the transmission unit feed distance X for obtaining the movement pulse can be arbitrarily set.
  • one transport conveyor 10 is a roller conveyor for coating
  • the other transport conveyor 20 is a slat conveyor for drying.
  • the transmission unit feed distance X is set to 100 mm.
  • a low resolution of about 1000 mm may be used in order to reduce the calculation load of the control means 50.
  • the transmission unit feed distance X is set to 1000 mm.
  • an inverter having a vector control function which is operated by correcting motor slip due to load or heat, is adopted as the motor rotation speed setting means 12, 22. Control the speed.
  • an inexpensive PLC for FA is used as the control means 30, the inverter is driven by this PLC, and the above-described control flow is executed using a fixed clock that is standardly mounted on the PLC as a fixed-period clock pulse. According to this, the position of the workpiece on the transfer conveyor line can be detected properly by electronically generating movement pulses with no accumulated error, without using any conventional proximity sensor or encoder. It becomes possible to do.
  • an arbitrary unit feed distance movement pulse can be obtained by the program software at an arbitrarily set line speed, and it is possible to eliminate restrictions on installation of the apparatus for installing the rotation detection apparatus. .
  • This can reduce the time and cost of equipment design, condition selection, and maintenance, avoid false detections due to conveyor pulsation and hardware failure, and can construct various processing lines with high reliability and high availability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Conveyors (AREA)

Abstract

A moving distance of a work is outputted by arithmetic processing of software without detecting the rotation of conveyers. A conveyance apparatus has the conveyers (10, 20) which form a conveyance line, drive motors (11, 21) which individually drive the respective conveyers (10, 20), motor rotation speed setting means (12, 22) which set the rotation speeds of the drive motors (11, 21), and a control means (30) which controls the rotation speeds of the drive motors (11, 21) to set the line speeds of the conveyers (10, 20) and outputs movement pulses corresponding to the unit moving distance (L) of the work (W) on the basis of the operation of the drive motors (11, 21).

Description

搬送装置、ワーク移動距離出力方法Conveying device, work movement distance output method
 本発明は、ワークを搬送する搬送装置、該搬送装置によって搬送されるワークの移動距離を出力するためのワーク移動距離出力方法に関するものである。 The present invention relates to a transport device that transports a workpiece, and a work movement distance output method for outputting a travel distance of a workpiece transported by the transport device.
 自動塗装,各種加工処理或いは製造ラインには、ラインに沿ってワークを搬送するための搬送装置が用いられている。この搬送装置としては、一般に、ワークが配置されるラインに並列した複数の搬送ローラをチェーンやベルトで連結して、このチェーンやベルトを駆動するためのスプロケットやプーリをモータで回転駆動する搬送コンベヤが用いられる。 In automatic coating, various processing treatments or production lines, a conveying device for conveying workpieces along the line is used. In general, this conveyor is a conveyor that connects a plurality of conveyor rollers in parallel with a line on which workpieces are arranged with a chain or belt, and rotates a sprocket or pulley for driving the chain or belt with a motor. Is used.
 このような搬送装置では、自動塗装や各種加工等の処理を搬送しながら行うために、搬送中のワークの移動距離を随時把握して処理部の制御装置に出力することが行われている。従来の搬送装置では、搬送ローラのローラ軸に金属の羽根を取り付けて、この羽根の回転を近接センサで検知し、ワークの移動距離を把握するための移動パルスを出力していた。 In such a transport device, in order to perform processing such as automatic painting and various processing while transporting, the movement distance of the workpiece being transported is grasped at any time and output to the control device of the processing unit. In the conventional conveying device, a metal blade is attached to the roller shaft of the conveying roller, the rotation of the blade is detected by a proximity sensor, and a movement pulse for grasping the moving distance of the workpiece is output.
 しかしながら、このような移動距離出力の方式では、搬送コンベヤがチェーン等で駆動されて長距離の搬送ラインを形成する場合には搬送ローラの回転に脈動が生じることがあり、ワークの移動距離を適正に把握できない場合がある。また、このような方式では原理的に高分解能が得られないので、これに対しては、搬送ローラの軸にエンコーダを取り付けて、エンコーダからの高速パルスで移動パルスを出力することが行われている(例えば、下記特許文献1参照)。 However, in such a movement distance output method, when the conveyor is driven by a chain or the like to form a long-distance conveyance line, pulsation may occur in the rotation of the conveyance roller. May not be able to grasp. Also, in principle, high resolution cannot be obtained with such a method. For this reason, an encoder is attached to the shaft of the transport roller, and a moving pulse is output with a high-speed pulse from the encoder. (For example, see Patent Document 1 below).
特開2006-273497号公報JP 2006-273497 A
 搬送装置のコンベヤラインは、異なる処理を行う複数の搬送コンベヤが一つのライン上に形成されることがあり、一つのライン上であっても工程毎の処理に適したローラの形状や送り方式が採用されている場合がある。このような場合には異形態の搬送コンベヤ毎に動作状態を把握してライン速度を制御することが必要になる。そのためには、搬送ローラの軸に羽根を取り付けて近接センサで回転検知する方式や搬送ローラの軸にエンコーダを取り付ける方式では、処理工程毎に最適な複数の回転検知装置とそれを読み取るための付帯装置を取り付けなければならない。このため、装置設備構築にコストがかかり不経済であると共に、回転検知装置を設置するためにコンベヤ本体の設計変更を余儀なくされる場合が多い等の問題がある。 A conveyor line of a transport device may have a plurality of transport conveyors that perform different processes formed on a single line. Even on a single line, the shape and feed system of a roller suitable for processing in each process It may be adopted. In such a case, it is necessary to control the line speed by grasping the operation state for each of the different types of conveyors. For this purpose, a method of attaching a blade to the shaft of the transport roller and detecting rotation by a proximity sensor, or a method of mounting an encoder to the shaft of the transport roller, and a plurality of rotation detection devices that are optimal for each processing step and the incidental for reading them. The device must be installed. For this reason, there is a problem that the construction of the equipment is costly and uneconomical, and the design of the conveyor body is often forced to change in order to install the rotation detection device.
 前述したようにコンベヤの脈動が生じる場合や高分解能の移動距離出力を得たい場合或いは逆転の検知を行う場合は、前述したようにエンコーダを用いることで解決できるが、エンコーダからの発信パルスは高速パルスであるため、これを受信可能な付帯装置が高額になり、また信号の減衰の影響で配線長にも制約が生じる問題がある。さらに、エンコーダそのものが精密機器であるので、搬送ローラに荷重物が載った際に生じるローラ軸の芯ずれにより、エンコーダ軸にラジアル荷重がかかって破損するような故障が生じることもある。エンコーダが故障した場合には、代替え品の納期に数週間を要することがあり、また代替え品が入手できず新たに新型を選定して取り付け部品や付帯装置の改造をすることもあり、生産そのものが長時間停止するリスクを負うことになる。 As mentioned above, when the pulsation of the conveyor occurs, when it is desired to obtain a high-resolution travel distance output, or when detecting reverse rotation, it can be solved by using an encoder as described above. Since it is a pulse, there is a problem that an auxiliary device capable of receiving this becomes expensive, and there is a problem that the wiring length is restricted due to the influence of signal attenuation. Furthermore, since the encoder itself is a precision device, a misalignment of the roller shaft that occurs when a load is placed on the transport roller may cause a failure in which the encoder shaft is damaged due to a radial load. If the encoder breaks down, it may take several weeks to deliver the replacement product, or the replacement product is not available and a new model may be selected to modify the mounting parts or auxiliary equipment. Take the risk of stopping for a long time.
 また、前述した従来技術では、回転周期から移動パルスを得ているので、いずれの方式を採用した場合にも移動パルスを移動距離に換算する際に円周率の乗算が含まれることになり、割り切れる数値に成り難く、その分、後工程の処理プログラムが複雑になる問題がある。 Further, in the above-described conventional technology, since the movement pulse is obtained from the rotation cycle, multiplication of the circumference ratio is included when the movement pulse is converted into the movement distance even if any method is adopted. There is a problem that the processing program in the subsequent process becomes complicated by that amount.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、ローラ形状や送り方式が異なる複数の搬送コンベヤによって一つのラインを形成する場合に、個別の搬送コンベヤにおける搬送ローラの回転検知を必要とせず、経済的に且つコンベヤ本体の設計に影響を与えることなく、ワークの移動距離を出力することができること、コンベヤの脈動が生じる場合や高分解能が得たい場合或いは逆転の検知を行う場合に、高速パルスを受信する高額な付帯設備を用いることなく、また配線長などの設置上の制約を受けることなく、ワークの移動距離を高精度に把握することができること、搬送ローラに荷重物が載った際に生じるローラ軸の芯ずれ等によっても故障無く継続的な搬送を行うことができること、移動距離を得る演算処理を簡易にして、その後の処理プログラムを簡略化できること、等が本発明の目的である。 The present invention is an example of a problem to deal with such a problem. In other words, when a single line is formed by a plurality of conveyors having different roller shapes and feeding methods, it is not necessary to detect the rotation of the conveyor rollers in the individual conveyors, which affects the design of the conveyor body economically. Without being able to output the movement distance of the workpiece without the use of expensive incidental equipment that receives high-speed pulses when the pulsation of the conveyor occurs, when high resolution is desired, or when reverse rotation is detected, Also, it is possible to grasp the moving distance of the workpiece with high accuracy without being restricted by installation such as wiring length, and to continue without failure due to misalignment of the roller shaft that occurs when a load is placed on the transport roller. That it can perform general conveyance, that the calculation processing for obtaining the moving distance can be simplified, and the subsequent processing program can be simplified, There is an object of the present invention.
 このような目的を達成するために、本発明による搬送装置及びワーク移動距離出力方法は、以下の各独立請求項に係る構成を少なくとも具備するものである。
 [請求項1]搬送ラインを形成する複数の搬送コンベヤと、各搬送コンベヤを個別に駆動する駆動用モータと、各駆動用モータの回転数を設定するモータ回転数設定手段と、各駆動用モータの回転数を制御して各搬送コンベヤのライン速度を設定すると共に前記駆動用モータの作動に基づいてワークの単位移動距離に応じた移動パルスを出力する制御手段とを備え、前記制御手段は、固定周期のクロックパルスを発生するクロックパルス発生手段と、前記クロックパルスの固定周期に同期させて前記駆動用モータの停止・始動信号を出力する駆動用モータ作動手段と、前記駆動用モータの作動時に前記クロックパルスを累積するクロックパルス累積手段と、設定された前記ライン速度と前記クロックパルス累積手段によって累積された累積パルス数とによって、前記搬送コンベヤによって移動するワークの移動距離を算出する移動距離算出手段と、前記移動距離が単位距離に達する毎に移動パルスを発信する移動パルス発信手段とを備えることを特徴とする搬送装置。
In order to achieve such an object, the transfer device and the workpiece movement distance output method according to the present invention include at least the configurations according to the following independent claims.
[Claim 1] A plurality of conveyors forming a conveyor line, driving motors for individually driving the conveyors, motor rotation speed setting means for setting the rotation speeds of the driving motors, and driving motors Control means for setting the line speed of each conveyor and controlling the number of rotations, and outputting a movement pulse according to the unit movement distance of the workpiece based on the operation of the drive motor, the control means, A clock pulse generating means for generating a clock pulse with a fixed period; a driving motor operating means for outputting a stop / start signal for the driving motor in synchronization with the fixed period of the clock pulse; and when the driving motor is in operation Clock pulse accumulating means for accumulating the clock pulses, the set line speed and the accumulated pulse accumulated by the clock pulse accumulating means. A moving distance calculating means for calculating a moving distance of a work moved by the conveyor, and a moving pulse transmitting means for transmitting a moving pulse every time the moving distance reaches a unit distance. Conveying device to do.
 [請求項3]搬送ラインを形成する複数の搬送コンベヤと各搬送コンベヤを個別に駆動する駆動用モータとを備えた搬送装置におけるワーク移動距離出力方法であって、前記駆動用モータの回転数を制御して各搬送コンベヤのライン速度を設定するライン速度設定工程と、固定周期のクロックパルスを発生するクロックパルス発生工程と、前記クロックパルスの固定周期に同期させて前記駆動用モータの停止・始動信号を出力する駆動用モータ作動工程と、前記駆動用モータの作動時に前記クロックパルスを累積するクロックパルス累積工程と、設定された前記ライン速度と累積された前記クロックパルスの累積パルス数とによって、前記搬送コンベヤによって移動するワークの移動距離を算出する移動距離算出工程と、を有することを特徴とするワーク移動距離出力方法。 [Claim 3] A work movement distance output method in a conveying apparatus comprising a plurality of conveying conveyors forming a conveying line and a driving motor for individually driving each conveying conveyor, wherein the number of rotations of the driving motor is determined. A line speed setting step for controlling and setting the line speed of each conveyor, a clock pulse generating step for generating a fixed period clock pulse, and a stop / start of the driving motor in synchronization with the fixed period of the clock pulse. A driving motor actuating step for outputting a signal, a clock pulse accumulating step for accumulating the clock pulses when the driving motor is actuated, and the set line speed and the cumulative number of clock pulses accumulated, A moving distance calculating step for calculating a moving distance of the workpiece moved by the conveyor. Workpiece movement distance output method to be.
 本発明によると、ローラ形状や送り方式が異なる複数の搬送コンベヤによって一つの搬送ラインを形成する場合に、個別の搬送コンベヤの回転検知を必要とせずソフトウエアの演算処理でワークの移動距離を出力するので、経済的に且つコンベヤ本体の設計に影響を与えることなく、ワークの移動距離を出力することができる。また、コンベヤの脈動が生じる場合や高分解能を得たい場合或いは逆転の検知を行う場合に、高速パルスを受信する高額な付帯設備を用いることなく、配線長などの設置上の制約を受けることなく、ワークの移動距離を高精度に把握することができる。また、搬送ローラに荷重物が載った際に生じるローラ軸の芯ずれ等によっても故障無く継続的な搬送を行うことができる。移動距離を得る演算処理を簡易にして、その後の処理プログラムを簡略化することができる。 According to the present invention, when a single transfer line is formed by a plurality of transfer conveyors having different roller shapes and feeding methods, the movement distance of the workpiece is output by software calculation processing without detecting the rotation of the individual transfer conveyors. Therefore, the movement distance of the workpiece can be output economically and without affecting the design of the conveyor body. In addition, when pulsation of the conveyor occurs, when high resolution is desired, or when reverse rotation is detected, there is no need to use expensive incidental equipment that receives high-speed pulses, and there are no installation restrictions such as wiring length. It is possible to grasp the movement distance of the workpiece with high accuracy. In addition, continuous conveyance can be performed without failure due to misalignment of the roller shaft that occurs when a load is placed on the conveyance roller. The calculation process for obtaining the movement distance can be simplified, and the subsequent processing program can be simplified.
本発明の一実施形態に係る搬送装置の全体構成を示した説明図である。It is explanatory drawing which showed the whole structure of the conveying apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る搬送装置における制御手段の制御機能を示す説明図である。It is explanatory drawing which shows the control function of the control means in the conveying apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る搬送装置における制御手段の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the control means in the conveying apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る搬送装置における制御手段の移動パルス発信を行うための具体的な制御処理フローを示した説明図である。It is explanatory drawing which showed the specific control processing flow for performing the movement pulse transmission of the control means in the conveying apparatus which concerns on one Embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。図1は本発明の一実施形態に係る搬送装置の全体構成を示した説明図である。本発明の実施形態に係る搬送装置は、ワークWを搬送する搬送ラインを形成する複数の搬送コンベヤ10,20と、各搬送コンベヤ10,20を個別に駆動する駆動用モータ11,21と、各駆動用モータ11,21の回転数を設定するモータ回転数設定手段12,22と、各駆動用モータ11,21の回転数を制御して各搬送コンベヤ10,20のライン速度を設定すると共に駆動用モータ12,22の作動に基づいてワークWの単位移動距離に応じた移動パルスを出力する制御手段30を備えている。図示の例では、2機の搬送コンベヤ10,20で一つの搬送ラインを形成する例を示しているが、本発明はこれに限らず、3機以上の搬送コンベヤで一つの搬送ラインを形成するもの、複数の搬送コンベヤで形成された搬送ラインを複数並列したもの等を含むものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing the overall configuration of a transport apparatus according to an embodiment of the present invention. The transport apparatus according to the embodiment of the present invention includes a plurality of transport conveyors 10 and 20 that form a transport line for transporting workpieces W, drive motors 11 and 21 that individually drive the transport conveyors 10 and 20, Motor rotational speed setting means 12 and 22 for setting the rotational speeds of the driving motors 11 and 21 and the rotational speeds of the respective driving motors 11 and 21 are set to set the line speeds of the respective conveyors 10 and 20 and drive them. The control means 30 which outputs the movement pulse according to the unit movement distance of the workpiece | work W based on the operation | movement of the motors 12 and 22 for operation is provided. In the illustrated example, one conveyance line is formed by two conveyors 10 and 20, but the present invention is not limited to this, and one conveyance line is formed by three or more conveyors. And a plurality of transport lines formed by a plurality of transport conveyors in parallel.
 搬送コンベヤ10,20は、異なる形態のローラや送り方式を採用する場合を含んでいる。図示の例では、一つの搬送ローラ10は、並列された太径の搬送ローラ10Aをチェーン等の無端伝動手段10Bで連結してスプロケット10Cを介して駆動用モータ11で駆動するものであり、もう一つの搬送ローラ20は、支持バー20Aを有する無端の搬送帯20Bを両端で回転自在に支持して駆動用モータ21で駆動するものである。 The conveyance conveyors 10 and 20 include cases where different forms of rollers and feeding methods are employed. In the example shown in the figure, a single conveying roller 10 is connected to a large-diameter conveying roller 10A arranged in parallel by an endless transmission means 10B such as a chain, and is driven by a driving motor 11 via a sprocket 10C. One transport roller 20 is rotatably driven by a drive motor 21 while supporting an endless transport band 20B having a support bar 20A rotatably at both ends.
 駆動用モータ11,21としては、搬送コンベヤ10,20の駆動トルクが得られるものであればよく、例えば、インダクションモータやシンクロナスモータ等のACモータを使用することができる。モータ回転数設定手段12,22は、各駆動用モータ11,21に対応して設けられるものであって、形態の異なる搬送コンベヤ10,20を駆動する駆動用モータ11,21の回転数を個別に設定して、任意のライン速度を得るためのものである。 The driving motors 11 and 21 may be any motors that can obtain the driving torque of the conveyors 10 and 20, and for example, AC motors such as an induction motor and a synchronous motor can be used. The motor rotation speed setting means 12 and 22 are provided corresponding to the respective drive motors 11 and 21, and individually set the rotation speeds of the drive motors 11 and 21 for driving the conveyors 10 and 20 having different forms. To get any line speed.
 搬送コンベヤ10,20毎にワーク支持部の材質やライン負荷が異なることがあるので、搬送コンベヤ10,20の構成要素の摩耗度が区々になり一定のモータ回転速度ではライン速度に差が生じる場合がある。これに対処するために、各処理工程に対応した搬送コンベヤ10,20を個別の駆動用モータ11,21で駆動し、各駆動用モータ11,21の回転数を制御することで一様な任意のライン速度を得るようにしている。駆動用モータ11,21をACモータとした場合にはモータ回転数設定手段12,22として可変電源周波数を発生させるインバータを用いることができる。搬送コンベヤ10,20の負荷や熱による駆動用モータ11,21のすべりを補正して運転する、ベクトル制御機能を有するインバータを採用することで、正確にライン速度を制御することができる。 Since the material and line load of the work supporting part may be different for each of the conveyors 10 and 20, the degree of wear of the components of the conveyors 10 and 20 varies, and the line speed varies at a constant motor rotation speed. There is a case. In order to cope with this, the conveyors 10 and 20 corresponding to the respective processing steps are driven by individual drive motors 11 and 21, and the number of rotations of the drive motors 11 and 21 is controlled to be uniform and arbitrary. Trying to get a line speed of. When the drive motors 11 and 21 are AC motors, inverters that generate variable power supply frequencies can be used as the motor rotation speed setting means 12 and 22. The line speed can be accurately controlled by employing an inverter having a vector control function that operates by correcting slippage of the drive motors 11 and 21 due to the load and heat of the conveyors 10 and 20.
 制御手段30は、駆動用モータ11,21の回転数を制御して各搬送コンベヤのライン速度を設定すると共に駆動用モータ11,21の作動に基づいてワークWの単位移動距離に応じた移動パルスPwを出力する。出力された移動パルスPwは、例えば自動塗装装置の塗装処理部や自動加工装置の加工処理部等に入力され、ワークの移動距離に応じた処理の制御が実行される。 The control means 30 controls the number of rotations of the drive motors 11 and 21 to set the line speed of each conveyor, and moves pulses corresponding to the unit travel distance of the workpiece W based on the operation of the drive motors 11 and 21. Pw is output. The output movement pulse Pw is input to, for example, a coating processing unit of an automatic coating apparatus, a processing unit of an automatic processing apparatus, or the like, and processing control according to the movement distance of the workpiece is executed.
 制御手段30は、具体的には、モータ回転数設定手段(インバータ)12,22を駆動するPLC(programmable logic controller)で構成することができ、制御機能として、図2に示すように、固定周期のクロックパルスを発生するクロックパルス発生手段30Aと、クロックパルスの固定周期に同期させて駆動用モータ11,21の停止・始動信号を出力する駆動用モータ作動手段30Bと、駆動用モータ11,21の作動時にクロックパルスを累積するクロックパルス累積手段30Cと、設定されたライン速度とクロックパルス累積手段30Cによって累積された累積パルス数とによって、搬送コンベヤ10,20によって移動するワークWの移動距離を算出する移動距離算出手段30Dと、移動距離が単位距離に達する毎に移動パルスPwを発信する移動パルス発信手段30Eとを備える。 Specifically, the control means 30 can be composed of a PLC (programmable logic controller) that drives the motor speed setting means (inverters) 12 and 22, and has a fixed period as a control function as shown in FIG. Clock pulse generating means 30A for generating a clock pulse, driving motor operating means 30B for outputting a stop / start signal of the driving motors 11 and 21 in synchronization with a fixed cycle of the clock pulses, and driving motors 11 and 21 The moving distance of the workpiece W moved by the conveyors 10 and 20 is determined by the clock pulse accumulating means 30C for accumulating the clock pulses during the operation, and the set line speed and the accumulated pulse number accumulated by the clock pulse accumulating means 30C. The moving distance calculating means 30D for calculating and the moving pulse Pw every time the moving distance reaches the unit distance The moving pulse transmitting means 30E for transmitting.
 前述した制御機能を有する制御手段30の動作(ワーク移動距離出力方法)を図3によって説明する。クロックパルス発生手段30A(クロックパルス発生工程)は、図3(a)に示すように、固定周期(例えば、1周期t=10ms)のクロックパルスを発生する。これは、例えばPLCに標準搭載されている固定クロックを利用することができる。制御手段30は、搬送コンベヤ10,20のライン速度を設定した後(ライン速度設定工程)、クロックパルス発生手段30Aが発生する固定周期のクロックパルスに基づいて制御動作が実行される。 The operation of the control means 30 having the above-described control function (workpiece movement distance output method) will be described with reference to FIG. As shown in FIG. 3A, the clock pulse generating means 30A (clock pulse generating step) generates a clock pulse having a fixed period (for example, one period t s = 10 ms). For this, for example, a fixed clock that is standardly installed in the PLC can be used. After setting the line speed of the conveyors 10 and 20 (line speed setting step), the control means 30 executes a control operation based on a fixed-cycle clock pulse generated by the clock pulse generating means 30A.
 駆動用モータ作動手段30B(駆動用モータ作動工程)は、搬送コンベヤ10,20を始動・停止させるための信号と搬送コンベヤ10,20の任意のライン速度vを得るために、駆動用モータ11,21個々の回転数の設定値をモータ回転数設定手段12,22に出力する。搬送コンベヤ10,20を始動・停止させるためには駆動用モータ11,21の始動・停止信号S1,S2を出力するが、この信号S1,S2は図3(b)に示すようにクロックパルス発生手段30Aが発生するクロックパルスの固定周期に同期して出力される。 The drive motor actuating means 30B (drive motor actuating step) includes a drive motor 11, in order to obtain a signal for starting and stopping the transport conveyors 10, 20 and an arbitrary line speed v of the transport conveyors 10, 20. 21 The set values of the individual rotational speeds are output to the motor rotational speed setting means 12 and 22. In order to start and stop the conveyors 10 and 20, start / stop signals S1 and S2 of the drive motors 11 and 21 are output. The signals S1 and S2 generate clock pulses as shown in FIG. The signal is output in synchronization with a fixed cycle of the clock pulse generated by the means 30A.
 駆動用モータ作動手段30Bが始動信号S1を出力すると、各駆動用モータ11,21は徐々に回転速度を上げてモータ回転数設定手段12,22で設定される回転数に制御される。この際、加速始動時に要する時間tが、前述した固定周期における1クロック周期の偶数倍(図示の例では2倍)の時間になるように、加速度合いを設定している(図3(c)参照)。また、駆動用モータ作動手段30Bが停止信号S2を出力すると、各駆動用モータ11,21はモータ回転数設定手段12,22で設定される回転数から徐々に回転速度を下げて停止する。この際、減速停止時に要する時間tも、前述した固定周期における1クロック周期の偶数倍(図示の例では2倍)の時間になるように、減速度合いを設定している(図3(c)参照)。 When the drive motor actuating means 30B outputs the start signal S1, each of the drive motors 11 and 21 is controlled to the rotational speed set by the motor rotational speed setting means 12 and 22 by gradually increasing the rotational speed. In this case, the time t a taken during acceleration startup, so that the time (twice in the illustrated example) even multiple of one clock period in the fixed period as described above, have set the acceleration degree (FIG. 3 (c )reference). Further, when the drive motor operating means 30B outputs the stop signal S2, each of the drive motors 11 and 21 is gradually stopped from the rotational speed set by the motor rotational speed setting means 12 and 22 and stopped. At this time, the degree of deceleration is set so that the time t d required for deceleration stop is also a time that is an even multiple of one clock cycle in the above-described fixed cycle (twice in the illustrated example) (FIG. 3 (c)). )reference).
 そして、クロックパルス累積手段30C(クロックパルス累積工程)は、駆動用モータ作動手段30Bの始動信号S1によって固定周期のクロックパルスをカウントし、駆動用モータ11,21の作動時にパルス数を累積する。 The clock pulse accumulating means 30C (clock pulse accumulating step) counts clock pulses with a fixed period by the start signal S1 of the driving motor operating means 30B, and accumulates the number of pulses when the driving motors 11 and 21 are operated.
 移動距離算出手段30D(移動距離算出工程)は、設定されたライン速度vとクロックパルス累積手段30Cによって累積された累積パルス数nとによってワークWの移動距離Lを下記式(1)で算出する。
Figure JPOXMLDOC01-appb-M000001
The moving distance calculating means 30D (moving distance calculating step) calculates the moving distance L of the workpiece W by the following equation (1) from the set line speed v and the accumulated pulse number n accumulated by the clock pulse accumulating means 30C. .
Figure JPOXMLDOC01-appb-M000001
 この際、移動距離算出手段30Dのより具体的な実施形態では、加速始動時又は減速停止時に累積される累積パルス数を1/2にしてトータルの累積パルス数nを求め、この累積パルス数nによって式(1)から移動距離Lを算出する。この際、加速始動時に要する時間tは1クロック周期の偶数倍の時間に設定されているので、その時間tで累積されるパルス数は必ず2で割り切れる数になっており、トータルの累積パルス数nは必ず自然数になる。図3(c)に示す例では、加速始動時の時間tは固定周期における1クロック周期の2倍に設定しているので、始動から累積される2パルスを1パルスとして、その後に累積されるパルス数に1を加算することで式(1)における累積パルス数nを得る。 At this time, in a more specific embodiment of the movement distance calculation means 30D, the cumulative pulse number n is obtained by halving the cumulative pulse number accumulated at the time of acceleration start or deceleration stop, and this cumulative pulse number n The moving distance L is calculated from the equation (1) by At this time, since the time t a taken for acceleration start is set to one clock period even multiple of time, number of pulses accumulated by the time t a has become a number divisible always 2, the cumulative total The pulse number n is always a natural number. In the example shown in FIG. 3 (c), the time t a at the time of acceleration starting since the set to twice the clock period at a fixed period, the two pulses which are accumulated from the starting as a pulse, is accumulated thereafter 1 is added to the number of pulses to be obtained to obtain the cumulative pulse number n in the equation (1).
 ここで解り易い例として、単位送り距離L1を得るのに一定の設定ライン速度vでは累積クロック数2パルス分を要するとすると(すなわち、L1=2t・v)、始動信号S1が出力されてから固定周期のクロックパルス3パルス目で単位送り距離L1の移動距離となり、その後は2パルス累積される毎にL2=2×L1,L3=3×L1,…,Ln=n×L1の移動距離になる。すなわち、図示の例では、始動信号S1が出力されてから固定周期のクロックパルスを累積し、単純に累積されたパルス数から1を差し引いた累積パルス数nを式(1)に代入して移動距離Lを算出する。 As an easy-to-understand example, if it is necessary to obtain a cumulative set number of pulses of 2 pulses (ie, L1 = 2t S · v) at a constant set line speed v to obtain the unit feed distance L1, the start signal S1 is output. , The moving distance of the unit feed distance L1 at the third pulse of the fixed period clock pulse, and thereafter the moving distance of L2 = 2 × L1, L3 = 3 × L1,..., Ln = n × L1 every time two pulses are accumulated. become. That is, in the example shown in the figure, a fixed-period clock pulse is accumulated after the start signal S1 is output, and the accumulated pulse number n obtained by subtracting 1 from the accumulated pulse number is substituted into equation (1) for movement. The distance L is calculated.
 そして、図3(b)に示すように停止信号S2が固定周期のクロックパルスに同期して出力された場合には、減速停止時の時間tを固定周期における1クロック周期の2倍に設定しているので、停止信号S2が出力されるまでに求めた累積パルス数(実際にカウントされたパルス数から加速始動分の1を差し引いた値)に1を加えた累積パルス数nを式(1)に代入することによって、停止までの移動距離Lを算出することができる。 Then, set to twice the one clock period in the fixed period of time t d during deceleration stop when the stop signal S2 as shown in FIG. 3 (b) is output in synchronism with the clock pulses of a fixed period Therefore, the accumulated pulse number n obtained by adding 1 to the accumulated pulse number (a value obtained by subtracting 1 for the acceleration start from the actually counted pulse number) until the stop signal S2 is output is expressed by the equation ( By substituting in 1), the moving distance L until the stop can be calculated.
 このような移動距離算出手段30Dでは、搬送コンベヤ10,20の加減速勾配を直線にして、加減速時のライン速度低下を考慮した上での移動距離算出が可能になるので、より正確なワーク移動距離の把握が可能になる。 In such a movement distance calculation means 30D, the acceleration / deceleration gradient of the transfer conveyors 10 and 20 can be made a straight line, and the movement distance can be calculated in consideration of a decrease in the line speed during acceleration / deceleration. The movement distance can be grasped.
 移動パルス発信手段30Eは、図3(e)に示すように、移動距離Lが設定された単位送り距離n×L1(n=1,2,3,…)に達する毎に移動パルスPwを出力する。図示の例では、図3(b)に示すライン速度のプロフィールを基に、加速始動に要する時間tでの固定周期2パルスを1パルスに換算して始動信号S1出力から固定周期クロックパルスの3パルス目を累積したところで単位送り距離L1に対応する移動パルスPw1を出力し、その後は固定周期クロックパルスの2パルスを累積する毎に移動パルスPw2,Pw3,…を出力する。そして、停止信号S2出力後はその後の固定周期クロックパルス2パルスを1パルスに換算するので、換算された1パルスを加えて直前の移動パルス出力から2パルス累積されるところ、すなわち、直前の移動パルス出力から固定周期クロックパルス3パルス目を累積したところで最後の移動パルスPweを出力する。図示の例では、単位送り距離L1をクロックパルスの周期の倍数(2t・v)に設定しているが、単位送り距離L1の設定自体はクロックパルスの周期とは無関係に任意の値に設定することができる。この場合には、算出された移動距離Lと設定された単位送り距離n×L1とがプログラムスキャン毎に比較され、移動距離Lがn×L1に達したときに移動パルスPwが出力される。 As shown in FIG. 3E, the movement pulse transmission means 30E outputs a movement pulse Pw every time the movement distance L reaches a set unit feed distance n × L1 (n = 1, 2, 3,...). To do. In the illustrated example, on the basis of the profile of the line speed shown in FIG. 3 (b), the fixed period 2 pulse at the time t a taken for acceleration starting from the translation to the start signal S1 output pulse of fixed period clock pulse When the third pulse is accumulated, a movement pulse Pw1 corresponding to the unit feed distance L1 is output, and thereafter, movement pulses Pw2, Pw3,... Are output each time two fixed-period clock pulses are accumulated. Then, after the stop signal S2 is output, the subsequent two fixed-cycle clock pulses are converted into one pulse. Therefore, when the converted one pulse is added and two pulses are accumulated from the previous movement pulse output, that is, the previous movement. When the third fixed-cycle clock pulse is accumulated from the pulse output, the last movement pulse Pwe is output. In the example shown in the figure, the unit feed distance L1 is set to a multiple (2t S · v) of the clock pulse cycle, but the unit feed distance L1 itself is set to an arbitrary value regardless of the clock pulse cycle. can do. In this case, the calculated movement distance L and the set unit feed distance n × L1 are compared for each program scan, and the movement pulse Pw is output when the movement distance L reaches n × L1.
 図4は、制御手段30の移動パルス発信を行うための具体的な制御処理フローを示した説明図である。図示のフローを実行するには全処理プログラムのスキャンタイムがクロックパルスの固定周期の1/2より小さいことが条件になっている。 FIG. 4 is an explanatory diagram showing a specific control processing flow for performing the movement pulse transmission of the control means 30. In order to execute the illustrated flow, it is necessary that the scan time of all the processing programs is smaller than ½ of the fixed period of the clock pulse.
 移動パルス発信フローがスタートすると、先ず、発信単位送り距離X[mm]を設定する(P1=X:ステップS01)。そして、固定周期のクロックパルス1周期の規定値(例えば、10[ms])が変数P2に代入され、次回発信距離の変数P3に初期値P1(=X)を代入し、設定ライン速度の変数P4に設定値v[mm/min]を代入する(ステップS02:ライン速度設定工程)。 When the movement pulse transmission flow starts, first, a transmission unit feed distance X [mm] is set (P1 = X: Step S01). Then, a specified value (for example, 10 [ms]) of one fixed period clock pulse is substituted into the variable P2, and the initial value P1 (= X) is substituted into the variable P3 of the next transmission distance, thereby setting the variable of the set line speed. A set value v [mm / min] is substituted for P4 (step S02: line speed setting step).
 次に、適正な初期設定がなされているか(P2≦60000であるか)、設定ライン速度の設定に変更が無いかが確認され(ステップS03)、この確認が「NO」の場合には変数P2,P3,P4の再設定がなされ(ステップS02)、適正な初期設定がなされており、設定ライン速度vに変更が無い場合には(ステップS03:「YES」)、次のステップに移行する。 Next, it is confirmed whether proper initial settings have been made (whether P2 ≦ 60000) or whether the setting line speed setting has been changed (step S03). If this confirmation is “NO”, the variable P2, If P3 and P4 have been reset (step S02) and appropriate initial settings have been made and there is no change in the set line speed v (step S03: “YES”), the process proceeds to the next step.
 そして、プログラムの1スキャン毎に搬送コンベヤ10,20の運転要求が有るか否かが確認され(ステップS04)、有る場合には(ステップS04:「YES」)、固定周期のクロックパルスをカウントすると同時に(ステップS05:「YES」)前述した始動信号S1を出力して、その後のスキャンではコンベヤONを維持する(ステップS06)。始動信号S1は常に固定周期のクロックパルスと同期して出力されることになる(ステップS05:「NO」)。各プログラムスキャンでコンベヤの運転要求が無い場合には(ステップS04:「NO」)、固定周期のクロックパルスをカウントすると同時に(ステップS07:「YES」)前述した停止信号S2を出力して、その後のスキャンではコンベヤOFFを維持する(ステップS08)。停止信号S2も常に固定周期のクロックパルスと同期して出力されることになる(ステップS07:「NO」)。 Then, it is confirmed whether or not there is a request for operation of the conveyors 10 and 20 for each scan of the program (step S04), and if there is (step S04: “YES”), when clock pulses with a fixed period are counted At the same time (step S05: “YES”), the above-described start signal S1 is output, and the conveyor is maintained in the subsequent scan (step S06). The start signal S1 is always output in synchronization with a fixed-cycle clock pulse (step S05: “NO”). When there is no conveyor operation request in each program scan (step S04: “NO”), the fixed cycle clock pulses are counted (step S07: “YES”), and the stop signal S2 described above is output, and thereafter In this scan, the conveyor OFF is maintained (step S08). The stop signal S2 is also always output in synchronization with a fixed-cycle clock pulse (step S07: “NO”).
 次に、搬送コンベヤ10,20がONの状態が確認され(ステップS09)、コンベヤONであれば(ステップS09:「YES」)、始動信号S1出力後のコンベヤON時間をカウントすると共にコンベヤOFF時間をリセットして(ステップS10)、カウントしたコンベヤON時間が設定されているコンベヤ加速時間の1/2以上になるまでは(ステップS11:「NO」)、パルス累積を行わず、コンベヤON時間がコンベヤ加速時間の1/2以上になったところで(ステップS11:「YES」)、固定周期のクロックパルスカウントと共に(ステップS12:「YES」)パルス累積を行って(P2=P2+10)、L[mm]=P4×P2/60000で移動距離Lを算出する(ステップS13)。 Next, it is confirmed that the transfer conveyors 10 and 20 are ON (step S09). If the conveyor is ON (step S09: “YES”), the conveyor ON time after the start signal S1 is output is counted and the conveyor OFF time. Is reset (step S10), and the accumulated conveyor ON time is not performed until the counted conveyor ON time becomes 1/2 or more of the set conveyor acceleration time (step S11: “NO”). When the conveyor acceleration time is ½ or more (step S11: “YES”), the pulse accumulation is performed together with the fixed-cycle clock pulse count (step S12: “YES”) (P2 = P2 + 10), and L [mm ] = P4 × P2 / 60000 to calculate the movement distance L (step S13).
 一方、停止信号出力後(S08)に、コンベヤOFFが確認された(ステップS09:「NO」)場合には、コンベヤON時間をリセットすると共に停止信号S2出力後のコンベヤOFF時間をカウントして(ステップS14)、カウントしたコンベヤOFF時間が設定されているコンベヤ減速時間の1/2より小さいときには(ステップS15:「YES」)、固定周期のクロックパルスカウントと共に(ステップS12:「YES」)パルス累積を行って(P2=P2+10)、L[mm]=P4×P2/60000で移動距離Lを算出する(ステップS13)。そして、コンベヤOFF時間がコンベヤ減速時間の1/2以上になったところで(ステップS15:「NO」)、パルス累積を行わない(ステップS15:「NO」)。 On the other hand, if the conveyor OFF is confirmed after the stop signal is output (S08) (step S09: “NO”), the conveyor ON time is reset and the conveyor OFF time after the stop signal S2 is output is counted ( Step S14) When the counted conveyor OFF time is less than ½ of the set conveyor deceleration time (Step S15: “YES”), together with a fixed cycle clock pulse count (Step S12: “YES”), pulse accumulation (P2 = P2 + 10) and the movement distance L is calculated as L [mm] = P4 × P2 / 60000 (step S13). When the conveyor OFF time becomes ½ or more of the conveyor deceleration time (step S15: “NO”), pulse accumulation is not performed (step S15: “NO”).
 ステップS09からステップS15までの処理は、加速始動時又は減速停止時に累積される累積パルス数を1/2にしてワークの移動距離Lを算出するための具体的な処理フローであり、これによって、加減速時のライン速度の低下を考慮に入れた正確な移動距離Lを算出することが可能になる。 The processing from step S09 to step S15 is a specific processing flow for calculating the moving distance L of the work by reducing the cumulative number of pulses accumulated at the time of acceleration start or deceleration stop to 1/2. It is possible to calculate an accurate movement distance L taking into account a decrease in line speed during acceleration / deceleration.
 そして、算出された移動距離Lが次回発信距離P3以上になった場合に、移動パルスPwを出力し(移動パルスON)、次回発信距離P3をP3=P3+P1で更新する(ステップS17)。算出された移動距離Lが次回発信距離P3未満の場合(ステップS16:「NO」)は、その回のスキャンでは移動パルスをOFF(ステップS18)にする。その後はステップS03から始まる次回のプログラムスキャンに移行する。 Then, when the calculated moving distance L becomes equal to or longer than the next transmission distance P3, a movement pulse Pw is output (movement pulse ON), and the next transmission distance P3 is updated with P3 = P3 + P1 (step S17). When the calculated movement distance L is less than the next transmission distance P3 (step S16: “NO”), the movement pulse is turned OFF (step S18) in the scan of that time. After that, the next program scan starts from step S03.
 図4の移動パルス発信フローを具体的な数例を示して説明する。設定ライン速度v=21000mm/min,クロックパルス1周期t=10msとすると、この1周期t間にワークが移動する距離はv・t=21000×10/60000=3.5mmとなる。設定された単位送り距離X=10mmであって、加速始動時に要する時間tがクロックパルス1周期tの2倍に設定されているとすると(図3参照)、始動信号S1が出力されてから最初の固定周期のクロックパルスをノーカウントとし、次のパルスから累積を始めて3パルス目で移動距離L=3.5×3≧10を判断して単位移動距離L1=10mmを移動したと判断し、移動パルスPw1を出力する。その後は、パルスが累積される毎に累積パルス数n=6の時にL=3.5×6≧2×10、n=9の時にL=3.5×9≧3×10を判断して移動パルスを出力することになる。 The movement pulse transmission flow of FIG. 4 will be described with specific examples. Setting the line speed v = 21000mm / min, when a clock pulse one period t s = 10 ms, the distance which the workpiece is moved between the 1 period t s becomes v · t s = 21000 × 10 /60000 = 3.5mm. A set unit feeding distance X = 10 mm, (see FIG. 3) when the time t a taken during acceleration start is to be set to twice the clock pulse 1 period t s, the start signal S1 is output The clock pulse of the first fixed period is set to no count, the accumulation is started from the next pulse, the movement distance L = 3.5 × 3 ≧ 10 is judged at the third pulse, and the unit movement distance L1 = 10 mm is judged to have moved. Then, the movement pulse Pw1 is output. After that, every time a pulse is accumulated, L = 3.5 × 6 ≧ 2 × 10 when the number of accumulated pulses is n = 6, and L = 3.5 × 9 ≧ 3 × 10 when n = 9. A moving pulse is output.
 このような実施形態によると、高分解能を得たい場合にはクロックパルス周期を短くすることで対応し、分解能が粗くても良い場合はクロックパルス周期を長くしてスキャンタイムを長く取って演算処理負荷を軽減させることができる。また、移動パルスを得る発信単位送り距離Xは任意に設定することができる。 According to such an embodiment, when high resolution is desired, the clock pulse cycle is shortened, and when the resolution may be coarse, the clock pulse cycle is lengthened and the scan time is increased to perform arithmetic processing. The load can be reduced. Further, the transmission unit feed distance X for obtaining the movement pulse can be arbitrarily set.
 このような実施形態に係る搬送装置を自動塗装装置の搬送ラインに適用する場合の例としては、一つの搬送コンベヤ10を塗装用のローラコンベヤとし、もう一つの搬送コンベヤ20を乾燥用のスラットコンベヤにする。この際、塗装時に塗料が無駄にならないようにワークWの位置を100mm程度の高分解能で検知したい場合には、発信単位送り距離X=100mmに設定する。一方、乾燥時には、大雑把なワークの位置が分かればよいので、制御手段50の演算負荷を小さくするために1000mm程度の低分解能にすればよく、この場合には発信単位送り距離X=1000mmに設定する。 As an example of applying the transport apparatus according to such an embodiment to a transport line of an automatic coating apparatus, one transport conveyor 10 is a roller conveyor for coating, and the other transport conveyor 20 is a slat conveyor for drying. To. At this time, when it is desired to detect the position of the workpiece W with a high resolution of about 100 mm so that the paint is not wasted during painting, the transmission unit feed distance X is set to 100 mm. On the other hand, since it is only necessary to know the rough position of the workpiece at the time of drying, a low resolution of about 1000 mm may be used in order to reduce the calculation load of the control means 50. In this case, the transmission unit feed distance X is set to 1000 mm. To do.
 このような実施形態の具体例としては、モータ回転数設定手段12,22として、負荷や熱によるモータのすべりを補正して運転する、ベクトル制御機能を有するインバータを採用し、これによって正確にライン速度を制御する。さらに、制御手段30として、FA用の安価なPLCを用い、このPLCでインバータを駆動し、PLCに標準搭載されている固定クロックを固定周期のクロックパルスとして、前述した制御フローを実行する。これによると、累積誤差のない移動パルスを電子的に生成することによって、従来技術のような近接センサやエンコーダなどの検知装置を一切用いることなく、搬送コンベヤライン上のワークの位置を適正に検知することが可能になる。 As a specific example of such an embodiment, an inverter having a vector control function, which is operated by correcting motor slip due to load or heat, is adopted as the motor rotation speed setting means 12, 22. Control the speed. Further, an inexpensive PLC for FA is used as the control means 30, the inverter is driven by this PLC, and the above-described control flow is executed using a fixed clock that is standardly mounted on the PLC as a fixed-period clock pulse. According to this, the position of the workpiece on the transfer conveyor line can be detected properly by electronically generating movement pulses with no accumulated error, without using any conventional proximity sensor or encoder. It becomes possible to do.
 これによると、任意に設定されるライン速度で、任意の単位送り距離移動パルスがプログラムソフトウエアによって得られることになり、回転検知装置を設置するための装置設置上の制約を排除することができる。これによって装置の設計,条件選定,メンテナンスの手間や費用を削減でき、コンベヤの脈動による誤検知やハードウエアの故障を回避し、信頼性と稼働率の高い各種処理ラインを構築することができる。 According to this, an arbitrary unit feed distance movement pulse can be obtained by the program software at an arbitrarily set line speed, and it is possible to eliminate restrictions on installation of the apparatus for installing the rotation detection apparatus. . This can reduce the time and cost of equipment design, condition selection, and maintenance, avoid false detections due to conveyor pulsation and hardware failure, and can construct various processing lines with high reliability and high availability.

Claims (4)

  1.  搬送ラインを形成する複数の搬送コンベヤと、各搬送コンベヤを個別に駆動する駆動用モータと、各駆動用モータの回転数を設定するモータ回転数設定手段と、各駆動用モータの回転数を制御して各搬送コンベヤのライン速度を設定すると共に前記駆動用モータの作動に基づいてワークの単位移動距離に応じた移動パルスを出力する制御手段とを備え、
     前記制御手段は、
     固定周期のクロックパルスを発生するクロックパルス発生手段と、
     前記クロックパルスの固定周期に同期させて前記駆動用モータの停止・始動信号を出力する駆動用モータ作動手段と、
     前記駆動用モータの作動時に前記クロックパルスを累積するクロックパルス累積手段と、
     設定された前記ライン速度と前記クロックパルス累積手段によって累積された累積パルス数とによって、前記搬送コンベヤによって移動するワークの移動距離を算出する移動距離算出手段と、
     前記移動距離が単位距離に達する毎に移動パルスを発信する移動パルス発信手段とを備えることを特徴とする搬送装置。
    Controls the rotation speed of each drive motor, a plurality of transfer conveyors forming a transfer line, a drive motor for individually driving each transfer conveyor, a motor rotation speed setting means for setting the rotation speed of each drive motor And a control means for setting a line speed of each conveyor and outputting a movement pulse corresponding to a unit movement distance of the workpiece based on the operation of the driving motor,
    The control means includes
    Clock pulse generating means for generating a fixed-period clock pulse;
    Driving motor operating means for outputting a stop / start signal of the driving motor in synchronization with a fixed period of the clock pulse;
    Clock pulse accumulating means for accumulating the clock pulse when the driving motor is operated;
    A moving distance calculating means for calculating a moving distance of a work moved by the conveyor, based on the set line speed and the accumulated pulse number accumulated by the clock pulse accumulating means;
    A transport apparatus comprising: a travel pulse transmitting means for transmitting a travel pulse each time the travel distance reaches a unit distance.
  2.  前記駆動用モータ作動手段は、前記クロックパルスにおける1クロック周期の偶数倍の時間で前記ライン速度に至る加速始動と前記ライン速度からの減速停止を行い、
     前記移動距離算出手段は、前記加速始動時又は前記減速停止時に累積される累積パルス数を1/2にしてワークの移動距離を算出することを特徴とする請求項1に記載された搬送装置。
    The drive motor actuating means performs acceleration start and deceleration stop from the line speed in an even multiple of one clock cycle in the clock pulse,
    The transport apparatus according to claim 1, wherein the moving distance calculating unit calculates a moving distance of the work by reducing a cumulative pulse number accumulated at the time of the acceleration start or the deceleration stop to ½.
  3.  搬送ラインを形成する複数の搬送コンベヤと各搬送コンベヤを個別に駆動する駆動用モータとを備えた搬送装置におけるワーク移動距離出力方法であって、
     前記駆動用モータの回転数を制御して各搬送コンベヤのライン速度を設定するライン速度設定工程と、
     固定周期のクロックパルスを発生するクロックパルス発生工程と、
     前記クロックパルスの固定周期に同期させて前記駆動用モータの停止・始動信号を出力する駆動用モータ作動工程と、
     前記駆動用モータの作動時に前記クロックパルスを累積するクロックパルス累積工程と、
     設定された前記ライン速度と累積された前記クロックパルスの累積パルス数とによって、前記搬送コンベヤによって移動するワークの移動距離を算出する移動距離算出工程と、
     を有することを特徴とするワーク移動距離出力方法。
    It is a work movement distance output method in a transfer device comprising a plurality of transfer conveyors forming a transfer line and a drive motor for individually driving each transfer conveyor,
    A line speed setting step for setting the line speed of each conveyor by controlling the number of rotations of the drive motor;
    A clock pulse generating step for generating a fixed-period clock pulse;
    A driving motor operating step of outputting a stop / start signal of the driving motor in synchronization with a fixed period of the clock pulse;
    A clock pulse accumulating step of accumulating the clock pulses when the driving motor is operated;
    A moving distance calculating step of calculating a moving distance of a work moved by the conveyor by the set line speed and the cumulative number of clock pulses accumulated;
    A workpiece movement distance output method characterized by comprising:
  4.  前記駆動用モータ作動工程は、前記クロックパルスにおける1クロック周期の偶数倍の時間で前記ライン速度に至る加速始動と前記ライン速度からの減速停止を行い、
     前記移動距離算出工程は、前記加速始動時又は前記減速停止時に累積される累積パルス数を1/2にしてワークの移動距離を算出することを特徴とする請求項3に記載されたワーク移動距離出力方法。
    The driving motor operating step performs acceleration start and deceleration stop from the line speed in an even multiple of one clock cycle in the clock pulse,
    4. The workpiece movement distance according to claim 3, wherein the movement distance calculation step calculates the workpiece movement distance by halving a cumulative pulse number accumulated at the time of the acceleration start or the deceleration stop. 5. output method.
PCT/JP2008/058933 2008-05-15 2008-05-15 Conveyance apparatus and work moving distance output method WO2009139059A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009526427A JPWO2009139059A1 (en) 2008-05-15 2008-05-15 Conveying device, work movement distance output method
PCT/JP2008/058933 WO2009139059A1 (en) 2008-05-15 2008-05-15 Conveyance apparatus and work moving distance output method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058933 WO2009139059A1 (en) 2008-05-15 2008-05-15 Conveyance apparatus and work moving distance output method

Publications (1)

Publication Number Publication Date
WO2009139059A1 true WO2009139059A1 (en) 2009-11-19

Family

ID=41318441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058933 WO2009139059A1 (en) 2008-05-15 2008-05-15 Conveyance apparatus and work moving distance output method

Country Status (2)

Country Link
JP (1) JPWO2009139059A1 (en)
WO (1) WO2009139059A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116735A (en) * 1991-10-29 1993-05-14 Kawasaki Heavy Ind Ltd Tracking control method for baggage conveyance line
JPH06255743A (en) * 1992-12-18 1994-09-13 Xerox Corp Control of steering of endless belt
JPH07206132A (en) * 1994-01-13 1995-08-08 Okura Yusoki Co Ltd Conveying device
JP2000229722A (en) * 1998-12-11 2000-08-22 Nkk Corp Conveyer speed control method and tracking method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116735A (en) * 1991-10-29 1993-05-14 Kawasaki Heavy Ind Ltd Tracking control method for baggage conveyance line
JPH06255743A (en) * 1992-12-18 1994-09-13 Xerox Corp Control of steering of endless belt
JPH07206132A (en) * 1994-01-13 1995-08-08 Okura Yusoki Co Ltd Conveying device
JP2000229722A (en) * 1998-12-11 2000-08-22 Nkk Corp Conveyer speed control method and tracking method

Also Published As

Publication number Publication date
JPWO2009139059A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4314639B2 (en) Transport device
JP2019197490A5 (en)
JP3170196U (en) Transport device
KR930009374B1 (en) Conveyor means
WO2009139059A1 (en) Conveyance apparatus and work moving distance output method
WO2015155817A1 (en) Printed substrate transfer apparatus
KR20170075415A (en) Transfer control device and roller table having the same
CA2317175C (en) Method and device for synchronizing motion for insert feeders in an insertion system
JP2014231400A (en) Material transport controller and material transport control method
JP2896101B2 (en) Workpiece split supply method
JP2021004132A (en) Conveyor system
CN108382785A (en) A kind of conveying control device on production line
JP2012111577A (en) Conveying device
JP2013142014A (en) Oil feeder and oil feeding method of man conveyor
JP3364132B2 (en) Coil conveyor
JP2008143695A (en) Passenger conveyor device
JP6098511B2 (en) Belt conveyor driving method, belt conveyor driving device, and conveying device control method and conveying device
JP4721158B2 (en) Roller conveyor braking device
CN110386414B (en) Control method for producing conveyor line motor
JP2022185339A (en) Belt tension detection device and belt tension detection method
WO2003042078A1 (en) Conveyor unit with timer controlled delay of speed change
JP4405777B2 (en) Timing fluctuation detection apparatus and timing fluctuation detection method
JP2006248704A (en) Control device for paper feeding device
JP6278334B2 (en) Printing machine and control method thereof
JP2013033785A (en) Substrate transfer apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009526427

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764297

Country of ref document: EP

Kind code of ref document: A1