WO2009136435A1 - Board thickness controller for rolling machine - Google Patents

Board thickness controller for rolling machine Download PDF

Info

Publication number
WO2009136435A1
WO2009136435A1 PCT/JP2008/058497 JP2008058497W WO2009136435A1 WO 2009136435 A1 WO2009136435 A1 WO 2009136435A1 JP 2008058497 W JP2008058497 W JP 2008058497W WO 2009136435 A1 WO2009136435 A1 WO 2009136435A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
roll eccentricity
eccentricity
plate thickness
thickness
Prior art date
Application number
PCT/JP2008/058497
Other languages
French (fr)
Japanese (ja)
Inventor
直博 久保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2008/058497 priority Critical patent/WO2009136435A1/en
Priority to CN200880129128.0A priority patent/CN102015136B/en
Priority to KR1020107022667A priority patent/KR101208811B1/en
Priority to JP2010510976A priority patent/JP5170240B2/en
Publication of WO2009136435A1 publication Critical patent/WO2009136435A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Definitions

  • This invention relates to a plate thickness control device that suppresses fluctuations in the plate thickness of a rolled material by controlling a roll gap in a rolling mill that rolls the rolled material with rolls arranged vertically.
  • sheet thickness control In plate rolling of a steel plate or the like performed by a rolling mill, sheet thickness control (AGC: Automatic Gage Control) has been conventionally applied.
  • AGC Automatic Gage Control
  • the roll gap is controlled so that the thickness in the rolling direction of the rolled material is kept constant by detecting (estimating) the thickness variation of the rolled material by some means.
  • AGC Automatic Gage Control
  • the plate thickness variation performed by AGC for example, a method of estimating the plate thickness variation during rolling from the rolling load, or the plate thickness during the rolling (gauge meter plate thickness from the rolling load and the roll gap).
  • a method of detecting a plate thickness deviation with a plate thickness meter For example, a method of estimating the plate thickness variation during rolling from the rolling load, or the plate thickness during the rolling (gauge meter plate thickness from the rolling load and the roll gap).
  • the roll eccentricity usually occurs when a key is used for assembling a backup roll.
  • Roll eccentricity also occurs when the roll cross-section is not perfect due to non-uniform polishing of the roll, or when the roll is thermally expanded during rolling and the roll cross-section is no longer perfect. Will occur.
  • produces for the above reasons, a roll gap will fluctuate
  • the fluctuation of the roll gap due to roll eccentricity cannot be detected by a reduction position control device that controls the reduction position of the roll. For this reason, the roll eccentricity becomes a disturbance of the plate thickness control.
  • the roll eccentricity has the same amount (eccentricity amount) at the same rotation angle for the upper and lower rolls in the short term. However, the rotation angle at which roll eccentricity occurs and the amount of eccentricity may change as rolling progresses.
  • Roll eccentricity control 1 Before rolling, the roll is rotated by a kiss roll (a state in which a load is generated by contacting the upper and lower work rolls), and the load at that time is detected. Further, the detected load is analyzed by a fast Fourier transform or a means equivalent thereto, and the phase and amplitude of the roll eccentricity are identified. During rolling, feedback control using the rolling load is not performed, and the roll gap operation amount is output so as to compensate for roll gap fluctuation caused by roll eccentricity using the roll eccentricity parameter ( For example, see Patent Documents 1 and 2).
  • (B) Roll eccentricity control 2 The plate thickness variation is measured with a plate thickness meter installed on the exit side of the rolling mill. Then, a fluctuation component synchronized with the rotation of the roll is extracted from the measured thickness fluctuation, and the rotation position of the roll at which the fluctuation component is generated is specified. Based on the obtained information, the roll gap is operated according to the rotation of the roll.
  • (C) Roll eccentricity control 3 Measure rolling load fluctuations during rolling. Then, a fluctuation component synchronized with the rotation of the roll is extracted from the measured rolling load fluctuation and associated with the rotation position of the roll. And based on the obtained information, a rolling load fluctuation
  • Japanese Unexamined Patent Publication No. 60-141321 Japanese Unexamined Patent Publication No. Sho 62-254915 Japanese Unexamined Patent Publication No. 11-77128 Japanese Unexamined Patent Application Publication No. 2002-282919
  • the present invention has been made to solve the above-described problems, and its purpose is to achieve roll eccentricity even when roll eccentric parameters change over time or when the upper and lower roll diameters are different.
  • the present invention is to provide a plate thickness control apparatus for a rolling mill that can sufficiently suppress the resulting plate thickness variation. Further, even when there is a rolling load fluctuation component having a period close to the roll eccentricity period, or even when the distribution of the rolling record data is biased, the rolling mill capable of exhibiting the above effect similarly. It is providing the plate
  • a sheet thickness control device for a rolling mill includes a work roll arranged vertically and a backup roll that supports the work roll from above and below, and controls the thickness of the rolling mill that rolls a rolled material by the work roll.
  • a device that detects the rolling load includes a roll position measuring device that measures the roll gap, a plate thickness meter that detects the thickness of the rolled material after rolling, and the rotation angle of the backup roll.
  • Rotation angle calculating means for calculating each of the above, a rolling gauge detected by a load detector, and a gauge meter plate for calculating a gauge meter plate thickness of the rolled material based on the roll gap measured by the rolling position measuring instrument Thickness calculation means and the gauge meter thickness calculation means until an arbitrary point of the rolled material rolled by the work roll arrives at the thickness detection position of the thickness gauge.
  • the gauge meter plate thickness delay means for storing the gauge meter plate thickness at the arbitrary point calculated in the above, the gauge meter plate thickness at the arbitrary point stored in the gauge meter plate thickness delay means, and the plate thickness Based on the thickness of the arbitrary point detected by the meter, the roll eccentric amount calculating means for calculating the roll eccentric amount when the arbitrary point is rolled by the work roll, and each calculated by the rotation angle calculating means Roll eccentricity that stores the roll eccentricity calculated by the roll eccentricity calculating means on the basis of the rotation angle in association with each rotation angle of the upper and lower backup rolls when the arbitrary point is rolled by the work roll Based on the roll eccentricity stored in the amount storage means and the roll eccentricity storage means, the phase and amplitude of the roll eccentricity are calculated for each of the upper and lower backup rolls.
  • the roll eccentricity storage means sets the division number when the rotation angle of the upper backup roll is divided into a predetermined number and the rotation angle of the lower backup roll as the predetermined A table in which the division number when dividing into numbers is arranged vertically and horizontally, and by storing the roll eccentricity calculated by the roll eccentricity calculating means in the corresponding cell of the table, A distribution curved surface is obtained.
  • the roll eccentricity parameter calculation means approximates the curved surface by Fourier analysis to the roll eccentricity distribution curved surface obtained by the roll eccentricity storage means. By doing so, the phase and amplitude of roll eccentricity are obtained for each of the upper and lower backup rolls.
  • FIG. 1 It is a block diagram which shows the plate
  • FIG. 1 is a block diagram showing a sheet thickness control apparatus for a rolling mill according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram for explaining specific functions of the sheet thickness control apparatus for a rolling mill shown in FIG.
  • reference numeral 1 denotes a rolled material such as a steel plate rolled by a rolling mill, and is rolled by work rolls 2 and 3 arranged above and below.
  • 4 and 5 are backup rolls that support the work rolls 2 and 3 from above and below.
  • the reduction position control device 7 controls the roll gap (the gap between the upper and lower work rolls 2 and 3) so that the thickness of the rolled material 1 becomes a desired value.
  • the reduction position control device 7 is provided with a reduction position measuring device 8 that measures the reduction position. That is, the reduction position control device 7 can measure the roll gap by the function of the reduction position measuring device 8.
  • a change (fluctuation component) in the roll gap caused by roll eccentricity cannot be measured by the above-described reduction position measuring instrument 8.
  • the thickness gauge 9 is a thickness gauge provided on the exit side of the rolling mill.
  • the thickness gauge 9 detects the thickness of the rolled material 1 after being rolled by the work rolls 2 and 3.
  • Reference numerals 10 and 11 denote rotation angle detectors for detecting the rotation angles of the backup rolls 4 and 5.
  • the backup rolls 4 and 5 rotate in conjunction with the work rolls 2 and 3 when the work rolls 2 and 3 are driven (rotated). At this time, the rotation angle of the upper backup roll 4 is independently detected by the rotation angle detector 10, and the rotation angle of the lower backup roll 5 is independently detected by the rotation angle detector 11.
  • FIG. 1 shows a configuration in which pulse generators attached to the backup rolls 4 and 5 are used as the rotation angle detectors 10 and 11. That is, in the method shown in FIG. 1, the rotation angle detectors 10 and 11 directly detect the rotation angles of the backup rolls 4 and 5.
  • the rotation angle detectors 10 and 11 are not limited to such a method, and may employ another method having the same function as described above. For example, a proximity photo sensor or the like is attached to the backup rolls 4 and 5, and a reference pulse for each rotation of the backup rolls 4 and 5 is generated. Then, the reference pulse is detected, and the rotation angles of the backup rolls 4 and 5 are calculated using the rotation angles or rotation speeds of the work rolls 2 and 3.
  • the rotation angle detectors 10 and 11 can also be configured by such a method.
  • the plate thickness control apparatus includes a rotation angle calculation unit 12, a gauge meter plate thickness calculation unit 13, a gauge meter plate thickness delay unit 14, a roll eccentric amount calculation unit 15, and a roll eccentric amount storage unit 16.
  • Various means such as a roll eccentricity parameter calculation means 17 and a control operation amount calculation means 18 are provided.
  • the rotation angle calculation means 12 has a function of calculating the rotation angles of the backup rolls 4 and 5 for each of the upper and lower sides. That is, the rotation angle calculation means 12 determines the rotation angle of the upper backup roll 4 based on the detection signal from the rotation angle detector 10 and the rotation of the lower backup roll 5 based on the detection signal from the rotation angle detector 11. The angles are calculated in the range of 0 to 360 degrees, respectively.
  • the gauge meter plate thickness calculating means 13 has a function of calculating the gauge meter plate thickness of the rolled material 1.
  • the gauge meter plate thickness is the plate thickness of the rolled material 1 when being rolled by the work rolls 2 and 3, and means the thickness of the rolled material 1 directly under the rolling mill.
  • the gauge meter thickness calculation means 13 is based on the rolling load detected by the load detector 6 and the roll gap measured by the reduction position measuring device 8 (the reduction position control device 7), for example,
  • the gauge meter plate thickness is calculated using the following formula (principle formula for gauge meter plate thickness calculation).
  • the gauge meter plate thickness delay means 14 is used until the arbitrary point (for example, point A) of the rolled material 1 rolled by the work rolls 2 and 3 reaches the plate thickness detection position of the plate thickness meter 9. It has a function of storing the gauge meter plate thickness at the point A calculated by the calculation means 13. Further, the gauge meter plate thickness delay means 14 uses the output value of the roll eccentricity control (control operation amount calculation means 18) when the point A is rolled directly under the rolling mill as the gauge meter plate thickness at the point A.
  • the gauge meter plate thickness delay means 14 uses the output value of the roll eccentricity control (control operation amount calculation means 18) when the point A is rolled directly under the rolling mill as the gauge meter plate thickness at the point A.
  • the actual plate thickness at point A is measured by the plate thickness meter 9
  • the actual plate thickness can be compared with the gauge meter plate thickness at point A and the output value of roll eccentricity control. It becomes like this.
  • the above operation by the gauge meter plate thickness delay means 14 is also performed from
  • the roll eccentricity calculating means 15 estimates the roll eccentricity from the deviations of the gauge meter plate thickness and the actual plate thickness, so that, for example, the fluctuation component of the rolling load caused by the skid mark is the backup roll 4 and Even when the rotation period is close to 5, the roll eccentricity can be appropriately determined without being affected by the rolling load fluctuation component due to the skid mark. Further, the above calculation by the roll eccentricity calculating means 15 is performed from the leading end to the tail end of the rolled material 1, and while the rolled material 1 is being rolled by a rolling mill, Performed while measurements are being taken.
  • each function of the gauge meter plate thickness delay means 14, the roll eccentric amount calculation means 15, and the roll eccentric amount storage means 16 will be specifically described with reference to FIG.
  • data storage and reading are managed by the division number by equally dividing each rotation of the backup rolls 4 and 5 into n equal parts.
  • the roll eccentric amount calculating means 15 calculates the gauge meter plate thickness and the roll eccentric amount (use value) at the point where the actual plate thickness is detected by the plate thickness meter 9. Read out from the gauge meter thickness delay means 14.
  • FIG. 2 shows a state in which the A2 point of the rolled material 1 is arranged at the plate thickness detection position of the plate thickness gauge 9, and when the A2 point is rolled directly under the rolling mill, It shows that the division number is 10 and the division number of the lower backup roll 5 is 4.
  • the roll eccentricity calculation means 15 is stored in the column of the actual plate thickness A2 detected by the plate thickness meter 9 and the division No 4 of the backup roll 5 below the gauge meter plate thickness delay means 14. Based on the gauge meter plate thickness and the roll eccentricity (use value), the roll eccentricity is calculated.
  • the roll eccentricity storage unit 16 includes a table for storing the calculation result of the roll eccentricity calculation unit 15 in association with the division numbers of the backup rolls 4 and 5. That is, in this table, as shown in FIG. 2, the division numbers when the rotation angles of the upper and lower backup rolls 4 and 5 are divided into n are arranged vertically and horizontally. Then, the roll eccentricity storage means 16 stores the roll eccentricity calculated by the roll eccentricity calculation means 15 in the corresponding cell of this table, and obtains a roll eccentricity distribution curved surface. For example, if the roll eccentricity calculation means 15 obtains a calculation result related to the A2 point, the result is transferred to the cell where the division number 10 of the upper backup roll 4 and the division number 4 of the lower backup roll 5 intersect. It is stored as the core amount (next value).
  • FIG. 3 is a view showing a distribution curved surface of the roll eccentricity stored in the roll eccentricity storage means, and shows an example of the obtained distribution curved surface.
  • the roll eccentricity parameter calculating means 17 is based on the roll eccentricity amount stored in the roll eccentricity amount storage means 16 for each of the upper and lower backup rolls 4 and 5, ie, the roll eccentricity parameter, that is, the roll eccentricity.
  • the phase (position) and amplitude are calculated.
  • the roll eccentricity parameter calculating means 17 approximates the roll eccentricity distribution curved surface shown in FIG. 3 with a curved surface by Fourier analysis, so that the roll eccentricity is calculated for each of the upper and lower backup rolls 4 and 5. Calculate the phase and amplitude of the wick.
  • the roll eccentric waveform has a primary component and a secondary component, the waveform is represented by the following equation.
  • the roll eccentricity parameter obtained by the calculation of the roll eccentricity parameter calculating means 17 is updated for each rolling when the length of the rolled material 1 is short as in the case of thick plate rolling. Moreover, when the length of the rolling material 1 is long like thin plate rolling, renewal is repeated several times during rolling. With this configuration, even when the roll eccentricity parameter changes with time, the change can be followed and the latest state can always be maintained. Moreover, since the distribution curved surface of the roll eccentric amount stored in the roll eccentric amount storage means 16 is identified by Fourier transform as described above, the rolling record data for the rotation angles of the backup rolls 4 and 5 is identified. Even if the distribution is biased, an appropriate control amount can be obtained for all rotation angles.
  • FIG. 4 is a diagram showing a distribution curved surface of the roll eccentricity identified by the sheet thickness control device of the rolling mill shown in FIG. That is, FIG. 4 is an example in which the roll eccentricity parameter is identified and the distribution curved surface of the roll eccentricity is reproduced, and corresponds to the actual distribution curved surface shown in FIG. As can be seen from FIG. 4, the primary waveform and secondary waveform of roll eccentricity are accurately reproduced.
  • Embodiment 1 of the present invention as described above, even when the roll eccentricity parameter changes with time or when the diameters of the upper and lower backup rolls 4 and 5 are different, due to roll eccentricity.
  • produces can fully be suppressed. Further, even when there is a fluctuation component of the rolling load having a period close to the period of roll eccentricity, or even when the distribution of the rolling record data is biased, it similarly occurs due to roll eccentricity. Variations in plate thickness can be sufficiently suppressed. For this reason, it becomes possible to manufacture a high-quality product.
  • the sheet thickness control device for a rolling mill according to the present invention can be applied to a rolling mill that rolls a rolled material with rolls arranged vertically.

Abstract

A board thickness controller for a rolling machine which can fully reduce variation in board thickness arising from roll core eccentricity even in the event of deterioration over time of roll core eccentricity parameters or in any other cases. For such a purpose, the amount of roll core eccentricity is first determined from gauge meter board thickness and actual board thickness. Secondly, a curved surface corresponding to a distribution curve for the determined amount of roll core eccentricity is depicted to identify the curved surface using the Fourier analysis, thereby computing a phase and an amplitude of the roll core eccentricity for each of the upper and lower backup rolls. Subsequently, roll gaps are controlled in accordance with the computation result to reduce variation components in board thickness of an rolled material arising from the roll core eccentricity.

Description

圧延機の板厚制御装置Thickness control device for rolling mill
 この発明は、上下に配置されたロールによって圧延材を圧延する圧延機において、ロールギャップを制御することにより、圧延材の板厚変動を抑制させる板厚制御装置に関するものである。 This invention relates to a plate thickness control device that suppresses fluctuations in the plate thickness of a rolled material by controlling a roll gap in a rolling mill that rolls the rolled material with rolls arranged vertically.
 圧延機によって行われる鋼板等の板圧延では、従来から板厚制御(AGC:Automatic Gage Control)が適用されている。このAGCでは、何らかの手段によって圧延材の板厚変動を検出(推定)することにより、圧延材の圧延方向の厚みが一定に保たれるように、ロールギャップを制御している。なお、AGCで行われている板厚変動の検出には、例えば、圧延荷重から圧延中の板厚変動を推定する方法や、圧延荷重とロールギャップとから圧延中の板厚(ゲージメータ板厚)を推定する方法、板厚計で板厚偏差を検出する方法等がある。
 しかし、AGCで行われている上記板厚変動の検出方法では、ローラ偏芯に起因して発生する板厚変動の変動成分を検出することは不可能であった。特に、板厚変動の検出に圧延荷重を用いる方法では、ロール偏芯によって生じる圧延荷重の変動が板厚変動の誤検出を引き起こしてしまい、板厚変動がかえって大きくなってしまうことが一般に知られている。
In plate rolling of a steel plate or the like performed by a rolling mill, sheet thickness control (AGC: Automatic Gage Control) has been conventionally applied. In this AGC, the roll gap is controlled so that the thickness in the rolling direction of the rolled material is kept constant by detecting (estimating) the thickness variation of the rolled material by some means. In addition, for the detection of the plate thickness variation performed by AGC, for example, a method of estimating the plate thickness variation during rolling from the rolling load, or the plate thickness during the rolling (gauge meter plate thickness from the rolling load and the roll gap). ) And a method of detecting a plate thickness deviation with a plate thickness meter.
However, it is impossible to detect the fluctuation component of the plate thickness variation caused by the eccentricity of the roller by the method for detecting the plate thickness variation performed by the AGC. In particular, in the method of using a rolling load for detecting the thickness variation, it is generally known that the variation in the rolling load caused by roll eccentricity causes erroneous detection of the thickness variation, and the variation in thickness becomes rather large. ing.
 上記ロール偏芯は、通常、バックアップロールの組み立てにキーを使用している場合に多く発生する。また、ロールの研磨が不均一であるためにロール断面が真円になっていない場合や、圧延中にロールが熱膨張し、ロール断面が真円ではなくなってしまった場合等にもロール偏芯は発生する。そして、上述のような原因によってロール偏芯が発生すると、圧延中のロールの回転に応じて周期的にロールギャップが変動してしまう。ロール偏芯に起因するこのロールギャップの変動は、ロールの圧下位置を制御する圧下位置制御装置によって検出することができない。このような理由から、ロール偏芯は板厚制御の外乱になってしまう。
 なお、ロール偏芯は、短期的に見ると、上下それぞれのロールについて同じ回転角度において同じ量(偏芯量)を有している。しかし、ロール偏芯が発生する回転角度やその偏芯量は、圧延が進むにつれて変化する場合もある。
The roll eccentricity usually occurs when a key is used for assembling a backup roll. Roll eccentricity also occurs when the roll cross-section is not perfect due to non-uniform polishing of the roll, or when the roll is thermally expanded during rolling and the roll cross-section is no longer perfect. Will occur. And when roll eccentricity generate | occur | produces for the above reasons, a roll gap will fluctuate | variate periodically according to rotation of the roll in rolling. The fluctuation of the roll gap due to roll eccentricity cannot be detected by a reduction position control device that controls the reduction position of the roll. For this reason, the roll eccentricity becomes a disturbance of the plate thickness control.
Note that the roll eccentricity has the same amount (eccentricity amount) at the same rotation angle for the upper and lower rolls in the short term. However, the rotation angle at which roll eccentricity occurs and the amount of eccentricity may change as rolling progresses.
 このような問題に対し、ロール偏芯に起因する板厚変動を抑制するための方法として、従来から、種々のロール偏芯制御が提案及び実用化されている。このロール偏芯制御は、主に次の3つの方法が知られている。
(A)ロール偏芯制御1
 圧延前にキスロール(上下ワークロールを接触させて荷重を発生させた状態)でロールを回転させ、その時の荷重を検出する。また、その検出荷重を高速フーリエ変換或いはそれに準ずる手段で解析し、ロール偏芯の位相や振幅を同定する。そして、圧延中は、圧延荷重を利用したフィードバック制御を実施せず、上記ロール偏芯のパラメータを用いてロール偏芯に起因するロールギャップ変動を補償するように、ロールギャップ操作量を出力する(例えば、特許文献1及び2参照)。
(B)ロール偏芯制御2
 圧延機出側に設置されている板厚計によって板厚変動を測定する。そして、測定した板厚変動の中から、ロールの回転と同期した変動成分を抽出し、その変動成分が、ロールのどの回転位置で発生したのかを特定する。そして、得られた情報に基づき、ロールの回転に応じたロールギャップの操作を行う。
(C)ロール偏芯制御3
 圧延中に圧延荷重変動を測定する。そして、測定した圧延荷重変動の中から、ロールの回転と同期した変動成分を抽出し、ロールの回転位置と関連付ける。そして、得られた情報に基づき、圧延荷重変動をロールギャップに変換し、ロールの回転に応じたロールギャップの操作を行う。
For such problems, various roll eccentricity controls have been proposed and put to practical use as methods for suppressing fluctuations in plate thickness caused by roll eccentricity. For the roll eccentricity control, the following three methods are mainly known.
(A) Roll eccentricity control 1
Before rolling, the roll is rotated by a kiss roll (a state in which a load is generated by contacting the upper and lower work rolls), and the load at that time is detected. Further, the detected load is analyzed by a fast Fourier transform or a means equivalent thereto, and the phase and amplitude of the roll eccentricity are identified. During rolling, feedback control using the rolling load is not performed, and the roll gap operation amount is output so as to compensate for roll gap fluctuation caused by roll eccentricity using the roll eccentricity parameter ( For example, see Patent Documents 1 and 2).
(B) Roll eccentricity control 2
The plate thickness variation is measured with a plate thickness meter installed on the exit side of the rolling mill. Then, a fluctuation component synchronized with the rotation of the roll is extracted from the measured thickness fluctuation, and the rotation position of the roll at which the fluctuation component is generated is specified. Based on the obtained information, the roll gap is operated according to the rotation of the roll.
(C) Roll eccentricity control 3
Measure rolling load fluctuations during rolling. Then, a fluctuation component synchronized with the rotation of the roll is extracted from the measured rolling load fluctuation and associated with the rotation position of the roll. And based on the obtained information, a rolling load fluctuation | variation is converted into a roll gap and operation of the roll gap according to rotation of a roll is performed.
日本特開昭60-141321号公報Japanese Unexamined Patent Publication No. 60-141321 日本特開昭62-254915号公報Japanese Unexamined Patent Publication No. Sho 62-254915 日本特開平11-77128号公報Japanese Unexamined Patent Publication No. 11-77128 日本特開2002-282917号公報Japanese Unexamined Patent Application Publication No. 2002-282919
 特許文献1及び2に記載の上記ロール偏芯制御1に示す方法では、ロール偏芯のパラメータ(即ち、ロール偏芯の位相(位置)、振幅)が、長期間一定であることを前提としている。しかし、上述したように、ロール偏芯のパラメータは経時変化する場合がある。したがって、かかる場合は、上記パラメータを同定するために再度キスロールを行わなければならず、操業停止時間が多くなるといった問題があった。なお、操業中は、一般に、圧延を止めてキスロールを頻繁に行うこと自体が不可能であり、上記パラメータが経時変化する場合、ロール偏芯制御1に示す方法では十分な制御性能を保つことができなかった。 In the method shown in the roll eccentricity control 1 described in Patent Documents 1 and 2, it is assumed that the roll eccentricity parameters (that is, the phase (position) and amplitude of the roll eccentricity) are constant for a long time. . However, as described above, the roll eccentricity parameter may change over time. Therefore, in such a case, there has been a problem that the kiss roll must be performed again in order to identify the parameters, and the operation stop time increases. In addition, during operation, it is generally impossible to frequently stop and kiss roll frequently, and when the above parameters change with time, the method shown in the roll eccentricity control 1 can maintain sufficient control performance. could not.
 特許文献3に記載の上記ロール偏芯制御2に示す方法では、圧延材の先端部において、板厚を計測し始めてからバックアップロールが1回転する間は、ロール偏芯による影響を除去できないといった問題があった。なお、厚板圧延では、圧延材の圧延長さが短いため、制御が行えない上記区間(先端部)を無視することができない。
 また、ロール偏芯の位相と振幅とを、上下バックアップロールのそれぞれに対して同定している訳ではないため、ロール径が大きく異なる場合には、十分な制御性能を保つことができないといった問題もあった。
In the method shown in the roll eccentricity control 2 described in Patent Document 3, the problem that the influence of the roll eccentricity cannot be removed during the rotation of the backup roll once after starting the plate thickness measurement at the tip of the rolled material. was there. In the thick plate rolling, since the rolling length of the rolled material is short, the section (tip portion) where control cannot be performed cannot be ignored.
In addition, since the phase and amplitude of roll eccentricity are not identified for each of the upper and lower backup rolls, there is a problem that sufficient control performance cannot be maintained when the roll diameters are greatly different. there were.
 特許文献4に記載の上記ロール偏芯制御3に示す方法では、ロール偏芯に起因して発生する圧延荷重の変動成分を抽出するために、バックアップロールの回転角度に対応させて、圧延荷重変動を記憶している。このため、他の要因(例えば、スキッドマーク)によって生じる圧延荷重の変動成分の周期が、バックアップロールの回転周期に近い場合は、この変動成分とロール偏芯による変動成分とを分離することが困難になってしまう。厚板圧延では、このような条件に当てはまる変動成分が多く、十分な制御性能を保つことができないといった問題があった。
 また、ロール偏芯制御3では、バックアップロールの回転角度に対応させて記憶した圧延荷重変動を直接読み出し、ロールギャップの制御量に換算している。このため、圧延荷重のデータは回転角度毎に十分に蓄積されている必要があり、圧延実績データの分布が偏っている場合には、十分な制御性能を保つことができなかった。
In the method shown in the roll eccentricity control 3 described in Patent Document 4, in order to extract the fluctuation component of the rolling load generated due to the roll eccentricity, the rolling load fluctuation is made corresponding to the rotation angle of the backup roll. Is remembered. For this reason, when the period of the fluctuation component of the rolling load caused by other factors (for example, skid marks) is close to the rotation period of the backup roll, it is difficult to separate the fluctuation component and the fluctuation component due to roll eccentricity. Become. Thick plate rolling has a problem that there are many fluctuation components that meet such conditions, and sufficient control performance cannot be maintained.
In roll eccentricity control 3, the rolling load fluctuation stored in correspondence with the rotation angle of the backup roll is directly read out and converted into a control amount of the roll gap. For this reason, the rolling load data needs to be sufficiently accumulated for each rotation angle, and when the distribution of the rolling record data is biased, sufficient control performance cannot be maintained.
 この発明は、上述のような課題を解決するためになされたもので、その目的は、ロール偏芯パラメータが経時変化する場合や、上下のロール径が異なる場合であっても、ロール偏芯に起因する板厚変動を十分に抑制することができる圧延機の板厚制御装置を提供することである。
 また、ロール偏芯の周期と近い周期を有する圧延荷重の変動成分が存在する場合や、圧延実績データの分布が偏っている場合であっても、同様に、上記効果を奏することができる圧延機の板厚制御装置を提供することである。
The present invention has been made to solve the above-described problems, and its purpose is to achieve roll eccentricity even when roll eccentric parameters change over time or when the upper and lower roll diameters are different. The present invention is to provide a plate thickness control apparatus for a rolling mill that can sufficiently suppress the resulting plate thickness variation.
Further, even when there is a rolling load fluctuation component having a period close to the roll eccentricity period, or even when the distribution of the rolling record data is biased, the rolling mill capable of exhibiting the above effect similarly. It is providing the plate | board thickness control apparatus.
 この発明に係る圧延機の板厚制御装置は、上下に配置されたワークロールと、ワークロールを上下から支持するバックアップロールと、を備え、ワークロールによって圧延材を圧延する圧延機の板厚制御装置であって、圧延荷重を検出する荷重検出器と、ロールギャップを計測する圧下位置計測器と、圧延材の圧延後の板厚を検出する板厚計と、バックアップロールの回転角度を、上下のそれぞれについて演算する回転角度演算手段と、荷重検出器によって検出された圧延荷重、及び、圧下位置計測器によって計測されたロールギャップに基づいて、圧延材のゲージメータ板厚を演算するゲージメータ板厚演算手段と、ワークロールによって圧延された圧延材の任意点が板厚計の板厚検出位置に到着するまで、ゲージメータ板厚演算手段によって演算された上記任意点のゲージメータ板厚を記憶しておくゲージメータ板厚遅延手段と、ゲージメータ板厚遅延手段に記憶されている上記任意点のゲージメータ板厚、及び、板厚計によって検出された任意点の板厚に基づいて、任意点がワークロールによって圧延されていた時のロール偏芯量を演算するロール偏芯量演算手段と、回転角度演算手段によって演算された各回転角度に基づいて、ロール偏芯量演算手段によって演算されたロール偏芯量を、上記任意点がワークロールによって圧延されていた時の上下バックアップロールの各回転角度に関連付けて記憶するロール偏芯量記憶手段と、ロール偏芯量記憶手段に記憶されたロール偏芯量に基づいて、上下バックアップロールのそれぞれについて、ロール偏芯の位相及び振幅を演算するロール偏芯パラメータ演算手段と、ロール偏芯パラメータ演算手段の演算結果に基づいて、ロール偏芯に起因する圧延材の板厚変動成分を抑制させるように、上下バックアップロールの各回転角度に応じた制御操作量を演算する制御操作量演算手段と、を備えたものである。 A sheet thickness control device for a rolling mill according to the present invention includes a work roll arranged vertically and a backup roll that supports the work roll from above and below, and controls the thickness of the rolling mill that rolls a rolled material by the work roll. A device that detects the rolling load, a roll position measuring device that measures the roll gap, a plate thickness meter that detects the thickness of the rolled material after rolling, and the rotation angle of the backup roll. Rotation angle calculating means for calculating each of the above, a rolling gauge detected by a load detector, and a gauge meter plate for calculating a gauge meter plate thickness of the rolled material based on the roll gap measured by the rolling position measuring instrument Thickness calculation means and the gauge meter thickness calculation means until an arbitrary point of the rolled material rolled by the work roll arrives at the thickness detection position of the thickness gauge. The gauge meter plate thickness delay means for storing the gauge meter plate thickness at the arbitrary point calculated in the above, the gauge meter plate thickness at the arbitrary point stored in the gauge meter plate thickness delay means, and the plate thickness Based on the thickness of the arbitrary point detected by the meter, the roll eccentric amount calculating means for calculating the roll eccentric amount when the arbitrary point is rolled by the work roll, and each calculated by the rotation angle calculating means Roll eccentricity that stores the roll eccentricity calculated by the roll eccentricity calculating means on the basis of the rotation angle in association with each rotation angle of the upper and lower backup rolls when the arbitrary point is rolled by the work roll Based on the roll eccentricity stored in the amount storage means and the roll eccentricity storage means, the phase and amplitude of the roll eccentricity are calculated for each of the upper and lower backup rolls. Based on the calculation results of the roll eccentricity parameter calculation means and the roll eccentricity parameter calculation means, depending on each rotation angle of the upper and lower backup rolls so as to suppress the thickness variation component of the rolled material due to roll eccentricity And a control operation amount calculation means for calculating the control operation amount.
 また、この発明に係る圧延機の板厚制御装置は、ロール偏芯量記憶手段が、上バックアップロールの回転角度を所定数に分割した時の分割番号と、下バックアップロールの回転角度を上記所定数に分割した時の分割番号とを縦横に配したテーブルを備えるとともに、ロール偏芯量演算手段によって演算されたロール偏芯量を上記テーブルの対応セルに記憶することにより、ロール偏芯量の分布曲面を得るように構成したものである。 Further, in the sheet thickness control device for a rolling mill according to the present invention, the roll eccentricity storage means sets the division number when the rotation angle of the upper backup roll is divided into a predetermined number and the rotation angle of the lower backup roll as the predetermined A table in which the division number when dividing into numbers is arranged vertically and horizontally, and by storing the roll eccentricity calculated by the roll eccentricity calculating means in the corresponding cell of the table, A distribution curved surface is obtained.
 また、この発明に係る圧延機の板厚制御装置は、ロール偏芯パラメータ演算手段が、ロール偏芯量記憶手段によって得られたロール偏芯量の分布曲面に対して、フーリエ解析によって曲面を近似することにより、上下バックアップロールのそれぞれについて、ロール偏芯の位相と振幅とを得るように構成したものである。 Further, in the sheet thickness control apparatus for a rolling mill according to the present invention, the roll eccentricity parameter calculation means approximates the curved surface by Fourier analysis to the roll eccentricity distribution curved surface obtained by the roll eccentricity storage means. By doing so, the phase and amplitude of roll eccentricity are obtained for each of the upper and lower backup rolls.
 この発明によれば、ロール偏芯パラメータが経時変化する場合や、上下のロール径が異なる場合であっても、ロール偏芯に起因する板厚変動を十分に抑制することができる。
 また、ロール偏芯の周期と近い周期を有する圧延荷重の変動成分が存在する場合や、
圧延実績データの分布が偏っている場合であっても、同様に、ロール偏芯に起因する板厚変動を十分に抑制することができる。
According to this invention, even when the roll eccentricity parameter changes with time or when the upper and lower roll diameters are different, it is possible to sufficiently suppress the plate thickness fluctuation caused by the roll eccentricity.
In addition, when there is a fluctuation component of the rolling load having a period close to the period of roll eccentricity,
Even if the distribution of the rolling record data is uneven, the thickness variation due to roll eccentricity can be sufficiently suppressed.
この発明の実施の形態1における圧延機の板厚制御装置を示す構成図である。It is a block diagram which shows the plate | board thickness control apparatus of the rolling mill in Embodiment 1 of this invention. 図1に示す圧延機の板厚制御装置の具体的機能を説明するための図である。It is a figure for demonstrating the specific function of the plate | board thickness control apparatus of the rolling mill shown in FIG. ロール偏芯量記憶手段に記憶されたロール偏芯量の分布曲面を示す図である。It is a figure which shows the distribution curved surface of the roll eccentric amount memorize | stored in the roll eccentric amount memory | storage means. 図1に示す圧延機の板厚制御装置によって同定されたロール偏芯量の分布曲面を示す図である。It is a figure which shows the distribution curved surface of the roll eccentric amount identified by the plate | board thickness control apparatus of the rolling mill shown in FIG.
符号の説明Explanation of symbols
 1 圧延材、 2 ワークロール、 3 ワークロール、 4 バックアップロール、
 5 バックアップロール、 6 荷重検出器、 7 圧下位置制御装置、
 8 圧下位置計測器、 9 板厚計、 10 回転角度検出器、
 11 回転角度検出器、 12 回転角度演算手段、
 13 ゲージメータ板厚演算手段、 14 ゲージメータ板厚遅延手段、
 15 ロール偏芯量演算手段、 16 ロール偏芯量記憶手段、
 17 ロール偏芯パラメータ演算手段、 18 制御操作量演算手段
1 rolled material, 2 work rolls, 3 work rolls, 4 backup rolls,
5 Backup roll, 6 Load detector, 7 Rolling position control device,
8 Rolling position measuring device, 9 Thickness gauge, 10 Rotation angle detector,
11 rotation angle detector, 12 rotation angle calculation means,
13 gauge meter plate thickness calculation means, 14 gauge meter plate thickness delay means,
15 roll eccentricity calculation means, 16 roll eccentricity storage means,
17 roll eccentricity parameter calculation means, 18 control manipulated variable calculation means
 この発明をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。 In order to explain the present invention in more detail, this will be described with reference to the attached drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.
実施の形態1.
 図1はこの発明の実施の形態1における圧延機の板厚制御装置を示す構成図、図2は図1に示す圧延機の板厚制御装置の具体的機能を説明するための図である。図1において、1は圧延機によって圧延される鋼板等の圧延材であり、上下に配置されたワークロール2及び3によって圧延される。4及び5は上記ワークロール2及び3を上下から支持するバックアップロールである。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a sheet thickness control apparatus for a rolling mill according to Embodiment 1 of the present invention, and FIG. 2 is a diagram for explaining specific functions of the sheet thickness control apparatus for a rolling mill shown in FIG. In FIG. 1, reference numeral 1 denotes a rolled material such as a steel plate rolled by a rolling mill, and is rolled by work rolls 2 and 3 arranged above and below. 4 and 5 are backup rolls that support the work rolls 2 and 3 from above and below.
 6は圧延中の圧延荷重を検出する荷重検出器、7は圧下位置を制御するための圧下位置制御装置である。圧下位置制御装置7は、圧延材1の板厚が所望の値となるように、ロールギャップ(上下ワークロール2及び3の間隙)を制御する。なお、圧下位置制御装置7には、圧下位置を計測する圧下位置計測器8が備えられている。即ち、圧下位置制御装置7は、この圧下位置計測器8の機能により、ロールギャップを計測することが可能である。但し、ロール偏芯に起因するロールギャップの変化(変動成分)を上記圧下位置計測器8によって計測することはできない。 6 is a load detector for detecting the rolling load during rolling, and 7 is a rolling position control device for controlling the rolling position. The reduction position control device 7 controls the roll gap (the gap between the upper and lower work rolls 2 and 3) so that the thickness of the rolled material 1 becomes a desired value. The reduction position control device 7 is provided with a reduction position measuring device 8 that measures the reduction position. That is, the reduction position control device 7 can measure the roll gap by the function of the reduction position measuring device 8. However, a change (fluctuation component) in the roll gap caused by roll eccentricity cannot be measured by the above-described reduction position measuring instrument 8.
 9は圧延機の出側に設けられた板厚計である。この板厚計9は、ワークロール2及び3によって圧延された後の圧延材1の板厚を検出する。10及び11はバックアップロール4及び5の回転角度を検出するための回転角度検出器である。バックアップロール4及び5は、ワークロール2及び3が駆動(回転)されることにより、ワークロール2及び3に連動して回転する。この時、上バックアップロール4の回転角度が回転角度検出器10により、また、下バックアップロール5の回転角度が回転角度検出器11によってそれぞれ独立に検出される。 9 is a thickness gauge provided on the exit side of the rolling mill. The thickness gauge 9 detects the thickness of the rolled material 1 after being rolled by the work rolls 2 and 3. Reference numerals 10 and 11 denote rotation angle detectors for detecting the rotation angles of the backup rolls 4 and 5. The backup rolls 4 and 5 rotate in conjunction with the work rolls 2 and 3 when the work rolls 2 and 3 are driven (rotated). At this time, the rotation angle of the upper backup roll 4 is independently detected by the rotation angle detector 10, and the rotation angle of the lower backup roll 5 is independently detected by the rotation angle detector 11.
 なお、図1は、回転角度検出器10及び11として、バックアップロール4及び5に取り付けられたパルスジェネレータ等を用いた場合の構成を示している。即ち、図1に示す方式においては、回転角度検出器10及び11は、バックアップロール4及び5の回転角度を直接検出する。しかし、回転角度検出器10及び11はこのような方式に限られる訳ではなく、上記と同様の機能を有する他の方式を採用したものであっても構わない。例えば、バックアップロール4及び5に近接フォトセンサ等を取り付け、バックアップロール4及び5の1回転毎の基準パルスを発生させる。そして、その基準パルスを検出し、ワークロール2及び3の回転角度又は回転速度を用いてバックアップロール4及び5の回転角度を算出する。このような方式によっても、上記回転角度検出器10及び11を構成することは可能である。 Note that FIG. 1 shows a configuration in which pulse generators attached to the backup rolls 4 and 5 are used as the rotation angle detectors 10 and 11. That is, in the method shown in FIG. 1, the rotation angle detectors 10 and 11 directly detect the rotation angles of the backup rolls 4 and 5. However, the rotation angle detectors 10 and 11 are not limited to such a method, and may employ another method having the same function as described above. For example, a proximity photo sensor or the like is attached to the backup rolls 4 and 5, and a reference pulse for each rotation of the backup rolls 4 and 5 is generated. Then, the reference pulse is detected, and the rotation angles of the backup rolls 4 and 5 are calculated using the rotation angles or rotation speeds of the work rolls 2 and 3. The rotation angle detectors 10 and 11 can also be configured by such a method.
 また、本発明に係る板厚制御装置には、回転角度演算手段12、ゲージメータ板厚演算手段13、ゲージメータ板厚遅延手段14、ロール偏芯量演算手段15、ロール偏芯量記憶手段16、ロール偏芯パラメータ演算手段17、制御操作量演算手段18といった各種手段が備えられている。 Further, the plate thickness control apparatus according to the present invention includes a rotation angle calculation unit 12, a gauge meter plate thickness calculation unit 13, a gauge meter plate thickness delay unit 14, a roll eccentric amount calculation unit 15, and a roll eccentric amount storage unit 16. Various means such as a roll eccentricity parameter calculation means 17 and a control operation amount calculation means 18 are provided.
 回転角度演算手段12は、バックアップロール4及び5の回転角度を、上下のそれぞれについて演算する機能を有する。即ち、回転角度演算手段12は、回転角度検出器10からの検出信号に基づいて上バックアップロール4の回転角度を、また、回転角度検出器11からの検出信号に基づいて下バックアップロール5の回転角度を、それぞれ0乃至360度の範囲で算出する。 The rotation angle calculation means 12 has a function of calculating the rotation angles of the backup rolls 4 and 5 for each of the upper and lower sides. That is, the rotation angle calculation means 12 determines the rotation angle of the upper backup roll 4 based on the detection signal from the rotation angle detector 10 and the rotation of the lower backup roll 5 based on the detection signal from the rotation angle detector 11. The angles are calculated in the range of 0 to 360 degrees, respectively.
 ゲージメータ板厚演算手段13は、圧延材1のゲージメータ板厚を演算する機能を有する。なお、ゲージメータ板厚とは、ワークロール2及び3によって圧延されている時の圧延材1の板厚のことであり、圧延機直下における圧延材1の板厚を意味する。具体的に、ゲージメータ板厚演算手段13は、荷重検出器6によって検出された圧延荷重と、圧下位置計測器8(圧下位置制御装置7)で計測されたロールギャップとに基づいて、例えば、次式(ゲージメータ板厚計算の原理式)を使用して、ゲージメータ板厚を算出する。 The gauge meter plate thickness calculating means 13 has a function of calculating the gauge meter plate thickness of the rolled material 1. The gauge meter plate thickness is the plate thickness of the rolled material 1 when being rolled by the work rolls 2 and 3, and means the thickness of the rolled material 1 directly under the rolling mill. Specifically, the gauge meter thickness calculation means 13 is based on the rolling load detected by the load detector 6 and the roll gap measured by the reduction position measuring device 8 (the reduction position control device 7), for example, The gauge meter plate thickness is calculated using the following formula (principle formula for gauge meter plate thickness calculation).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ゲージメータ板厚遅延手段14は、ワークロール2及び3によって圧延された圧延材1の任意の点(例えば、A点)が板厚計9の板厚検出位置に到達するまで、ゲージメータ板厚演算手段13によって演算された上記A点のゲージメータ板厚を記憶しておく機能を有する。また、ゲージメータ板厚遅延手段14は、上記A点が圧延機直下で圧延されている時のロール偏芯制御(制御操作量演算手段18)の出力値を、このA点のゲージメータ板厚とともに記憶しておく。
 かかる機能により、板厚計9で上記A点の実績板厚が測定された際に、実績板厚と、A点のゲージメータ板厚及びロール偏芯制御の出力値とを比較することができるようになる。なお、ゲージメータ板厚遅延手段14による上記動作も、圧延材1の先端から尾端に渡って行われる。
The gauge meter plate thickness delay means 14 is used until the arbitrary point (for example, point A) of the rolled material 1 rolled by the work rolls 2 and 3 reaches the plate thickness detection position of the plate thickness meter 9. It has a function of storing the gauge meter plate thickness at the point A calculated by the calculation means 13. Further, the gauge meter plate thickness delay means 14 uses the output value of the roll eccentricity control (control operation amount calculation means 18) when the point A is rolled directly under the rolling mill as the gauge meter plate thickness at the point A. Remember with it.
With this function, when the actual plate thickness at point A is measured by the plate thickness meter 9, the actual plate thickness can be compared with the gauge meter plate thickness at point A and the output value of roll eccentricity control. It becomes like this. The above operation by the gauge meter plate thickness delay means 14 is also performed from the leading end of the rolled material 1 to the tail end.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように、ロール偏芯量演算手段15は、ゲージメータ板厚及び実績板厚の各偏差からロール偏芯量を推定するため、例えば、スキッドマークによって生じる圧延荷重の変動成分がバックアップロール4及び5の回転周期に近い場合であっても、このスキッドマークによる圧延荷重の変動成分に影響を受けず、ロール偏芯量を適切に求めることができるようになる。
 また、ロール偏芯量演算手段15による上記演算は、圧延材1の先端から尾端に渡って行われ、圧延材1が圧延機で圧延されている間、及び板厚計9で板厚の計測が行われている間に実施される。
In this way, the roll eccentricity calculating means 15 estimates the roll eccentricity from the deviations of the gauge meter plate thickness and the actual plate thickness, so that, for example, the fluctuation component of the rolling load caused by the skid mark is the backup roll 4 and Even when the rotation period is close to 5, the roll eccentricity can be appropriately determined without being affected by the rolling load fluctuation component due to the skid mark.
Further, the above calculation by the roll eccentricity calculating means 15 is performed from the leading end to the tail end of the rolled material 1, and while the rolled material 1 is being rolled by a rolling mill, Performed while measurements are being taken.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 次に、上記ゲージメータ板厚遅延手段14、ロール偏芯量演算手段15、ロール偏芯量記憶手段16の各機能について、図2に基づき具体的に説明する。
 実際の制御において、データの記憶及び読み出しは、バックアップロール4及び5の1回転をそれぞれ均等にn等分することにより、その分割番号で管理される。図2は、1回転を36分割(n=36)した例を示している。
Next, each function of the gauge meter plate thickness delay means 14, the roll eccentric amount calculation means 15, and the roll eccentric amount storage means 16 will be specifically described with reference to FIG.
In actual control, data storage and reading are managed by the division number by equally dividing each rotation of the backup rolls 4 and 5 into n equal parts. FIG. 2 shows an example in which one rotation is divided into 36 (n = 36).
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 一方、ロール偏芯量演算手段15は、ロール偏芯量を演算する際に、板厚計9によって実績板厚が検出された点のゲージメータ板厚とロール偏芯量(使用値)とを、ゲージメータ板厚遅延手段14から読み出す。図2は、圧延材1のA2点が板厚計9の板厚検出位置に配置されている状態を示し、更に、このA2点が圧延機直下で圧延されていた時、上バックアップロール4の分割Noが10、下バックアップロール5の分割Noが4であったことを示している。かかる場合、ロール偏芯量演算手段15は、板厚計9によって検出されたA2点の実績板厚と、ゲージメータ板厚遅延手段14の下バックアップロール5の分割No4の欄に記憶されているゲージメータ板厚及びロール偏芯量(使用値)とに基づいて、ロール偏芯量を演算する。 On the other hand, when calculating the roll eccentric amount, the roll eccentric amount calculating means 15 calculates the gauge meter plate thickness and the roll eccentric amount (use value) at the point where the actual plate thickness is detected by the plate thickness meter 9. Read out from the gauge meter thickness delay means 14. FIG. 2 shows a state in which the A2 point of the rolled material 1 is arranged at the plate thickness detection position of the plate thickness gauge 9, and when the A2 point is rolled directly under the rolling mill, It shows that the division number is 10 and the division number of the lower backup roll 5 is 4. In such a case, the roll eccentricity calculation means 15 is stored in the column of the actual plate thickness A2 detected by the plate thickness meter 9 and the division No 4 of the backup roll 5 below the gauge meter plate thickness delay means 14. Based on the gauge meter plate thickness and the roll eccentricity (use value), the roll eccentricity is calculated.
 ロール偏芯量記憶手段16は、上記ロール偏芯量演算手段15の演算結果を、バックアップロール4及び5の各分割Noに関連付けて記憶するためのテーブルを備えている。即ち、このテーブルは、図2に示すように、上下バックアップロール4及び5の各回転角度をn分割した時の分割番号が縦横に配されている。そして、ロール偏芯量記憶手段16は、ロール偏芯量演算手段15によって演算されたロール偏芯量を、このテーブルの対応セルに記憶させ、ロール偏芯量の分布曲面を得る。
 例えば、ロール偏芯量演算手段15によって上記A2点に関する演算結果が得られた場合は、その結果を、上バックアップロール4の分割No10と下バックアップロール5の分割No4とが交わるセルに、ロール偏芯量(次回値)として記憶しておく。図3はロール偏芯量記憶手段に記憶されたロール偏芯量の分布曲面を示す図であり、得られた分布曲面の一例を示したものである。
The roll eccentricity storage unit 16 includes a table for storing the calculation result of the roll eccentricity calculation unit 15 in association with the division numbers of the backup rolls 4 and 5. That is, in this table, as shown in FIG. 2, the division numbers when the rotation angles of the upper and lower backup rolls 4 and 5 are divided into n are arranged vertically and horizontally. Then, the roll eccentricity storage means 16 stores the roll eccentricity calculated by the roll eccentricity calculation means 15 in the corresponding cell of this table, and obtains a roll eccentricity distribution curved surface.
For example, if the roll eccentricity calculation means 15 obtains a calculation result related to the A2 point, the result is transferred to the cell where the division number 10 of the upper backup roll 4 and the division number 4 of the lower backup roll 5 intersect. It is stored as the core amount (next value). FIG. 3 is a view showing a distribution curved surface of the roll eccentricity stored in the roll eccentricity storage means, and shows an example of the obtained distribution curved surface.
 そして、ロール偏芯パラメータ演算手段17は、ロール偏芯量記憶手段16に記憶されたロール偏芯量に基づいて、上下バックアップロール4及び5のそれぞれについて、ロール偏芯パラメータ、即ちロール偏芯の位相(位置)と振幅とを演算する。具体的に、ロール偏芯パラメータ演算手段17は、図3に示すロール偏芯量の分布曲面に対して、フーリエ解析によって曲面を近似することにより、上下バックアップロール4及び5のそれぞれについて、ロール偏芯の位相と振幅とを算出する。
 ここで、ロール偏芯の波形が1次成分及び2次成分を有するものとすると、その波形は、次式によって表される。
Then, the roll eccentricity parameter calculating means 17 is based on the roll eccentricity amount stored in the roll eccentricity amount storage means 16 for each of the upper and lower backup rolls 4 and 5, ie, the roll eccentricity parameter, that is, the roll eccentricity. The phase (position) and amplitude are calculated. Specifically, the roll eccentricity parameter calculating means 17 approximates the roll eccentricity distribution curved surface shown in FIG. 3 with a curved surface by Fourier analysis, so that the roll eccentricity is calculated for each of the upper and lower backup rolls 4 and 5. Calculate the phase and amplitude of the wick.
Here, if the roll eccentric waveform has a primary component and a secondary component, the waveform is represented by the following equation.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、ロール偏芯パラメータを算出する方法を次式に示す。ここでは、図2に示す例のように、バックアップロール4及び5の各1回転を36分割(n=36)した場合を示している。 Also, the following formula shows how to calculate the roll eccentricity parameter. Here, as in the example shown in FIG. 2, a case where each rotation of the backup rolls 4 and 5 is divided into 36 parts (n = 36) is shown.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ロール偏芯パラメータ演算手段17の演算によって得られる上記ロール偏芯パラメータは、厚板圧延のように圧延材1の長さが短い場合は、圧延1本毎に更新する。また、薄板圧延のように圧延材1の長さが長い場合は、圧延中に、何回か更新を繰り返す。このように構成すれば、ロール偏芯パラメータが経時変化する場合であっても、その変化に追従することができ、最新の状態を常に保持しておくことが可能となる。
 また、上述のように、フーリエ変換によって、ロール偏芯量記憶手段16に記憶されているロール偏芯量の分布曲面を同定しているため、バックアップロール4及び5の回転角度に対する圧延実績データの分布が偏っていても、全ての回転角度に対して適切な制御量を得ることができるようになる。
The roll eccentricity parameter obtained by the calculation of the roll eccentricity parameter calculating means 17 is updated for each rolling when the length of the rolled material 1 is short as in the case of thick plate rolling. Moreover, when the length of the rolling material 1 is long like thin plate rolling, renewal is repeated several times during rolling. With this configuration, even when the roll eccentricity parameter changes with time, the change can be followed and the latest state can always be maintained.
Moreover, since the distribution curved surface of the roll eccentric amount stored in the roll eccentric amount storage means 16 is identified by Fourier transform as described above, the rolling record data for the rotation angles of the backup rolls 4 and 5 is identified. Even if the distribution is biased, an appropriate control amount can be obtained for all rotation angles.
 図4は図1に示す圧延機の板厚制御装置によって同定されたロール偏芯量の分布曲面を示す図である。即ち、図4はロール偏芯パラメータを同定してロール偏芯量の分布曲面を再現した例であり、図3で示した実績の分布曲面に対応するものである。図4から分かるように、ロール偏芯の1次波形及び2次波形が精度良く再現されている。 FIG. 4 is a diagram showing a distribution curved surface of the roll eccentricity identified by the sheet thickness control device of the rolling mill shown in FIG. That is, FIG. 4 is an example in which the roll eccentricity parameter is identified and the distribution curved surface of the roll eccentricity is reproduced, and corresponds to the actual distribution curved surface shown in FIG. As can be seen from FIG. 4, the primary waveform and secondary waveform of roll eccentricity are accurately reproduced.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 この発明の実施の形態1によれば、上述のように、ロール偏芯パラメータが経時変化する場合や、上下バックアップロール4及び5の径が異なる場合であっても、ロール偏芯に起因して発生する板厚変動を十分に抑制することができる。また、ロール偏芯の周期と近い周期を有する圧延荷重の変動成分が存在する場合や、圧延実績データの分布が偏っている場合であっても、同様に、ロール偏芯に起因して発生する板厚変動を十分に抑制することができる。
 このため、高品質な製品を製造することが可能となる。
According to Embodiment 1 of the present invention, as described above, even when the roll eccentricity parameter changes with time or when the diameters of the upper and lower backup rolls 4 and 5 are different, due to roll eccentricity. The thickness variation which generate | occur | produces can fully be suppressed. Further, even when there is a fluctuation component of the rolling load having a period close to the period of roll eccentricity, or even when the distribution of the rolling record data is biased, it similarly occurs due to roll eccentricity. Variations in plate thickness can be sufficiently suppressed.
For this reason, it becomes possible to manufacture a high-quality product.
 この発明にかかる圧延機の板厚制御装置は、上下に配置されたロールによって圧延材を圧延する圧延機に対し、適用が可能である。 The sheet thickness control device for a rolling mill according to the present invention can be applied to a rolling mill that rolls a rolled material with rolls arranged vertically.

Claims (3)

  1.  上下に配置されたワークロールと、
     前記ワークロールを上下から支持するバックアップロールと、
    を備え、前記ワークロールによって圧延材を圧延する圧延機の板厚制御装置であって、
     圧延荷重を検出する荷重検出器と、
     ロールギャップを計測する圧下位置計測器と、
     前記圧延材の圧延後の板厚を検出する板厚計と、
     前記バックアップロールの回転角度を、上下のそれぞれについて演算する回転角度演算手段と、
     前記荷重検出器によって検出された圧延荷重、及び、前記圧下位置計測器によって計測されたロールギャップに基づいて、前記圧延材のゲージメータ板厚を演算するゲージメータ板厚演算手段と、
     前記ワークロールによって圧延された前記圧延材の任意点が前記板厚計の板厚検出位置に到着するまで、前記ゲージメータ板厚演算手段によって演算された前記任意点のゲージメータ板厚を記憶しておくゲージメータ板厚遅延手段と、
     前記ゲージメータ板厚遅延手段に記憶されている前記任意点のゲージメータ板厚、及び、前記板厚計によって検出された前記任意点の板厚に基づいて、前記任意点が前記ワークロールによって圧延されていた時のロール偏芯量を演算するロール偏芯量演算手段と、
     前記回転角度演算手段によって演算された各回転角度に基づいて、前記ロール偏芯量演算手段によって演算されたロール偏芯量を、前記任意点が前記ワークロールによって圧延されていた時の前記上下バックアップロールの各回転角度に関連付けて記憶するロール偏芯量記憶手段と、
     ロール偏芯量記憶手段に記憶されたロール偏芯量に基づいて、前記上下バックアップロールのそれぞれについて、ロール偏芯の位相及び振幅を演算するロール偏芯パラメータ演算手段と、
     前記ロール偏芯パラメータ演算手段の演算結果に基づいて、ロール偏芯に起因する前記圧延材の板厚変動成分を抑制させるように、前記上下バックアップロールの各回転角度に応じた制御操作量を演算する制御操作量演算手段と、
    を備えたことを特徴とする圧延機の板厚制御装置。
    Work rolls placed one above the other,
    A backup roll that supports the work roll from above and below;
    A thickness control device of a rolling mill that rolls a rolled material by the work roll,
    A load detector for detecting the rolling load;
    A rolling position measuring instrument for measuring the roll gap;
    A thickness gauge for detecting the thickness of the rolled material after rolling,
    Rotation angle calculation means for calculating the rotation angle of the backup roll for each of the upper and lower sides;
    Based on the rolling load detected by the load detector and the roll gap measured by the rolling position measuring instrument, a gauge meter plate thickness calculating means for calculating the gauge meter plate thickness of the rolled material,
    The gauge meter plate thickness at the arbitrary point calculated by the gauge meter plate thickness calculating means is stored until an arbitrary point of the rolled material rolled by the work roll arrives at a plate thickness detection position of the plate thickness meter. Gauge meter thickness delay means to be kept,
    Based on the gauge meter plate thickness at the arbitrary point stored in the gauge meter plate thickness delay means and the plate thickness at the arbitrary point detected by the plate thickness meter, the arbitrary point is rolled by the work roll. Roll eccentricity calculating means for calculating the roll eccentricity when it has been,
    Based on each rotation angle calculated by the rotation angle calculation means, the roll eccentricity calculated by the roll eccentricity calculation means is used as the upper and lower backup when the arbitrary point is rolled by the work roll. Roll eccentricity storage means for storing in association with each rotation angle of the roll;
    Roll eccentricity parameter calculation means for calculating the phase and amplitude of roll eccentricity for each of the upper and lower backup rolls based on the roll eccentricity amount stored in the roll eccentricity storage means,
    Based on the calculation result of the roll eccentricity parameter calculating means, the control operation amount corresponding to each rotation angle of the upper and lower backup rolls is calculated so as to suppress the thickness variation component of the rolled material due to the roll eccentricity. Control operation amount calculation means for
    A sheet thickness control device for a rolling mill.
  2.  ロール偏芯量記憶手段は、上バックアップロールの回転角度を所定数に分割した時の分割番号と、下バックアップロールの回転角度を前記所定数に分割した時の分割番号とを縦横に配したテーブルを備えるとともに、ロール偏芯量演算手段によって演算されたロール偏芯量を前記テーブルの対応セルに記憶することにより、ロール偏芯量の分布曲面を得ることを特徴とする請求項1に記載の圧延機の板厚制御装置。 The roll eccentricity storage means is a table in which a division number when the rotation angle of the upper backup roll is divided into a predetermined number and a division number when the rotation angle of the lower backup roll is divided into the predetermined number are arranged vertically and horizontally. The roll eccentricity distribution curved surface is obtained by storing the roll eccentricity calculated by the roll eccentricity calculating means in the corresponding cell of the table. Thickness control device for rolling mills.
  3.  ロール偏芯パラメータ演算手段は、ロール偏芯量記憶手段によって得られたロール偏芯量の分布曲面に対して、フーリエ解析によって曲面を近似することにより、上下バックアップロールのそれぞれについて、ロール偏芯の位相と振幅とを得ることを特徴とする請求項2に記載の圧延機の板厚制御装置。 The roll eccentricity parameter calculating means approximates the curved surface by Fourier analysis to the distribution surface of the roll eccentricity obtained by the roll eccentricity storage means, so that the roll eccentricity is calculated for each of the upper and lower backup rolls. The thickness control device for a rolling mill according to claim 2, wherein the phase and the amplitude are obtained.
PCT/JP2008/058497 2008-05-07 2008-05-07 Board thickness controller for rolling machine WO2009136435A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/058497 WO2009136435A1 (en) 2008-05-07 2008-05-07 Board thickness controller for rolling machine
CN200880129128.0A CN102015136B (en) 2008-05-07 2008-05-07 Board thickness controller for rolling machine
KR1020107022667A KR101208811B1 (en) 2008-05-07 2008-05-07 Board thickness controller for rolling machine
JP2010510976A JP5170240B2 (en) 2008-05-07 2008-05-07 Thickness control device for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058497 WO2009136435A1 (en) 2008-05-07 2008-05-07 Board thickness controller for rolling machine

Publications (1)

Publication Number Publication Date
WO2009136435A1 true WO2009136435A1 (en) 2009-11-12

Family

ID=41264497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058497 WO2009136435A1 (en) 2008-05-07 2008-05-07 Board thickness controller for rolling machine

Country Status (4)

Country Link
JP (1) JP5170240B2 (en)
KR (1) KR101208811B1 (en)
CN (1) CN102015136B (en)
WO (1) WO2009136435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101368267B1 (en) * 2011-09-29 2014-02-28 현대제철 주식회사 Apparatus for measuring shape of slab
JP2020037124A (en) * 2018-09-05 2020-03-12 株式会社Uacj Control device and control method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513376B (en) * 2011-12-31 2014-10-22 燕山大学 Method for identifying and detecting eccentric phase of roller system of four/six-roller strip rolling mill
JP5907264B2 (en) * 2012-07-04 2016-04-26 東芝三菱電機産業システム株式会社 Thick plate multi-rolling control device and control method
KR101458121B1 (en) 2013-12-26 2014-11-04 주식회사 포스코 Rolling module and control method thereof
CN105618480B (en) * 2014-10-29 2019-01-01 镇江龙源铝业有限公司 Roll the control system of aluminium foil thickness difference precision
JP6438753B2 (en) * 2014-12-05 2018-12-19 株式会社日立製作所 Tandem rolling mill control device and tandem rolling mill control method
JP6404195B2 (en) * 2015-09-16 2018-10-10 株式会社日立製作所 PLANT CONTROL DEVICE, ROLLING CONTROL DEVICE, PLANT CONTROL METHOD, AND PLANT CONTROL PROGRAM
JP6597877B2 (en) * 2016-02-22 2019-10-30 東芝三菱電機産業システム株式会社 Plant control equipment
JP6672094B2 (en) * 2016-07-01 2020-03-25 株式会社日立製作所 Plant control device, rolling control device, plant control method, and plant control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317942A (en) * 1992-05-14 1993-12-03 Kawasaki Steel Corp Method and device for controlling plate thickness in rolling mill
JP2000140919A (en) * 1998-11-05 2000-05-23 Furukawa Electric Co Ltd:The Device for analyzing variation in thickness, device for controlling thickness and method thereof and rolling mill provided with thickness controller
JP2001150010A (en) * 1999-11-26 2001-06-05 Kawasaki Steel Corp Detection method for displacement of roll center and method of gauge control
JP2004209498A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Plate thickness control device of rolling mill

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933926B (en) * 2005-05-16 2011-08-17 东芝三菱电机产业系统株式会社 Plate thickness controlling device
JP4609197B2 (en) * 2005-06-23 2011-01-12 株式会社日立製作所 Plate thickness controller
JP5317942B2 (en) * 2009-12-07 2013-10-16 横浜製機株式会社 External combustion type closed cycle heat engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317942A (en) * 1992-05-14 1993-12-03 Kawasaki Steel Corp Method and device for controlling plate thickness in rolling mill
JP2000140919A (en) * 1998-11-05 2000-05-23 Furukawa Electric Co Ltd:The Device for analyzing variation in thickness, device for controlling thickness and method thereof and rolling mill provided with thickness controller
JP2001150010A (en) * 1999-11-26 2001-06-05 Kawasaki Steel Corp Detection method for displacement of roll center and method of gauge control
JP2004209498A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Plate thickness control device of rolling mill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101368267B1 (en) * 2011-09-29 2014-02-28 현대제철 주식회사 Apparatus for measuring shape of slab
JP2020037124A (en) * 2018-09-05 2020-03-12 株式会社Uacj Control device and control method
JP7103896B2 (en) 2018-09-05 2022-07-20 株式会社Uacj Control device and control method

Also Published As

Publication number Publication date
CN102015136B (en) 2015-04-08
JPWO2009136435A1 (en) 2011-09-01
JP5170240B2 (en) 2013-03-27
CN102015136A (en) 2011-04-13
KR20100116714A (en) 2010-11-01
KR101208811B1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5170240B2 (en) Thickness control device for rolling mill
JP5637637B2 (en) Plate thickness control device, plate thickness control method, plate thickness control program
JP2018005544A (en) Plant controller, rolling controller, plant control method, and plant control program
JPWO2006123394A1 (en) Plate thickness controller
JP5598549B2 (en) Rolling mill control device
JP2009178754A (en) Control method of rolling mill
JP6028871B2 (en) Thickness control device for rolling mill
JPS6227884B2 (en)
KR100387016B1 (en) Strip thickness control apparatus for rolling mill
KR102297062B1 (en) Plate thickness control device and plate thickness control method
JP6324259B2 (en) Rolling control device, rolling control method, and rolling control program
JP7411518B2 (en) Plant control device, rolling control device, plant control method, and plant control program
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP2009113100A (en) Plate thickness controller of rolling mill, and plate thickness control method of rolling mill
JP6696527B2 (en) Steel plate thickness control method, plate thickness control device, and manufacturing method
JPS587365B2 (en) Rolled plate thickness control method
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP2826792B2 (en) Rolling method for steel plate with protrusions with excellent protrusion height accuracy
JP4670432B2 (en) Upper / lower backup roll eccentricity detection method and plate thickness control method
JPS631124B2 (en)
KR20030028903A (en) Operation control system of impact drop compensation volume and its control method
JPH05317944A (en) Method and device for controlling plate thickness in rolling mill
KR20040056929A (en) Apparatus for on-line measuring mill modulus of rolling mill and method thereof
JPH1137705A (en) Method for measuring roll profile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129128.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510976

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022667

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08752389

Country of ref document: EP

Kind code of ref document: A1