WO2009133954A1 - 無線基地局及び通信制御方法 - Google Patents

無線基地局及び通信制御方法 Download PDF

Info

Publication number
WO2009133954A1
WO2009133954A1 PCT/JP2009/058588 JP2009058588W WO2009133954A1 WO 2009133954 A1 WO2009133954 A1 WO 2009133954A1 JP 2009058588 W JP2009058588 W JP 2009058588W WO 2009133954 A1 WO2009133954 A1 WO 2009133954A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
radio resource
base station
mobile station
start time
Prior art date
Application number
PCT/JP2009/058588
Other languages
English (en)
French (fr)
Inventor
石井 啓之
アニール ウメシュ
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN2009801158861A priority Critical patent/CN102017756A/zh
Priority to JP2010510178A priority patent/JP5342551B2/ja
Priority to US12/990,757 priority patent/US20110117948A1/en
Priority to BRPI0912187A priority patent/BRPI0912187A2/pt
Priority to MX2010012020A priority patent/MX2010012020A/es
Priority to EP09738891A priority patent/EP2276304A1/en
Publication of WO2009133954A1 publication Critical patent/WO2009133954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present invention relates to a radio base station configured to receive uplink data using an uplink radio resource that is fixedly assigned to a mobile station at a predetermined cycle starting from an uplink radio resource allocation start point.
  • the present invention relates to a station and a communication control method.
  • the communication system that succeeds the W-CDMA system and the HSDPA system, that is, the LTE (Long Term Evolution) system has been studied by 3GPP, which is a W-CDMA standardization organization, and its specification is being worked on.
  • OFDMA Orthogonal Frequency Multiple Access
  • SC-FDMA Single-Carrier Frequency Multiple Access
  • OFDMA is a system in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is transmitted on each frequency band, and the subcarriers interfere with each other even though they partially overlap on the frequency. By arranging them closely, it is possible to achieve high-speed transmission and increase frequency utilization efficiency.
  • SC-FDMA is a transmission method that can reduce interference between terminals by dividing a frequency band and performing transmission using different frequency bands among a plurality of terminals. Since SC-FDMA has a feature that variation in transmission power becomes small, it is possible to realize low power consumption and wide coverage of a terminal.
  • the LTE system is a system that performs communication by sharing one or more physical channels between a plurality of mobile stations in both uplink and downlink.
  • a channel shared by a plurality of mobile stations is generally referred to as a shared channel.
  • a physical uplink shared channel Physical Uplink Shared Channel: PUSCH
  • Physical downlink shared channel Physical Downlink Shared Channel: PDSCH
  • the shared channel is a “uplink shared channel (UL-SCH)” in the uplink as a transport channel, and a “downlink shared channel (DL-SCH: Downlink) in the downlink. Shared Channel) ”.
  • UL-SCH uplink shared channel
  • DL-SCH Downlink shared channel
  • the mobile station UE to which the shared channel is allocated is selected and selected for each subframe (sub-frame) (1 ms in the LTE scheme). It is necessary to signal the allocated mobile station UE to allocate a shared channel.
  • the control channel used for this signaling is “physical downlink control channel (PDCCH: Physical Downlink Control Channel)” or “downlink L1 / L2 control channel (DL L1 / L2 Control Channel: Downlink L1 / L2 Control Channel) ”.
  • PDCCH Physical Downlink Control Channel
  • DL L1 / L2 Control Channel Downlink L1 / L2 Control Channel
  • the above-described process of selecting which mobile station UE is assigned a shared channel for each subframe is generally called “scheduling”.
  • the mobile station UE to which a shared channel is dynamically allocated is selected for each subframe, it may be referred to as “Dynamic scheduling”.
  • the above-mentioned “allocating a shared channel” may be expressed as “allocating radio resources for the shared channel”.
  • the physical downlink control channel information includes, for example, “downlink scheduling information”, “uplink scheduling grant”, and the like.
  • Downlink Scheduling Information includes, for example, downlink resource block (Resource Block) allocation information, UE ID, number of streams, information on precoding vector (Precoding Vector), data size regarding downlink shared channels. , Modulation scheme, HARQ (hybrid automatic repeat request) information, and the like.
  • Uplink Scheduling Grant includes, for example, uplink resource block (Resource Block) allocation information, UE ID, data size, modulation scheme, uplink transmission power information, Uplink regarding the uplink shared channel.
  • Information on demodulation reference signal (demodulation reference signal) in MIMO is included.
  • Downlink Scheduling Information and “Uplink Scheduling Grant” may be collectively referred to as “Downlink Control Information (DCI)”.
  • DCI Downlink Control Information
  • the radio base station eNB transmits a subframe (downlink radio resource allocation start time point) in which downlink scheduling information is transmitted to the mobile station UE via the PDCCH.
  • a subframe downlink radio resource allocation start time point
  • the downlink radio resource (PDSCH) or the uplink radio resource (PUSCH) is fixedly allocated to the mobile station at a predetermined period.
  • Persistent scheduling may be referred to as “Semi-Persistent scheduling (SPS)”.
  • SPS Semi-Persistent scheduling
  • the radio capacity is increased by an effect called “statistical multiplexing effect”.
  • an uplink radio resource (PUSCH) is transmitted at a predetermined cycle starting from a subframe (uplink radio resource allocation start time) transmitted from the uplink scheduling grant to the mobile station UE via the PDCCH. And fixedly assigned to the mobile station UE. In such a case, it is desirable that the number of mobile stations UE multiplexed at each uplink radio resource allocation start time is equal.
  • the predetermined period is 20 ms
  • 10 mobile stations UE are multiplexed in one ms
  • only two mobile stations UE are multiplexed in another 1 ms.
  • the above-described statistical multiplexing effect is more easily obtained. This is because, in the example described above, the statistical multiplexing effect is extremely small in 1 ms where only two mobile stations UE are multiplexed.
  • radio resources are arranged in an orderly manner in FIG. 10B, and the remaining radio resources (white portions) are efficiently allocated. Since it can be used, more efficient communication can be realized.
  • the uplink radio resource allocation start point is specified by the uplink scheduling grant and the downlink scheduling information, and the start point of the uplink radio resource allocation start point is periodically and The radio resource is fixedly allocated.
  • radio resources in the frequency direction cannot be flexibly allocated for each subframe (every 1 ms), so inefficient radio resource allocation as shown in FIG. Is likely to occur.
  • a common channel such as a broadcast channel or a paging channel is transmitted in the downlink, and a common channel such as a random access channel is periodically transmitted in the uplink.
  • the radio resource is preferentially allocated to the common channel. “Persistent scheduling” must be applied.
  • the present invention has been made in view of the above-described problems, and by setting an uplink radio resource allocated by “Persistent scheduling” so as to maximize the statistical multiplexing effect, a highly efficient mobile communication system is provided. It is an object of the present invention to provide a radio base station and a communication control method that can realize the above.
  • the present invention has been made in view of the above-described problems, and a radio base capable of realizing a high-efficiency mobile communication system by appropriately setting an uplink radio resource assigned by “Persistent scheduling”.
  • An object is to provide a station and a communication control method.
  • a first feature of the present invention is configured to receive uplink data using an uplink radio resource that is fixedly assigned to a mobile station at a predetermined period starting from an uplink radio resource allocation start point.
  • a measurement unit configured to measure the resource usage of each time frame within the predetermined period; and the mobile station to determine the start point of uplink radio resource allocation.
  • An uplink fixed allocation signal transmitter configured to transmit a fixed allocation signal to be received, and receive the uplink data using the uplink radio resource starting from the uplink radio resource allocation start time
  • An uplink communication unit configured to transmit the uplink fixed allocation signal transmission unit based on the resource usage of each time frame. And summarized in that it is configured to determine a radio resource allocation start moment.
  • the apparatus further comprises a setting unit configured to set a reception period in intermittent reception related to the mobile station based on a resource usage amount of each time frame within the predetermined period.
  • the fixed allocation signal transmission unit may be configured to determine the uplink radio resource allocation start time so that the uplink radio resource allocation start time is included in a reception period in the intermittent reception.
  • the uplink fixed allocation signal transmission unit sets the uplink radio resource allocation start point so that a time frame with the smallest resource usage is the uplink radio resource allocation start point. It may be configured to determine.
  • the setting unit may be configured to set the reception period in the intermittent reception so that the resource usage of each time frame becomes equal.
  • the setting unit is configured to set a reception interval in the intermittent reception so that a total value of resource usage of time frames in the reception interval in the intermittent reception is minimized. May be.
  • the uplink fixed assignment signal transmission unit is configured so that a timing at which the uplink data is received does not coincide with a timing at which an uplink control signal or an uplink sounding reference signal is received.
  • the uplink radio resource allocation start point may be determined.
  • a downlink fixed assignment signal transmitter configured to transmit a fixed assignment signal indicating a start time of downlink radio resource assignment to the mobile station, and the downlink radio
  • a downlink communication unit configured to transmit downlink data using downlink radio resources starting from a resource allocation start time
  • the uplink fixed allocation signal transmission unit includes the uplink data May be configured to determine the uplink radio resource allocation start time so that the timing of receiving the packet does not coincide with the timing of receiving the acknowledgment information for the downlink data.
  • the measurement unit includes a resource allocated to a random access channel, a resource for protection, a resource allocated to the random access channel message 3, and the uplink radio resource allocated to all mobile stations in the cell.
  • the resource usage may be measured based on at least one.
  • a second feature of the present invention is that a radio base station receives uplink data from a mobile station using uplink radio resources that are fixedly assigned at a predetermined period starting from the uplink radio resource allocation start time.
  • the radio base station measures the resource usage of each time frame within the predetermined period, and the radio base station allocates the uplink radio resource to the mobile station.
  • the radio base station determines the uplink radio resource allocation start time based on the resource usage of each time frame. .
  • a third feature of the present invention is configured to receive uplink data using an uplink radio resource that is fixedly assigned to a mobile station at a predetermined cycle starting from an uplink radio resource allocation start time.
  • An uplink fixed allocation signal transmission unit configured to transmit a fixed allocation signal indicating the uplink radio resource allocation start time to the mobile station, and
  • a communication unit configured to receive the uplink data using the uplink radio resource starting from an uplink radio resource allocation start time, and the uplink fixed allocation signal transmission unit
  • the uplink radio resource allocation is performed so that the timing of receiving data does not coincide with the timing of receiving an uplink control signal or an uplink reference signal. It is summarized as that is configured to determine a starting point.
  • the uplink control signal may be downlink radio quality information or a scheduling request.
  • downlink data is transmitted to a mobile station using downlink radio resources that are fixedly allocated at a predetermined period starting from a downlink radio resource allocation start point
  • a radio base station configured to receive uplink data using an uplink radio resource that is fixedly assigned with a predetermined period starting from an uplink radio resource allocation start time
  • the mobile station A downlink fixed allocation signal transmission unit configured to transmit a fixed allocation signal indicating the downlink radio resource allocation start time, and the downlink radio resource starting from the downlink radio resource allocation start time
  • a downlink communication unit configured to transmit the used downlink data, and the mobile station, the start time of uplink radio resource allocation is indicated.
  • An uplink fixed allocation signal transmission unit configured to transmit a fixed allocation signal, and reception of the uplink data using the uplink radio resource starting from the uplink radio resource allocation start time
  • An uplink communication unit configured, the uplink fixed assignment signal transmission unit, so that the timing of receiving the uplink data does not coincide with the timing of receiving acknowledgment information for the downlink data,
  • the gist is that the uplink radio resource allocation start time is determined.
  • a fifth feature of the present invention is configured to receive uplink data from a mobile station using uplink radio resources that are fixedly assigned at a predetermined period starting from the uplink radio resource allocation start time.
  • An uplink fixed allocation signal transmitter configured to transmit a fixed allocation signal indicating the uplink radio resource allocation start time and the uplink radio resource to the mobile station
  • an uplink communication unit configured to receive the uplink data using the uplink radio resource starting from the uplink radio resource allocation start time, and transmitting the uplink fixed allocation signal Are allocated to the random access channel, protection resource, and resource allocated to the random access channel message 3. Scan, so as not to overlap with the uplink radio resources allocated to all the mobile stations in the cell, and summarized in that the is configured to determine the uplink radio resource.
  • the uplink fixed assignment signal transmission unit assigns the uplink radio resource from one end of all radio resource spaces in the system, and assigns a resource assigned to a random access channel for protection.
  • the resource, the resource allocated to the random access channel message 3, and the uplink radio resource allocated to all mobile stations in the cell may be configured to be allocated from the other end of the total radio resource space.
  • the uplink fixed allocation signal transmission unit is configured to perform the fixed allocation when an uplink radio resource determined based on a propagation loss in a radio transmission path is different from the uplink radio resource. It may be configured to transmit a signal.
  • the uplink fixed allocation signal transmission unit is configured to transmit the fixed allocation signal when a predetermined time or more elapses after transmitting the fixed allocation signal. It may be.
  • a sixth feature of the present invention is configured to receive uplink data from a mobile station using uplink radio resources that are fixedly allocated with a predetermined period starting from the uplink radio resource allocation start time.
  • a transmission state management unit configured to manage a transmission state of the mobile station, and indicates the uplink radio resource allocation start time and the uplink radio resource to the mobile station
  • An uplink fixed allocation signal transmission unit configured to transmit a fixed allocation signal, and reception of the uplink data using the uplink radio resource starting from the uplink radio resource allocation start time
  • An uplink communication unit configured, and the uplink fixed assignment signal transmission unit is in a state in which the transmission state of the mobile station is off and the mobile station When the uplink buffer retention amount or the data size transmitted from the mobile station is smaller than the first threshold, and the uplink buffer retention amount or the data size transmitted from the mobile station is larger than the second threshold. Further, the gist of the present invention is configured to transmit the fixed assignment signal.
  • uplink data is received from a mobile station using uplink radio resources that are fixedly assigned at a predetermined cycle starting from an uplink radio resource allocation start point.
  • An uplink fixed allocation signal transmitter configured to transmit a fixed allocation signal indicating the uplink radio resource allocation start time and the uplink radio resource to the mobile station
  • an uplink communication unit configured to receive the uplink data using the uplink radio resource starting from the uplink radio resource allocation start time and transmit acknowledgment information for the uplink data.
  • the uplink fixed assignment signal transmission unit when discarding due to the expiration of the maximum number of retransmissions of the uplink data has continuously occurred a predetermined number of times, And summarized in that it is configured to transmit a Joteki assignment signal.
  • An eighth feature of the present invention is that a radio base station receives uplink data from a mobile station using uplink radio resources that are fixedly assigned at a predetermined cycle starting from the uplink radio resource assignment start time.
  • the radio base station transmits a fixed allocation signal indicating the uplink radio resource allocation start time and the uplink radio resource to the mobile station, and the radio base station Receiving the uplink data using the uplink radio resource starting from the uplink radio resource allocation start point, and in step A, the radio base station is allocated to a random access channel Resources, resources for protection, resources allocated to the random access channel message 3, and the above allocated to all mobile stations in the cell So as not to overlap with the radio resource, and summarized in that allocating the uplink radio resource.
  • a ninth feature of the present invention is that a radio base station receives uplink data from a mobile station using uplink radio resources that are fixedly assigned at a predetermined cycle starting from the uplink radio resource assignment start time.
  • the radio base station manages the transmission state of the mobile station A, and the radio base station performs the uplink radio resource allocation start time and the uplink radio to the mobile station.
  • the radio base station determines that the transmission state of the mobile station is off, and the uplink buffer retention amount in the mobile station or the data base transmitted from the mobile station.
  • the fixed allocation signal is transmitted when the amount of data stored in the mobile station is smaller than the first threshold and the amount of buffer stay in the mobile station or the data size transmitted from the mobile station is larger than the second threshold.
  • a tenth feature of the present invention is that a radio base station transmits uplink data from a mobile station using uplink radio resources that are fixedly allocated at a predetermined period starting from the uplink radio resource allocation start time.
  • a high-efficiency mobile communication system can be realized by setting the uplink radio resource allocated by “Persistent scheduling” so as to maximize the statistical multiplexing effect.
  • a radio base station and a communication control method can be provided.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the operation of the RB usage calculation unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining the operation of the RB usage calculation unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the DRX ON section setting processing unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining the operation of the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a “Persistent UL TFR table” used in the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of a transmission format selected by the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of a “Persistent UL TFR table” used in the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a “Persistent UL TFR table (Initial)” used in the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a radio resource allocation method in the mobile communication system.
  • FIG. 11 is a diagram for explaining the operation of the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining the operation of the Talk Spurt state management unit of the radio base station according to the first embodiment of the present invention.
  • Mobile communication system according to the first embodiment of the present invention A mobile communication system according to a first embodiment of the present invention will be described with reference to FIG. 1 to FIG.
  • an LTE mobile communication system is described as an example, but the present invention is also applicable to other mobile communication systems.
  • FIG. 1 shows a mobile communication system 1000 that uses a radio base station (eNB: eNode B) 200 according to an embodiment of the present invention.
  • eNB radio base station
  • the mobile communication system 1000 is a system to which, for example, the “Evolved UTRA and UTRAN (also known as LTE or Super 3G) system” is applied.
  • Evolved UTRA and UTRAN also known as LTE or Super 3G system
  • the mobile communication system 1000 includes a radio base station 200 and a plurality of mobile stations (UE: User Equipment) 100 1 to 100 n (n is an integer where n> 0).
  • UE User Equipment
  • the radio base station 200 is connected to an upper station, for example, the access gateway device 300, and the access gateway device 300 is connected to the core network 400.
  • the access gateway device may be referred to as MME / SGW (Mobility Management Entity / Serving Gateway).
  • the mobile station 100 n is configured to communicate with the radio base station 200 in the cell 50 by the “Evolved UTRA and UTRAN” method.
  • each of the mobile stations 100 1 to 100 n has the same configuration, function, and state, the description will be given below as the mobile station 100 n unless otherwise specified.
  • the mobile station 100 n communicates with the radio base station 200, but more generally, the mobile station 100 n includes both mobile terminals and fixed terminals. Or the mobile station UE may be called a user apparatus.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier for communication
  • SC-FDMA is a frequency band. Is a single carrier transmission scheme in which interference between terminals is reduced by dividing each terminal into a plurality of terminals, and a plurality of terminals using different frequency bands.
  • a “physical downlink shared channel (PDSCH)” and a “physical downlink control channel (PDCCH)” shared by each mobile station 100 n are used.
  • the “physical downlink control channel (PDCCH)” is also referred to as “downlink L1 / L2 control channel”.
  • information mapped to “physical downlink control channel (PDCCH)” may be referred to as “downlink control information (DCI)”.
  • PDSCH physical downlink shared channel
  • DL-SCH Downlink Shared Channel
  • downlink / uplink scheduling grants, transmission power control command bits, and the like are transmitted by the “physical downlink control channel (PDCCH)”.
  • PDCCH physical downlink control channel
  • the “downlink scheduling grant (DL Scheduling Grant)” includes, for example, the ID of the user who performs communication using the “physical downlink shared channel (PDSCH)”, and information on the transport format of the user data (that is, data Size, modulation scheme, HARQ information), downlink resource block allocation information, and the like.
  • downlink scheduling grant may be referred to as downlink scheduling information (Downlink Scheduling Information).
  • Downlink Scheduling Information Downlink Scheduling Information
  • the “uplink scheduling grant” also includes, for example, the ID of the user who performs communication using the “physical uplink shared channel (PUSCH)” and the transport format information of the user data (ie, data Information on the size and modulation method, allocation information of uplink resource blocks, information on transmission power of uplink shared channels, and the like).
  • PUSCH physical uplink shared channel
  • transport format information of the user data ie, data Information on the size and modulation method, allocation information of uplink resource blocks, information on transmission power of uplink shared channels, and the like.
  • an “uplink resource block” corresponds to a frequency resource and is also called a “resource unit”.
  • the OFDM symbol to which “physical downlink control channel (PDCCH)” is mapped includes “physical control channel format indicator channel (PCFICH)” and “physical HARQ indicator channel (PHICH)”.
  • PCFICH physical control channel format indicator channel
  • PHICH physical HARQ indicator channel
  • the “physical downlink control channel (PDCCH)”, “physical control channel format indicator channel (PCFICH)” and “physical HARQ indicator channel (PHICH)” are multiplexed and transmitted on a predetermined number or less of OFDM symbols. .
  • PCFICH Physical control channel format indicator channel
  • Physical HARQ indicator channel is a channel for transmitting acknowledgment information for “physical uplink shared channel (PUSCH)”.
  • the delivery confirmation information is expressed by “ACK” as an affirmative response or “NACK” as a negative response.
  • PCFICH physical control channel format indicator channel
  • PHICH physical HARQ indicator channel
  • PCFICH physical control channel format indicator channel
  • PHICH physical HARQ indicator channel
  • a “downlink reference signal (DL RS)” is transmitted as a pilot signal commonly used between the mobile stations UE.
  • the “downlink reference signal” includes the “physical downlink shared channel (PDSC)”, “physical downlink control channel (PDCCH)”, “physical control channel format indicator channel (PCFICH)”, and “physical HARQ indicator channel ( PHICH) ”is used for channel estimation and calculation of CQI which is downlink radio quality information.
  • PDSC physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control channel format indicator channel
  • PHICH physical HARQ indicator channel
  • PUSCH physical uplink shared channel
  • uplink control channels There are two types of uplink control channels for the LTE scheme: a channel transmitted as a part of a “physical uplink shared channel (PUSCH)” and a frequency multiplexed channel.
  • PUSCH physical uplink shared channel
  • the frequency-multiplexed channel is referred to as a “physical uplink control channel (PUCCH: Physical Uplink Control Channel)”.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical uplink shared channel
  • the transport channel mapped to the “physical uplink shared channel (PUSCH)” is “UL-SCH (Uplink Shared Channel)”.
  • the quality information of the downlink for use in scheduling processing, adaptive modulation and coding processing (AMCS: Adaptive Modulation and Coding Scheme) of the "physical downlink shared channel (PDSCH)" by the uplink control channel for LTE scheme (CQI: Channel Quality Indicator) and “physical downlink shared channel (PDSCH)” acknowledgment information are transmitted.
  • AMCS Adaptive Modulation and Coding Scheme
  • Such downlink quality information may be called “CSI (Channel State Indicator)”, which is an indicator that summarizes “CQI”, “PMI (Pre-coding Matrix Indicator)”, and “RI (Rank Indicator)”. .
  • CSI Channel State Indicator
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • the content of the delivery confirmation information is expressed by either an acknowledgment (ACK) or a negative response (NACK).
  • ACK acknowledgment
  • NACK negative response
  • Radio base station 200 transmits uplink data from the mobile station 100 using uplink radio resources (PUSCH) that are fixedly allocated at a predetermined period starting from the uplink radio resource allocation start time. It is configured to receive.
  • PUSCH uplink radio resources
  • the radio base station 200 includes an RB usage calculation processing unit 11, a DRX ON section setting processing unit 12, a Talk Spurt state management unit 13, and a PUSCH reception processing unit 14. , A delivery confirmation information transmission processing unit 15, a state mismatch detection processing unit 16, and a PDCCH transmission processing unit 17.
  • the RB usage amount calculation processing unit 11 is configured to calculate a resource usage amount for each subframe (time frame) within the persistent scheduling transmission period (predetermined period), as will be described later.
  • resource is a frequency resource
  • resource usage is more specifically the amount or number of resource blocks.
  • one resource block is “180 kHz” and one subframe is “1 ms”.
  • the RB usage amount calculation processing unit 11 calculates the resource usage amount for each subframe in the 20 subframes.
  • the DRX ON section setting processing unit 12 is configured to set a reception section (ON section in the DRX state) in the intermittent reception of each mobile station 100 n in the cell 50.
  • the DRX ON section setting processing unit 12 is configured to set the DRX ON section based on the resource usage calculated by the RB usage calculation processing unit 11.
  • the Talk Spurt state management unit 13 is configured to manage the Talk Spurt state of each mobile station in the cell, that is, whether or not to perform resource allocation by persistent scheduling.
  • resource allocation by persistent scheduling means “physical uplink shared channel (PUSCH)” that is fixedly allocated at a predetermined cycle starting from the uplink radio resource allocation start point, that is, using uplink radio resources, This corresponds to receiving uplink data.
  • PUSCH physical uplink shared channel
  • Talk Spurt state management unit 13 may perform downlink “resource allocation by persistent scheduling” in addition to the above-described uplink “resource allocation by persistent scheduling”.
  • the downlink radio resource allocation start time is determined as in the uplink, and the downlink radio resource allocation start time and the downlink radio resource allocation start time are the starting points.
  • the downlink radio resource is notified to the mobile station UE by a fixed allocation signal.
  • the radio base station is configured to transmit a downlink data signal (DL-SCH) to the mobile station UE via the downlink radio resource.
  • DL-SCH downlink data signal
  • the PUSCH reception processing unit 14 to be described later may be configured to perform the transmission processing related to the downlink described above.
  • the PUSCH reception processing unit 14 assigns a “physical uplink sharing” that is fixedly allocated at a predetermined cycle from the mobile station 100 n whose Talk Spurt state is “ON”, starting from the uplink radio resource allocation start point.
  • the channel (PUSCH) " that is, the uplink radio resource is used to receive the uplink data.
  • the delivery confirmation information transmission processing unit 15 is configured to transmit delivery confirmation information for “physical uplink shared channel (PUSCH)”, that is, uplink radio resources, as will be described later.
  • PUSCH physical uplink shared channel
  • the state mismatch detection processing unit 16 detects a state mismatch between the radio base station eNB and the mobile station UE, as will be described later.
  • state mismatch means that, for example, the radio base station eNB assigns uplink radio resources to the mobile station UE by persistent scheduling, but the mobile station UE A state in which resources are not recognized as being allocated.
  • the PDCCH transmission processing unit 17 when it is determined to notify the mobile station UE of initial transmission resources for “Persistent scheduling” by “Uplink Scheduling Grant”, the mobile station UE The PDCCH to which the Uplink Scheduling Grant is mapped, that is, a fixed allocation signal is transmitted.
  • such a fixed allocation signal that is, the PDCCH that notifies the initial transmission resource for persistent scheduling may be referred to as a PDCCH in which the CRC is masked by the SPS-RNTI.
  • SPS is an abbreviation for Semi-Persistent Scheduling.
  • a subframe within a predetermined period is defined as “Persistent Sub-frame”, and the RB usage calculation processing unit 11 relates to each “Persistent Sub-frame” with a resource usage (hereinafter referred to as UL_Resource ( m) and description) are configured.
  • m indicates the index of “Persistent Sub-frame”
  • M indicates the total number (predetermined cycle) of “Persistent Sub-frame”.
  • the resource usage UL_Resource (m) for each “Persistent Sub-frame” is “PRACH (Random Access Channel)”, “RACH Message 3 (Random Access Channel Message)” in “Persistent Sub-frame #m” This corresponds to the number of resource blocks (Resource Block (RB)) allocated to “UL-SCH” to which persistent scheduling is applied, and the number of Guard RBs (protection resource blocks).
  • PRACH Random Access Channel
  • RACH Message 3 Random Access Channel Message
  • the resource usage is measured for each “Persistent Sub-frame” by the loop constituted by Steps S401, S409, and S410.
  • step S402 the value of “UL_Resource (m)” in “Persistent Sub-frame #m” is initialized by the following expression.
  • step S ⁇ b> 403
  • twice the value of “RB PRACH ” is added to the value of “UL_Resource (m)” by the following equation.
  • UL_Resource (m) + 2 ⁇ RB PRACH
  • RB PRACH is calculated as follows based on whether “PRACH (Physical Random Access Channel)” is transmitted in “Persistent Sub-frame #m”.
  • the calculation UL_Resource (m) + 2 ⁇ RB PRACH is performed.
  • the calculation UL_Resource (m) + RB PRACH may be performed.
  • step S403 when “PRACH” is transmitted in “Persistent Sub-frame #m”, the number of resource blocks allocated to “PRACH” is counted as resource usage amount UL_Resource (m). .
  • step S404 the value of “RB GuardRB ” is added to the value of “UL_Resource (m)” by the following equation.
  • RB GuardRB is the number of “Guard RBs (protection resource blocks)” assigned in “Persistent Sub-frame #m”.
  • step S404 the number of “Guard RB” allocated in “Persistent Sub-frame #m” is counted as the resource usage amount UL_Resource (m).
  • the number of Guard RBs is counted as the resource usage amount UL_Resource (m), but instead, the number of resource blocks allocated to the PUCCH may be counted as the resource usage amount UL_Resource (m).
  • step S405 “RB RACHM3 ” is added to the value of “UL_Resource (m)” by the following equation.
  • UL_Resource (m) + RB RACHM3
  • RB RACHM3 is the time average value (RB RACHM3, average ) of the number of resource blocks (number of RBs) of “RACH Message 3 (random access channel message)” transmitted in “Persistent Sub-frame #m” in the past. Is calculated as follows.
  • step S405 the average number of resource blocks allocated to “RACH Message 3” in “Persistent Sub-frame #m” is counted as the resource usage amount UL_Resource (m).
  • step S406 “RB PersistentUL ” is added to the value of “UL_Resource (m)” by the following equation.
  • RB PersistentUL is the number of resource blocks (number of RBs) of uplink data (including both new transmission and retransmission) to which resources are allocated by persistent scheduling, which was transmitted in “Persistent Sub-frame #m” in the past. ) Based on a time average value (RB Persistent, average, UL ).
  • RB Persistent, UL RB Persistent, average, UL ⁇ weight Persistent, UL
  • the number of resource blocks is set as follows. The calculation may be performed as “number of resource blocks (number of RBs) of uplink data (including both new transmission and retransmission) to which resources are allocated by persistent scheduling”.
  • Persistent Sub-frame #m when uplink data to which resources are allocated by “Persistent scheduling” is transmitted to a plurality of mobile stations UE, “Persistent scheduling” of the plurality of mobile stations.
  • the total value of the number of RBs of uplink data to which resources are allocated is defined as “number of resource blocks (number of RBs) of uplink data (including both new transmission and retransmission) to which resources are allocated by persistent scheduling”.
  • Persistent Sub-frame #m the resource usage, that is, the number of resource blocks, is calculated for all mobile stations UE to which resource allocation is performed by persistent scheduling.
  • weight Persistent, UL is a coefficient for adjusting to what extent the uplink data resources to which resources are allocated by “Persistent scheduling” are reserved.
  • step S406 the number of resource blocks allocated to uplink data to which resources are allocated by “Persistent scheduling” in “Persistent Sub-frame #m” is counted as resource usage UL_Resource (m).
  • the resource usage amount for each subframe within a predetermined period is calculated.
  • the DRX ON section setting process performed by the DRX ON section setting processing unit 12 will be described in detail with reference to FIG.
  • DRX control intermittent reception control
  • the DRX control is a signal from the radio base station eNB when there is no data amount to be communicated or when the data amount to be communicated is a data amount that can be transmitted only by resources allocated by “Persistent scheduling”.
  • the wireless base station eNB and the mobile station are divided into a section (ON section, reception section in intermittent reception) and a section that does not receive a signal from the radio base station eNB (OFF section, non-receiving section in intermittent reception). It is control that communication between UEs is performed.
  • the mobile station UE since the mobile station UE does not need to transmit an uplink signal and receive a downlink signal in the OFF section, as a result, it is possible to reduce power consumption.
  • the DRX ON section setting processing unit 12 may set the DRX ON section of the mobile station UE based on the resource usage (RB usage) calculated by the RB usage calculation processing unit 11.
  • the DRX ON section setting processing unit 12 may set the DRX ON section so that the resource usage of “Persistent Sub-frame” included in the ON section is minimized.
  • the predetermined period is “20 ms”, “Persistent Sub-frame # 0 to # 19” is defined, and the resource usage amount is “2”, respectively. ,..., 2, 5 ”.
  • the DRX ON section setting processing unit 12 sets “Persistent Sub-frame # 0, # 1” as the DRX ON section of the mobile station UE.
  • Persistent Sub-frame set as a DRX ON section for a certain mobile station UE is uplink data based on uplink radio resources allocated by the mobile station UE through “Persent scheduling”, as will be described later. As a result, the resource usage increases.
  • the process of setting the ON section of DRX is sequentially performed on the mobile stations UE in the cell so that the resource usage of “Persistent Sub-frame” included in the ON section described above is minimized.
  • the DRX ON section is set so that the resource usage of each “Persistent Sub-frame” becomes equal.
  • each “persistent sub-frame resource usage is equal” indicates that resources are allocated more orderly, and as a result, resources are allocated efficiently.
  • the DRX ON section setting processing unit 12 sets the DRX ON section so that the resource usage of “Persistent Sub-frame” included in the ON section is minimized.
  • the DRX ON section may be set so that the position of the ON section is random between the mobile stations UE in the cell.
  • the Talk Spurt state management performed by the Talk Spurt state management unit 13 will be described in detail with reference to FIG.
  • the Talk Spurt state management unit 13 manages the Talk Spurt state of the uplink of the mobile station UE to which resources are assigned by “Persistent scheduling”.
  • the following processing is performed for the mobile station UE (including both the mobile station UE in the DRX state and the mobile station UE in the NON-DRX state) whose subframe is the first subframe in the DRX ON section. Applied.
  • N indicates an index of “the mobile station UE whose subframe is the first subframe in the DRX ON section”, and “N” indicates “the first subframe in the DRX ON section. The total number of “mobile stations UE that are subframes”.
  • DRX control is not performed in the cell, the process described later is performed for all mobile stations UE to which resource allocation is performed in the cell at a rate of once per predetermined period. It may be broken.
  • the subframe is a mobile station UE that is the first subframe in the ON section of DRX (mobile stations UE and NON ⁇ in the DRX state). This process is applied to both mobile stations UE in the DRX state).
  • step S602 it is determined whether or not resource allocation is performed for the mobile station UE # n by “Persistent scheduling”.
  • whether or not resource allocation is performed by “Persistent scheduling” may be determined based on whether or not a logical channel defined to perform resource allocation by “Persistent scheduling” is set.
  • step S602 If the result of step S602 is OK, the process proceeds to step S603, and if the result of step S602 is NG, the process proceeds to step S616.
  • step S ⁇ b> 603 “Pathloss” indicating a propagation loss in the radio transmission path is calculated by “UE Power Headroom” reported from the mobile station UE based on the following equation.
  • step S603 the process proceeds to step S603A.
  • it refers to a state in which uplink data is transmitted by the mobile station UE using an uplink radio resource that is fixedly assigned with a predetermined period starting from an uplink radio resource allocation start time.
  • step S604 the radio base station eNB determines the size of the RLC SDU received via the Logical Channel to which the persistent scheduling transmitted from the mobile station UE is applied, or the mobile station UE has “ The uplink buffer retention amount “UL_Buffer n, k ” of the mobile station UE # n to which the logical channel group #k to which “Persistent scheduling” is applied is equal to or greater than “Threshold data_size, SID ” and the threshold value “Threshold”. It is determined whether or not “ data_size_UL ” or less.
  • the above-described determination may be performed based on the sum of the RLC SDU size and the uplink buffer retention amount. That is, when the sum of the RLC SDU size and the uplink buffer retention amount is not less than “Threshold data_size, SID ” and not more than the threshold “Threshold data_size_UL ”, “OK” is returned, and otherwise. “NG” may be returned.
  • the process proceeds to step S608 (1st TX TF NULL Check?).
  • step S604 and S605 are demonstrated below.
  • the uplink radio resources are allocated by “Persistent scheduling” even if there is data to be transmitted in the transmission buffer of the mobile station. Since it should not be determined to be assigned, it is determined as NG in the above-described processing.
  • the upper limit value corresponds to the first threshold value “Threshold data_size_UL ”.
  • SID packet a packet called “SID packet” is transmitted when there is no sound.
  • Such a SID packet is a packet that is transmitted when there is no sound, and is not a packet transmitted at a constant transmission rate such as voice. Therefore, resource allocation based on “Persistent scheduling” should not be performed for such a SID packet. .
  • a lower limit is set, and if the size of data that can be transmitted is smaller than the lower limit, it should be transmitted Even if data exists, it is determined that uplink radio resources are not allocated by “Persistent scheduling”, and “NG” is determined in the above-described processing.
  • this lower limit value corresponds to the second threshold value “Threshold data_size, SID ”.
  • the uplink buffer retention amount reported from the mobile station UE that is, the buffer status report does not include the data size included in the UL-SCH to which the buffer status report is mapped.
  • the size of the RLC SDU received via the Logical Channel to which Persistent Scheduling transmitted from the mobile station UE is applied is also considered. It is necessary to perform the above-described determination.
  • the uplink synchronization state is NG, for example, the UL synchronization state may not be established, or the Time Alignment Timer for maintaining the UL timing synchronization is It may be in the state of Expired or not activated.
  • the radio base station eNB may return “OK” when the “Buffer Status Report” is continuously received a predetermined number of times, and may return “NG” in other cases.
  • this Buffer Status Report is mapped to UL-SCH (uplink radio resource) to which persistent scheduling is applied.
  • the resource for the first transmission of “Persistent scheduling” assigned to the mobile station UE is released.
  • resource for initial transmission of persistent scheduling refers to uplink radio resources allocated by persistent scheduling.
  • Such release of resources for the initial transmission may be performed implicitly or may be performed explicitly by signaling such as an RRC message.
  • step S606 and step S607 are demonstrated below.
  • a packet to which resources are allocated by “Persistent scheduling” is a voice packet, there may be no packet to be transmitted even during a conversation.
  • step S608 (1st TX TF NULL Check), it is determined whether or not “UL_1st_TX_TF” of the mobile station UE is “NULL”.
  • “UL — 1st_TX_TF” of the mobile station UE is a variable indicating the state of uplink radio resources allocated to the mobile station UE by “Persistent scheduling”, and “UL_1st_TX_TF” of the mobile station UE.
  • "Is” NULL “" indicates that there is no uplink radio resource allocated by "Persistent scheduling” for the mobile station UE.
  • Step S608 if there is no uplink radio resource assigned by “Persistent scheduling” for the mobile station UE by the process in Step S608, the process proceeds to Steps S612, S613, and S614, and a new “Persistent scheduling” is performed. The process of allocating uplink radio resources is performed.
  • step S608 when there is an uplink radio resource allocated by “Persistent scheduling” for the mobile station UE by the processing in step S608, the uplink by the “Persistent scheduling” already allocated for the mobile station UE. It progresses to the process (step S609, S609A, S610, S611) for determining whether it should change a radio
  • Step S609 Temporal 1 st TX TF Selection
  • the optimum transmission format is “Temporary_UL_1st_TX_TF”.
  • a threshold of “Pathloss (UP)” is used, and when transitioning to a transmission format larger than the current transmission format (UL_1st_TX_TF). Uses a threshold of “Pathloss (DOWN)”.
  • the transmission format is determined by the data size (payload size), the modulation method (Modulation), and the number of resource blocks (number of RBs).
  • the transmission format may be determined by the data size (payload size), the modulation method (Modulation), the number of resource blocks (number of RBs), and the presence or absence of TTI bundling.
  • the TTI bundling is eliminated as the TF index (#) is smaller, this is used when the path loss between the mobile station UE and the radio base station eNB is small.
  • step 609 After the processing of “Temporary 1st TX TF Selection” in step 609, the process proceeds to the processing of “Updating TTT, Timer reconf ” in step S610.
  • step S609A In the process of “Updating TTT, Timer reconf ” in step S609A, “TTT UL, persistent, Down ”, “TTT UL, persistent, Up ” and “Timer UL, reconf ” are updated by the following process.
  • TTTT persistent Check regarding the mobile station UE, whether “TTT UL, persistent, Down ” is equal to or greater than “Th ULTTTT ”, or “TTT UL, persistent, Up ” is “ It is determined whether or not “Th UL, TTT ” or more.
  • Step S613 If the result of “TTT UL, persistent Check” is “OK”, the process proceeds to “Persistent Sub-frame Selection” in Step S613. If the result of “TTT UL, persistent Check” is “NG”, the process proceeds to Step S613. The process proceeds to “Persistent Sub-frame Reconfiguration Check” in S611.
  • TTTT UL, persistent, Down is the optimal transmission format (TF)
  • Temporary_UL_1st_TX_TF is smaller than the current transmission format (UL_1st_TX_TF) to the current transmission format (UL — 1st_TX).
  • the optimal transmission format (TF) “Temporary_UL_1st_TX_TF” is the current transmission format.
  • the result of “TTT UL, persistent Check” in step S610 becomes “OK”, and the uplink radio assigned by “Persistent scheduling” in steps S613 and S614 Processing to change the resource is performed.
  • TTT UL, persistent, Up in Steps 609A and S610 is substantially the same as the description regarding “TTT UL, persistent, Down ”, and is omitted.
  • step S611 it is determined whether or not “Timer UL, reconf ” is equal to or greater than “Th UL, reconf ” for the mobile station UE.
  • step S611 the effect of the control by the process of step S611 will be described.
  • step 611 when uplink data is transmitted using uplink radio resources assigned by the same “Personent scheduling” continuously for a predetermined time interval “Timer UL, reconf ”, the uplink radio resources are Be changed.
  • the simplest method for changing from the state shown in FIG. 10A to the state shown in FIG. 10B is to set “PDCCH” to all mobile stations UE in the state shown in FIG. In other words, the uplink radio resource allocated by the “persistent scheduling” is changed.
  • step S611 when the process in step S611 is used, the process of changing the uplink radio resources allocated by the “persistent scheduling” of all mobile stations at an appropriate time interval (Timer UL, reconf ) is applied. It is possible to bring the state shown in FIG. 10 (A) close to the state shown in FIG. 10 (B) to an appropriate level by a simple amount of “PDCCH” and by simple processing.
  • an optimal transmission format (Transport format, TF) is determined based on “Pathloss” and “Persistent UL TFR table (initial)” shown in FIG.
  • the selected transmission format is “Temporary_UL_1st_TX_TF”.
  • TTT UL, persistent, Up 0
  • TTTT UL, persistent, Down 0
  • this transmission format is, for example, the transmission format shown in FIG. 8 or FIG. 8A.
  • step S612 the process proceeds to step S613.
  • step S613 “Persistent Sub-frame (UL_1st_TX_Persistent_Subframe)” for the initial transmission of “UL-SCH” to which “Persistent scheduling” is applied to the mobile station UE. Is determined.
  • Persistent Sub-frame (UL — 1st_TX_Persistent_Subframe)” for the initial transmission of “UL-SCH” to which “Persistent scheduling” is applied is the start time of uplink radio resource allocation.
  • “Persistent Sub-frame” that is the DRX reception timing of the mobile station UE and has the smallest resource usage “UL_Resource (m)” is set to “Candidate_Subframe” of the mobile station UE. To select.
  • the resource usage amount UL_Resource (m) is assigned for the first transmission of UL-SCH to which persistent scheduling is applied in the loop processing configured by steps S601, S616, and S617. Radio resources may be included.
  • UL to which persistent scheduling assigned by the processes of steps S613 and S614 is applied to the mobile stations UE of m 1, 2,..., M ⁇ 1.
  • the radio resource for the initial transmission of SCH may be considered in such UL_Resource (m).
  • the Persistent Sub-frame number is the most.
  • a small “Persistent Sub-frame” may be selected as “Candidate_Subframe” of the mobile station UE.
  • the value of the variable is changed by the following processing.
  • step S613 a process of allocating a subframe with a small resource usage as the uplink radio resource allocation start time to the mobile station UE to which the uplink radio resource is allocated by “Persistent scheduling” is performed.
  • This process transmits data to which radio resources are allocated by “Persistent scheduling” in subframes where the amount of uplink radio resources used is small, reducing collisions with other signals and enabling efficient communication. It becomes.
  • the Candidate_Sub-frame is such that the timing of receiving “UL-SCH” to which “Persistent scheduling” is applied differs from the timing of receiving an uplink control signal or an uplink sounding reference signal. May be selected.
  • # 0 to # 5 are defined as the DRX reception timing of the mobile station UE.
  • the uplink sub-frame and the downlink sub-frame match.
  • a fixed allocation signal that is, an uplink data signal to which persistent scheduling is applied (UL-SCH) after 4 subframes in which a PDCCH for resource allocation by persistent scheduling is transmitted.
  • UL-SCH uplink data signal to which persistent scheduling is applied
  • a radio resource for transmitting the uplink control signal or the uplink sounding reference signal from the mobile station UE is allocated to Persistent Sub-frame # 4.
  • Persistent Sub-frame # 4 is the transmission timing of the uplink control signal or the uplink sounding reference signal from the viewpoint of the mobile station UE, and from the viewpoint of the radio base station, This is the reception timing of an uplink control signal or an uplink sounding reference signal transmitted from.
  • the uplink control signal may be, for example, downlink radio quality information CQI (Channel Quality Indicator) or a scheduling request signal (SR: Scheduling Request). That is, the mobile station UE transmits CQI or SR to the radio base station in Persistent Sub-frame # 4.
  • CQI Channel Quality Indicator
  • SR Scheduling Request
  • the selection of “Candidate_Subf-frame” described above is performed based on the reception timing of the uplink control signal or the uplink sounding reference signal. For example, in the example shown in FIG. 11, the DRX reception timing of the mobile station UE is # 0 to # 5, and the Persistent Sub-frame that can be selected as the Candidate Sub-frame is as follows.
  • Persistent Sub-frame # 4 Persistent Sub-frame # 5 ⁇ Persistent Sub-frame # 6 ⁇ Persistent Sub-frame # 7 ⁇ Persistent Sub-frame # 8 ⁇ Persistent Sub-frame # 9 Of the six Persistent Sub-frames that can be selected as the Candidate Sub-frame, Persistent Sub-frame # 0 matches the reception timing of the uplink control signal or the uplink sounding reference signal.
  • “Candidate_Sub-frame” of the mobile station UE may be assigned so as not to coincide with the reception timing of the uplink control signal or the uplink sounding reference signal.
  • Persistent Sub-frames other than Persistent Sub-frame # 4 may be assigned as Candidate Sub-frames.
  • Candidate_Sub-frame that is, when the reception timing of a data signal (UL-SCH) to which persistent scheduling is applied matches the reception timing of the uplink control signal or uplink sounding reference signal, the data signal is Since it is multiplexed with an uplink control signal or an uplink sounding reference signal and transmitted, there is a possibility that the transmission characteristics will deteriorate.
  • UL-SCH data signal
  • the amount of information transmitted increases, and as a result, the required signal power increases.
  • the data signal or the uplink control signal can be normally transmitted. Low.
  • Candidate_Sub-frame that is, Candidate_Sub-frame, so that the reception timing of the data signal (UL-SCH) to which persistent scheduling is applied does not coincide with the reception timing of the uplink control signal or uplink sounding reference signal.
  • the Candidate_Sub-frame may be selected to be different from the timing of receiving the delivery confirmation information for the data signal (DL-SCH) to which downlink persistent scheduling is applied.
  • # 0 to # 5 are defined as the DRX reception timing of the mobile station UE.
  • the uplink sub-frame and the downlink sub-frame match.
  • a fixed allocation signal that is, an uplink data signal to which persistent scheduling is applied (UL-SCH) after 4 subframes in which a PDCCH for resource allocation by persistent scheduling is transmitted.
  • UL-SCH uplink data signal to which persistent scheduling is applied
  • the uplink radio resource for the acknowledgment information for the downlink data signal (DL-SCH) to which persistent scheduling is applied to the mobile station UE is the persistent sub- It is assigned in frame # 4.
  • Persistent Sub-frame # 4 is the transmission timing of the delivery confirmation information for the downlink data signal (DL-SCH) to which Persistent scheduling is applied from the viewpoint of the mobile station UE. From a viewpoint, it is the reception timing of the delivery confirmation information with respect to the downlink data signal (DL-SCH) to which Persistent scheduling is applied transmitted from the mobile station UE.
  • the selection of “Candidate_Sub-frame” described above is performed based on the reception timing of the delivery confirmation information for the downlink data signal (DL-SCH) to which the persistent scheduling is applied.
  • the DRX reception timing of the mobile station UE is # 0 to # 5
  • the Persistent Sub-frame that can be selected as the Candidate Sub-frame is as follows.
  • Persistent Sub-frame # 4 is the transmission confirmation information for the downlink data signal (DL-SCH) to which the Persistent scheduling is applied. Matches the reception timing.
  • DL-SCH downlink data signal
  • “Candidate_Sub-frame” of the mobile station UE is For example, it may be assigned so as not to coincide with the reception timing of the delivery confirmation information for the downlink data signal (DL-SCH) to which the persistent scheduling is applied.
  • DL-SCH downlink data signal
  • Persistent Sub-frames other than Persistent Sub-frame # 4 may be assigned as Candidate Sub-frames.
  • the “Persistent Sub-frame” having the smallest value of the quantity DL_Resource (m) may be selected as “Candidate_Sub-frame” of the mobile station UE.
  • Candidate_Sub-frame that is, the reception timing of the data signal (UL-SCH) to which persistent scheduling is applied coincides with the reception timing of the acknowledgment information to the downlink data signal (DL-SCH) to which persistent scheduling is applied.
  • the data signal (UL-SCH) is multiplexed with the acknowledgment information and transmitted, there is a possibility that transmission characteristics may be deteriorated.
  • the amount of information transmitted increases, and as a result, the required signal power increases.
  • the Persistent Sub-frame # 4 is selected as the Candidate_Sub-frame, the data signal or the data signal to which the persistent scheduling is applied (DL-SCH) The possibility that the delivery confirmation information for is transmitted normally will be low.
  • Candidate_Sub-frame that is, the reception timing of the data signal (UL-SCH) to which the persistent scheduling is applied is the reception confirmation information for the downlink data signal (DL-SCH) to which the persistent scheduling is applied.
  • step S613 the process proceeds to step S614.
  • “Resource block” (hereinafter referred to as UL_1st_TX_Persistent_RB) for the initial transmission of “UL-SCH” to which “Persistent scheduling” is applied to the mobile station UE by the processing of “Persistent RB Selection” in step S614. decide. As shown below, based on the determination results of step S608, step S610, and step S611, allocation processing of “Resource block” for the initial transmission of “UL-SCH” to which “Persistent scheduling” is applied is performed. .
  • step S608 is “OK”
  • Resource Block index is an index of a resource block.
  • the radio base station eNB when it is decided to notify the resource of initial transmission for persistent scheduling by this Uplink Scheduling Grant, when the presence or absence of application of TTI bundling is changed, the radio base station eNB, via the RRC message, The mobile station UE is notified of a change in presence / absence of application of TTI bundling. In this case, the radio base station eNB may perform Intra-ell Handover.
  • step S610 the operation when the determination result in step S610 is “OK” will be described.
  • “Candidate_RB” is a resource block allocated by “Persistent scheduling”.
  • the radio base station eNB when it is decided to notify the resource of initial transmission for persistent scheduling by this Uplink Scheduling Grant, when the presence or absence of application of TTI bundling is changed, the radio base station eNB, via the RRC message, The mobile station UE is notified of a change in presence / absence of application of TTI bundling. In this case, the radio base station eNB may perform Intra-cell Handover.
  • the radio resource for the initial transmission of UL-SCH to which persistent scheduling is applied for the mobile station UE is returned to the state before performing the processes of steps S613 and S614 described above.
  • step S611 The operation when the determination result in step S611 is “OK” will be described.
  • “Resource Block (VRB) index” is the smallest and allocatable RB ”is selected as“ Candidate_RB ”.
  • “Candidate_RB” is a resource block allocated by “Persistent scheduling”.
  • the radio resource for the initial transmission of UL-SCH to which persistent scheduling is applied for the mobile station UE is returned to the state before performing the processes of steps S613 and S614 described above.
  • the frequency resource (resource block) of the uplink radio resource to which “Persistent scheduling” is applied is determined by the process of step S614.
  • an RB with the smallest “Resource Block (VRB) index” and an allocatable RB is allocated, while a common channel such as “PRACH” is allocated.
  • an RB that has the largest “Resource Block (VRB) index” and can be assigned may be assigned.
  • the delivery confirmation information transmission process performed by the delivery confirmation information transmission processing unit 15 will be described below.
  • the delivery confirmation information transmission processing unit 15 transmits delivery confirmation information for an uplink radio resource (PUSCH) to which “Persistent scheduling” is applied.
  • PUSCH uplink radio resource
  • the state mismatch detection process performed by the state mismatch detection processing unit 16 will be described below.
  • the state mismatch detection processing unit 16 detects a state mismatch between the radio base station eNB and the mobile station UE.
  • state mismatch means that, for example, the radio base station eNB assigns uplink radio resources to the mobile station UE by “Persistent scheduling”, but the mobile station UE This refers to a state where it is not recognized that uplink radio resources have been allocated.
  • the radio base station eNB sets “UL_1st_TX_TF” of the mobile station UE to “NULL”.
  • a high-efficiency mobile communication system can be realized by setting an uplink radio resource allocated by “Persistent scheduling” so as to maximize the statistical multiplexing effect.
  • a radio base station and a communication control method can be provided.
  • a radio base station and communication control capable of realizing a highly efficient mobile communication system by appropriately setting an uplink radio resource allocated by “Persistent scheduling”.
  • a method can be provided.
  • the operations of the mobile station and the radio base station described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both.
  • the software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, Hard Disk, and Removable ROM).
  • RAM Random Access Memory
  • flash memory ROM (Read Only Memory)
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable and Programmable, Removable ROM, Hard Disk, and Removable ROM.
  • it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • Such a storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Further, such a storage medium and a processor may be provided in the ASIC. Such an ASIC may be provided in a mobile station or a radio base station. Further, such a storage medium and a processor may be provided as a discrete component in a mobile station or a radio base station.

Abstract

 本発明に係る無線基地局200は、所定周期内の各タイムフレームのリソース使用量を測定する測定部11と、移動局100に対して、上り無線リソース割当開始時点を示す固定的割当信号を送信する上りリンク固定的割当信号送信部14と、上り無線リソース割当開始時点を起点とした上り無線リソースを用いた上りデータの送信を行う上りリンク通信部14とを具備し、上りリンク固定的割当信号送信部14は、各タイムフレームのリソース使用量に基づいて、上り無線リソースを割り当てる。

Description

無線基地局及び通信制御方法
 本発明は、移動局に対して、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局及び通信制御方法に関する。
 W-CDMA方式やHSDPA方式の後継となる通信方式、すなわち、LTE(Long Term Evolution)方式が、W-CDMAの標準化団体である3GPPにより検討され、その仕様策定作業が進められている。
 LTE方式においては、無線アクセス方式として、下りリンクについてはOFDMAが用いられ、上りリンクについてはSC-FDMA(Single-Carrier Frequency Division Multiple Access)が用いられることが検討されている。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各周波数帯上にデータを載せて伝送を行う方式であり、サブキャリアを周波数上に、一部重なりあいながらも互いに干渉することなく密に並べることで、高速伝送を実現し、周波数の利用効率を上げることができる。
 SC-FDMAは、周波数帯域を分割し、複数の端末間で異なる周波数帯域を用いて伝送することで、端末間の干渉を低減することができる伝送方式である。SC-FDMAでは、送信電力の変動が小さくなる特徴を持つことから、端末の低消費電力化及び広いカバレッジを実現できる。
 LTE方式は、上りリンク及び下りリンク共に、1つ乃至2つ以上の物理チャネルを複数の移動局で共有して通信を行うシステムである。
 複数の移動局で共有されるチャネルは、一般に共有チャネルと呼ばれ、LTE方式においては、上りリンクにおいては「物理上りリンク共有チャネル(Physical Uplink Shared Channel: PUSCH)」であり、下りリンクにおいては「物理下りリンク共有チャネル(Physical Downlink Shared Channel: PDSCH)」である。
 また、かかる共有チャネルは、トランスポートチャネルとしては、上りリンクにおいては「上りリンク共有チャネル(UL-SCH: Uplink Shared Channel)」であり、下りリンクにおいては「下りリンク共有チャネル(DL-SCH: Downlink Shared Channel)」である。
 そして、上述したような共有チャネルを用いた通信システムにおいては、サブフレーム(Sub-frame)(LTE方式では、1ms)毎に、どの移動局UEに対して共有チャネルを割り当てるかを選択し、選択された移動局UEに対して、共有チャネルを割り当てることをシグナリングする必要がある。
 このシグナリングのために用いられる制御チャネルは、LTE方式では、「物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)」又は「下りリンクL1/L2制御チャネル(DL L1/L2 Control Channel: Downlink L1/L2 Control Channel)」と呼ばれる。
 なお、上述した、サブフレーム毎に、どの移動局UEに対して共有チャネルを割り当てるかを選択する処理のことを、一般に「スケジューリング」と呼ぶ。この場合、サブフレーム毎に、動的に共有チャネルを割り当てる移動局UEを選択するため、「Dynamicスケジューリング」と呼ばれてもよい。また、上述した「共有チャネルを割り当てる」とは、「共有チャネルのための無線リソースを割り当てる」と表現されてもよい。
 物理下りリンク制御チャネルの情報には、例えば、「下りリンクスケジューリング情報(Downlink Scheduling Information)」や、「上りリンクスケジューリンググラント(Uplink Scheduling Grant)」等が含まれる。
 「Downlink Scheduling Information」には、例えば、下りリンクの共有チャネルに関する、下りリンクのリソースブロック(Resource Block)の割り当て情報、UEのID、ストリームの数、プリコーディングベクトル(Precoding Vector)に関する情報、データサイズ、変調方式、HARQ(hybrid automatic repeat request)に関する情報等が含まれる。
 また、「Uplink Scheduling Grant」には、例えば、上りリンクの共有チャネルに関する、上りリンクのリソースブロック(Resource Block)の割り当て情報、UEのID、データサイズ、変調方式、上りリンクの送信電力情報、Uplink MIMOにおけるデモジュレーション レファレンス シグナル(Demodulation Reference Signal)の情報等が含まれる。
 なお、上述した「Downlink Scheduling Inforamtion」や「Uplink Scheduling Grant」は、まとめて、「下りリンク制御情報(DCI:Downlink Control Information)」と呼ばれてもよい。
 一方、VoIP等を実現するために検討されている「Persistentスケジューリング」では、無線基地局eNBは、PDCCHを介して下りスケジューリング情報を移動局UEに対して送信したサブフレーム(下り無線リソース割当開始時点又は上り無線リソース割当開始時点)を起点として、下り無線リソース(PDSCH)又は上り無線リソース(PUSCH)を、所定周期で固定的に当該移動局に割り当てるように構成されている。
 なお、「Persistentスケジューリング」は、「Semi-Persistentスケジューリング(SPS:Semi Persistent Scheduling)」と呼ばれてもよい。
 一般に、移動通信システムにおいては、「統計多重効果」と呼ばれる効果により、無線容量の増大が図られる。
 すなわち、無線基地局eNBとの間にコネクションを張っている移動局UEの数と実際にデータのやり取りを行っている移動局UEの数との間には違いがあり、データのやり取りを行う移動局UEが統計的に分散されるため、結果として、コネクションを張る移動局UEの数が増大するという仕組みにより、無線容量の増大が図られる。
 Persistentスケジューリングにおいては、上述したように、PDCCHを介して上りスケジューリンググラントを移動局UEに対して送信したサブフレーム(上り無線リソース割当開始時点)を起点として、上り無線リソース(PUSCH)が、所定周期で固定的に当該移動局UEに割り当てられる。かかる場合、各上り無線リソース割当開始時点に多重される移動局UEの数は均等になることが望ましい。
 例えば、所定周期が20msである場合に、ある1msには10台の移動局UEが多重され、別の1msには2台の移動局UEのみが多重されるというケースよりも、ある1msに6台の移動局UEが多重され、別の1msにも6台の移動局UEが多重されるというケースの方が、上述した統計多重効果は得られやすい。何故ならば、上述した例において、2台の移動局UEのみが多重される1msにおいては、統計多重効果が極めて小さいためである。
 また、一般に、移動通信システムにおいては、無線リソースを効率的に割り当てることにより、その通信容量を増大させることが可能となる。
 例えば、図10の(A)と図10(B)とを比較した場合、図10(B)の方が、整然と無線リソースが割り当てられており、残りの無線リソース(白い部分)を効率的に使用可能であるため、より効率の良い通信を実現することが可能である。
 一方、上述した「Persistentスケジューリング」においては、上りリンクスケジューリンググラントや下りリンクスケジューリング情報により、上り無線リソース割当開始時点が指定され、かつ、かかる上り無線リソース割当開始時点を起点として、周期的に、かつ、固定的に無線リソースが割り当てられる。
 この場合、「Dynamicスケジューリング」と異なり、サブフレーム毎(1ms毎)に周波数方向の無線リソースを柔軟に割り当てることができないため、図10(A)に示したような非効率的な無線リソースの割り当てが行われる確率が高くなる。
 また、移動通信システムにおいては、下りリンクにおいては、報知チャネルやページングチャネル等の共通チャネルが送信され、また、上りリンクにおいては、ランダムアクセスチャネル等の共通チャネルが周期的に送信される。
 上述した「Persistentスケジューリング」の無線リソースと、共通チャネルの無線リソースとが衝突した場合、かかる共通チャネルに対して、優先的に無線リソースが割り当てられるため、かかる共通チャネルの送信を考慮して、「Persistentスケジューリング」は適用されなければならない。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、統計多重効果を最大化するように、「Persistentスケジューリング」により割り当てられる上り無線リソースを設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することを目的とする。
 また、本発明は、上述の課題に鑑みてなされたものであり、「Persistentスケジューリング」により割り当てられる上り無線リソースを適切に設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することを目的とする。
 本発明の第1の特徴は、移動局に対して、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記所定周期内の各タイムフレームのリソース使用量を測定するように構成されている測定部と、前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、前記上りリンク固定的割当信号送信部は、前記各タイムフレームのリソース使用量に基づいて、前記上り無線リソース割当開始時点を決定するように構成されていることを要旨とする。
 本発明の第1の特徴において、前記所定周期内の各タイムフレームのリソース使用量に基づいて、前記移動局に関する間欠受信における受信区間を設定するように構成されている設定部を更に具備し、前記固定的割当信号送信部は、前記上り無線リソース割当開始時点が前記間欠受信における受信区間内に含まれるように、前記上り無線リソース割当開始時点を決定するように構成されていてもよい。
 本発明の第1の特徴において、前記上りリンク固定的割当信号送信部は、前記リソース使用量が最も小さいタイムフレームが前記上り無線リソース割当開始時点となるように、前記上り無線リソース割当開始時点を決定するように構成されていてもよい。
 本発明の第1の特徴において、前記設定部は、各タイムフレームのリソース使用量が均等になるように、前記間欠受信における受信区間を設定するように構成されていてもよい。
 本発明の第1の特徴において、前記設定部は、前記間欠受信における受信区間内のタイムフレームのリソース使用量の合計値が最小となるように、該間欠受信における受信区間を設定するように構成されていてもよい。
 本発明の第1の特徴において、前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていてもよい。
 本発明の第1の特徴において、前記移動局に対して、下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、前記下り無線リソース割当開始時点を起点とした下り無線リソースを用いた下りデータの送信を行うように構成されている下りリンク通信部とをさらに具備し、前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていてもよい。
 本発明の第1の特徴において、前記測定部は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースの少なくとも1つに基づいて、前記リソース使用量を測定するように構成されていてもよい。
 本発明の第2の特徴は、無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、前記無線基地局が、前記所定周期内の各タイムフレームのリソース使用量を測定する工程Aと、前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信する工程Bと、前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Cとを有し、前記工程Bにおいて、前記無線基地局が、前記各タイムフレームのリソース使用量に基づいて、前記上り無線リソース割当開始時点を決定することを要旨とする。
 本発明の第3の特徴は、移動局に対して、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている通信部とを具備し、前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを要旨とする。
 本発明の第3の特徴において、前記上りリンクの制御信号は、下りリンクの無線品質情報又はスケジューリング要求であってもよい。
 本発明の第4の特徴は、移動局に対して、下り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている下り無線リソースを用いて、下りデータの送信を行い、かつ、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記移動局に対して、前記下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、前記下り無線リソース割当開始時点を起点とした前記下り無線リソースを用いた前記下りデータの送信を行うように構成されている下りリンク通信部と、前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを要旨とする。
 本発明の第5の特徴は、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、前記上りリンク固定的割当信号送信部は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースと重ならないように、前記上り無線リソースを決定するように構成されていることを要旨とする。
 本発明の第5の特徴において、前記上りリンク固定的割当信号送信部は、前記上り無線リソースを、システム内の全無線リソース空間の一方の端から割り当て、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースを、該全無線リソース空間の他方の端から割り当てるように構成されていてもよい。
 本発明の第5の特徴において、前記上りリンク固定的割当信号送信部は、無線伝送路における伝搬損失に基づいて決定される上り無線リソースが、前記上り無線リソースと異なる場合に、前記固定的割当信号を送信するように構成されていてもよい。
 本発明の第5の特徴において、前記上りリンク固定的割当信号送信部は、前記固定的割当信号を送信してから所定時間以上経過した場合に、前記固定的割当信号を送信するように構成されていてもよい。
 本発明の第6の特徴は、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記移動局の送信状態を管理するように構成されている送信状態管理部と、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、前記上りリンク固定的割当信号送信部は、前記移動局の送信状態がオフであり、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第1閾値よりも小さく、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第2閾値よりも大きい場合に、前記固定的割当信号を送信するように構成されていることを要旨とする。
 本発明の第7の特徴は、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信及び該上りデータに対する送達確認情報の送信を行うように構成されている上りリンク通信部とを具備し、前記上りリンク固定的割当信号送信部は、前記上りデータの最大再送回数満了による破棄が連続して所定回数発生した場合に、前記固定的割当信号を送信するように構成されていることを要旨とする。
 本発明の第8の特徴は、無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Aと、前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Bとを有し、前記工程Aにおいて、前記無線基地局は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースと重ならないように、前記上り無線リソースを割り当てることを要旨とする。
 本発明の第9の特徴は、無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、前記無線基地局が、前記移動局の送信状態を管理する工程Aと、前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Bと、前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Cとを有し、前記工程Bにおいて、前記無線基地局は、前記移動局の送信状態がオフであり、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第1閾値よりも小さく、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第2閾値よりも大きい場合に、前記固定的割当信号を送信することを要旨とする。
 本発明の第10の特徴は、無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの送信を行う通信制御方法であって、前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Aと、前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信及び該上りデータに対する送達確認情報の送信を行う工程Bとを有し、前記工程Aにおいて、前記無線基地局は、前記上りデータの最大再送回数満了による破棄が連続して所定回数発生した場合に、前記固定的割当信号を送信することを要旨とする。
 以上説明したように、本発明によれば、統計多重効果を最大化するように、「Persistentスケジューリング」により割り当てられる上り無線リソースを設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することができる。
 また、本発明によれば、「Persistentスケジューリング」により割り当てられる上り無線リソースを適切に設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る無線基地局のRB使用量算出部の動作について説明するための図である。 図4は、本発明の第1の実施形態に係る無線基地局のRB使用量算出部の動作について説明するためのフローチャートである。 図5は、本発明の第1の実施形態に係る無線基地局のDRX ON区間設定処理部の動作について説明するための図である。 図6は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部の動作について説明するためのフローチャートである。 図7は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部で用いられる「Persistent UL TFRテーブル」の一例を示す図である。 図8は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部で選択される送信フォーマットの一例を示す図である。 図8Aは、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部で用いられる「Persistent UL TFRテーブル」の一例を示す図である。 図9は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部で用いられる「Persistent UL TFRテーブル(Initial)」の一例を示す図である。 図10は、移動通信システムにおける無線リソースの割り当て方法の一例を示す図である。 図11は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部の動作について説明するための図である。 図12は、本発明の第1の実施形態に係る無線基地局のTalk Spurt状態管理部の動作について説明するための図である。
(本発明の第1の実施形態に係る移動通信システム)
 図1乃至図12を参照して、本発明の第1の実施形態に係る移動通信システムについて説明する。なお、本実施形態では、LTE方式の移動通信システムを例に挙げて説明するが、本発明は、他方式の移動通信システムにも適用可能である。
 図1は、本発明の実施例に係る無線基地局(eNB: eNode B)200を使用する移動通信システム1000を示す。
 かかる移動通信システム1000は、例えば、「Evolved UTRA and UTRAN(別名:LTE、或いは、Super 3G)方式」が適用されるシステムである。
 かかる移動通信システム1000は、無線基地局200と、複数の移動局(UE:User Equipment)100乃至100(nは、n>0の整数)とを備える。
 無線基地局200は、上位局、例えば、アクセスゲートウェイ装置300と接続されており、アクセスゲートウェイ装置300は、コアネットワーク400と接続されている。
 アクセスゲートウェイ装置は、MME/SGW(Mobility Management Entity/Serving Gateway)と呼ばれてもよい。
 ここで、移動局100は、セル50において無線基地局200との間で、「Evolved UTRA and UTRAN」方式により通信を行うように構成されている。
 各移動局100乃至・100は、同一の構成や機能や状態を有するので、以下では、特段の断りがない限り、移動局100として説明を進める。説明の便宜上、無線基地局200との間で通信を行うのは移動局100であるが、より一般的には、移動局100には、移動端末も固定端末も含まれる。或いは、移動局UEは、ユーザ装置と呼ばれてもよい。
 移動通信システム1000では、無線アクセス方式として、下りリンクについては「OFDMA(直交周波数分割多元接続)」が、上りリンクについては「SC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。
 上述したように、OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式であり、SC-FDMAは、周波数帯域を端末毎に分割し、複数の端末が互いに異なる周波数帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
<通信チャネル>
 次に、かかる移動通信システム1000で使用される各種の通信チャネルについて説明する。
 下りリンクについては、各移動局100で共有される「物理下りリンク共有チャネル(PDSCH)」と、「物理下りリンク制御チャネル(PDCCH)」とが用いられる。ここで、「物理下りリンク制御チャネル(PDCCH)」は、「下りL1/L2制御チャネル」とも呼ばれる。また、「物理下りリンク制御チャネル(PDCCH)」にマッピングされる情報は、「下りリンク制御情報(DCI)」と呼ばれてもよい。
 「物理下りリンク共有チャネル(PDSCH)」により、ユーザデータ、すなわち、通常のデータ信号が伝送される。
 なお、「物理下りリンク共有チャネル(PDSCH)」にマッピングされるトランスポートチャネルは、「DL-SCH(Downlink Shared Channel)」である。
 また、「物理下りリンク制御チャネル(PDCCH)」により、ダウンリンク/アップリンクスケジューリンググラントや送信電力制御コマンドビット等が伝送される。
 「ダウンリンクスケジューリンググラント(DL Scheduling Grant)」には、例えば、「物理下りリンク共有チャネル(PDSCH)」を用いて通信を行うユーザのIDや、当該ユーザデータのトランスポートフォーマットの情報(すなわち、データサイズや変調方式やHARQに関する情報)や、下りリンクのリソースブロックの割り当て情報等)が含まれる。
 なお、ダウンリンクスケジューリンググラントは、下りリンクスケジューリング情報(Downlink Scheduling Information)と呼ばれてもよい。
 「アップリンクスケジューリンググラント(UL Scheduling Grant)」にも、例えば、「物理上りリンク共有チャネル(PUSCH)」を用いて通信を行うユーザのIDや、当該ユーザデータのトランスポートフォーマットの情報(すなわち、データサイズや変調方式に関する情報や上りリンクのリソースブロックの割り当て情報や上りリンクの共有チャネルの送信電力に関する情報等)が含まれる。
 ここで、「上りリンクのリソースブロック」は、周波数リソースに相当し、「リソースユニット」とも呼ばれる。
 「物理下りリンク制御チャネル(PDCCH)」がマッピングされるOFDMシンボルは、「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」や「物理HARQインディケータチャネル(PHICH)」を含む。
 すなわち、「物理下りリンク制御チャネル(PDCCH)」、「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」及び「物理HARQインディケータチャネル(PHICH)」は、所定数個以下のOFDMシンボルに多重されて送信される。
 「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」は、「物理下りリンク制御チャネル(PDCCH)」がマッピングされるOFDMシンボル数を、移動局UEに対して通知するためのチャネルである。
 「物理HARQインディケータチャネル(PHICH)」は、「物理上りリンク共有チャネル(PUSCH)」に対する送達確認情報を伝送するためのチャネルである。
 かかる送達確認情報は、肯定応答である「ACK」又は否定応答である「NACK」により表現される。
 なお、上述した例においては、「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」や「物理HARQインディケータチャネル(PHICH)」は、「物理下りリンク制御チャネル(PDCCH)」と並列的な関係にあるチャネルとして定義されている。
 しかしながら、「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」や「物理HARQインディケータチャネル(PHICH)」は、が、「物理下りリンク制御チャネル(PDCCH)」に含まれる情報要素として定義されてもよい。
 また、下りリンクにおいては、移動局UE間で共通に使用されるパイロット信号として、「下りリンクリファレンス信号(DL RS:Downlink Reference Signal)」が送信される。
 かかる「下りリンクリファレンス信号」は、上述した「物理下り共有チャネル(PDSC)」や「物理下りリンク制御チャネル(PDCCH)」や「物理制御チャネルフォーマットインディケータチャネル(PCFICH)」や「物理HARQインディケータチャネル(PHICH)」の復号のためのチャネル推定や、下りリンクの無線品質情報であるCQIの算出に用いられる。
 上りリンクについては、各移動局100で共有して使用される「物理上りリンク共有チャネル(PUSCH)」と、LTE方式用の上りリンク制御チャネルとが用いられる。
 LTE方式用の上りリンク制御チャネルには、「物理上りリンク共有チャネル(PUSCH)」の一部として送信されるチャネルと、周波数多重されるチャネルの2種類がある。
 周波数多重されるチャネルは、「物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)」と呼ばれる。
 「物理上りリンク共有チャネル(PUSCH)」により、ユーザデータ、すなわち、通常のデータ信号が伝送される。
 「物理上りリンク共有チャネル(PUSCH)」にマッピングされるトランスポートチャネルは、「UL-SCH(Uplink Shared Channel)」である。
 また、LTE方式用の上りリンク制御チャネルにより、「物理下りリンク共有チャネル(PDSCH)」のスケジューリング処理や適応変調及び符号化処理(AMCS:Adaptive Modulation and Coding Scheme)に用いるための下りリンクの品質情報(CQI:Channel Quality Indicator)及び「物理下りリンク共有チャネル(PDSCH)」の送達確認情報が伝送される。
 かかる下りリンクの品質情報は、「CQI」や「PMI(Pre-coding Matrix Indicator)」や「RI(Rank Indicator)」をまとめたインディケータである「CSI(Channel State Indicator)」と呼ばれてもよい。
 また、かかる送達確認情報の内容は、肯定応答(ACK)又は否定応答(NACK)の何れかで表現される。
<本発明の第1の実施形態に係る無線基地局200>
 また、本実施形態に係る無線基地局200は、移動局100から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソース(PUSCH)を用いて、上りデータを受信するように構成されている。
 図2に示すように、本実施形態に係る無線基地局200は、RB使用量算出処理部11と、DRX ON区間設定処理部12と、Talk Spurt状態管理部13と、PUSCH受信処理部14と、送達確認情報送信処理部15と、状態不一致検出処理部16と、PDCCH送信処理部17とを具備している。
 RB使用量算出処理部11は、後述するように、Persistentスケジューリングの送信周期(所定周期)内の各サブフレーム(タイムフレーム)に関して、リソース使用量を算出するように構成されている。
 ここで、「リソース」とは、周波数リソースのことであり、「リソース使用量」とは、より具体的には、リソースブロックの量又は数である。
 また、LTE方式では、1リソースブロックは「180kHz」であり、1サブフレームは「1ms」である。
 したがって、上述の送信周期(所定周期)を「20ms」とすると、RB使用量算出処理部11は、20サブフレーム内の各サブフレームに関して、リソース使用量を算出する。
 DRX ON区間設定処理部12は、後述するように、セル50内の各移動局100の間欠受信における受信区間(DRX状態のON区間)を設定するように構成されている。
 具体的には、DRX ON区間設定処理部12は、RB使用量算出処理部11によって算出されたリソース使用量に基づいて、DRX ON区間を設定するように構成されている。
 Talk Spurt状態管理部13は、後述するように、セル内の各移動局のTalk Spurt状態、すなわち、Persistentスケジューリングによるリソース割り当てを行うか否かについての管理を行うように構成されている。
 なお、「Persistentスケジューリングによるリソース割り当て」とは、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている「物理上り共有チャネル(PUSCH)」、すなわち、上り無線リソースを用いて、上りデータを受信することに対応する。
 なお、Talk Spurt状態管理部13は、上述した上りリンクの「Persistentスケジューリングによるリソース割り当て」に加えて、下りリンクの「Persistentスケジューリングによるリソース割り当て」を行ってもよい。
 また、下りリンクのPersistentスケジューリングによるリソースの割り当てにおいては、上りリンクの場合と同様に、下り無線リソース割当開始時点が決定され、前記下り無線リソース割当開始時点と、前記下り無線リソース割当開始時点を起点とした下りリンク無線リソースとが、固定的割当信号により、移動局UEに通知される。また、無線基地局は、前記下り無線リソースを介して、前記移動局UEに対して下りリンクのデータ信号(DL-SCH)を送信するように構成されている。
 この場合、例えば、後述するPUSCH受信処理部14が、上述した下りリンクに関する送信処理を行うように構成されていてもよい。
 PUSCH受信処理部14は、後述するように、Talk Spurt状態が「ON」である移動局100から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている「物理上り共有チャネル(PUSCH)」、すなわち、上り無線リソースを用いて、上りデータを受信するように構成されている。
 送達確認情報送信処理部15は、後述するように、「物理上り共有チャネル(PUSCH)」、すなわち、上り無線リソースに対する送達確認情報を送信するように構成されている。
 状態不一致検出処理部16は、後述するように、無線基地局eNBと移動局UEとの間の状態の不一致を検出する。
 ここで、「状態の不一致」とは、例えば、無線基地局eNBが、移動局UEに対して、Persistentスケジューリングによる上り無線リソースの割り当てを行ったにも係らず、移動局UEは、かかる上り無線リソースの割り当てが行われたと認識していない状態のことを指す。
 PDCCH送信処理部17は、後述するように、移動局UEに対して「Uplink Scheduling Grant」により「Persistentスケジューリング」のための初回送信のリソースを通知すると決定された場合、当該移動局UEに対して、かかるUplink Scheduling GrantがマッピングされたPDCCH、すなわち、固定的割当信号を送信するように構成されている。
 なお、かかる固定的割当信号、すなわち、Persistentスケジューリングのための初回送信のリソースを通知するPDCCHは、SPS-RNTIによりCRCがマスキングされたPDCCHと呼ばれてもよい。ここで、SPSは、Semi-Persistent Schedulingの略である。
 図3を参照して、RB使用量算出処理部11によって行われるリソースブロック使用量の算出処理について詳細に説明する。
 図3に示すように、所定周期内のサブフレームを「Persistent Sub-frame」と定義し、RB使用量算出処理部11は、各「Persistent Sub-frame」に関して、リソース使用量(以下、UL_Resource(m)と記載)の算出を行うように構成されている。
 ここで、「m」は、「Persistent Sub-frame」のインデックスを示し、「M」は、「Persistent Sub-frame」の総数(所定周期)を示す。
 「Persistent Sub-frame」毎のリソース使用量UL_Resource(m)は、「Persistent Sub-frame #m」において、「PRACH(ランダムアクセスチャネル)」や、「RACH Message 3(ランダムアクセスチャネル用メッセージ)」や、Persistentスケジューリングが適用される「UL-SCH」に割り当てられるリソースブロック(Resource Block(RB))の数、及び、Guard RB(保護用リソースブロック)の数に相当する。
 なお、「Persistent Sub-frame」毎のリソース使用量UL_Resource(m)は、後述するTalk Spurt状態管理部12の処理に用いられる。
 図4を参照して、「Persistent Sub-frame」毎のリソース使用量の算出処理について説明する。
 図4に示す「m=1、2、…、M」のループにおいて、「M」は、「Persistent Sub-frame」の総数である。
 ステップS401、S409、S410により構成されるループにより、リソース使用量の測定が、「Persistent Sub-frame」毎に行われる。
 まず、ステップS402において、以下の式により、「Persistent Sub-frame #m」における「UL_Resource(m)」の値が初期化される。
 UL__Resource(m)=0
 次に、ステップS403において、以下の式により、「UL_Resource(m)」の値に、「RBPRACH」の値の2倍が加算される。
 UL_Resource(m)+=2×RBPRACH
 なお、「RBPRACH」は、「Persistent Sub-frame #m」において、「PRACH(Physical Random Access Channel)」が送信されるか否かに基づいて、以下のように計算される。
 「Persistent Sub-frame #m」において、「PRACH」が送信される場合、「RBPRACH=6」とする。上記以外の場合、「RBPRACH=0」とする。
 なお、上述した計算においては、UL_Resource(m)+=2×RBPRACHという計算を行ったが、代わりに、UL_Resource(m)+=RBPRACHという計算を行ってもよい。
 以上のステップS403の処理により、「Persistent Sub-frame #m」において、「PRACH」が送信される場合に、「PRACH」に割り当てられるリソースブロックの数がリソース使用量UL_Resource(m)としてカウントされる。
 次に、ステップS404において、以下の式により、「UL_Resource(m)」の値に、「RBGuardRB」の値が加算される。
 UL_Resource(m)+=RBGuardRB
 なお、「RBGuardRB」は、「Persistent Sub-frame #m」において割り当てられている「Guard RB(保護用リソースブロック)」の数である。
 すなわち、「Persistent Sub-frame #m」において割り当てられている「Guard RB」の数がカウントされる。
 以上のステップS404の処理により、「Persistent Sub-frame #m」において割り当てられている「Guard RB」の数が、リソース使用量UL_Resource(m)としてカウントされる。
 上述した処理では、Guard RBの数がリソース使用量UL_Resource(m)としてカウントされたが、代わりに、PUCCHに割り当てられるリソースブロック数が、リソース使用量UL_Resource(m)としてカウントされてもよい。
 ステップS405において、以下の式により、「UL_Resource(m)」の値に、「RBRACHM3」が加算される。
 UL_Resource(m)+=RBRACHM3
 「RBRACHM3」は、過去に「Persistent Sub-frame #m」において送信された「RACH Message 3(ランダムアクセスチャネル用メッセージ)」のリソースブロック数(RB数)の時間平均値(RBRACHM3,average)に基づいて、以下のように計算される。
 RBRACHM3=RBRACHM3,average×weightRACHM3
 なお、重み付け係数「weightRACHM3」は、「RACH Message 3」のためのリソースを、どの程度まで確保するかを調節するための係数であり、例えば、「RACH Message 3」のためのリソースの変動量が大きく、「RACH Message 3」のためのリソースを余分に確保する必要がある場合には、「weightRACHM3=2」と設定されてもよい。
 或いは、重み付け係数「weightRACHM3」は、「RACH Message 3」のためのリソースの変動量が小さく、「RACH Message 3」のためのリソースを余分に確保する必要がない場合には、「weightRACHM3=1」と設定されてもよい。
 以上のステップS405の処理により、「Persistent Sub-frame #m」において、平均的に「RACH Message 3」に割り当てられるリソースブロックの数が、リソース使用量UL_Resource(m)としてカウントされる。
 次に、ステップS406において、以下の式により、「UL_Resource(m)」の値に、「RBPersistentUL」が加算される。
 UL_Resource(m)+=RBPersistentUL
 「RBPersistent,UL」は、過去に「Persistent Sub-frame #m」において送信された、Persistentスケジューリングによりリソースが割り当てられた上りデータ(新規送信及び再送の両方を含む)のリソースブロック数(RB数)の時間平均値(RBPersistent, average, UL)に基づいて、以下のように計算される。
 RBPersistent,UL=RBPersistent, average,UL×weightPersistent,UL
 なお、実際には、「Dynamicスケジューリング」によりリソースの割り当てが行われた上りデータに関しても、「Persistentスケジューリング」によるリソースの割り当てが行われる予定の上りデータが含まれる場合には、そのリソースブロック数を「Persistentスケジューリングによりリソースが割り当てられた上りデータ(新規送信及び再送の両方を含む)のリソースブロック数(RB数)」として計算を行ってもよい。
 「Persistent Sub-frame #m」において、複数の移動局UEに対して、「Persistentスケジューリング」によりリソースが割り当てられた上りデータが送信される場合には、前記複数の移動局の、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのRB数の合計値を「Persistentスケジューリングによりリソースが割り当てられた上りデータ(新規送信及び再送の両方を含む)のリソースブロック数(RB数)」とする。
 すなわち、「Persistent Sub-frame #m」において、Persistentスケジューリングによるリソース割当が行われる全ての移動局UEに関する、リソース使用量、すなわち、リソースブロック数が算出される。
 なお、重み付け係数「weightPersistent,UL」は、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのリソースを、どの程度まで確保するかを調節するための係数である。
 例えば、重み付け係数「weightPersistent, UL」は、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのリソースのための変動量が大きく、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのリソースを余分に確保する必要がある場合には、「weightPersistent,UL=2」と設定されてもよい。
 或いは、重み付け係数「weightPersistent,UL」は、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのためのリソースの変動量が小さく、「Persistentスケジューリング」によりリソースが割り当てられた上りデータのためのリソースを余分に確保する必要がない場合には、「weightPersistent,UL=1」と設定されてもよい。
 以上のステップS406の処理により、「Persistent Sub-frame #m」における「Persistentスケジューリング」によりリソースが割り当てられた上りデータに割り当てられるリソースブロックの数が、リソース使用量UL_Resource(m)としてカウントされる。
 以上のステップS401~S408の処理により、所定周期内の各サブフレームに関するリソース使用量が算出される。
 図5を参照して、DRX ON区間設定処理部12によって行われるDRX ON区間設定処理について詳細に説明する。
 一般に、移動通信システムにおいては、移動局UEのバッテリーセービングを目的として、「DRX制御(間欠受信制御)」が行われる。
 DRX制御とは、通信すべきデータ量が存在しない場合、或いは、通信すべきデータ量が「Persistentスケジューリング」により割り当てられるリソースのみにより送信可能なデータ量である場合に、無線基地局eNBからの信号を受信する区間(ON区間、間欠受信における受信区間)と、無線基地局eNBからの信号を受信しない区間(OFF区間、間欠受信における非受信区間)とに分けて、無線基地局eNBと移動局UE間の通信が行われるという制御である。
 この場合、移動局UEは、OFF区間において、上りリンクの信号の送信及び下りリンクの信号の受信を行わずに済むため、結果として、消費電力を低減することが可能となる。
 DRX ON区間設定処理部12は、RB使用量算出処理部11によって算出されたリソース使用量(RB使用量)に基づいて、移動局UEのDRXのON区間を設定してもよい。
 例えば、DRX ON区間設定処理部12は、ON区間内に含まれる「Persistent Sub-frame」のリソース使用量が最も小さくなるように、DRXのON区間を設定してもよい。
 より具体的には、例えば、図5に示すように、所定周期が「20ms」であり、「Persistent Sub-frame #0~#19」が定義され、かつ、リソース使用量が、それぞれ、「2、3、…、2、5」である場合を想定する。
 ここで、ON区間の長さが「2ms(2サブフレーム)」である場合、ON区間内に含まれる「Persistent Sub-frame」のリソース使用量(RB使用量)が最も小さくなるようなON区間は、「Persistent Sub-frame #0、#1」となる。
 よって、DRX ON区間設定処理部12は、移動局UEのDRXのON区間として、「Persistent Sub-frame #0、#1」を設定する。
 なお、ある移動局UEに対してDRXのON区間として設定された「Persistent Sub-frame」は、後述するように、当該移動局UEにより、「Persitentスケジューリング」により割り当てられた上り無線リソースによる上りデータの送信が行われるため、結果として、リソース使用量が増大する。
 よって、上述したON区間内に含まれる「Persistent Sub-frame」のリソース使用量が最も小さくなるように、DRXのON区間を設定するという処理を、セル内の移動局UEに対して順次行った場合、結果として、各「Persistent Sub-frame」のリソース使用量が均等になるように、DRXのON区間を設定することになる。
 なお、各「Persistent Sub-frameのリソース使用量が均等になる」とは、より整然とリソースが割り当てられていることを示し、結果として、効率良くリソースの割り当てが行われていることを意味する。
 なお、上述した例において、DRX ON区間設定処理部12は、ON区間内に含まれる「Persistent Sub-frame」のリソース使用量が最も小さくなるように、DRXのON区間を設定しているが、代わりに、セル内の移動局UE間でON区間の位置がランダムになるようにDRXのON区間を設定してもよい。
 図6を参照して、Talk Spurt状態管理部13によって行われるTalk Spurt状態管理について詳細に説明する。
 本処理において、Talk Spurt状態管理部13は、「Persistentスケジューリング」によるリソースの割り当てが行われる移動局UEの上りリンクのTalk Spurt状態を管理する。
 以下の処理は、当該サブフレームがDRXのON区間内の先頭のサブフレームである移動局UE(DRX状態にある移動局UE及びNON-DRX状態にある移動局UEの両方を含む)に対して適用される。
 なお、「n」は、「当該サブフレームがDRXのON区間内の先頭のサブフレームである移動局UE」のインデックスを示し、「N」は、「当該サブフレームがDRXのON区間内の先頭のサブフレームである移動局UE」の総数を示す。
 なお、当該セルにおいてDRX制御を行わない場合には、所定周期に1回の割合で、セル内の「Persistentスケジューリング」によるリソース割り当てが行われる全ての移動局UEに対して、後述する処理が行われてもよい。
 以下の処理においては,以下の変数を定義する。
 UL_1st_TX_TF
 Temporary_UL_1st_TX_TF
 OLD_UL_1st_TX_TF
 UL_1st_TX_Persistent_Subframe
 OLD_UL_1st_TX_Persistent_Subframe
 Candidate_Subframe
 UL_1st_TX_Persistent_RB
 OLD_UL_1st_TX_Persistent_RB
 Candidate_RB
 図6に示すように、ステップS601、S616、S617により構成されるループにより、当該サブフレームがDRXのON区間内の先頭のサブフレームである移動局UE(DRX状態にある移動局UE及びNON-DRX状態にある移動局UEの両方を含む)に対して、当該処理が適用される。
 ステップS602において、移動局UE#nに対して、「Persistentスケジューリング」によりリソース割り当てが行われるか否かについて判定する。
 ここで、「Persistentスケジューリング」によりリソース割り当てが行われるか否かについて、「Persistentスケジューリング」によりリソース割り当てが行われると定義された論理チャネルが設定されているか否かに基づいて判定されてもよい。
 すなわち、当該移動局UEに対して、「Flagpersistent」である論理チャネルが設定されているか否かについて判定する。
 「Flagpersistent=1」である論理チャネルが設定されている場合にOKを返し、それ以外の場合に、NGを返す。
 なお、「Flagpersistent=1」は、「Persistentスケジューリング」によるリソース割り当てが行われる論理チャネルが設定されていることを示し、「Flagpersistent=0」は、「Persistentスケジューリング」によるリソース割り当てが行われる論理チャネルが設定されていないことを示す。
 ステップS602の結果がOKの場合は、ステップS603の処理に進み、ステップS602の結果がNGの場合は、ステップS616の処理に進む。
 ステップS603において、以下の式に基づいて、当該移動局UEから報告される「UE Power Headroom」によって、無線伝送路における伝搬損失を示す「Pathloss」を算出する。
Figure JPOXMLDOC01-appb-M000001
 なお、かかる式における各パラメータは、3GPP規格36.213、v8.1.0、Section5.1.1に定義されているものが用いられる。
 ステップS603の処理の後、ステップS603Aの処理に進む。
 ステップS603A(Talk Spurt Status Check)において、当該移動局UEの状態が、「UL Talk Spurt状態=ON」であるか、或いは、「UL Talk Spurt状態=OFF」であるかについて判定する。
 なお、当該移動局UEの「UL Talk Spurt状態」が、どのような状態にも設定されていない場合は、「OFF」と看做す。
 「Talk Spurt Status Check」の結果が「OFF」の場合は、ステップS604の処理に進み、「Talk Spurt Status Check」の結果が「ON」の場合は、ステップS606の「Buffer Data Check2」の処理に進む。
 ここで、「UL Talk Spurt状態=ON」であるとは、「Persistentスケジューリング」による上り無線リソースが割り当てられている状態のことを指す。
 すなわち、当該移動局UEにより、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの送信が行われている状態のことを指す。
 なお、「UL Talk Spurt状態=OFF」であるとは、「Persistentスケジューリング」による上り無線リソースが割り当てられていない状態のことを指す。
 ステップS604(Buffer Data Check1)において、無線基地局eNBは、当該移動局UEから送信されたPersistent Schedulingが適用されるLogical Channelを介して受信したRLC SDUのサイズ、若しくは、当該移動局UEが有する「Persistentスケジューリング」が適用される論理チャネルグループ#kが割り当てられている移動局UE#nの上りバッファ滞留量「UL_Buffern,k」が、「Thresholddata_size,SID」以上であり、かつ、閾値「Thresholddata_size_UL」以下であるか否かについて判定する。
 かかるRLC SDUのサイズ、若しくは、かかる上りバッファ滞留量「UL_Buffern,k」が「Thresholddata_size,SID」以上であり、かつ、閾値「Thresholddata_size_UL」以下である場合に「OK」を返し、それ以外の場合に「NG」を返す。
 なお、上述した処理の代わりに、かかるRLC SDUのサイズとかかる上りバッファ滞留量の和に基づいて、上述した判定を行ってもよい。すなわち、かかるRLC SDUのサイズとかかる上りバッファ滞留量の和が、「Thresholddata_size,SID」以上であり、かつ、閾値「Thresholddata_size_UL」以下である場合に「OK」を返し、それ以外の場合に「NG」を返してもよい。
 ステップS604(Buffer Data Check1)の結果が「OK」の場合は、ステップS605(Talk Spurt=ON)の処理に進み、ステップS604(Buffer Data Check1)の結果が「NG」の場合は、ステップS616(n++)の処理に進む。
 ステップS605(Talk Spurt=ON)において、当該移動局UEの状態を「UL Talk Spurt状態=ON」とする。
 ステップS605(Talk Spurt=ON)の処理の後、ステップS608(1st TX TF NULL Check?)の処理に進む。
 なお、ステップS604及びS605における処理の効果を以下に説明する。
 「Persistentスケジューリング」においては、上り無線リソースが固定的に割り当てられるため、送信可能なデータのサイズには上限値が存在する。
 そして、かかる上限値よりも上りバッファ滞留量「UL_Buffern,k」が大きい場合には、「Persistentスケジューリング」ではなく、「Dynamicスケジューリング」により、上り無線リソースを割り当てる必要がある。
 すなわち、かかる上限値よりも上りバッファ滞留量「UL_Buffern,k」が大きい場合には、たとえ移動局の送信バッファ内に送信すべきデータが存在したとしても、「Persistentスケジューリング」により上り無線リソースを割り当てると判断してはいけないため、上述した処理において、NGと判定される。
 なお、上述した処理においては、かかる上限値が第1閾値「Thresholddata_size_UL」に相当する。
 また、例えば、VoIPサービス等の場合、無音時に「SIDパケット」というパケットが送信される。
 かかるSIDパケットは、無音時に送信されるパケットであり、音声のような一定の伝送速度で伝送されるパケットではないため、かかるSIDパケットに対して、「Persistentスケジューリング」によるリソース割り当てを行うべきではない。
 すなわち、かかるSIDパケットに対しては、「Dynamicスケジューリング」によるリソース割り当てを行う必要がある。
 よって、移動局UEの送信バッファ内にデータが存在するか否かを判断する際に、下限値を設定し、かかる下限値よりも送信可能なデータのサイズが小さい場合には、たとえ送信すべきデータが存在したとしても、「Persistentスケジューリング」により上り無線リソースを割り当てないと判断し、上述した処理において、「NG」と判定される。
 なお、上述した処理において、かかる下限値が第2閾値「Thresholddata_size,SID」に相当する。
 なお、移動局UEから報告される上りバッファ滞留量、すなわち、バッファステータスレポートには、かかるバッファステータスレポートがマッピングされているUL-SCHに含まれるデータサイズが含まれていない。
 よって、上述したように、移動局UEから報告される上りバッファ滞留量に加えて、移動局UEから送信されたPersistent Schedulingが適用されるLogical Channelを介して受信したRLC SDUのサイズも考慮して、上述した判定を行う必要がある。
 ステップS606(Buffer Data Check2)において、無線基地局eNBは、当該移動局UEが有する「Persistentスケジューリング」が適用される論理チャネルが含まれる論理チャネルグループ#kに関して、当該「UL Talk Spurt=ON」の状態において、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を受信しているか否かについて判定する。
 当該「Buffer Status Report」を受信している場合に「OK」を返し、それ以外の場合に「NG」を返す。
 なお、無線基地局eNBは、当該移動局UEの上りリンクの同期状態がNGである場合には、上述した、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を受信しているか否かの判定に関係なく、本処理において、OKを返してもよい。
 ここで、前記上りリンクの同期状態がNGであるとは、例えば、ULの同期状態が確立していない状態であってもよいし、或いは、ULのタイミング同期を維持するためのTime Alignment TimerがExpireしている、或いは、起動されていない状態であってもよい。
 なお、無線基地局eNBは、上述した例において、当該移動局UEが有する「Persistentスケジューリング」が適用される論理チャネルが含まれる論理チャネルグループ#kに関して、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を受信しているか否かについて判定したが、代わりに、当該移動局UEが有する「Persistentスケジューリング」が適用される論理チャネルが含まれる論理チャネルグループ#kに関して、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を所定の回数だけ連続して受信しているか否かについて判定してもよい。
 すなわち、無線基地局eNBは、かかる「Buffer Status Report」を所定の回数だけ連続して受信している場合に「OK」を返し、それ以外の場合に「NG」を返してもよい。
 なお、かかるBuffer Status Reportは、Persistentスケジューリングが適用されるUL-SCH(上り無線リソース)にマッピングされる。
 ステップS606の「Buffer Data Check2」の結果が「OK」の場合は、ステップS607(Talk Spurt=OFF)の処理に進み、ステップS606の「Buffer Data Check2」の結果が「NG」の場合は、ステップS608の「1st TX TF NULL Check?」の処理に進む。
 ステップS607において、当該移動局UEの状態を「UL Talk Spurt状態=OFF」とする。このとき、当該移動局UEの状態を、UL_1st_TX_TF=NULLとする。
 また、当該移動局UEに割り当てられていた「Persistentスケジューリング」の初回送信のリソースを解放する。
 なお、「Persistentスケジューリングの初回送信のリソース」とは、Persistentスケジューリングにより割り当てられる上り無線リソースのことを指す。
 かかる初回送信のリソースの解放は、暗示的に行われてもよいし、或いは、RRCメッセージ等のシグナリングにより、明示的に行われてもよい。
 なお、ステップS606及びステップS607における処理の効果を以下に説明する。
 例えば、「Persistentスケジューリング」によりリソース割り当てを行うパケットが音声パケットである場合、たとえ、会話中であっても、送信すべきパケットが存在しない場合がある。
 すなわち、会話が継続されている場合にも、「Persistentスケジューリング」による送信タイミングにおいて、送信すべきデータが存在しない場合がある。
 かかる場合、1回の送信タイミングで、会話が終了した、すなわち、「Talk Spurt」が終了したと判断すると、その直後に、再度、「Persistentスケジューリング」によるリソース割り当てを行う必要があり、非効率である。
 よって、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を受信したと判断された時点で、或いは、当該移動局UE#nから「UL_Buffern,k=0」を示す「Buffer Status Report」を所定の回数だけ連続して受信したと判断された時点で、「Silent mode」に遷移したと判断するという処理を行うことにより、適切に、「Talk Spurt状態」の「ON/OFF」を判断することが可能となる。
 ステップS608(1st TX TF NULL Check)において、当該移動局UEの「UL_1st_TX_TF」が「NULL」であるか否かについて判定する。
 当該移動局UEの「UL_1st_TX_TF」が「NULL」である場合に「OK」を返し、それ以外の場合に「NG」を返す。
 「1st TX TF NULL Check」の結果が「OK」の場合は、ステップS612の「Temporary 1st TX TF Selection(initial)」の処理に進み、1st TX TF NULL Check」の結果が「NG」の場合は、ステップS609の「Temporary 1st TX TF Selection」の処理に進む。
 ところで、当該移動局UEの「UL_1st_TX_TF」とは、当該移動局UEに対して、「Persistentスケジューリング」により割り当てられている上り無線リソースの状態を示す変数であり、「当該移動局UEの「UL_1st_TX_TF」が「NULL」である」とは、当該移動局UEに関して、「Persistentスケジューリング」により割り当てられている上り無線リソースが存在しないことを示す。
 よって、ステップS608における処理により、当該移動局UEに関して、「Persistentスケジューリング」により割り当てられている上り無線リソースが存在しない場合には、ステップS612、S613、S614の処理に進み、新規に、「Persistentスケジューリング」により上り無線リソースを割り当てる処理が行われる。
 また、ステップS608における処理により、当該移動局UEに関して、「Persistentスケジューリング」により割り当てられている上り無線リソースが存在する場合には、当該移動局UEに関して、既に割り当てられている「Persistentスケジューリング」による上り無線リソースを変更するべきか否かについて判定するための処理(ステップS609、S609A、S610、S611)に進む。
 ステップS609(Temporary 1st TX TF Selection)において、ステップS603において算出された「Pathloss」及び図7に示す「Persistent UL TFRテーブル」に基づき、最適な送信フォーマット(TF)を選択し、当該最適な送信フォーマットを「Temporary_UL_1st_TX_TF」とする。
 この時、現在の送信フォーマット(UL_1st_TX_TF)よりも小さい送信フォーマットに遷移する場合には、「Pathloss(UP)」の閾値を用い、現在の送信フォーマット(UL_1st_TX_TF)よりも大きい送信フォーマットに遷移する場合には、「Pathloss(DOWN)」の閾値を用いる。
 ここで、図8を参照して、各送信フォーマット(TF)の例について説明する。送信フォーマットは、図8に示すように、データサイズ(ペイロードサイズ)と変調方式(Modulation)とリソースブロック数(RB数)とにより決定される。
 或いは、送信フォーマットは、図8Aに示すように、データサイズ(ペイロードサイズ)と変調方式(Modulation)とリソースブロック数(RB数)とTTI bundlingの有無とにより決定されてもよい。
 ここで、図8の場合、TFのインデックス(#)が小さいほど、RB数が小さくなるため、移動局UEと無線基地局eNBとの間のパスロスが小さい場合に用いられる。また、図8Aの場合、TFのインデックス(#)が小さいほど、TTI bundlingが無しとなるため、移動局UEと無線基地局eNBとの間のパスロスが小さい場合に用いられる。
 なお、図7に示した「Persistent UL TFRテーブル」において、「Pathloss(UP)」の閾値と「Pathloss(DOWN)」の閾値の2種類の閾値を持つ効果を説明する。
 例えば、現在の送信フォーマットが「TF#2」である場合に、「TF#1」に遷移する場合には、「Pathloss」の値が「YUL,1,UP」未満でなければならない。
 一方、現在の送信フォーマットが「TF#1」である場合に、「TF#2」に遷移する場合には、「Pathloss」の値が「YUL,1,DOWN」以上でなければならない。
 この場合、例えば、現在の送信フォーマットが「TF#2」である場合に、「Pathloss」の値が「YUL,1,UP」となったため、送信フォーマットが「TF#2」から「TF#1」に遷移した場合には、逆に、送信フォーマットが「TF#1」から「TF#2」に戻る場合は、「YUL,1,UP」である「Pathloss」の値が「YUL,1,DOWN」以上にまで大きくなる必要があり、容易に「TF#2」に戻りにくくなる。
 すなわち、このように、「TF#2」から「TF#1」に遷移する閾値と「TF#1」から「TF#2」に遷移する閾値との間に敢えて差を持たせることにより、送信フォーマットの「TF#2」と「TF#1」との間でのばたつきを抑えることが可能となる。
 なお、上述したように、「遷移する方向によって閾値を2種類持たせること」を、「閾値にヒステリシスを持たせる」と表現されてもよい。
 ステップ609の「Temporary 1st TX TF Selection」の処理の後、ステップS610の「Updating TTT、Timerreconf」の処理に進む。
 ステップS609Aの「Updating TTT、Timerreconf」の処理において、以下の処理により、「TTTUL,persistent,Down」、「TTTUL,persistent,Up」及び「TimerUL,reconf」の更新を行う。
If(UL_1st_TX_TF>Temporary_UL_1st_TX_TF){
 TTTUL,persistent,Down+=1
 TTTUL,persistent,Up=0
 TimerUL,reconf+=1
}
else if(UL_1st_TX_TF<Temporary_UL_1st_TX_TF){
 TTTUL,persistent,Up+=1
 TTTUL,persistent,Down=0
 TimerUL,reconf+=1
}
else {
 TTTUL,persistent,Down=0
 TTTUL,persistent,Up=0
 TimerUL,reconf+=1
}
 ステップS609Aの「Updating TTT、Timerreconf」の処理の後、ステップS610の「TTTpersistent Check」の処理に進む。
 ステップS610の「TTTpersistent Check」の処理において、当該移動局UEに関して、「TTTUL, persistent, Down」が「ThULTTT」以上であるか否か、或いは、「TTTUL, persistent, Up」が「ThUL,TTT」以上であるか否かについて判定する。
 「TTTUL, persistent, Down」が「ThUL,TTT」以上である、或いは、「TTTUL, persistent, Up」が「ThDLTTT」以上である場合に「OK」を返し、それ以外の場合に「NG」を返す。
 「TTTUL, persistent Check」の結果が「OK」の場合は、ステップS613の「Persistent Sub-frame Selection」の処理に進み、「TTTUL, persistent Check」の結果が「NG」の場合は、ステップS611の「Persistent Sub-frame Reconfiguration Check」の処理に進む。
 ここで、ステップS609A、S610の処理による制御の効果を説明する。
 ステップ609A、S610における「TTTUL,persistent,Down」は、最適な送信フォーマット(TF)である「Temporary_UL_1st_TX_TF」が、現在の送信フォーマット(UL_1st_TX_TF)よりも小さい場合に、現在の送信フォーマット(UL_1st_TX_TF)から、最適な送信フォーマット(TF)である「Temporary_UL_1st_TX_TF」へ遷移することを決定するためのタイマーである。
 例えば、ステップS610における「TTTUL,persistent,Down」のための閾値「ThUL,TTT」を「200ms」と設定した場合、最適な送信フォーマット(TF)である「Temporary_UL_1st_TX_TF」が、現在の送信フォーマット(UL_1st_TX_TF)よりも小さいという状態が「200ms」を超えた場合に、ステップS610の「TTTUL, persistent Check」の結果が「OK」となり、ステップS613、S614の「Persistentスケジューリング」により割り当てられる上り無線リソースを変更する処理が行われる。
 ここで、200msの間、最適な送信フォーマット(TF)である「Temporary_UL_1st_TX_TF」が、現在の送信フォーマット(UL_1st_TX_TF)よりも小さいという状態が継続しなかった場合には、ステップS609Aの処理において、「TTTUL, persistent, Down=0」の処理が行われるため、タイマー「TTTUL,persistent,Down」がリセットされることになる。
 このように、最適な送信フォーマット(TF)である「Temporary_UL_1st_TX_TF」が、現在の送信フォーマット(UL_1st_TX_TF)よりも小さいという状態が、所定の閾値「ThUL,TTT」だけ継続した場合に、送信フォーマットを変更するという処理を行うことにより、送信フォーマットを変更する処理が頻発することを低減することが可能となる。
 なお、ステップ609A、S610における「TTTUL,persistent,Up」は、「TTTUL,persistent,Down」に関する説明とほぼ同一であるため省略する。
 ステップS611の「Persistent Sub-frame Reconfiguration Check」において、当該移動局UEに関して、「TimerUL,reconf」が「ThUL,reconf」以上であるか否かについて判定する。
 「TimerDL,reconf」が「ThDL,reconf」以上である場合に「OK」を返し、それ以外の場合に「NG」を返す。
 「Persistent Sub-frame Reconfiguration Check」が「OK」の場合は、ステップS613の「Persistent Sub-frame Selection」の処理に進み、「Persistent Sub-frame Reconfiguration Check」が「NG」の場合は、ステップS616の「n++」の処理に進む。
 ここで、ステップS611の処理による制御の効果を説明する。
 ステップ611により、所定の時間間隔「TimerUL,reconf」だけ連続して同一の「Persisntentスケジューリング」により割り当てられる上り無線リソースを用いて上りデータの送信が行われている場合に、かかる上り無線リソースが変更される。
 これは、図10(A)に示す状態を、可能な限り、図10(B)に示す状態に近づけることを意図して行われる。
 例えば、図10(A)に示す状態から図10(B)に示す状態に変更する最も簡単な方法は、図10(A)に示す状態にある全ての移動局UEに対して「PDCCH」を介して、「Persisntentスケジューリング」により割り当てられる上り無線リソースを変更することである。
 しかしながら、上述したような処理を行う場合、「PDCCH」の無線リソースを大量に消費することになり、「PDCCH」の無線リソースを低減するという「Persistentスケジューリング」のコンセプトに反する。
 また、より少ない「PDCCH」の数で、より効率よく、図10(A)に示す状態から図10(B)に示す状態に近づけるという制御は、高度で複雑なアルゴリズムが必要とされる。
 一方、ステップS611における処理を用いた場合、全ての移動局の「Persisntentスケジューリング」により割り当てられる上り無線リソースを、適切な時間間隔(TimerUL, reconf)で変更するという処理が適用されるため、適切な量の「PDCCH」により、かつ、簡単な処理により、適切なレベルまで、図10(A)に示す状態から図10(B)に示す状態に近づけることが可能となる。
 なお、本処理は、全ての移動局に対して行われるが、「TimerUL,reconf」の起動時間は、移動局UE毎に異なるため、結果として、「TimerUL,reconf」により、「Persisntentスケジューリング」により割り当てられる上り無線リソースが変更されるタイミングは分散されるため、一度に、「PDCCH」の無線リソースが大量に消費されるという問題は生じない。
 ステップS612における「1st TX TF Selection(initial)」の処理により、「Pathloss」と、図9に示す「Persistent UL TFR table(initial)」とに基づいて、最適な送信フォーマット(Transport format、TF)を選択し、当該送信フォーマットを「Temporary_UL_1st_TX_TF」とする。
 また、「TTTUL,persistent,Up =0」、「TTTUL,persistent,Down =0」、「TimerUL,reconf =0」とする。
 なお、かかる送信フォーマットは、例えば、図8又は図8Aに示される送信フォーマットである。
 ステップS612の処理の後、ステップS613に進む。
 ステップS613の「Persistent Sub-frame Selection」の処理により、当該移動局UEに対して、「Persistentスケジューリング」が適用される「UL-SCH」の初回送信のための「Persistent Sub-frame(UL_1st_TX_Persistent_Subframe)」が決定される。
 なお「Persistentスケジューリング」が適用される「UL-SCH」の初回送信のための「Persistent Sub-frame(UL_1st_TX_Persistent_Subframe)」とは、上り無線リソース割当開始時点のことである。
 「Persistent Sub-frame」の内、「当該移動局UEのDRX受信タイミングであり、かつ、リソース使用量「UL_Resource(m)の値が最も小さいPersistent Sub-frame」を、当該移動局UEの「Candidate_Subframe」として選択する。
 ここで、かかるリソース使用量UL_Resource(m)には、ステップS601、S616、S617により構成されるループ処理の中で、Persistentスケジューリングが適用されるUL-SCHの初回送信のための割り当てが行われた無線リソースが含まれてもよい。
 すなわち、m番目の移動局UEに関する処理においては、m=1、2、…、m-1の移動局UEに対して、ステップS613及びS614の処理により割り当てられた、Persistentスケジューリングが適用されるUL-SCHの初回送信のための無線リソースが、かかるUL_Resource(m)に考慮されてもよい。
 なお、「当該移動局UEのDRX受信タイミングであり、かつ、リソース使用量UL_Resource(m)の値が最も小さいPersistent Sub-frame」が複数存在する場合には、「Persistent Sub-frame番号」が最も小さい「Persistent Sub-frame」を、当該移動局UEの「Candidate_Subframe」として選択してもよい。ここで、以下の処理により、変数の値を変更する。
 OLD_UL_1st_TX_Persistent_Subframe=UL_1st_TX_Persistent_Subframe
 UL_1st_TX_Persistent_Subframe=Candidate_Subframe
とする。
 すなわち、ステップS613の処理により、「Persistentスケジューリング」により上り無線リソースが割り当てられる移動局UEに対して、リソース使用量の小さいサブフレームを、上り無線リソース割当開始時点として割り当てるという処理が行われる。
 本処理により、上り無線リソースの使用量が小さいサブフレームにおいて、「Persistentスケジューリング」により無線リソースが割り当てられるデータの送信が行われるため、他の信号との衝突が低減され、効率の良い通信が可能となる。
 また、各移動局UEに対して、上り無線リソースの使用量が小さいサブフレームを割り当てるという処理を行うことにより、「Persistent Sub-frame」の中で、均等に上り無線リソースを割り当てることが可能になり、効率良く無線リソースを割り当てることが可能となる。
 なお、上記処理において、前記Candidate_Sub-frameは、「Persistentスケジューリング」が適用される「UL-SCH」を受信するタイミングが、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を受信するタイミングと異なるように選択されてもよい。
 図11を用いて、さらに詳細に説明する。
 図11に示す例では、Persistent Sub-frame#0~#19の内、#0~#5が、当該移動局UEのDRX受信タイミングとして定義されている。なお、説明の便宜上、上りリンクSub-frameと下りリンクのSub-frameは一致していると看做す。
 なお、上りリンクの場合、固定的割当信号、すなわち、Persistentスケジューリングによるリソース割り当てのためのPDCCHが送信されたサブフレームの4サブフレーム後に、Persistentスケジューリングが適用される上りリンクのデータ信号(UL-SCH)が、移動局UEより送信されるため、Persistent Sub-frame#4~#9が、Candidate Sub-frameとして選択される可能性のあるPersistent Sub-frameとなる。
 また、図11に示す例では、当該移動局UEが上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を送信する無線リソースが、Persistent Sub-frame#4に割り当てられている。
 すなわち、Persistent Sub-frame#4は、当該移動局UEの観点からは、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の送信タイミングであり、当該無線基地局の観点からは、当該移動局UEから送信される上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングである。
 ここで、前記上りリンクの制御信号とは、例えば、下りリンクの無線品質情報CQI(Channel Quality Indicator)やスケジューリング要求信号(SR:Scheduling Request)であってもよい。すなわち、当該移動局UEは、Persistent Sub-frame#4において、CQI又はSRを当該無線基地局に送信する。
 そして、上述した「Candidate_Subf-rame」の選択は、前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングに基づいて行われる。例えば、図11に示す例においては、当該移動局UEのDRX受信タイミングは、#0~#5であり、Candidate Sub-frameとして選択可能なPersistent Sub-frameは、以下のようになる。
● Persistent Sub-frame #4
● Persistent Sub-frame #5
● Persistent Sub-frame #6
● Persistent Sub-frame #7
● Persistent Sub-frame #8
● Persistent Sub-frame #9
 前記6個の、Candidate Sub-frameとして選択可能なPersistent Sub-frameの内、Persistent Sub-frame#0は、前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングに一致する。
 ここで、当該移動局UEの「Candidate_Sub-frame」は、前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングと一致しないように割り当てられてもよい。
 図11の例では、Persistent Sub-frame#4以外のPersistent Sub-frameが、Candidate Sub-frameとして割り当てられてもよい。
 或いは、例えば、「当該移動局UEのDRX受信タイミングであり、かつ、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングと一致せず、かつ、リソース使用量DL_Resource(m)の値が最も小さいPersistent Sub-frame」を、当該移動局UEの「Candidate_Sub-frame」として選択してもよい。
 以下に、前記上りリンクの制御信号の受信タイミングと一致しないように、Candidate_Sub-frameを選択する効果を示す。
 Candidate_Sub-fame、すなわち、Persistentスケジューリングが適用されるデータ信号(UL-SCH)の受信タイミングが前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングと一致する場合、前記データ信号は、前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号と多重されて送信されるため、伝送特性が劣化する可能性がある。
 より詳しく説明すると、前記データ信号又は上りリンクのサウンディングリファレンス信号と前記上りリンクの制御信号とが多重される場合、伝送される情報量が増加し、結果として、所要の信号電力が増大する。
 この場合、セル端などの無線品質の悪い領域では、前記Persistent Sub-frame#4を、Candidate_Sub-frameとして選択した場合に、該データ信号又は前記上りリンクの制御信号が、正常に伝送される可能性が低くなる。
 言い換えれば、Candidate_Sub-frame、すなわち、Persistentスケジューリングが適用されるデータ信号(UL-SCH)の受信タイミングが前記上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号の受信タイミングと一致しないように、Candidate_Sub-frameを選択することにより、上述した伝送特性の劣化を低減することが可能となる。
 或いは、上記処理において、前記Candidate_Sub-frameは、下りリンクのPersisitentスケジューリングが適用されるデータ信号(DL-SCH)に対する送達確認情報を受信するタイミングと異なるように選択されてもよい。
 図12を用いて、さらに詳細に説明する。
 図12に示す例では、Persistent Sub-frame#0~#19の内、#0~#5が、当該移動局UEのDRX受信タイミングとして定義されている。なお、説明の便宜上、上りリンクSub-frameと下りリンクのSub-frameは一致していると看做す。
 なお、上りリンクの場合、固定的割当信号、すなわち、Persistentスケジューリングによるリソース割り当てのためのPDCCHが送信されたサブフレームの4サブフレーム後に、Persistentスケジューリングが適用される上りリンクのデータ信号(UL-SCH)が、移動局UEより送信されるため、Persistent Sub-frame#4~#9が、Candidate Sub-frameとして選択される可能性のあるPersistent Sub-frameとなる。
 また、図12に示す例では、当該移動局UEに対して、Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報のための上りリンクの無線リソースが、Persistent Sub-frame#4において割り当てられている。
 すなわち、Persistent Sub-frame#4は、当該移動局UEの観点からは、Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の送信タイミングであり、当該無線基地局の観点からは、当該移動局UEから送信される、Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングである。
 そして、上述した「Candidate_Sub-frame」の選択は、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングに基づいて行われる。
 例えば、図12に示す例においては、当該移動局UEのDRX受信タイミングは、#0~#5であり、Candidate Sub-frameとして選択可能なPersistent Sub-frameは、以下のようになる。
● Persistent Sub-frame #4
● Persistent Sub-frame #5
● Persistent Sub-frame #6
● Persistent Sub-frame #7
● Persistent Sub-frame #8
● Persistent Sub-frame #9
 前記6個の、Candidate Sub-frameとして選択可能なPersistent Sub-frameの内、Persistent Sub-frame#4は、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングに一致する。
 ここで、当該移動局UEの「Candidate_Sub-frame」は、
例えば、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングと一致しないように割り当てられてもよい。
 図12の例では、Persistent Sub-frame#4以外のPersistent Sub-frameが、Candidate Sub-frameとして割り当てられてもよい。
 或いは、例えば、「当該移動局UEのDRX受信タイミングであり、かつ、Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングと一致せず、かつ、リソース使用量DL_Resource(m)の値が最も小さいPersistent Sub-frame」を、当該移動局UEの「Candidate_Sub-frame」として選択してもよい。
 以下に、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングと一致しないように、Candidate_Sub-frameを選択する効果を示す。
 Candidate_Sub-frame、すなわち、Persistentスケジューリングが適用されるデータ信号(UL-SCH)の受信タイミングが、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングと一致する場合、前記データ信号(UL-SCH)は、前記送達確認情報と多重されて送信されるため、伝送特性が劣化する可能性がある。
 より詳しく説明すると、前記データ信号(UL-SCH)と前記送達確認情報とが多重される場合、伝送される情報量が増加し、結果として、所要の信号電力が増大する。
 この場合、セル端などの無線品質の悪い領域では、前記Persistent Sub-frame#4を、Candidate_Sub-frameとして選択した場合に、該データ信号又は該Persistentスケジューリングが適用されるデータ信号(DL-SCH)に対する送達確認情報が、正常に伝送される可能性が低くなる。
 言い換えれば、Candidate_Sub-frame、すなわち、Persistentスケジューリングが適用されるデータ信号(UL-SCH)の受信タイミングが、前記Persistentスケジューリングが適用される下りリンクのデータ信号(DL-SCH)に対する送達確認情報の受信タイミングと一致しないように、Candidate_Sub-frameを選択することにより、上述した伝送特性の劣化を低減することが可能となる。
 ステップS613の処理の後、ステップS614の処理に進む。
 ステップS614の「Persistent RB Selection」の処理により、当該移動局UEに対して、「Persistentスケジューリング」が適用される「UL-SCH」の初回送信のための「Resource block(以下、UL_1st_TX_Persistent_RBと呼ぶ)を決定する。 
 以下に示すように、ステップS608、ステップS610、ステップS611の判定結果に基づいて、「Persistentスケジューリング」が適用される「UL-SCH」の初回送信のための「Resource block」の割り当て処理が行われる。
 以下、ステップS608の判定結果が「OK」であった場合の動作について説明する。
 当該移動局UEの「UL_1st_TX_Persistent_Subframe」に関して、「Temporary_UL_1st_TX_TF」を送信した場合で、「「Resource Block(VRB) index」が最も小さく、かつ、割り当て可能なリソースブロック(RB)」を「Candidate_RB」として選択する。
 なお、「Resource Block index」とは、リソースブロックのインデックスである。
 すなわち、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」により「Persistentスケジューリング」のための初回送信のリソースを通知すると決定する。すなわち、移動局UEに対して、固定的割当信号を送信する。
 なお、かかるUplink Scheduling GrantによりPersistentスケジューリングのための初回送信のリソースを通知すると決定した場合に、TTI bundlingの適用の有無が変更される場合には、無線基地局eNBは、RRC messageを介して、移動局UEにTTI bundlingの適用の有無の変更を通知する。この場合に、無線基地局eNBは、Intra-ell Handoverを行ってもよい。
 ただし、最終的に、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」を送信しなかった場合には、当該移動局UEに対して割り当てた「Persistentスケジューリング」により割り当てられるリソースブロックを解放する。
 一方、ステップS610の判定結果が「OK」であった場合の動作について説明する。
 当該移動局UEの「UL_1st_TX_Persistent_Subframe」に関して、「Temporary_UL_1st_TX_TF」を送信した場合で、「「Resource Block(VRB) index」が最も小さく、かつ、割り当て可能なRB」を「Candidate_RB」として選択する。
 そして、「Candidate_RB」を、「Persistentスケジューリング」により割り当てられるリソースブロックとする。
 すなわち、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」により「Persistentスケジューリング」のための初回送信のリソースを通知すると決定する。すなわち、移動局UEに対して、固定的割当信号を送信する。
 なお、かかるUplink Scheduling GrantによりPersistentスケジューリングのための初回送信のリソースを通知すると決定した場合に、TTI bundlingの適用の有無が変更される場合には、無線基地局eNBは、RRC messageを介して、移動局UEにTTI bundlingの適用の有無の変更を通知する。この場合に、無線基地局eNBは、Intra-cell Handoverを行ってもよい。
 ただし、最終的に、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」を送信しなかった場合には、当該移動局UEに対して割り当てた「Persistentスケジューリング」により割り当てられるリソースブロックを解放する。
 この場合、当該移動局UEに関する、Persistentスケジューリングが適用されるUL-SCHの初回送信のための無線リソースを、上述したステップS613、S614の処理を行う前の状態に戻す。
 ここで、「最終的に、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」を送信しなかった場合」とは、例えば、「PDCCH」の無線リソースが枯渇したため、当該「Uplink Scheduling Grant」が送信されなかった場合である。
 また、ステップS611の判定結果が「OK」であった場合の動作について説明する。
 当該移動局UEの「UL_1st_TX_Persistent_Subframe」に関して、「「UL_1st_TX_TF」を送信した場合で「Resource Block(VRB) index」が最も小さく、かつ、割り当て可能なRB」を「Candidate_RB」として選択する。
 そして、「Candidate_RB」を、「Persistentスケジューリング」により割り当てられるリソースブロックとする。
 ただし、前記「「UL_1st_TX_TF」を送信した場合で「Resource Block(VRB) index」が最も小さく、かつ、割り当て可能なRB」が、現在割り当てられている上り無線リソースと同一である場合には、上述した処理を行わない、すなわち、上り無線リソースを変更する処理を行わない。
 そして、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」により「Persistentスケジューリング」のための初回送信のリソースを通知すると決定する。
 ただし、最終的に、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」を送信しなかった場合には、当該移動局UEに対して割り当てた「Persistentスケジューリング」により割り当てられるリソースブロックを解放する。
 この場合、当該移動局UEに関する、Persistentスケジューリングが適用されるUL-SCHの初回送信のための無線リソースを、上述したステップS613、S614の処理を行う前の状態に戻す。
 ここで、「最終的に、当該移動局UEの「UL_1st_TX_Persistent_Subframe」において、当該移動局UEに対して「Uplink Scheduling Grant」を送信しなかった場合」とは、例えば、「PDCCH」の無線リソースが枯渇したため、当該「Uplink Scheduling Grant」が送信されなかった場合である。
 ステップS614の処理により、「Persistentスケジューリング」が適用される上り無線リソースの周波数リソース(リソースブロック)が決定される。
 ここで、「Persistentスケジューリング」が適用される上り無線リソースに対して、「Resource Block(VRB) index」が最も小さく、かつ、割り当て可能なRBを割り当て、一方で、「PRACH」等の共通チャネルに対して、「Resource Block(VRB) index」が最も大きく、かつ、割り当て可能なRBを割り当ててもよい。
 この場合、「Persistentスケジューリング」が適用される上り無線リソースと、「PRACH」等の共通チャネルの無線リソースとの衝突を避けることが可能となり、効率良い無線リソースの割り当てが可能となる。
 以下に、送達確認情報送信処理部15によって行われる送達確認情報送信処理について説明する。
 送達確認情報送信処理部15は、「Persistentスケジューリング」が適用される上り無線リソース(PUSCH)に対する送達確認情報を送信する。
 以下に、状態不一致検出処理部16によって行われている状態不一致検出処理について説明する。
 状態不一致検出処理部16は、無線基地局eNBと移動局UEとの間の状態の不一致を検出する。
 ここで、「状態の不一致」とは、例えば、無線基地局eNBが、移動局UEに対して、「Persistentスケジューリング」による上り無線リソースの割り当てを行ったにも係らず、移動局UEは、かかる上り無線リソースの割り当てが行われたと認識していない状態のことを指す。
 例えば、無線基地局eNBは、以下の事象が発生した場合に、当該移動局UEの「UL_1st_TX_TF」を「NULL」とする。
 ・「Persistentスケジューリング」が適用される「UL-SCH」において、最大再送回数満了による上りデータの破棄が、連続してNUL,MAXTX回発生した場合
 なお、「UL_1st_TX_TF」を「NULL」とした場合、上述したステップS608の処理で「OK」と判定されるため、「Persistentスケジューリング」により割り当てられる上り無線リソースが割り当てられ直すことになり、上述した無線基地局eNBと移動局UEとの間の状態の不一致を解消することが可能となる。
 本実施形態に係る移動通信システムによれば、統計多重効果を最大化するように、「Persistentスケジューリング」により割り当てられる上り無線リソースを設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することができる。
 また、本実施形態に係る移動通信システムによれば、「Persistentスケジューリング」により割り当てられる上り無線リソースを適切に設定することにより、高効率の移動通信システムを実現することができる無線基地局及び通信制御方法を提供することができる。
(変更例)
 なお、上述の移動局や無線基地局の動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD-ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、移動局や無線基地局内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして移動局や無線基地局内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (26)

  1.  移動局に対して、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記所定周期内の各タイムフレームのリソース使用量を測定するように構成されている測定部と、
     前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、前記各タイムフレームのリソース使用量に基づいて、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする無線基地局。
  2.  前記所定周期内の各タイムフレームのリソース使用量に基づいて、前記移動局に関する間欠受信における受信区間を設定するように構成されている設定部を更に具備し、
     前記固定的割当信号送信部は、前記上り無線リソース割当開始時点が前記間欠受信における受信区間内に含まれるように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  3.  前記上りリンク固定的割当信号送信部は、前記リソース使用量が最も小さいタイムフレームが前記上り無線リソース割当開始時点となるように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  4.  前記上りリンク固定的割当信号送信部は、前記リソース使用量が最も小さいタイムフレームが前記上り無線リソース割当開始時点となるように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  5.  前記設定部は、各タイムフレームのリソース使用量が均等になるように、前記間欠受信における受信区間を設定するように構成されていることを特徴とする請求項2に記載の無線基地局。
  6.  前記設定部は、前記間欠受信における受信区間内のタイムフレームのリソース使用量の合計値が最小となるように、該間欠受信における受信区間を設定するように構成されていることを特徴とする請求項2に記載の無線基地局。
  7.  前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  8.  前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項2に記載の無線基地局。
  9.  前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのサウンディングリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項3に記載の無線基地局。
  10.  前記移動局に対して、下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、
     前記下り無線リソース割当開始時点を起点とした下り無線リソースを用いた下りデータの送信を行うように構成されている下りリンク通信部とをさらに具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  11.  前記移動局に対して、下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、
     前記下り無線リソース割当開始時点を起点とした下り無線リソースを用いた下りデータの送信を行うように構成されている下りリンク通信部とをさらに具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項2に記載の無線基地局。
  12.  前記移動局に対して、下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、
     前記下り無線リソース割当開始時点を起点とした下り無線リソースを用いた下りデータの送信を行うように構成されている下りリンク通信部とをさらに具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする請求項3に記載の無線基地局。
  13.  前記測定部は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースの少なくとも1つに基づいて、前記リソース使用量を測定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  14.  無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、
     前記無線基地局が、前記所定周期内の各タイムフレームのリソース使用量を測定する工程Aと、
     前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信する工程Bと、
     前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Cとを有し、
     前記工程Bにおいて、前記無線基地局が、前記各タイムフレームのリソース使用量に基づいて、前記上り無線リソース割当開始時点を決定することを特徴とする通信制御方法。
  15.  移動局に対して、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、上りリンクの制御信号又は上りリンクのリファレンス信号を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする無線基地局。
  16.  前記上りリンクの制御信号は、下りリンクの無線品質情報又はスケジューリング要求であることを特徴とする請求項15に記載の無線基地局。
  17.  移動局に対して、下り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている下り無線リソースを用いて、下りデータの送信を行い、かつ、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記移動局に対して、前記下り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている下りリンク固定的割当信号送信部と、
     前記下り無線リソース割当開始時点を起点とした前記下り無線リソースを用いた前記下りデータの送信を行うように構成されている下りリンク通信部と、
     前記移動局に対して、前記上り無線リソース割当開始時点を示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータを受信するタイミングが、前記下りデータに対する送達確認情報を受信するタイミングと一致しないように、前記上り無線リソース割当開始時点を決定するように構成されていることを特徴とする無線基地局。
  18.  移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースと重ならないように、前記上り無線リソースを決定するように構成されていることを特徴とする無線基地局。
  19.  前記上りリンク固定的割当信号送信部は、前記上り無線リソースを、システム内の全無線リソース空間の一方の端から割り当て、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースを、該全無線リソース空間の他方の端から割り当てるように構成されていることを特徴とする請求項18に記載の無線基地局。
  20.  前記上りリンク固定的割当信号送信部は、無線伝送路における伝搬損失に基づいて決定される上り無線リソースが、前記上り無線リソースと異なる場合に、前記固定的割当信号を送信するように構成されていることを特徴とする請求項19に記載の無線基地局。
  21.  前記上りリンク固定的割当信号送信部は、前記固定的割当信号を送信してから所定時間以上経過した場合に、前記固定的割当信号を送信するように構成されていることを特徴とする請求項19に記載の無線基地局。
  22.  移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記移動局の送信状態を管理するように構成されている送信状態管理部と、
     前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行うように構成されている上りリンク通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、前記移動局の送信状態がオフであり、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第1閾値よりも小さく、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第2閾値よりも大きい場合に、前記固定的割当信号を送信するように構成されていることを特徴とする無線基地局。
  23.  移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行うように構成されている無線基地局であって、
     前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信するように構成されている上りリンク固定的割当信号送信部と、
     前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信及び該上りデータに対する送達確認情報の送信を行うように構成されている上りリンク通信部とを具備し、
     前記上りリンク固定的割当信号送信部は、前記上りデータの最大再送回数満了による破棄が連続して所定回数発生した場合に、前記固定的割当信号を送信するように構成されていることを特徴とする無線基地局。
  24.  無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、
     前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Aと、
     前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Bとを有し、
     前記工程Aにおいて、前記無線基地局は、ランダムアクセスチャネルに割り当てられるリソース、保護用リソース、ランダムアクセスチャネルメッセージ3に割り当てられるリソース、セル内の全移動局に割り当てられる前記上り無線リソースと重ならないように、前記上り無線リソースを割り当てることを特徴とする通信制御方法。
  25.  無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの受信を行う通信制御方法であって、
     前記無線基地局が、前記移動局の送信状態を管理する工程Aと、
     前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Bと、
     前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信を行う工程Cとを有し、
     前記工程Bにおいて、前記無線基地局は、前記移動局の送信状態がオフであり、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第1閾値よりも小さく、かつ、該移動局における上りバッファ滞留量又は該移動局より送信されたデータサイズが第2閾値よりも大きい場合に、前記固定的割当信号を送信することを特徴とする通信制御方法。
  26.  無線基地局が、移動局から、上り無線リソース割当開始時点を起点として所定周期で固定的に割り当てられている上り無線リソースを用いて、上りデータの送信を行う通信制御方法であって、
     前記無線基地局が、前記移動局に対して、前記上り無線リソース割当開始時点及び前記上り無線リソースを示す固定的割当信号を送信する工程Aと、
     前記無線基地局が、前記上り無線リソース割当開始時点を起点とした前記上り無線リソースを用いた前記上りデータの受信及び該上りデータに対する送達確認情報の送信を行う工程Bとを有し、
     前記工程Aにおいて、前記無線基地局は、前記上りデータの最大再送回数満了による破棄が連続して所定回数発生した場合に、前記固定的割当信号を送信することを特徴とする通信制御方法。
PCT/JP2009/058588 2008-05-02 2009-05-01 無線基地局及び通信制御方法 WO2009133954A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801158861A CN102017756A (zh) 2008-05-02 2009-05-01 无线基站和通信控制方法
JP2010510178A JP5342551B2 (ja) 2008-05-02 2009-05-01 無線基地局及び通信制御方法
US12/990,757 US20110117948A1 (en) 2008-05-02 2009-05-01 Radio base station and communication control method
BRPI0912187A BRPI0912187A2 (pt) 2008-05-02 2009-05-01 estação base de rádio e método de controle de comunicação
MX2010012020A MX2010012020A (es) 2008-05-02 2009-05-01 Estacion de base de radio y metodo de control de comunicacion.
EP09738891A EP2276304A1 (en) 2008-05-02 2009-05-01 Radio base station and communication control method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-120789 2008-05-02
JP2008120789 2008-05-02
JP2008-120790 2008-05-02
JP2008120790 2008-05-02
JP2008-207511 2008-08-11
JP2008207511 2008-08-11

Publications (1)

Publication Number Publication Date
WO2009133954A1 true WO2009133954A1 (ja) 2009-11-05

Family

ID=41255167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058588 WO2009133954A1 (ja) 2008-05-02 2009-05-01 無線基地局及び通信制御方法

Country Status (8)

Country Link
US (1) US20110117948A1 (ja)
EP (1) EP2276304A1 (ja)
JP (1) JP5342551B2 (ja)
KR (1) KR20110020228A (ja)
CN (1) CN102017756A (ja)
BR (1) BRPI0912187A2 (ja)
MX (1) MX2010012020A (ja)
WO (1) WO2009133954A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066639A (ja) * 2009-09-16 2011-03-31 Kddi Corp 無線リソース割当装置および無線リソース割当方法
WO2013027721A1 (ja) * 2011-08-24 2013-02-28 株式会社エヌ・ティ・ティ・ドコモ 基地局及び通信制御方法
JP2013098641A (ja) * 2011-10-28 2013-05-20 Kddi Corp 無線リソース割当装置、基地局、および無線リソース割当方法
JP2013520140A (ja) * 2010-02-17 2013-05-30 クゥアルコム・インコーポレイテッド 無線通信システムのための連続モード動作
JP2015520562A (ja) * 2012-05-11 2015-07-16 京セラ株式会社 マクロセル通信リソースを用いた装置間通信リソースの管理
CN109644471A (zh) * 2016-08-19 2019-04-16 株式会社Ntt都科摩 资源确定方法、基站及移动台

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391400B2 (en) * 2007-06-20 2013-03-05 Qualcomm Incorporated Control channel format indicator frequency mapping
EP2315486A4 (en) * 2008-08-11 2016-05-25 Ntt Docomo Inc BASIC STATION AND COMMUNICATION CONTROL METHOD
US8565138B1 (en) 2009-09-30 2013-10-22 Google Inc. Random shuffling mechanism for MIMO wireless system
US8559455B1 (en) * 2009-09-30 2013-10-15 Google Inc. Dynamic scheduling scheme for TV white-space MIMO wireless system
US8396086B1 (en) 2009-09-30 2013-03-12 Google Inc. Scalable association scheme for TV white-space MIMO wireless system
US8699411B1 (en) 2009-09-30 2014-04-15 Google Inc. Dynamic TDMA system for TV white space MIMO wireless
CN102083209B (zh) * 2010-02-11 2014-03-12 电信科学技术研究院 多载波系统中的数据传输方法、系统和设备
KR101692553B1 (ko) 2010-04-05 2017-01-03 삼성전자주식회사 통신 시스템에서 업링크 스케쥴링 방법 및 장치
KR102073027B1 (ko) * 2011-04-05 2020-02-04 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치
US9107173B2 (en) 2011-07-28 2015-08-11 Blackberry Limited Method and system for access and uplink power control for a wireless system having multiple transmit points
KR20130018075A (ko) * 2011-08-12 2013-02-20 주식회사 팬택 전송단, 전송단의 기준 신호 설정 방법, 단말, 단말의 기준 신호 전송 방법
EP2807774B1 (en) * 2012-01-23 2015-11-18 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement for controlling transmission of delay sensitive data in a packet data communication network
CN104272636B (zh) * 2012-03-16 2019-01-11 瑞典爱立信有限公司 用于管理无线网络中的反馈的系统和方法
US9961682B2 (en) 2012-11-14 2018-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for resource allocation to maximize the total data rate in SC-FDMA uplink
US9955480B2 (en) * 2012-11-14 2018-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for resource allocation satisfying multiple performance constraints
JP6162973B2 (ja) * 2013-02-18 2017-07-12 株式会社Nttドコモ ユーザ装置、基地局及び方法
CN104579547B (zh) * 2013-10-28 2017-12-22 普天信息技术研究院有限公司 一种数据传输的方法
WO2017088911A1 (en) * 2015-11-24 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (xhaul) connectivity
JP7221583B2 (ja) 2017-03-29 2023-02-14 太陽誘電株式会社 コイル部品
US10939457B2 (en) * 2018-02-14 2021-03-02 Qualcomm Incorporated Beam determination for wireless communication
CN110753395B (zh) * 2018-07-23 2022-07-05 成都鼎桥通信技术有限公司 一种信道资源分配方法和装置
WO2020144942A1 (ja) * 2019-01-07 2020-07-16 ソニー株式会社 通信装置及び通信方法
WO2023141388A1 (en) * 2022-01-19 2023-07-27 Commscope Technologies Llc Systems and methods for machine learning based radio resource usage for improving coverage and capacity
WO2023150441A1 (en) * 2022-02-01 2023-08-10 Commscope Technologies Llc Systems and methods for machine learning based slice modification, addition, and deletion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236339A (ja) * 1999-02-16 2000-08-29 Atr Adaptive Communications Res Lab 無線ネットワークのためのチャネル割り当て装置
WO2008001726A1 (fr) * 2006-06-26 2008-01-03 Panasonic Corporation Terminal de radiocommunications, station de base de radiocommunications et procédé de radiocommunications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010002748A (es) * 2007-09-11 2011-02-25 Wi Lan Inc Asignacion de recursos persistente.
EP2206268B1 (en) * 2007-10-23 2013-07-17 Nokia Corporation Improved re-transmission capability in semi-persistent transmission
KR20110009131A (ko) * 2008-05-02 2011-01-27 가부시키가이샤 엔티티 도코모 무선기지국 및 통신제어방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236339A (ja) * 1999-02-16 2000-08-29 Atr Adaptive Communications Res Lab 無線ネットワークのためのチャネル割り当て装置
WO2008001726A1 (fr) * 2006-06-26 2008-01-03 Panasonic Corporation Terminal de radiocommunications, station de base de radiocommunications et procédé de radiocommunications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.300 V8.4.0", 3GPP, March 2008 (2008-03-01), pages 23 - 25, 61 - 62, XP008145188 *
DAJIE JIANG ET AL.: "Principle and Performance of Semi-persistent Scheduling for VoIP in LTE System", WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, 2007. WICOM 2007, 8 October 2007 (2007-10-08), pages 2861 - 2864, XP031261882 *
QUALCOMM EUROPE: "Semi-persistent scheduling", 3GPP TSG-RAN WG2 #60, R2-075166, 5 November 2007 (2007-11-05), XP008145194, Retrieved from the Internet <URL:ftp://ftp.3gpp.org/tsg_ran/WG2_RL2/TSGR2_60/Docs/R2-075166.zip> *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066639A (ja) * 2009-09-16 2011-03-31 Kddi Corp 無線リソース割当装置および無線リソース割当方法
US8737208B2 (en) 2009-09-16 2014-05-27 Kddi Corporation Wireless resource allocation apparatus and method
JP2013520140A (ja) * 2010-02-17 2013-05-30 クゥアルコム・インコーポレイテッド 無線通信システムのための連続モード動作
US9337962B2 (en) 2010-02-17 2016-05-10 Qualcomm Incorporated Continuous mode operation for wireless communications systems
WO2013027721A1 (ja) * 2011-08-24 2013-02-28 株式会社エヌ・ティ・ティ・ドコモ 基地局及び通信制御方法
JP2013098641A (ja) * 2011-10-28 2013-05-20 Kddi Corp 無線リソース割当装置、基地局、および無線リソース割当方法
JP2015520562A (ja) * 2012-05-11 2015-07-16 京セラ株式会社 マクロセル通信リソースを用いた装置間通信リソースの管理
CN109644471A (zh) * 2016-08-19 2019-04-16 株式会社Ntt都科摩 资源确定方法、基站及移动台
CN109644471B (zh) * 2016-08-19 2023-05-02 株式会社Ntt都科摩 资源确定方法、基站及移动台

Also Published As

Publication number Publication date
KR20110020228A (ko) 2011-03-02
CN102017756A (zh) 2011-04-13
MX2010012020A (es) 2010-12-15
BRPI0912187A2 (pt) 2019-09-24
JP5342551B2 (ja) 2013-11-13
JPWO2009133954A1 (ja) 2011-09-01
US20110117948A1 (en) 2011-05-19
EP2276304A1 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5342551B2 (ja) 無線基地局及び通信制御方法
JP5342550B2 (ja) 無線基地局及び通信制御方法
US10736116B2 (en) Method and apparatus for an uplink transmission based on a characteristic of physical resources
CN110140312B (zh) 无线通信系统中的终端重发数据的方法和使用该方法的通信设备
US8787273B2 (en) Base station apparatus and communication control method
JP5119235B2 (ja) 基地局装置及び通信制御方法
US10098133B2 (en) Methods and systems for scheduling resources in a telecommunication system
CN107431588B (zh) 用于短tti的时间频率资源的分配方法及其设备
EP2697921B1 (en) Method and apparatus for operating subframe and transmitting channel informaiton for controlling interference in communication system
JP5091942B2 (ja) 基地局装置及び通信制御方法
EP2547164B1 (en) Mobile communication method, mobile station, and radio base station
US20120113942A1 (en) Uplink receiving method for a base station and uplink transmitting method for a terminal using a shared wireless resource
WO2009116441A1 (ja) 基地局装置及び通信制御方法
EP2391045B1 (en) Radio base station and radio resource allocation method
US9363062B2 (en) Method and apparatus for transmitting and receiving periodic channel information in wireless communication system
WO2011078185A1 (ja) 移動局、無線基地局及び移動通信方法
KR20110092675A (ko) 무선 통신 시스템에서 자원 할당 스케줄링 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115886.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510178

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/012020

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20107024881

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4248/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009738891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010147927

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12990757

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0912187

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101103