WO2009132543A1 - 为用户分配应答信道的方法、装置和系统 - Google Patents

为用户分配应答信道的方法、装置和系统 Download PDF

Info

Publication number
WO2009132543A1
WO2009132543A1 PCT/CN2009/071124 CN2009071124W WO2009132543A1 WO 2009132543 A1 WO2009132543 A1 WO 2009132543A1 CN 2009071124 W CN2009071124 W CN 2009071124W WO 2009132543 A1 WO2009132543 A1 WO 2009132543A1
Authority
WO
WIPO (PCT)
Prior art keywords
cce
sub
label
subframe
blocks
Prior art date
Application number
PCT/CN2009/071124
Other languages
English (en)
French (fr)
Inventor
陈小波
刘广
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40947088&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009132543(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2010509668A priority Critical patent/JP5001426B2/ja
Priority to ES09709439.5T priority patent/ES2523040T3/es
Priority to EP19219962.8A priority patent/EP3672198B1/en
Priority to BRPI0907017A priority patent/BRPI0907017B8/pt
Priority to CN2009800000634A priority patent/CN101690115B/zh
Priority to EP17188077.6A priority patent/EP3282673B1/en
Priority to EP09709439.5A priority patent/EP2278772B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US12/543,005 priority patent/US8243669B2/en
Publication of WO2009132543A1 publication Critical patent/WO2009132543A1/zh
Priority to US13/286,844 priority patent/US8213378B2/en
Priority to US13/550,317 priority patent/US8665814B2/en
Priority to US14/104,782 priority patent/US9054867B2/en
Priority to US14/732,159 priority patent/US9306705B2/en
Priority to US15/050,674 priority patent/US9525517B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a technique for allocating a response channel to a user. Background technique
  • the network side device for example, the base station, sends downlink control signaling to indicate the user before transmitting the downlink data.
  • the corresponding resources are up to receive downlink data.
  • the user feeds back a positive acknowledgment ACK (ACKnowledgement) if it receives correctly, and rejects the negative acknowledgment NAK (Negative-ACKnowledgement) if it receives erroneously.
  • the user equipment UE (User Equipment) receiving the downlink data can support two modes, FDD (Frequency Division Duplex) mode or (Time Division Duplex) TDD mode.
  • the channel carrying the ACK or NAK feedback information of the user is an ACK channel
  • the ACK channel is allocated by the network side according to a system reservation rule.
  • the user already knows the predetermined rule, detects the allocated ACK channel according to the predetermined rule, and carries the feedback information on these channels and transmits it to the network side device.
  • each radio frame has a length of 10 milliseconds and is composed of two half-frames having a length of 5 milliseconds.
  • Each field consists of 8 slots of 0.5 milliseconds long and 3 special domains DwPTS, GP, UpPTS.
  • Each of the two time slots constitutes one subframe, and the three special fields DwPTS, GP, and UpPTS form a special subframe, and the length of the subframe is 1 millisecond.
  • subframes 0 and 5 are downlink subframes
  • subframe 2 is an uplink subframe. Equipped as uplink or downlink.
  • the ACK channel used by the uplink feedback ACK or NAK is implicitly mapped by the CCE with the smallest label occupied by the PDCCH.
  • One common implicit mapping method is a one-to-one mapping of CCE labels to ACK labels.
  • the number n of symbols occupied by the PDCCH indicated by the PCFICH (Physical Layer Control Format Indicator Channel) in each downlink subframe may be 1, 2 or 3, and for the special subframe, n may be 1 or 2.
  • the n value of a sub-frame can be dynamically changed.
  • a downlink subframe if the system parameters such as the system bandwidth and the pilot antenna configuration are fixed, the more the number of symbols n occupied by the PDCCH, the more the number of CCEs in the downlink subframe.
  • n is 1, 2, 3, vJ, N CCE N CCE , N CCEii represent the number of CCEs in the downlink subframe, N CQ ⁇ N CCE ⁇ N CCE , .
  • the network side allocates an ACK channel to the user according to the following rules:
  • the network side reserves f( N CC£ , 3 ) ACK channels for each downlink subframe (including special subframes) according to the maximum number of CCEs, and uses CCE and ACK.
  • f(W ee£ 3 ) N ee£ 3
  • the function f represents the mapping rule of the CCE label to the ACK channel label.
  • each downlink sub-frame is mapped to each one in the original order, and the size of each copy is N e ⁇ 3.
  • the mapping mode is as shown in FIG. 2, where the maximum value of the PCFICH of the downlink subframes 0 and 1 is 3.
  • the embodiment of the present invention provides a technique for allocating an ACK channel to a user, which can save the required ACK channel resources.
  • An embodiment of the present invention provides a method for allocating a response ACK channel for a user, which is used to feed back a response of N downlink subframes in an uplink subframe, where the method includes:
  • the ACK channel is allocated to the downlink subframe according to the order of incrementing the mapping label d and incrementing the sub-block label m; where N is a positive integer.
  • Another embodiment of the present invention provides a method for allocating a response ACK channel for a user, which is used to feed back a response of N downlink subframes in an uplink subframe, where the method includes:
  • CCE is the CCE label of the control channel element in the sub-frame
  • is the sub-label of the d
  • the label of the ACK channel assigned in the frame is ⁇ ⁇ CCE
  • ⁇ ⁇ ⁇ ⁇ indicates the number of CCEs in the downlink subframe when the value of n is m
  • K and N are positive integers.
  • Another embodiment of the present invention provides a method for allocating an ACK channel for a user, which is used to feed back a response of N downlink subframes in one uplink subframe.
  • the reserved ACK channel is divided into N large blocks, each downlink subframe corresponds to one large block in a preset order, and each large block is divided into multiple sub-blocks; according to different channels in the same subframe
  • the control unit CCE sets are respectively mapped to different sub-blocks, and the ACK channel is allocated for the downlink subframe.
  • the embodiment of the present invention further provides another method for allocating an ACK channel for a user, which is used to feed back a response of multiple downlink subframes in one uplink subframe.
  • the reserved Wx Or ⁇ N CCE i ACK channels continuously mapping ACK channels for each downlink subframe.
  • the embodiment of the present invention provides another method for allocating an ACK channel for a user, which is used to feed back a response of multiple downlink subframes in one uplink subframe.
  • the reserved ACK channel is divided into N large blocks, and each downlink subframe is assigned a mapping label d according to a preset rule, and each mapping label corresponds to one large block; each large block is divided into multiple sub-blocks.
  • the ACK channel is allocated for the downlink subframe according to the order of incrementing the mapping label d and incrementing the sub-block label m, where K is an integer greater than or equal to 1.
  • the embodiment of the present invention provides another method for allocating an ACK channel for a user, which is used to feed back responses of multiple downlink subframes in one uplink subframe.
  • the reserved ACK channel is divided into N large blocks, and the same mapping label d is assigned to multiple downlink subframes according to a preset rule, and each mapping label corresponds to one large block; each large block is divided into multiple sub-blocks.
  • the ACK channel is allocated for the downlink subframe in the order of increasing the mapping label d and incrementing the sub-block label m.
  • An embodiment of the present invention provides an apparatus for allocating a response ACK channel to a user, including a reservation unit and an allocation unit.
  • the reserved unit is configured to reserve a channel for the N downlink subframes.
  • the allocation unit is configured to divide the reserved ACK channel into N large blocks, and assign a mapping label d to each downlink subframe according to a preset rule. Each mapping label corresponds to one large block; each large block is divided into multiple sub-blocks, and the mapping is incremented according to the first The order of incrementing the sub-block number m is to allocate an ACK channel for the downlink subframe.
  • the embodiment of the present invention further provides another apparatus for allocating a response ACK channel to a user, including: a reservation unit, configured to reserve A ⁇ W CC ? , max ⁇ M ⁇ or N ee £ for N downlink subframes, An M ACK channel; an allocating unit, configured to allocate an ACK channel for the downlink subframe according to how the ACK channel is continuously mapped for each subframe on the reserved ACK channel.
  • a reservation unit configured to reserve A ⁇ W CC ? , max ⁇ M ⁇ or N ee £ for N downlink subframes, An M ACK channel
  • an allocating unit configured to allocate an ACK channel for the downlink subframe according to how the ACK channel is continuously mapped for each subframe on the reserved ACK channel.
  • Embodiments of the present invention also provide a communication system including a user terminal and any of the devices described above.
  • the device is located on the network side, and allocates an ACK channel to the user terminal.
  • the user terminal feeds back response information of the N downlink subframes to the network side on the allocated ACK channel.
  • the reserved ACK channel is divided into large blocks according to the downlink subframe, and then the large block is divided into multiple sub-blocks, and the CCE sets of the control channel elements in the same subframe are respectively mapped to different sub-blocks, thereby
  • the idle ACK channel resources are released in a block, forming more resource blocks for transmission of other channels, such as for PUSCH transmission.
  • the ACK channel is continuously mapped for each subframe, thereby facilitating the free ACK channel resources to be released in a whole block to save ACK channel resources.
  • FIG. 1 is a schematic structural diagram of a TDD mode frame in the prior art
  • FIG. 2 is a schematic diagram of a mapping manner according to the prior art
  • FIG. 3 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a mapping manner according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another mapping manner according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of still another mapping manner according to an embodiment of the present invention
  • FIG. 7 is a schematic structural view of a device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the inventors have found that allocating an ACK channel to a user according to the prior art is disadvantageous for more idle ACK channels being released to form a resource block for PUSCH transmission.
  • the ACK channel label that may be used in the ACK channel mapped to subframe 0 is 0 ⁇ N CCE
  • 3 -1 can only be located in 0 ⁇ NCCEJ-1, numbered NCCEJ ⁇ N CCE, ACK channel 3-1, and can not pass through implicit mapping is occupied, these idle ACK channel resource occupied difficult to block the release, i.e., release of free resources is difficult to form a resource block.
  • the network side allocates an ACK channel to the user according to the following rules:
  • ⁇ , ⁇ ⁇ are reserved for each subframe (including special subframes) ( ⁇ channel, a total of X, MAX ⁇ ⁇ ⁇ channels are reserved.
  • n 2
  • n 3
  • Max ⁇ Mi ⁇ is 3.
  • the number of ACK channels reserved for each subframe is .
  • each subframe corresponds to a large block in a preset order; the labels in the same subframe are ⁇ 0, 1 , NccE ⁇ - 1 ⁇ ,
  • the CCE sets of 1, ..., N CCE, and Mi -1 ⁇ are mapped to different sub-blocks, respectively.
  • step 102 The specific mapping process in step 102 will be described below by taking the 3GPP E-UTRA system with max ⁇ f ⁇ as 3 as an example.
  • Max ⁇ Mi ⁇ is 3, that is, each chunk is divided into 3 sub-blocks.
  • the label in the same sub-frame is ⁇ 0, 1,
  • a unique mapping label d is assigned to the (o ⁇ ⁇ N) subframes of the N downlink subframes with the labeling i in accordance with the preset rule, to indicate that the subframes are ranked in the mapping.
  • the frame is arranged in the last mapping mode, or the subframe with the largest value of n is ranked first in the mapping mode, especially according to the actual value of n from the largest to the smallest mapping mode.
  • the ACK channel number assigned after mapping is n ⁇ CCH
  • the N x N e ⁇ ACK channels reserved for N downlink subframes are respectively labeled 0 ⁇ N*N ee£>3 -l.
  • the base station schedules a user terminal UE in the subframe labeled d of the N downlink subframes, and allocates a starting CCE label of the PDCCH occupied by the downlink scheduling assignment grant command of the UE to n CCE , Q.
  • the UE detects the PDCCH carrying the UE downlink scheduling assignment grant command on the subframe labeled d, and learns that the initial CCE label occupied by the UE is eeE , 0 ⁇ n CCE ⁇ N CCE , 3 .
  • the UE learns the ACK channel label assigned to it according to the following procedure! cai : First, it is determined by the value of the CE that the mapped ACK channel belongs to the sub-block labeled m in the subframe labeled d, and the determining process is from e.
  • the UE feeds back ACK/NACK information on the labeled ACK channel, and the base station detects the fed back ACK/NACK information on the ACK channel labeled CCH . If the base station schedules the UE in multiple subframes of the N subframes, the base station allocates multiple ACK channel labels to the UE by using the foregoing mapping, and the UE generally uses the detected CCE corresponding to the start CCE of the last PDCCH. The ACK channel feeds back ACK/NACK information.
  • the RB can be scheduled for user data only when L code division multiplexed ACK channels on the RB are not used. Therefore, the adjustment of the above sub-blocks can also be introduced into the "fine tuning", that is, the sub-frame number is ⁇ 0, 1, .., NccE ' 1 - 1 - ⁇ , ⁇ NCCEA — A N CCE, I - ⁇
  • the order of ⁇ 1 is determined in turn to determine the respective values, and usually the value should be no more than 3. Introduction of regulatory factors The following is: When the number of ACK channels in different CCE sets of the same subframe is close to an integral multiple of L, a complete one or several RBs can be formed.
  • the "preset order" in "one sub-frame corresponds to a large block in a preset order" may be the original order of the N downlink sub-frames, or may be a special sub-frame in the last order, or may be The subframe with the largest actual value of n is ranked in the first order (if there are multiple subframes with the same n value, the multiple subframes may be ranked first in any order), and any other may be beneficial for release.
  • Each sub-frame corresponds to an example of a large block in the original order of N sub-frames, as shown in FIG.
  • it is necessary to feed back ACK/NAK of two downlink subframes in one uplink subframe and Mi of both downlink subframes is 3.
  • the value of n indicated by the PCFICH of the downlink subframe 0 is actually 3, and the value of n indicated by the PCFICH of the downlink subframe 1 is actually 2.
  • the downlink subframes 0 and 1 occupy a large block in the order of the original subframe, that is, the first subframe 0 and the subframe 1 in sequence. Among them, in the sub-frames 0 and 1, each sub-block is sequentially occupied by the label.
  • ACK channel resources whose numbers are in the range of i fN cc ⁇ 3 + N CCE ) ⁇ (2N m - 1 ) ⁇ can be released.
  • each sub-frame corresponds to a large block in the last order of the special sub-frames. Since the value of the special subframe in the existing 3GPP system is at most 2, the special subframe is ranked last, which is beneficial to release more idle ACK channel resources in a whole block.
  • Each sub-frame corresponds to a large block in the order in which the actual value of n is the largest, as shown in Figure 5.
  • ACK/NAK of downlink subframe 0 and downlink subframe 1 in one uplink subframe and Mi of both downlink subframes is 3.
  • the value of n indicated by the PCFICH of the downlink subframe 0 is actually 2, and the value of n indicated by the PCFICH of the downlink subframe 1 is actually 3. Since the value of n of the downlink subframe 1 is the largest, the downlink subframe 1 is ranked first.
  • ACK channel resources in the range of the label ⁇ (N CCE , 3 + N ) ⁇ (2N CCE>3 - 1 ) ⁇ can be released.
  • the number of downlink subframes to be fed back is greater than two, it is preferable to allocate the large blocks according to the actual value of the subframe n from the largest to the smallest, so that more idle ACK resources are released in a whole block. come out.
  • the ACK/NAK of the N downlink subframes needs to be fed back in one uplink subframe, and the network side allocates an ACK channel to the user according to the following rules:
  • step 101 The difference from step 101 is that it is not reserved for each subframe. Instead of ACK channels, different numbers of ACK channels are reserved according to the difference of Mi of each downlink subframe, so that reserved ACK channel resources can be reduced, thereby saving system channel resources.
  • N ee £ and 2 ACK channels are reserved for the special subframe, and N e 3 channels are reserved for the remaining downlink subframes respectively.
  • Reserving ⁇ , 2 instead of N CCEi ACK channels for special subframes reduces the reserved ACK channel resources.
  • the CCE sets of N ccE, Mi -1 ⁇ are mapped to different sub-blocks, respectively. For example, for a special subframe with a Mi of 2, the corresponding large block is divided into 2 sub-blocks, and the label in the sub-frame is ⁇ 0, 1, Ncc ⁇ NccE '
  • the CCE sets of NcCE ' 1 + 1 , ..., ( NccE ' 2 - 1 ) ⁇ are mapped to different sub-blocks, respectively.
  • each chunk is divided into 3 sub-blocks, and sub-blocks belonging to different chunks are staggered, and the labels in the same subframe are ⁇ 0, 1, .., NccE - 1 - 1 ⁇ , ⁇ NccE - 1 , NccE - 1 + 1 , ..., ( NccE - 2 — 1 ) ⁇ ,
  • the CCE sets of ⁇ NccE ' 2 , ( NccE ' 2 +1 ) , ..., ( CCE ' 3 - 1 ) ⁇ are mapped to different sub-blocks, respectively.
  • the special subframe is ranked last, that is, when the mapping label d is assigned to the subframe labeled i, it is always special.
  • step b the base station and the UE determine the ACK channel label ⁇ H mapped by the CCE labeled n CCE in the subframe labeled d according to the following procedure:
  • the mapped value is determined by the value of ⁇ E
  • the ACK channel belongs to the sub-block labeled m in the subframe labeled d, and the determination process is to select the value of m from me ⁇ 0, 1, 2 ⁇ such that N CCE , m ⁇ n CCE ⁇ N CCE , m+l -1 (1) is established;
  • substituting the m value obtained in the previous step into the formula n ⁇ CCH (Nd- ⁇ )x N CCE>m +dx N CCE , m+l + n CCE ( 2 )
  • the foregoing preset sequence may be the original sequence of the downlink subframes, or may be the order in which the special subframes are ranked last, or the subframes in which the actual value of ⁇ is the largest. Refer specifically to the description of the previous embodiment.
  • the ACK/NAK of the downlink subframes needs to be fed back in one uplink subframe, and the network side allocates an ACK channel to the user according to the following rules:
  • a. Reserve an ACK channel for each downlink subframe.
  • W ca?, M or W ca?, max ⁇ M ⁇ ACK channels are reserved for each subframe, that is, a total of NxN CCE and dN CCE channels are reserved.
  • b. Map N subframes onto the reserved ACK channel. Specifically, the ACK channel is continuously mapped for each subframe. The order of arrangement between N subframes may be any order. An example is shown in Figure 6. In The Mi of the frame is all 3. The value of n indicated by the PCFICH of the downlink subframe 0 is actually 2, and the value of n indicated by the PCFICH of the downlink subframe 1 is actually 3. After subframe 0 has mapped the ACK channel, subframe 1 then maps the remaining ACK channels. The method of continuous mapping can ensure that there is no idle ACK channel between the ACK channels mapped in each subframe, so that more idle ACK channels can be released in one block. In the example shown in Figure 6, the label is
  • ACK channel resources in the range of 3 - J can be released.
  • the released label is at f (N CCE , + N CC 2 ) ⁇ (2N CCE , - range
  • the ACK channel within can form a complete resource block for transmission of the PUSCH.
  • the ACK channel in the range of 145 can be released, that is, 34 ACK channels are released.
  • a resource block can only multiplex 18 ACK channels, at least one resource block can be released for PUSCH transmission.
  • 34 ACK channels can be released, but since the value of L is 18, 16 ACK channels are also released, but a complete RB cannot be formed for PUSCH transmission.
  • the intra-subframe CCE and the ACK channel have a mapping relationship, and a non-overlapping ACK channel set is reserved for each sub-frame.
  • the first method multiple downlink subframes are mapped to the same ACK channel set, and a one-to-one mapping of CCE labels to ACK channel labels is still used in the subframe, which is equivalent to allocating multiple downlink subframes in the mapping.
  • the same mapping label d For the downlink subframe to which the same mapping label d is allocated, the number of reserved ACK channels is not less than the maximum number of CCEs of any one of the downlink subframes. For the 3GPP E-UTRA system, this means that if the same mapping label d is assigned to the special subframe and the normal downlink subframe, then there are N ee 85 ACK channels in their corresponding ACK channel set.
  • the base station can notify the user of the allocation of the mapping label d through high layer signaling, for example, by means of broadcast notification.
  • the second method is to reserve a set of ACK channels that do not overlap each other for each downlink subframe, but the mapping of the CCE label to the ACK channel label is not used in the subframe, but the same can be assigned to multiple CCEs.
  • ACK channel A more common method is to reserve one ACK channel for every K consecutively labeled CCEs. Specific steps are as follows:
  • NX INTEGER (N CCE , m , / or INTEGER (N CCEM IK) channels reserved for N downlink subframes are divided into two large blocks, each of which contains INTEGER (N CCE Mi , IK ) or INTEGER ⁇ CCE Mi IK) Channels; each downlink subframe is assigned a mapping label d according to a preset rule, and each mapping label corresponds to one large block.
  • /NrEGEwo represents the rounding operation, which can be a rounding up operation "1, or a rounding down operation L". It can be seen that when K is greater than 1, it is equivalent to reducing the number of ACK channels to be reserved to 1/K of the number of CCEs, and thus K can also be referred to as an ACK resource reduction factor.
  • N CCEmaMW ⁇ / channels are reserved, that is, INTEGER (N cc ⁇ maxiM] IK) ACK channels are reserved for each downlink subframe, each large block is divided into max ⁇ M ⁇ sub-blocks
  • the sub-block labeled m contains INTEGER(N CCE m+1 1 K) - INTEGER ⁇ N CCE m / ) ACK channels, where
  • each block is divided into ⁇ sub-blocks, and the sub-block labeled m contains INTEGER(N CCE m+l / K, — INTEGER(N CCE m / K, CKAt, where 0 ⁇ ⁇ M'. All ACK channel sub-blocks are arranged in the order of increasing the mapping label and incrementing the sub-block label m.
  • 1 PDCCH can be 1 It is composed of 2, 4 or 8 CCEs. Therefore, the value range of K is recommended to be a non-empty subset of the set ⁇ 1, 2, 4, 8 ⁇ . The specific value of K is notified to the user by the base station through high-level signaling.
  • CCE ACK channel label ⁇ H First, to determine ACK channel is mapped by ⁇ £ values belonging to the designated subframe d numerals into sub-blocks of m, e.g., for 3GPP E-UTRA system, the process of determining from me The value of m is chosen in ⁇ 0,1,2 ⁇
  • a plurality of CCEs may be mapped to the same ACK channel for the partial subframes, and a mapping manner of each CCE corresponding to the different ACK channels, that is, the CCE label to the ACK channel label, may be extracted for other partial subframes.
  • - Mapping method a mapping manner of each CCE corresponding to the different ACK channels, that is, the CCE label to the ACK channel label.
  • the remaining CCEs in the sub-frame after the rounding operation on the ⁇ may not have an ACK channel corresponding thereto, for example, when the label is
  • the subframe of i reserves Lw ee£ , M / " ACK channel, when N ee £ , M cannot be divisible by K, according to equations (3) and (4), only the label is 0 ⁇ Lw CC£ .
  • the CCE of M / "x -l can be mapped to the ACK channel, labeled Therefore, on the base station side, the label is not ⁇ N CCE , Mi -1 CCE allocation is used to carry the downlink scheduling assignment authorization command
  • the starting CCE occupied by the PDCCH is the starting CCE occupied by the PDCCH.
  • the first method in order to avoid collision of the ACK channels of the plurality of downlink subframes to which the same mapping label d is allocated, some restrictions may be imposed. For example, in a CCE with the same label in the multiple downlink subframes to which the same mapping label d is assigned, at most one CCE is the initial CCE occupied by the PDCCH carrying the downlink scheduling assignment authorization command.
  • an apparatus 701 for assigning a response ACK channel to a user is shown in FIG.
  • the device 701 includes a reservation unit 702 and an allocation unit 703.
  • the reservation unit 702 is configured to reserve a channel for each downlink subframe (including a special subframe), for example, reserve /NrEGE?(N ee£ , maxiMi / ⁇ ) for each subframe or
  • the allocating unit 703 is configured to allocate the reserved ACK channel to the N downlink subframes, specifically: dividing the reserved ACK channel into N large blocks, and each downlink sub-subject according to a preset rule.
  • the frame is assigned a mapping label d, and each mapping label corresponds to one large block, and each large block is divided into multiple
  • the sub-block allocates an ACK channel for each downlink subframe in the order of increasing the mapping label d and incrementing the sub-block label m.
  • the preset rule may be that the special subframe is arranged in the last mapping manner, or may be the mapping mode in which the subframe with the largest actual value of n is ranked first, especially according to the actual value of n from large to small. the way.
  • each large block is divided into max ⁇ f ⁇ sub-blocks, labeled as m Included in the sub-block
  • N CCE / 1 letter divide each large block into M sub-blocks, and the sub-block labeled m contains INTEGER(N CCE M+L IK) - INTEGER(N CCE M IK) channels.
  • the distribution method it can be:
  • the reservation unit 702 is configured to reserve N CCE , m for each downlink subframe, or
  • the allocation unit 703 allocates an ACK channel for the downlink subframe according to the manner in which the ACK channel is continuously mapped for each subframe on the reserved ACK channel.
  • a communication system 801 is shown in FIG.
  • Communication system 801 includes means 802 and user terminal 803 that assign a response ACK channel to the user.
  • the device 802 further includes a reservation unit and an allocation unit, and the functions of the two units are the same as the reservation unit 802 and the allocation unit 803, respectively.
  • the device 802 is located on the network side, such as in a base station on the network side. Since the user terminal knows the allocation rule of the ACK channel in advance, the response information of the N downlink subframes is directly fed back to the network side on the allocated ACK channel.

Description

为用户分配应答信道的方法、 装置和系统 本申请要求于 2008年 4月 29日提交中国专利局、申请号为 200810067047.4, 发明名称为"为用户分配应答信道的方法、 装置和系统", 以及于 2008年 6月 2 日提交中国专利局、 申请号为 200810108466.8, 发明名称为"为用户分配应答信 道的方法、 装置和系统"的两项中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域
本发明涉及移动通信领域, 尤其涉及一种为用户分配应答信道的技术。 背景技术
在现有的 3GPP (第三代伙伴计划) E-UTRA (演进全球地面无线接入)系 统中, 网络侧设备, 例如基站, 在发送下行数据之前, 会先发下行控制信令, 指示用户在相应的资源上去接收下行数据。 用户在接收到下行数据之后, 如果 正确接收则反馈肯定的应答 ACK ( ACKnowledgement ) , 如果错误接收, 则反 馈否定的应答 NAK ( Negative-ACKnowledgement )。接收下行数据的用户终端 UE ( User Equipment )可以支持两种模式, FDD (频分双工)模式或 (时分 双工) TDD模式。
对于支持 TDD模式的用户终端, 承载用户的 ACK或 NAK反馈信息的信道为 ACK信道, ACK信道由网络侧根据系统预定规则来分配。 用户已知道预定规则, 根据该预定规则来检测出所分配的 ACK信道, 并将反馈信息承载在这些信道上 发送给网络侧设备。
在现有技术中, TDD模式下的帧结构通常如图 1所示, 每个无线帧 (radio frame )长为 10毫秒, 由 2个长为 5毫秒的半帧(half-frame )组成。 每个半帧由 8 个长为 0.5毫秒的时隙 (slot )和 3个特殊域 DwPTS、 GP、 UpPTS组成。 每两个 时隙组成一个子帧, 3个特殊域 DwPTS、 GP、 UpPTS组成一个特殊子帧, 子帧 的长度都为 1毫秒。 各子帧中, 子帧 0和 5为下行子帧, 子帧 2为上行子帧, 特殊 配为上行或下行。
目前, 在 3GPP E-UTRA系统中定义了 7种下行上行配比, 对于 5毫秒周期, 有 1 : 3、 2: 2和 3: 1这 3种配比; 对于 10毫秒周期, 有 4种配比, 分别为 6: 3、 7: 2、 8: 1、 3: 5。 除了 1 : 3和 3: 5这两种配比, 其他配比都会导致需要在一 个上行子帧内反馈 N ( N>1 , N为整数)个下行子帧的 ACK或 NAK。 本领域技术 人员知道, N>1是 TDD模式特有的情况, 需要解决这种情况下多个下行子帧的 ACK/NAK分配问题。 同时, 针对 N>1情况所提的解决方案要同时适用于 N=1的 情况, 以降低 TDD模式系统的复杂度。
由于 PDCCH (物理层下行控制信道) 占用的时频资源以 CCE (控制信道单 元)为单位, 因此上行反馈 ACK或 NAK使用的 ACK信道通过 PDCCH占用的标号 最小的 CCE来隐式映射。 一种常用的隐式映射方式是 CCE标号到 ACK标号的一 一映射。
在 3GPP系统中, 每个下行子帧中由 PCFICH (物理层控制格式指示信道) 指示的 PDCCH占用的符号数目 n可以为 1、 2或 3, 对于特殊子帧, n可以为 1或 2。 子帧的 n值可以动态变化。 在一个下行子帧中, 在系统带宽、 导频天线配置等系 统参数一定的情况下, PDCCH占用的符号数目 n越多, 该下行子帧中 CCE的数 目就越多。 当 n为 1、 2、 3时, vJ、、NCCE NCCE 、 NCCEii 来代表下行子帧中 CCE 的数目, NCQ < NCCE < NCCE, 。 依据现有技术, 当需要在一个上行子帧内反馈 N个下行子帧的 ACK/NAK时, 网络侧根据以下规则来为用户分配 ACK信道:
( 1 )考虑到 n的取值的不同, 网络侧按照最大的 CCE数目为每个下行子帧 (包括特殊子帧 )预留 f( NCC£,3 )个 ACK信道, 釆用 CCE与 ACK—一映射的方式, f( Wee£ 3 ) = Nee£ 3,函数 f代表 CCE标号到 ACK信道标号的映射规则。对于 N个子帧, 总共预留 >< ^个 (^信道。
( 2 )将 >< ^,3个 (^信道分成连续的 N份, 每个下行子帧按照原有顺序 映射到每一份, 每份的大小为 Ne^3。 例如, 当需要在一个上行子帧反馈两个下 行子帧的 ACK/NAK时, 映射方式如图 2所示, 其中, 下行子帧 0和 1的 PCFICH的 最大取值都为 3。
发明人在实现本发明实施例的过程中发现, 根据前述规则来为用户分配 ACK信道, 不利于更多的空闲 ACK信道被释放以形成用于 PUSCH (物理层上行 共享信道)传输的资源块(RB, Resource Block ) 。 发明内容
本发明施例提供了一种为用户分配 ACK信道的技术, 可以节省所需的 ACK 信道资源。
本发明实施例提供的一种为用户分配应答 ACK信道的方法, 用于在一个 上行子帧内反馈 N个下行子帧的应答, 所述方法包括:
将预留的 ACK信道分成 N个大块, 为每个下行子帧分配一个映射标号 d, 每 个映射标号对应一个大块; 将每个大块分成多个子块, 为每个子块分配子块标 号为 m;
按照先递增映射标号 d、 再递增子块标号 m的顺序,为下行子帧分配 ACK信 道; 其中, N为正整数。
本发明实施例提供的又一种为用户分配应答 ACK信道的方法, 用于在一个 上行子帧内反馈 N个下行子帧的应答, 所述方法包括:
利用下式按照先递增映射标号 再递增子块标号 m的顺序,为下行子帧分配 ACK信道:
CCH
Figure imgf000005_0001
; 其中, 《CCE是子帧内的控制信道单元 CCE标号, 是为映射标号为 d的子 帧中标号为^ 々CCE所分配的 ACK信道的标号, Λ^α ^表示 n值为 m时下行子 帧中 CCE的数目, K和 N为正整数。
本发明实施例提供的又一种为用户分配 ACK信道的方法, 用于在一个上行 子帧内反馈 N个下行子帧的应答。在该方法中,将预留的 ACK信道分成 N个大块, 每个下行子帧按照预设的顺序对应一个大块, 将每个大块分成多个子块; 按照 同一子帧内不同的信道控制单元 CCE集合分别映射到不同子块的方式, 为下行 子帧分配 ACK信道。
本发明实施例还提供了另一种为用户分配 ACK信道的方法, 用于在一个上 行子帧内反馈多个下行子帧的应答。 依据该方法, 在预留的 Wx
Figure imgf000006_0001
或 ∑NCCE i个 ACK信道上, 连续为每一个下行子帧映射 ACK信道。 本发明实施例提供了又一种为用户分配 ACK信道的方法, 用于在一个上行 子帧内反馈多个下行子帧的应答。依据该方法,将预留的 ACK信道分成 N个大块, 根据预设规则为每个下行子帧分配一个映射标号 d, 每个映射标号对应一个大 块; 将每个大块分成多个子块;根据 K个连续的控制信道单元 CCE映射一个 ACK 信道的方式, 按照先递增映射标号 d、 再递增子块标号 m的顺序,为下行子帧分配 ACK信道, 其中, K为大于等于 1的整数。
本发明实施例提供了又一种为用户分配 ACK信道的方法, 用于在一个上行 子帧内反馈多个下行子帧的应答。依据该方法,将预留的 ACK信道分成 N个大块, 根据预设规则为多个下行子帧分配相同的映射标号 d, 每个映射标号对应一个大 块; 将每个大块分成多个子块; 按照先递增映射标号 d、 再递增子块标号 m的顺 序,为下行子帧分配 ACK信道。
本发明实施例提供了一种为用户分配应答 ACK信道的装置, 包括预留单元 和分配单元。 其中, 预留单元用于为 N个下行子帧预留信道; 分配单元用于将所 预留的 ACK信道分成 N个大块,根据预设规则为每个下行子帧分配一个映射标号 d, 每个映射标号对应一个大块; 将每个大块分成多个子块, 按照先递增映射标 号 再递增子块标号 m的顺序为下行子帧分配 ACK信道。
本发明实施例还提供了另一种为用户分配应答 ACK信道的装置, 包括: 预 留单元, 用于为 N个下行子帧预留 A^ WCC ?,max{M}或 Nee£,M ACK信道; 分配 单元, 用于根据在所预留的 ACK信道上连续为每一个子帧映射 ACK信道的方式, 为下行子帧分配 ACK信道。
本发明实施例还提供了一种通信系统, 包括用户终端和前面所述的任意一 种装置。 其中, 装置位于网络侧, 为用户终端分配 ACK信道; 用户终端在所分 配的 ACK信道上将 N个下行子帧的应答信息反馈给网络侧。
本发明实施例还提供了另一种通信系统, 包括前面所述的任意一种装置。 依据本发明实施例, 将预留的 ACK信道按照下行子帧分成大块, 然后将大 块分成多个子块, 同一子帧内的控制信道单元 CCE集合分别映射到不同的子块 上, 从而有利于空闲的 ACK信道资源被整块地释放出来, 形成更多的资源块, 用于其他信道的传输, 例如用于 PUSCH的传输。 或者, 在所述预留的 ACK信道 上, 连续为每一个子帧映射 ACK信道, 从而有利于空闲的 ACK信道资源被整块 地释放出来, 以节省 ACK信道资源。 或者, 将多个连续的 CCE映射到一个 ACK 信道, 或者为多个下行子帧分配相同的映射标号, 从而节省预留资源开销, 以 节省 ACK信道资源。
附图说明
下面将参照附图对本发明进行更为详细的描述, 附图中:
图 1是现有技术中的 TDD模式帧结构示意图;
图 2是依据现有技术的一种映射方式示意图;
图 3是依据本发明实施例的方法的流程示意图;
图 4是依据本发明实施例的一种映射方式示意图;
图 5是依据本发明实施例的另一种映射方式示意图;
图 6是依据本发明实施例的又一种映射方式示意图; 图 7是依据本本发明实施例的装置结构示意图;
图 8是依据本发明实施例的系统结构示意图。
具体实施方式
发明人在实现本发明实施例的过程中发现, 根据现有技术为用户分配 ACK 信道, 不利于更多的空闲 ACK信道被释放以形成用于 PUSCH传输的资源块。 例 n的实际取值为 1时,在映射给子帧 0的标号为 0 ~ NCCE,3-1的 ACK信道中, 实际可 能被使用的 ACK信道标号只能位于 0 ~ NCCEJ-1 , 对于标号为 NCCEJ ~ NCCE,3-1的 ACK信道, 则不能通过隐式映射被占用, 而这些空闲 ACK信道占用的资源难以 被整块地释放出来, 即释放出来的空闲资源难以形成资源块。
本发明实施例中, 如图 3所示, 当需要在一个上行子帧内反馈 N个下行子帧 的 ACK/NAK时, 网络侧根据以下规则来为用户分配 ACK信道:
101. 为每个下行子帧预留 ACK信道。 考虑到每个子帧的 n值可以动态变化, 为每个子帧 (包括特殊子帧) 预留 ^, ^}个 (^信道, 总共则预留 X , MAX { ΜΊ个信道。 其中, Mi表示 N个下行子帧中标号为 i的下行子帧 的 n的最大可能取值, i = 0 , 1 , - , N - 1 , Max { Mh表示 Mi的最大值。 Wco?,MAX{M}表示, n值为 Max { Mi )时下行子帧中 CCE的数目。
例如, 在目前的 3GPP E-UTRA系统中, 对于特殊子帧, n的最大值为 2, 即 Mi=2; 对于其他子帧, n的最大值为 3, 即 Mi=3, 则 Max { Mi }为 3。 为每个子帧 预留的 ACK信道数为 。
102. 将 N个子帧的 CCE映射到预留的 ACK信道上。 具体为, 将预留的 ACK 信道分成 N个大块, 每个大块分成 max{ M 个子块。 对于 N个下行子帧, 每一个 子帧按照预设顺序对应一个大块; 同一子帧内标号为 {0, 1 , NccE^ - 1},
{ NccE'1 , NccE'1 + 1 , ··· , NccE'2 - 1}, NCCE,max{Mi}-l , NCCE,max{Mi}-l + 1, …, NCCE,皿 Mi -1}的 CCE集合分别映射到不同的子块上。
下面以 max{ f}为 3的 3GPP E-UTRA系统为例来说明步骤 102中具体的映 射过程。 Max{ Mi }为 3, 即每个大块分成 3个子块。 同一子帧内标号为 {0, 1,
NCCE,I _ 1}、 { ) , ... ,
Figure imgf000009_0001
N CCE 3
( ' - 1 ) 々CCE集合分别映射到不同的子块上。
在映射过程中, 先根据预设规则为 N个下行子帧的标号为 i的 (o≤ <N )子 帧分配一个唯一的映射标号 d , 用以表示子帧在映射中被排在了标号为 d的子帧 位置, 且 o≤i <N。 所述预设规则可以是任何集合 = {0,1,...,N-1}到集合 t = {0,l,...,N-l}的——映射, 例如 = 又例如, 特殊子帧排列在最后的映射方 式, 或者 n的实际取值最大的子帧排在最前面的映射方式, 尤其是按照 n的实际 取值从大到小的映射方式。 记 NCC£m表示 PCFICH取值为 m ( 0<w<max{ }-l ) 时下行子帧中 CCE的数目, 且定义 Nee£,。 = o。 记映射后分配的 ACK信道标号为 n^CCH , 为 N个下行子帧预留的 NxNe ^个 ACK信道分别标号为 0~N*Nee£>3-l。 本实施例中, 基站在 N个下行子帧的标号为 d的子帧上调度了某用户终端 UE, 且分配携带该 UE下行调度分配授权命令的 PDCCH占用的起始 CCE标号为 nCCE , Q≤nCCE <NCCE, 那么, 基站按照下面过程来为该起始 CCE分配 ACK信道标 号 ^H: 首先, 通过 CE的取值来确定映射后的 ACK信道属于标号为 d的子帧中 标号为 m的子块, 确定过程为 , 从 e {0,1,2}中选择 m的取值使得 NCCE,m≤nCCE≤NCCE,m+「\ ( 1 ) 成立; 其次, 将上一步得到的 m值代入式 "SCCH =(N-d-l)x Ncc¾m + d x NCCE;m+1 + nCCE ( 2 )计算所分配的 ACK信道标号。
对式(2)的进一步说明如下: 当《∞E对应的信道位于标号为 d的子帧中标号 为 m ( o≤w≤max{M}— 1 , 例 ¾口, m=0、 1或 2)的子块时, 所有 N个子帧的前 m个 子块(即标号为 0的子块到标号为 m-1的子块)都排在其前面, 这前 m个子块对 应着 NxNee ^个 ACK信道; N个子帧中前 d个子帧(即标号为 0的子帧到标号为 d-1 的子帧) 的标号为 m的子块也排在其前面, 这些标号为 m的子块对应着 ^^(^^^+1-^^^)个 〇^言道; 最后, 标号为 d的子帧的标号为 m的子块中, 还 有与前 nCCE - NCCE M个 CCE对应的 nCCE - NCCE,M个 ACK信道也排在前面;将上述三项 求和即得到式(2) 。
UE在标号为 d的子帧上检测到了携带该 UE下行调度分配授权命令的 PDCCH, 获知其占用的起始 CCE标号为《eeE, 0≤nCCE <NCCE,3 。 UE按照下面过程 来获知为其分配的 ACK信道标号 !cai: 首先, 通过 CE的取值来确定映射后的 ACK信道属于标号为 d的子帧中标号为 m的子块, 确定过程为从 e {0,1,2}中选择 m的取值使得 NCC£,M ≤ "CC£ ≤ NCC£,M+1 -1 (1 )成立; 其次, 将根据 ( 1 )式得到的 m 值代入式" CH = (N— l)xNCCE,M + T XNCCE,M+1 +"CCE (2) 中, 计算所分配的 ACK 信道标号。
UE在标号为 的 ACK信道上反馈 ACK/NACK信息, 基站在标号为 CCH 的 ACK信道上检测所反馈的 ACK/NACK信息。如果基站在 N个子帧中的多个子帧 上都调度了该 UE, 那么通过上述映射, 基站会分配多个 ACK信道标号给 UE, UE通常使用检测到的最后一个 PDCCH的起始 CCE所对应的 ACK信道来反馈 ACK/NACK信息。
在 3GPP E-UTRA系统中, 在一个 RB上码分复用了 L个 ACK信道, 在短循环 前缀子帧结构下通常 L=18。只有当 RB上的 L个码分复用的 ACK信道都不使用时, 才能将该 RB调度用户数据。因而上述子块的划分中还可以引入调节因子进行"微 调" , 即子帧内标号为 {0, 1, .··, NccE'1 - 1 - ^, { NCCEA — A NCCE,I - Λ
+ 1, ..., NCCE,2 - 1 - Δ2}, ... , { ^CC£,max{ }-l - Amax{Mi}-1, ^ CCE,max{Mi}-l
- Amax{Mi}-1 +1, ^CC£,max{M} - 1 }的 CCE集合分别映射到不同的子块上, 其中 Δ ΐ, A 2, Amax{Mi}— 1即为所述调节因子, 按照△ max{Mi}— 1 , ..., Δ2,
△ 1的顺序去依次确定各自的取值, 通常取值应不大于 3。 引入调节因子的目 的在于: 使得同一子帧的不同的 CCE集合中的 ACK信道的数目接近 L的整数倍 时, 能够形成完整的一个或几个 RB。 "每一个子帧按照预设顺序对应一个大块" 中的 "预设顺序"可以是这 N个下行子帧的原有顺序, 也可以是将特殊子帧排在 最后的顺序, 也可以是 n的实际取值最大的子帧排在最前面的顺序(如果有多个 子帧的 n值相同, 则该多个子帧可以按照任意顺序排在最前面), 还可以是其他 任何有利于释放更多整块的空闲 ACK信道的顺序。
每一个子帧按照 N个子帧的原有顺序对应一个大块的例子, 如图 4所示。 在图 4所示的例子中, 需要在一个上行子帧内反馈两个下行子帧的 ACK/NAK且这两个下行子帧的 Mi都为 3。下行子帧 0的 PCFICH指示的 n值实际为 3, 下行子帧 1的 PCFICH指示的 n值实际为 2。 下行子帧 0和 1按照原有顺序, 即 先子帧 0再子帧 1的顺序, 依次占用一个大块。 其中, 子帧 0和 1中, 又分别按照 标号依次占用各个子块。 如图 4所示, 标号在 i fNcc^3 + NCCE ) ~ (2Nm - 1 ) } 范围内的 ACK信道资源可以被释放出来。
在一个例子中, 每一个子帧按照特殊子帧排在最后的顺序各对应一个大块。 由于现有 3GPP系统中特殊子帧的 n值最大为 2, 因此, 将特殊子帧排在最后, 有 利于更多的空闲 ACK信道资源被整块地释放。
每一个子帧按照 n的实际取值最大的子帧排在最前面的顺序对应一个大块 的例子, 如图 5所示。
在图 5所示的例子中,需要在一个上行子帧内反馈下行子帧 0和下行子帧 1 的 ACK/NAK且这两个下行子帧的 Mi都为 3。下行子帧 0的 PCFICH指示的 n值实际 为 2, 下行子帧 1的 PCFICH指示的 n值实际为 3。 由于下行子帧 1的 n值最大, 因 此下行子帧 1排在最前面。 如图 5所示, 标号 { (NCCE,3 + N ) ~ (2NCCE>3 - 1 ) } 范围内的 ACK信道资源可以被释放出来。 如果需要反馈的下行子帧大于 2个, 则 优选的, 可以按照子帧 n的实际取值从大到小的顺序来分配各个大块, 从而有利 于更多的空闲 ACK资源被整块地释放出来。 在另一个实施例中, 需要在一个上行子帧内反馈 N个下行子帧的 ACK/NAK, 网络侧根据以下规则来为用户分配 ACK信道:
a. 为每个下行子帧预留 NCCEM个 ACK信道, 总共则预留
Figure imgf000012_0001
个 ACK 信道。
与步骤 101的区别在于, 不是为每个子帧都预留
Figure imgf000012_0002
个 ACK信道, 而 是按照每个下行子帧的 Mi的不同来预留不同数目的 ACK信道, 从而可以减少预 留的 ACK信道资源, 因而节省系统信道资源。
例如,当特殊子帧的 Mi为 2,其他下行子帧的 Mi为 3时,为特殊子帧预留 Nee£,2 个 ACK信道,为其余下行子帧仍分别预留 Ne 3个信道。为特殊子帧预留 ^^,2而 非 NCCEi个 ACK信道, 减少了预留的 ACK信道资源。 b. 将 N个子帧映射到预留的 ACK信道上。 具体为, 将预留的 ACK信道分成 N个大块, 每个大块分成 Mi个子块。 每一个子帧按照预设顺序对应一个大块; 属 于不同大块的子块之间交错排列, 同一子帧内标号为 {0, 1, …, NccE'1 - 1},
{ NccE' NccE'1 + 1 , ···, ( NccE'2 - 1 )}, ■■■,{ NCCE,Mi— NCCE,Mi- +1, ···,
NccE,Mi -1}的 CCE集合分别映射到不同的子块上。例如,对于 Mi为 2的特殊子 帧,其所对应的大块分成 2个子块,子帧内标号为 {0, 1, Ncc { NccE'
NcCE'1 + 1 , …, ( NccE'2 - 1 ) }的 CCE集合分别映射到不同的子块上。 对于 Mi 为 3的子帧, 每个大块分成 3个子块, 属于不同大块的子块之间交错排列, 同一 子帧内标号为 {0, 1, .··, NccE-1 - 1}, { NccE-1 , NccE-1 + 1 , ..., ( NccE-2 — 1 )}、
{ NccE'2, ( NccE'2 +1 ) , …, ( CCE'3 - 1 ) }的 CCE集合分别映射到不同的子 块上。 对于 3GPP E-UTRA系统, 如果在 N个子帧中有一个特殊子帧, 则优选地, 将特殊子帧排在最后, 即在为标号为 i的子帧分配映射标号 d时, 总是为特殊子帧 分配 d=N-1。 那么, 在步骤 b中, 基站和 UE按照下面过程来确定标号为 d的子帧 中标号为 nCCE的 CCE所映射的 ACK信道标号 ∞H: 首先, 通过^ E的取值来确 定映射后的 ACK信道属于标号为 d的子帧中标号为 m的子块, 确定过程为从 m e {0,1,2}中选择 m的取值使得 NCCE,m < nCCE < NCCE,m+l -1 (1 )成立; 其次 , 将上一 步得到的 m值代入式 n^CCH =(N-d-\)x NCCE>m +dx NCCE,m+l + nCCE ( 2 )计算所分配的
ACK信道标号。 注意, 对于特殊子帧, 由于只有 2个子块, 在上述式(1 ) 的判 断过程中, 尽管 w e{0,l,2}, 但实际是取不到 2的; 也可以在式(1 ) 的判断中, 对特殊子帧, 定义 e {0,1}。
1 , ... , NCCE,\ - 1 - Λ ι}, { NC E,I - Λι, NC E,I― A^ + ^, ... , NC E,2 - 1 - Δ 2} , ... , { NCCE,Mi~\ - AMi-1, NCCE,Mi~l - △ Mi— 1 + 1 , NCCE,Mi - 1}的 CCE集合 分别映射到不同的子块上, 其中 Δι, 2, AMi- 1即为所述调节因子, 按 照 Δ Μ 1, ..., Δ2, Δι的顺序去依次确定各自的取值, 通常取值应不大于 3。
前述的预设顺序, 可以是这 Ν个下行子帧的原有顺序, 也可以是将特殊子帧 排在最后的顺序, 也可以是 η的实际取值最大的子帧排在最前面的顺序, 具体参 考前面实施例的描述。
在又一实施例中, 需要在一个上行子帧内反馈 Ν个下行子帧的 ACK/NAK, 网络侧根据以下规则来为用户分配 ACK信道:
a. 为每个下行子帧预留 ACK信道。 为各子帧预留 Wca?,M或 Wca?,max{M}个 ACK信道, 即总共预留 NxNCCE, dNCCE 个信道。 b. 将 N个子帧映射到预留的 ACK信道上。 具体为, 连续为每一个子帧映射 ACK信道。 N个子帧之间的排列顺序可以是任意顺序。 一个例子如图 6所示。 在 帧的 Mi都为 3。 下行子帧 0的 PCFICH指示的 n值实际为 2, 下行子帧 1的 PCFICH 指示的 n值实际为 3。子帧 0映射完 ACK信道后,子帧 1接着映射剩下的 ACK信道。 连续映射的方法可以保证各子帧所映射的 ACK信道之间没有空闲的 ACK信道, 从而可以使更多的空闲 ACK信道被整块地释放。 在图 6所示的例子中, 标号在
{ (NCCE + NCCE ) ~ (2NCCE,3 - J范围内的 ACK信道资源可以被释放出来。 被释放出来的标号在 f (NCCE, + NCC 2 ) ~ (2NCCE, — 范围内的 ACK信 道可以形成完整的资源块以用于 PUSCH的传输。
Figure imgf000014_0003
Figure imgf000014_0001
如表 1所示, 在系统带宽为 20MHz、 天线配置为 4天线的情况下, n值分 别为 1、 2、 3时, 对应的
Figure imgf000014_0002
= Vf, NCCE = 39, NCC£;3 = 73。 标号在 1 12到
145范围内的 ACK信道可以被释放, 也就是说, 有 34个 ACK信道被释放。 在一个 资源块只能复用 18个 ACK信道的情况下, 至少可以释放出一个资源块以用于 PUSCH的传输。
在上面的例子中, 34个 ACK信道能够被释放出来, 但由于 L的取值为 18, 有 16个 ACK信道虽然也被释放出来, 但不能形成完整的 RB以用于 PUSCH的传输。
N
在这种情况下,可以进行 "微调,,,将{ NccE'2 - A 2, Ncc - Δ 2 + 1 , CCE'3 - 1}的 CCE集合映射到最后一个子块上, 这里 Δ 2的取值为 2。 这样能够被释放 出来的 ACK信道数目就为 36了, 能够形成完整的 2个 RB以用于 PUSCH的传输。 在另外一个例子中, 说明 "微调"时如何确定 Δι和 的取值。 如表 1所示, 在系统带宽为 10ΜΗζ、 天线配置为 1或 2的情况下, η值分别为 1、 2、 3时, 对 应的 WCC£1=8, NCCE =25, NCC£;3 =41。 因 16 ( =41—25)和 17 ( =25— 8) 接近 L ( =18) , 我们首先令 取值为 2, 然后令 Δι取值为 3, 如此, { Ncc -
△ 2, ―△ 2 + 1 , ... , ― 1}和{ - Λΐ, - Λ 1 + 1 , ... ,
- 1 - Δ2}都能形成完整的 RB。 在上述各实施例中, 子帧内 CCE与 ACK信道存在——映射关系, 并且为每 个子帧都预留了互不重叠的 ACK信道集合。在一个上行子帧中需要为 N个下行子 帧的反馈预留 ACK信道资源的情况下, 资源预留量可能会很大,特别是在 N取值 较大时。 例如, 对于 3GPP E-UTRA系统, 在下行上行配比为 9: 1时 N=9, 这时, 为每个子帧的每个 CCE都预留一个 ACK信道, 会导致非常大的开销。
为了减少预留的 ACK信道资源开销过大的问题, 可以釆用如下方法。
方法一是, 将多个下行子帧映射到相同的 ACK信道集合, 且子帧内仍然釆 用 CCE标号到 ACK信道标号的一一映射, 这相当于在映射中为多个下行子帧分 配了相同的映射标号 d。 对于分配了相同映射标号 d的下行子帧, 预留的 ACK信 道数目不少于这些下行子帧中任一个下行子帧的最大 CCE数目。 对于 3GPP E-UTRA系统, 这意味着, 如果为特殊子帧和普通下行子帧分配了相同的映射标 号 d , 那么它们对应的 ACK信道集合中有 Nee£3个 ACK信道。
基站可以通过高层信令通知用户映射标号 d的分配情况, 例如以广播的方式 通知。 的 ACK信道标号^∞H: 首先, 通过^ £的取值来确定映射后的 ACK信道属于标 号为 d的子帧中标号为 m的子块, 例如, 对于 3GPP E-UTRA系统, 确定过程为 从 ^^(^ 中选择 的取值使得^^^^^^^^ (1 )成立; 其次, 将上 一步得到的 m值代入式 CH =(N-d-\)x NCCEm +dx NCCE>m+1 + nCCE ( 2 )计算所分配 的 ACK信道标号。
方法二是, 为每个下行子帧分别预留互不重叠的 ACK信道集合, 但是子帧 内不再釆用 CCE标号到 ACK信道标号的——映射, 而是可以为多个 CCE分配相 同的 ACK信道。一种较为常用的方法是,为每 K个连续标号的 CCE预留一个 ACK 信道。 具体步骤如下:
将为 N个下行子帧预留的 N X INTEGER(NCCE,m, / 或 INTEGER(NCCEM I K) 个信道分成 Ν个大块, 每个大块 含 INTEGER(NCCE Mi、 IK)或 INTEGER^ CCE Mi IK) 个信道; 按照预设规则为每个下行子帧分配一个映射标号 d, 每个映射标号对应 一个大块。 其中 /NrEGEwo表示取整运算, 可以是向上取整运算「1,也可以是向 下取整运算 L」。 可以看到, 在 K大于 1时, 相当于将要预留的 ACK信道数目减少 为 CCE数目的 1/K, 因而 K又可以称之为 ACK资源缩减因子。
当总共预留 N X INTEGER(NCCEmaMW} / 个信道, 即为每个下行子帧预留 INTEGER(Ncc^maxiM] IK)个 ACK信道时,将每个大块划分成 max{M}个子块,标号为 m的子块中包含 INTEGER(NCCE m+11 K) - INTEGER{N CCE m / )个 ACK信道, 其中
0<m< max {Mi}; 当总共预留 IK)个信道, 即为每个下行子帧预
Figure imgf000016_0001
留 /NrEGE?(NEE£M/ )个 ACK信道时, 将每个大块划分成 Μ·个子块, 标号为 m的 子块中 含 INTEGER(NCCE m+l / K、— INTEGER(NCCE m / K、个 CKAt ,其中 0≤ <M'。 将所有 ACK信道子块按照先递增映射标号 再递增子块标号 m的顺序映射 排列。 对于 3GPP E-UTRA系统, 1个 PDCCH可以由 1、 2、 4或者 8个 CCE组成, 因而推荐 K的取值范围为集合 {1, 2, 4, 8}的非空子集, K的具体取值由基站通 过高层信令通知用户。
(CCE ACK信道标号 ^H: 首先, 通过^ £的取值来确定映射后的 ACK信道属于标号 为 d的子帧中标号为 m的子块, 例如, 对于 3GPP E-UTRA系统, 确定过程为从 m e {0,1,2} 中 选 择 m 的 取 值 使 得
INTEGER(NCCEm /K)xK<nCCE < INTEGER(NCCEm+l /K)xK-\ ( 3 ) 成立; 其次, 将上 一 步 得 到 的 m 值 代 入 式
Figure imgf000017_0001
(4) 中, 计算所分配的 ACK信道标号。 在 K=1时, 上述式(3)和式(4)分别就简化成 式( 1 )和式( 2 ) 。
在方法二中,也可以对于部分子帧釆取多个 CCE映射相同 ACK信道的方式, 而对于其他部分子帧釆取每个 CCE对应不同 ACK信道的映射方式, 即 CCE标号 到 ACK信道标号的——映射方式。
在方法二中, 当 INTEGER0具体表示向下取整运算 L」时, 子帧中对 Κ进行向 下取整运算后最后剩余的几个 CCE可能没有 ACK信道与之对应, 例如, 当为标 号为 i的子帧预留 Lwee£,M/ 」个 ACK信道时,在 Nee£,M不能被 K整除时,根据式(3) 和式(4) , 只有标号为 0~ LwCC£,M/ 」x -l的 CCE能映射到 ACK信道, 标号为
Figure imgf000017_0002
因而在基站侧, 不把标 号为
Figure imgf000017_0003
~ NCCE,Mi -1的 CCE分配用作携带下行调度分配授权命令的
PDCCH所占用的起始 CCE。
在方法一中, 为了避免分配相同映射标号 d的多个下行子帧的 ACK信道产生 碰撞, 可以进行一些限制。 例如, 限制分配了相同映射标号 d的多个下行子帧中 标号相同的 CCE里面, 最多只有一个 CCE为携带下行调度分配授权命令的 PDCCH所占用的起始 CCE。
在方法二中, 为了避免映射后子帧内 ACK信道产生碰撞, 也可以进行一些 限制。例如, 限制每 K个连续标号的 CCE里面最多只有一个 CCE为携带下行调度 分配授权命令的 PDCCH所占用的起始 CCE, —种简单的实现方法是, 限制所有 下面, 以具体的应用实例来说明应用式(3)和式(4)进行映射后的效果。 由于式(1 )和式(2)可以看作是式(3)和式(4)在 K=1时的特例, 下面就 不再单独举例。
如表 1所示, 在系统带宽为 20ΜΗζ、 天线配置为 2天线的情况下, η值分别 为 1、 2、 3时, 对应的 NCQ = 17, NCCE,2 =50, NCC£;3 =84。 本实例中, 在一 个上行子帧中需要反馈的下行子帧的数目为 3, 即 N = 3, 且这 3个子帧都为普通 子帧。 那么, 每个子帧的 CCE标号按照式(3)和式(4) 映射后的 ACK信道标 号在 K=1、 2、 4、 8时分别如表 2、 表 3、 表 4、 表 5所示, 其中 /NrEGEw()具体表 示向上取整运算 Π:
Figure imgf000018_0001
表 2 : K=1、 N = 3、 NCCE = M, NCC£.2 =50, NCC£3 =84 子帧 d 子帧内的 CCE标号 ACK信道标号 d = 0 0-17 0-8
18-49 27-42
50-83 75-91 d=1 0-17 9-17
18-49 43-58
50-83 92-108
6=2 0-17 18-26
18-49 59-74
50-83 109-125 表 3 : K=2、 N = 3、 NCCE = M, NCCE,2 =50, NCC£3 =84
Figure imgf000019_0001
表 4 : K=4、 N = 3、 NCCE, = M, NCCE,2 =50, NCC£3 =84 子帧 d 子帧内的 CCE标号 ACK信道标号 d = 0 0-23 0~2
24-55 9~12
56-83 21 ~24
d=1 0-23 3~5
24-55 13-16
56-83 25~28
6=2 0-23 6~8
24-55 17-20
56-83 29~32
表 5 : K=8、 N = 3、 NCCE, = M, NCCE,2 =50, NCC£3 =84 由表 2至表 5的数据可以看到, 当 K越大时, 所需要分配的 ACK信道越少, 从 而减少 ACK信道资源开销。
本领域普通技术人员可以理解, 上述各实施例中的全部或部分步骤可以通 过程序指令相关的硬件来实现, 所述的程序可以存储于计算机可读取存储介质 中, 所述的存储介质, 可以是 ROM/RAM、 磁碟、 光盘等。
还可以理解的是, 虽然上述说明中, 为便于理解, 对方法的步骤釆用了顺 序性描述, 但是应当指出的是, 对于上述步骤的顺序并不做严格的限制。
在一实施例中, 一种为用户分配应答 ACK信道的装置 701如图 7所示。 装置 701包括预留单元 702和分配单元 703。 其中, 预留单元 702用于为每个下行子帧 (包括特殊子帧)预留信道, 例如, 为每个子帧预留 /NrEGE?(Nee£,maxiMi/^)或
/NrEGE?(NCC£,M/ )个 ACK信道, 即总共预留 Nx/NrEGE?(NCC£,max{M}
Figure imgf000020_0001
IK)个信道; 分配单元 703用于将所预留的 ACK信道分配给 N个 下行子帧, 具体为: 将所预留的 ACK信道分成 N个大块, 根据预设规则为每个下 行子帧分配一个映射标号 d, 每个映射标号对应一个大块, 将每个大块分成多个 子块, 按照先递增映射标号 d, 再递增子块标号 m的顺序为每个下行子帧分配 ACK信道。 预设的规则可以是特殊子帧排列在最后的映射方式, 也可以是 n的实 际取值最大的子帧排在最前面的映射方式, 尤其是按照 n的实际取值从大到小的 映射方式。
在子块的划分上, 可以为: 当为每个子帧预留 /NrEGE ?(NEE£,MAXIM} /^)个信道 时, 将每个大块分成 max{ f}个子块, 标号为 m的子块中包含
INTEGER(NCCE M+1 / K)-INTEGER(NCCE M / )个信道; 当为每个子帧预留
INTEGER(NCCE / 1 个信 , 将每个大块分成 M个子块, 标号为 m的子块中包 含 INTEGER(NCCE M+L IK) - INTEGER(N CCE M IK)个信道。
在分配方式上, 可以为:
根据 K个连续的 CCE映射一个 ACK信道的方式为下行子帧分配 ACK信道;或 者, 根据多个下行子帧映射到相同的 ACK信道集合的方式为下行子帧分配 ACK 信道;
或者, 当将每个大块分成 max{Mi!'}个子块时, 同一子帧内标号为 {0, 1, N CCE, - 1 - Δ i}, { NCCE' _ A i, NCCE' _ A ι + 1 , ... , NCCE,i - 1 - Δ 2} , ,
{
Figure imgf000021_0001
- A Mi-i, NCCEMi_x - Δ ΜΙ-1 + 1, NCCE,Mi —1}的 CCE集合 分别映射到不同的子块上; 当将每个大块分成 Mi个子块时, 同一子帧内标号为
{0, 1 , … NCCEA - 1 - Δ 1}, { NCCE' _ A 1, NCCE' _ A 1 + 1 , ... , NCCE,2 - -
△ 2}, ... , {
Figure imgf000021_0002
- 1 } 的 CCE集合分别映射到不同的子块上。
在另一实施例中, 预留单元 702用于为每个下行子帧预留 NCCE,m,或
NCCEM个 ACK信道, 分配单元 703根据在所预留的 ACK信道上连续为每一个子 帧映射 ACK信道的方式, 为下行子帧分配 ACK信道。 在一实施例中,一种通信系统 801如图 8所示。通信系统 801包括为用户分配 应答 ACK信道的装置 802和用户终端 803。 其中, 装置 802又包括预留单元和分 配单元, 两单元的功能分别与预留单元 802和分配单元 803相同。 装置 802位于 网络侧, 例如网络侧的基站中。 用户终端由于已事先知道 ACK信道的分配规则, 因此直接在所分配的 ACK信道上将 N个下行子帧的应答信息反馈给网络侧。
可以理解的是, 附图中 (或实施例中)所示的装置或单元仅仅是示意性的, 表示逻辑结构, 其中所述作为分离部件显示的单元可能是或者可能不是物理上 分开的, 作为单元显示的部件可能是或者可能不是物理单元, 即可以位于一个 地方, 或者分布到几个网络单元上。
附图和相关描述只是为了说明本发明的原理, 并非用于限定本发明的保护 范围。 例如, 虽然实施例的描述基于 3GPP中的 TDD系统, 但是对于其他网络或 系统, 例如 HD-FDD (半双工 FDD ) , 只要需要在一个上行子帧内反馈多个下行 子帧的 ACK/NAK时, 本发明的方案都可以适用。 因此, 凡在本发明的精神和原 则之内所作的任何修改、 等同替换、 改进等, 均包含在本发明的保护范围内。

Claims

权利要求 书
1、 一种为用户分配应答 ACK信道的方法, 用于在一个上行子帧内反馈 N个 下行子帧的应答, 其特征在于, 包括:
将预留的 ACK信道分成 N个大块, 为每个下行子帧分配一个映射标号 d, 每 个映射标号对应一个大块; 将每个大块分成多个子块, 为每个子块分配子块标 号 m;
按照先递增映射标号 d、 再递增子块标号 m的顺序,为下行子帧分配 ACK信 道;
其中, N为正整数。
2、 根据权利要求 1所述的方法, 其特征在于: 所述子块标号 m根据所述下 行子帧内的控制信道单元 CCE标号《∞E确定。
3、根据权利要求 2所述的方法, 其特征在于: 所述子帧内的 CCE标号 M∞e是 物理层下行控制信道 PDCCH占用的起始 CCE标号。
4、 根据权利要求 2所述的方法, 其特征在于: 所述子块标号 m根据所述下 行子帧内的控制信道单元 CCE标号 CE确定, 包括:
选择 m的值使得 INTEGER(NCCE m / K) x K < nCCE < INTEGER(N CCE m+x
Figure imgf000023_0001
立,
其中, K是正整数。
5、 根据权利要求 1所述的方法, 其特征在于: 所述按照先递增映射标号 d、 再递增子块标号 m的顺序,为下行子帧分配 ACK信道, 包括:
利用下式为下行子帧分配 ACK信道:
Figure imgf000023_0002
, 其中 CE是所述下行子帧内的 CCE标号, ^CH是为映射标号为 d的所述下行 子帧中标号为 > CCE的 CCE所分配的 ACK信道的标号, NCCE,m表示 n为 m时所述下 行子帧中 CCE的数目, n为物理层下行控制信道 PDCCH占用的符号数目。
6、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 为 N个下行子帧预留的 ACK信道为 NxINTEGER NCCE 、滅、 或 ¾ INTEGER(NCCEMi IK、 , 其中 INTEGER )表示向上取整或向下取整; 当预留 Nx/NrEGE?(NCC£,maxiM}/ )个信道时, 将每个大块分成 max{M}个子 块, 子块标号为 m的子块中 含 INTEGER(N CCE m+l I K) - INTEGER(N CCE m I K)个 At 当预留 ^/NrEGE?(Nee£M/ )个信道时, 将每个大块分成 Μ·个子块, 子块标
!•=0
号为 m的子块中包含 INTEGER(NCCE m+x I K) - INTEGER(NCCE m I K)个信道;
其中, Mi表示 N个下行子帧中标号为 i的下行子帧的 n的最大可能取值, i = 0, 1 , … , N - 1 , max{M}表示 Mi的最大值, CC?,max{M}表示 n值为 max{M} 时下行子帧中 CCE的数目。
7、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括:
K的取值为 1, 当预留 NxNCC£„个信道时, 将每个大块分成 max 个 子块, 同一子帧内标号为 {0, 1, .··, NccE'1 - 1 - { Nccw - Δ1; NCCE,I― Λ
1 + 1, ·.., NccE'2 - 1 - A 2}, {
Figure imgf000024_0001
- A max{Mi}-1 +1, ..·, NCCE,m^{Mi} - 1}的 CCE集合分别映射到不同的子块上; 当预留 §Nee£,M个信道时, 将每个大块分成 Mi个子块, 同一子帧内标号为 {0,
!•=0
1 , ... , NcCE'1 - 1 -△ 1}, { NCCE,\ - Λ ΐ, NCCE,l ― Λ 1 + 1 , ... , NCCE,2 - 1 - Δ 2} , ... ,
{ NCCE,Mi~l - A Mi-1, NCCE,Mi~l - △ Mi— 1 + 1 , NCCE,Mi - 1}的 CCE集合 分别映射到不同的子块上;
其中, Δ ΐ、 Δ2、 … A max{Mi}- 1, Δ ΐ、 △ 2、 …△ Mi - 1都为调节因子。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 调节因子 Δ1、 Δ2、 ...Amax{Mi} - 1都为 0, 或 Δ1、 Δ2、 ...AMi- 1都为
0。
9、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
调节因子按照△ max {Mi} - 1 , ... , △ 2, △ 1的顺序或者按照△ Mi - 1 , ... , △ 2, Δ1的顺序, 依次确定各自的取值。
10、 根据权利要求 1所述的方法, 其特征在于, 所述为每个下行子帧分配一 个映射标号 d, 包括:
通过将任何子帧标号 i取值集合到映射标号 d取值集合的一一映射,分配所述 映射标号。
11、 根据权利要求 10所述的方法, 其特征在于, 所述通过将任何子帧标号 i 取值集合到映射标号 d取值集合的一一映射, 包括:
特殊子帧排列在最后, 或者按照 n的实际取值从大到小的顺序。
12、 一种为用户分配应答 ACK信道的装置(701 ) , 所述 ACK信道用于在一 个上行子帧内反馈 N个下行子帧的应答, 其特征在于, 包括:
预留单元(702) , 用于为 N个下行子帧预留信道;
分配单元(703 ) , 用于将所预留的 ACK信道分成 N个大块, 为每个下行子 帧分配一个映射标号 d,每个映射标号对应一个大块;将每个大块分成多个子块, 为每个子块分配子块标号为 m; 按照先递增映射标号 d、 再递增子块标号 m的顺 序为下行子帧分配 ACK信道;
其中, N为正整数。
13、 根据权利要求 12所述的装置, 其特征在于, 还包括:
所述预留单元(702)用于为 N个下行子帧预留 Νχ ^7^^^7^ ^,皿 )或
§ INTEGE NCCE IK、 α 其中 / ¾GE?()表示向上取整或向下取整; 当预留 Nx INTEGER NCCE,滅、 / K、个信 , 所述分配单元( 703 )用于将每 个大块分成 "^^^^^个子块, 标号为 m的子块中包含 INTEGER(NCCE^ / K) - INTEGER(NCCE^m IK)个信道; y
当预留 ^ ^:rEGE?(NCC£M/ 个信道时, 所述分配单元( 703 )用于将每个 大块分成 M个子块, 标号为 m的子块中包含
INTEGER(NCCE>m+l / K) - INTEGER(NCCE>m IK)个信道; 其中, Mi表示 N个下行子帧中标号为 i的下行子帧的 n的最大可能取值, i = 0,1, ... ,Ν-1, η为物理层下行控制信道 PDCCH占用的符号数目, max{M'} 表示 Mi的最大值,
Figure imgf000026_0001
表示 n值为 max{M}时下行子帧中信道控制单元
CCE的数目, ^CC M''表示 n值为 Mi时下行子帧中 CCE的数目, K为大于等于 1的
14、 根据权利要求 12所述的装置, 其特征在于, 所述分配单元( 703 )用于 根据 K个连续的 CCE映射一个 ACK信道的方式为下行子帧分配 ACK信道, 或者, 根据多个下行子帧映射到相同的 ACK信道集合的方式为下行子帧分配 ACK信 道;
其中, K为大于等于 1的整数。
15、 根据权利要求 12所述的装置, 其特征在于, 所述预留单元(702)用于 为每个下行子帧预留 NCCE, 或 NCCEM个信道; 当为每个子帧预留 NCCE, 个 ACK信道时,将每个大块分成 max{M'}个 子块, 分配单元( 803 )用于按照如下方式为下行子帧分配信道: 同一子帧内标 号为 {0, 1, .., NcCE'x - 1 - Δ 1 } , { NCCE,I - Λ 1 , NCCE'1 - Δ 1 + 1 , ... , NCCE,2 - 1- Δ2}, ·.., { Ν CCE, {Μί}— \ ― Δ{Mi}U N CCE, {Mi}— \ ― Δ{Mi} -1 +1, NCCE, {Mi、 ― i^^CCE集合分别映射到不同的子块上; 当为每个子帧预留 ΎΟ?,Μ个 ACK信道时, 将每个大块分成 Mi个子块, 分配 单元(703 )用于按照如下方式为下行子帧分配信道:同一子帧内标号为 {0, 1, .··,
NCCEA — I— Δ 1 } , ^CCE,\— Λ 1 , NCCE ― Δ 1 + 1 , … , ^CCE.I — \— Δ 2} ? ,
{ NccE,Mi-\ - ΛΜΪ- 1, Nc E,Mi- - Δ Mi - 1 + 1 , ..., Ν(ΧΈ,Μ - 1}的 CCE 集合分别映射到不同的子块上;
其中, Λ 1、 Δ2、 -.. Amax{Mi} - 1, Λ 1、 Δ2、 ... AMi - 1都为调节因子。
16、 一种通信系统, 其特征在于, 包括权利要求 12至 15中任一项所述的 装置。
PCT/CN2009/071124 2008-04-29 2009-04-01 为用户分配应答信道的方法、装置和系统 WO2009132543A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2010509668A JP5001426B2 (ja) 2008-04-29 2009-04-01 Ackチャネルをユーザに割り当てるための方法、装置、及びシステム
ES09709439.5T ES2523040T3 (es) 2008-04-29 2009-04-01 Método, dispositivo y sistema para la asignación de canales de acuse de recibo a los usuarios
EP19219962.8A EP3672198B1 (en) 2008-04-29 2009-04-01 Method, device and system for assigning ack channels to users
BRPI0907017A BRPI0907017B8 (pt) 2008-04-29 2009-04-01 método, dispositivo e sistema para designação de canais de aviso de recebimento para usuários
CN2009800000634A CN101690115B (zh) 2008-04-29 2009-04-01 为用户分配应答信道的方法、装置和系统
EP17188077.6A EP3282673B1 (en) 2008-04-29 2009-04-01 Method, device and system for assigning ack channels to users
EP09709439.5A EP2278772B1 (en) 2008-04-29 2009-04-01 A method, apparatus and system for allocating response channel to user
US12/543,005 US8243669B2 (en) 2008-04-29 2009-08-18 Method, device and system for assigning ACK channels to users
US13/286,844 US8213378B2 (en) 2008-04-29 2011-11-01 Method, device and system for assigning ACK channels to users
US13/550,317 US8665814B2 (en) 2008-04-29 2012-07-16 Method, device and system for assigning ACK channels to users
US14/104,782 US9054867B2 (en) 2008-04-29 2013-12-12 Method, device and system for assigning ACK channels to users
US14/732,159 US9306705B2 (en) 2008-04-29 2015-06-05 Method, device and system for assigning ACK channels to users
US15/050,674 US9525517B2 (en) 2008-04-29 2016-02-23 Method, device and system for assigning ACK channels to users

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810067047 2008-04-29
CN200810067047.4 2008-04-29
CN200810108466.8 2008-06-02
CN2008101084668A CN101500260B (zh) 2008-04-29 2008-06-02 为用户分配应答信道的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/543,005 Continuation US8243669B2 (en) 2008-04-29 2009-08-18 Method, device and system for assigning ACK channels to users

Publications (1)

Publication Number Publication Date
WO2009132543A1 true WO2009132543A1 (zh) 2009-11-05

Family

ID=40947088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071124 WO2009132543A1 (zh) 2008-04-29 2009-04-01 为用户分配应答信道的方法、装置和系统

Country Status (8)

Country Link
US (6) US8243669B2 (zh)
EP (4) EP3672198B1 (zh)
JP (4) JP5001426B2 (zh)
CN (6) CN102291768B (zh)
BR (1) BRPI0907017B8 (zh)
ES (2) ES2643597T3 (zh)
HU (1) HUE034634T2 (zh)
WO (1) WO2009132543A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123501A (zh) * 2010-01-08 2011-07-13 电信科学技术研究院 Ack/nak资源的确定方法和设备
JP2011166385A (ja) * 2010-02-08 2011-08-25 Kyocera Corp 基地局及び基地局の通信方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291768B (zh) 2008-04-29 2014-01-22 华为技术有限公司 为用户分配应答信道的方法、装置和系统
US8730878B2 (en) * 2008-08-20 2014-05-20 Qualcomm Incorporated Power and resource efficient APPDU based approach with scheduled block ACKS for WLAN
EP2296408A1 (en) * 2009-09-14 2011-03-16 Alcatel Lucent A method for scheduling transmissions between a base station and user terminals, a base station and a communication network therefor
CN102014496B (zh) 2009-10-16 2013-07-31 电信科学技术研究院 一种上行控制信道资源配置方法、设备和系统
CN101815325B (zh) * 2010-03-09 2012-05-23 上海华为技术有限公司 跳频的实现方法、装置和通信系统
US8644199B2 (en) 2010-03-31 2014-02-04 Samsung Electronics Co., Ltd Indexing resources for transmission of acknowledgement signals in multi-cell TDD communication systems
US9197388B2 (en) * 2010-05-25 2015-11-24 Kyocera Corporation Radio base station and control method for the same
CN102377475B (zh) * 2010-08-19 2014-03-12 大唐移动通信设备有限公司 一种确定下行子帧的控制区符号数的方法及装置
EP3731445B1 (en) 2010-09-28 2023-11-01 Lg Electronics Inc. Method and apparatus for transmitting reception confirmation in wireless system
JP4923161B1 (ja) 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
EP2437422A1 (en) * 2010-10-01 2012-04-04 Panasonic Corporation Search space for uplink and downlink grant in an OFDM-based mobile communication system
JP5835588B2 (ja) * 2010-11-09 2015-12-24 シャープ株式会社 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
CN102843732B (zh) * 2011-06-20 2015-11-25 华为技术有限公司 一种时分双工tdd通信方法、基站和用户设备
JP5895388B2 (ja) * 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN102271032B (zh) * 2011-08-09 2014-11-19 电信科学技术研究院 一种实现上行反馈的方法、系统及装置
US8953532B2 (en) * 2011-09-19 2015-02-10 Futurewei Technologies, Inc. Method and apparatus for uplink control signaling
US8774848B2 (en) 2011-10-11 2014-07-08 Fujitsu Limited System and method for enhancing cell-edge performance in a wireless communication network
EP2797356A4 (en) 2011-12-23 2015-09-09 Fujitsu Ltd METHOD AND APPARATUS FOR RESOURCE MAPPING FOR DOWNLINK CONTROL CHANNEL
CN106788929B (zh) * 2012-01-09 2020-01-17 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
EP2870811B1 (en) * 2012-07-06 2018-12-19 Telefonaktiebolaget LM Ericsson (publ) Method and network node for allocating resources of an uplink subframe
WO2014048472A1 (en) 2012-09-27 2014-04-03 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication system
US10652921B2 (en) 2015-05-27 2020-05-12 Qualcomm Incorporated Techniques for handling feedback for downlink transmissions in a shared radio frequency spectrum band
RU2638544C2 (ru) * 2016-06-03 2017-12-14 Фудзицу Лимитед Способ и устройство для отображения ресурсов физического канала управления нисходящей линии связи
CN107645356B (zh) * 2016-07-20 2020-12-25 普天信息技术有限公司 Pdcch的控制信道单元聚合等级确定方法和装置
US10251172B2 (en) * 2016-08-25 2019-04-02 Qualcomm Incorporated Supporting different numerology configurations
US10764867B2 (en) 2016-09-27 2020-09-01 Lg Electronics Inc. Method and device for selecting resource and transmitting PSSCH in wireless communication system
CN110169118B (zh) * 2017-01-13 2023-05-26 Lg电子株式会社 在无线通信系统中基于服务质量(QoS)流发送UL分组的方法及装置
CN109039554B (zh) * 2017-06-09 2021-01-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
US11147065B2 (en) * 2018-01-22 2021-10-12 Qualcomm Incorporated Feedback bit reservation for uplink control piggybacking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072673A2 (en) * 2003-02-13 2004-08-26 Nokia Corporation System and method for improved uplink signal detection and reduced uplink signal power
KR20060082129A (ko) * 2005-01-11 2006-07-14 삼성전자주식회사 무선 통신 시스템에서 채널 할당 장치 및 방법
KR20080008480A (ko) * 2006-07-20 2008-01-24 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 피드백 채널을할당하는 장치 및 방법
CN101127584A (zh) * 2006-08-15 2008-02-20 华为技术有限公司 反馈及接收ack/nak信息的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205834C (zh) 2000-03-23 2005-06-08 西门子移动通讯公司 无线通信系统中的接入信道安排
FR2833862B1 (fr) 2001-12-21 2004-10-15 Rhodia Elect & Catalysis Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
US7158802B2 (en) * 2002-02-19 2007-01-02 Interdigital Technology Corporation Method and apparatus for providing a highly reliable ACK/NACK for time division duplex (TDD) and frequency division duplex (FDD)
KR101042813B1 (ko) * 2004-02-17 2011-06-20 삼성전자주식회사 시분할 듀플렉싱 이동 통신 시스템에서 상향 방향 전송증대를 위한 데이터 수신 여부 정보를 전송하는 방법
KR100714945B1 (ko) * 2005-10-12 2007-05-07 엘지노텔 주식회사 오에프디엠에이 시스템에서의 부채널 할당 장치 및 방법
US9143288B2 (en) * 2006-07-24 2015-09-22 Qualcomm Incorporated Variable control channel for a wireless communication system
US8068457B2 (en) 2007-03-13 2011-11-29 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier FDMA systems
CN101127581B (zh) 2007-09-07 2010-09-08 普天信息技术研究院有限公司 一种ldpc编码调制的映射及逆映射方法和设备
CN101222291B (zh) 2008-01-05 2013-06-12 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
CN101505208A (zh) 2008-02-04 2009-08-12 三星电子株式会社 分配上行ack/nack信道的方法
CN102017506B (zh) * 2008-03-16 2014-06-04 Lg电子株式会社 在无线通信系统中执行混合自动重传请求(harq)的方法
US8837421B2 (en) 2008-03-26 2014-09-16 Nokia Siemens Neworks Oy Channelization procedure for implementing persistent ACK/NACK and scheduling request
CN102291768B (zh) 2008-04-29 2014-01-22 华为技术有限公司 为用户分配应答信道的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072673A2 (en) * 2003-02-13 2004-08-26 Nokia Corporation System and method for improved uplink signal detection and reduced uplink signal power
KR20060082129A (ko) * 2005-01-11 2006-07-14 삼성전자주식회사 무선 통신 시스템에서 채널 할당 장치 및 방법
KR20080008480A (ko) * 2006-07-20 2008-01-24 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 피드백 채널을할당하는 장치 및 방법
CN101127584A (zh) * 2006-08-15 2008-02-20 华为技术有限公司 反馈及接收ack/nak信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2278772A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123501A (zh) * 2010-01-08 2011-07-13 电信科学技术研究院 Ack/nak资源的确定方法和设备
CN102123501B (zh) * 2010-01-08 2014-02-05 电信科学技术研究院 Ack/nak资源的确定方法和设备
JP2011166385A (ja) * 2010-02-08 2011-08-25 Kyocera Corp 基地局及び基地局の通信方法

Also Published As

Publication number Publication date
CN102291769B (zh) 2014-04-30
JP2012186842A (ja) 2012-09-27
CN101690115A (zh) 2010-03-31
US9525517B2 (en) 2016-12-20
US20140098772A1 (en) 2014-04-10
JP2010527567A (ja) 2010-08-12
BRPI0907017B8 (pt) 2017-10-24
CN101690115B (zh) 2012-09-05
EP3672198A1 (en) 2020-06-24
CN102149148A (zh) 2011-08-10
US9054867B2 (en) 2015-06-09
JP5001426B2 (ja) 2012-08-15
ES2523040T3 (es) 2014-11-20
JP2014030210A (ja) 2014-02-13
EP2765755B1 (en) 2017-08-30
US20090303956A1 (en) 2009-12-10
US9306705B2 (en) 2016-04-05
CN102291768A (zh) 2011-12-21
CN102149148B (zh) 2012-08-08
EP3282673A1 (en) 2018-02-14
EP2278772A1 (en) 2011-01-26
BRPI0907017A8 (pt) 2015-09-29
CN101500260B (zh) 2011-09-14
EP2278772B1 (en) 2014-08-27
US8213378B2 (en) 2012-07-03
JP6103551B2 (ja) 2017-03-29
HUE034634T2 (en) 2018-02-28
BRPI0907017A2 (pt) 2015-07-07
JP5363611B2 (ja) 2013-12-11
EP3282673B1 (en) 2020-02-12
ES2643597T3 (es) 2017-11-23
EP2278772A4 (en) 2011-09-28
JP5775126B2 (ja) 2015-09-09
US8665814B2 (en) 2014-03-04
US20120281663A1 (en) 2012-11-08
US20160174203A1 (en) 2016-06-16
CN102291768B (zh) 2014-01-22
JP2015173509A (ja) 2015-10-01
US20150271797A1 (en) 2015-09-24
CN102291767A (zh) 2011-12-21
CN102291769A (zh) 2011-12-21
CN101500260A (zh) 2009-08-05
US8243669B2 (en) 2012-08-14
EP2765755A1 (en) 2014-08-13
EP3672198B1 (en) 2022-06-22
US20120044903A1 (en) 2012-02-23
CN102291767B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2009132543A1 (zh) 为用户分配应答信道的方法、装置和系统
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
US11343841B2 (en) Uplink resource scheduling in multiple time instances
EP3869719B1 (en) Method and device for transmitting uplink control information
WO2018030069A1 (ja) 端末及び通信方法
KR20120093084A (ko) 응답 채널 자원들을 할당하는 방법 및 장치
WO2013004159A1 (zh) 传输控制信道指示信息的方法、基站和用户设备
WO2012113330A1 (zh) 信息传输的方法和装置
WO2012175019A1 (zh) 一种时分双工tdd通信方法、基站和用户设备
WO2012167489A1 (zh) 传输数据的方法和设备
WO2010108313A1 (zh) 一种信道分配方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000063.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009709439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010509668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4277/KOLNP/2009

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0907017

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100629