WO2009132540A1 - 无源光网络系统中发送上行突发数据的方法、装置及系统 - Google Patents

无源光网络系统中发送上行突发数据的方法、装置及系统 Download PDF

Info

Publication number
WO2009132540A1
WO2009132540A1 PCT/CN2009/070939 CN2009070939W WO2009132540A1 WO 2009132540 A1 WO2009132540 A1 WO 2009132540A1 CN 2009070939 W CN2009070939 W CN 2009070939W WO 2009132540 A1 WO2009132540 A1 WO 2009132540A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
burst
delimiter
module
sequence
Prior art date
Application number
PCT/CN2009/070939
Other languages
English (en)
French (fr)
Inventor
李靖
耿东玉
封东宁
梁伟光
埃芬博格·弗兰克
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09737651.1A priority Critical patent/EP2285020B1/en
Priority to KR1020090036602A priority patent/KR101050810B1/ko
Priority to JP2009107660A priority patent/JP2009284477A/ja
Publication of WO2009132540A1 publication Critical patent/WO2009132540A1/zh
Priority to US12/914,857 priority patent/US9686036B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to passive optical network technologies, and more particularly to a method, apparatus, and system for uplink burst data in a passive optical network.
  • PON Passive Optical Network
  • ONT Optical Line Terminal
  • ONU Opitcal Network Unit
  • ODN Optical Distribution Network
  • PON uses a point-to-multipoint topology, it is necessary to use a point-to-multipoint multiple access protocol so that many ONUs can share the OLT and the backbone fiber.
  • PONs can be classified into multiple types, and Ethernet Passive Optical Network (EPON) is a commonly used one with better performance.
  • EPON Ethernet Passive Optical Network
  • the direction of data from the OLT to the ONU is in the downstream direction, from ONU to
  • the direction of the OLT is the upstream direction.
  • the time division multiplexing (TDM) broadcast mode and the uplink time division multiple access (TDMA) access mode are the uplink and downlink transmission modes of the currently widely used PON system.
  • the uplink transmission of the PON system is based on the burst mode, and data from multiple ONUs is transmitted to the OLT.
  • the OLT needs to delimit the data of each ONU in the burst mode, thereby distinguishing the data of the received ONUs.
  • the MAC layer of the OLT since the transmission slot of each ONU is authorized by the OLT, the MAC layer of the OLT knows the start time and the end time of the burst data from each ONU, so the MAC layer of the OLT can increase the MAC layer and The interface of the physical layer, and uses the Management Data Input and Output (MDIO) register (Register) to inform the OLT physical layer of when the data received from the ONU ends.
  • MDIO Management Data Input and Output
  • the Burst Delimiter search matches the data received from the next ONU, and when the matching is successful, the OLT knows the start position of the ONU data, and starts receiving the data of the ONU.
  • the MDIO register needs to communicate with the upper layer application of the OLT, so that an interface for the MDIO register and the upper layer communication of the OLT needs to be added.
  • the solution not only changes the functional independence of the MDIO, but also changes the MAC layer and the physical layer. Interface, the implementation process is more complicated.
  • Embodiments of the present invention provide a method for transmitting uplink burst data in a passive optical network system, where the method performs demarcation of the end of uplink burst data. This method does not require an interface between the physical layer and the upper application.
  • the method is: turning on a laser; transmitting a synchronization mode sequence and a burst delimiter; transmitting data to be transmitted; and sending a burst end delimiter after the data to be sent is sent.
  • an embodiment of the present invention further provides another method for transmitting uplink burst data in a passive optical network system, where: opening a laser; transmitting a synchronization mode sequence and a burst delimiter; transmitting data to be sent; After the data transmission ends, the laser is turned off; a binary full zero sequence of a specific length is transmitted after the laser is turned off.
  • the embodiment of the present invention further provides a method for receiving uplink burst data in a passive optical network system, where the method is:
  • the embodiment of the present invention further provides a transmitting end device of an optical network unit, where the device includes: a data detecting module, configured to detect data to be sent, and when detecting that the data to be sent arrives, instruct the laser to be turned on; the synchronous mode sequence sending module a sequence for transmitting a synchronous mode after the laser is turned on; a burst delimiter transmitting module, configured to send a burst delimiter after the laser is turned on; a burst end delimiter sending module, configured to send a burst end a delimiter; a sending module, configured to send the to-be-sent data to an optical line terminal receiving end.
  • a data detecting module configured to detect data to be sent, and when detecting that the data to be sent arrives, instruct the laser to be turned on
  • the synchronous mode sequence sending module a sequence for transmitting a synchronous mode after the laser is turned on
  • a burst delimiter transmitting module configured to send a burst delimiter after the laser is
  • optical network unit transmitting end device includes:
  • a data detecting module configured to detect a data to be sent, and when the data to be sent arrives, indicates that the laser is turned on, and when detecting that the data to be sent ends, indicating that the laser is turned off; a sequence sending module, configured to send a synchronization mode sequence after opening the laser; a burst delimiter sending module, configured to send a burst delimiter after the laser is turned on; and an additional sequence sending module, configured to start After the laser is turned off, a binary all-zero sequence of a specific length is sent; and a sending module is configured to send the to-be-sent data to the optical line terminal receiving end.
  • the embodiment of the invention further provides an optical line terminal receiving end device, the device comprising: a data receiving module, configured to receive and shift data; a burst delimiter matching module, configured to receive the data The data of the module is matched by the burst delimiter; the burst end delimiter matching module is configured to perform matching of the burst end delimiter of the data of the data receiving module.
  • the embodiment of the present invention further provides a source optical network communication system, where the system includes: an optical network unit transmitting end and an optical line terminal receiving end,
  • the transmitting end of the optical network unit includes:
  • the data detecting module is configured to detect the data to be sent, and when the data to be sent arrives, the laser is turned on; the synchronous mode sequence sending module is configured to send the synchronous mode sequence after the laser is turned on; the burst delimiter sending module a burst delimiter is sent after the laser is turned on; a burst end delimiter sending module is configured to send a burst end delimiter; and a sending module is configured to send the to-be-send to the optical line terminal receiving end Data
  • the optical line terminal receiving end includes:
  • a data receiving module configured to receive and shift data
  • a burst delimiter matching module configured to perform burst delimiter matching on data of the data receiving module
  • a burst end delimiter matching module And matching the data of the data receiving module with a burst end delimiter.
  • the foregoing method and apparatus provided by the embodiments of the present invention implement delimitation of burst data by adding a burst end delimiter after the burst data, and the receiving end collides with the added end of the burst end delimiter.
  • the data is delimited.
  • the scheme does not need to increase the interface between the physical layer and the upper application. It does not need to change the functional independence of the MDIO register.
  • the physical layer can simply implement the demarcation of burst data, and the scheme Low complexity.
  • FIG. 1 is a schematic diagram of an uplink data burst structure in an embodiment of the present invention
  • FIG. 2 is a flowchart of a burst transmission of an ONU transmitting end according to an embodiment of the present invention
  • 3 is a diagram showing a FIFO state change diagram of a burst data monitor of an ONU transmitting end according to an embodiment of the present invention
  • 4 is a schematic diagram of a burst transmission state transition of an ONU transmitting end according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of an ONU transmitting end structure according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a matching process of a data burst receiving process according to an embodiment of the present invention.
  • FIG. 8 is a state transition diagram of the burst delimitation of the OLT receiving end in the embodiment.
  • FIG. 9 is a block diagram of a structure of a receiving end according to an embodiment of the present invention.
  • the embodiment of the present invention is described in conjunction with an EPON system, and the end of burst data is delimited by adding a burst end delimiter (EOB: End of Burst) at the end of each uplink burst data.
  • EOB End of Burst
  • an uplink data burst structure is composed of a synchronization pattern sequence (Sync Pattern, SP), a burst delimiter (BD), and a FEC (Forward Error). Correction, forward error correction) consists of protected data and burst end delimiters.
  • the Sync Pattern and Burst Delimiter are not protected by FEC encoding, Burst Delimiter is followed by FEC codeword, which is FEC protected data, and the burst delimiter is not protected by FEC.
  • the Burst Delimiter is used to identify the start of the FEC-protected data portion of the burst (Start of Burst).
  • the EOB specific format can be the block defined in 10G EPON (data block, each data block is 66 bits), and it is recommended to use the length of 2 blocks, and the corresponding binary value can be used 000000.... or The sequence of 101010... or 010101..., that is, an all-zero binary sequence or a binary sequence of 0, 1 alternating, a total of 132 bits.
  • FIG. 2 a flow chart of burst data transmission at the ONU sending end of the embodiment of the present invention is shown.
  • S201 Detecting whether there is data to be sent, if no data to be sent continues to be detected, when detecting an Ethernet data frame to be sent, performing S202 to turn on the laser;
  • Sync Pattern is 0x555...
  • Burst Delimiter is 1 block length, 66 bits;
  • 5206 judging whether the data is sent or not, if the data transmission is not finished, continuing to read the data to be sent, if the data transmission is finished, executing S207; 5207, insert EOB and send the EOB, the specific format of the inserted EOB may be in Block (data block, each data block is 66 bits), and the length of two blocks is recommended, and the corresponding binary value may be adopted. 000000....or 101010... or 010101... sequence, that is, an all-zero binary sequence or a binary sequence of 0, 1 alternating, a total of 132 bits;
  • the laser switch is controlled by the specific state of the first in first out queue (FIFO) in the Data Detector at the ONU transmitter.
  • FIFO first in first out queue
  • ONU Transmitter Burst Data Monitor FIFO Status Change Diagram When the data detector of the OJ transmitting end detects that the data to be sent arrives, that is, the FEC-encoded data to be sent at the end of the FIFO queue, the laser is turned on, that is, S202 is executed. In this embodiment, the FIFO is before the data to be sent arrives.
  • the control block in this case the control block is the IDLE (idle) control.
  • Sync Pattern (0x555%) and Burst Delimiter (1 block length in 10GEPON, 66 bits) are inserted and the Sync Pattern and Burst Delimiter are transmitted, and the data to be transmitted is transmitted.
  • the FIFO of the data monitor is completely filled by the control block.
  • the data transmission is considered complete.
  • S206 is executed, and the burst end delimiter EOB is inserted and transmitted. After the EOB is sent, the laser is turned off.
  • the control block in the FIFO can be set to all zero blocks when the laser is turned off or after the laser is turned off.
  • the O U transmitter burst transmission state transition diagram is the laser off state "Laser_Is_Off", and the Boolean variable data_start identifies whether the data to be sent arrives. When the value of the Boolean variable data_start is "false", it indicates that the data to be sent is not detected.
  • the burst data arrives, and in this cycle, a plurality of consecutive burst data can be sequentially transmitted to the OLT.
  • the above scheme achieves the delimitation of the end of burst data by adding an EOB at the end of each uplink burst data.
  • the laser can be turned off after the FEC-protected data (also referred to as FEC data) is sent, that is, after the detection of all the control blocks in the FIFO queue, the laser is turned off.
  • the binary all-zero sequence can be inserted and sent.
  • the binary all-zero is not part of the burst data, but immediately after the burst data, so the binary all-zero sequence can be used as its previous burst. Send the EOB of the data.
  • the binary all-zero sequence can be a natural multiple of 66 bits, with 132 bits recommended.
  • the ONU sending end 500 includes: a data detecting module 501, configured to detect data to be sent, and when the data to be sent is detected to arrive, instruct the laser to be turned on.
  • the FEC code-protected data to be sent is present at the end of the FIFO queue, it is considered that the data to be sent arrives, indicating that the laser is turned on, when the end of the data to be transmitted is detected and the burst is terminated.
  • the laser is turned off.
  • the synchronous mode sequence transmitting module 503 transmits the Sync Pattern after turning on the laser.
  • Burst Delimiter is sent by the burst delimiter sending module 504.
  • the data reading module 505 is configured to read the data to be sent from the transmission buffer, and then send the data through the sending module 502.
  • the burst end delimiter sending module 506 is configured to send a burst end delimiter.
  • the sending module 502 is configured to send the to-be-sent data to the optical line terminal receiving end.
  • the laser is turned off after the EOB transmission is completed, and the burst ends.
  • the ONU sending end further includes a control character modification module (not shown) for setting the control block in the FIFO to an all-zero block before the laser is turned off after the data to be transmitted is sent.
  • a control character modification module (not shown) for setting the control block in the FIFO to an all-zero block before the laser is turned off after the data to be transmitted is sent.
  • the present invention provides an embodiment of another ONU transmitting end, which is different from the above embodiment in that: a data detecting module is configured to detect data to be sent, and when detecting that the data to be sent arrives, indicating that the laser is turned on, when detecting that the data is to be sent At the end of the data transmission, the laser is turned off; and an additional sequence transmitting module (not shown) is provided for transmitting after the laser is turned off. A binary full zero sequence of a particular length is sent, and the transmitting module 502 transmits the binary sequence.
  • a data detecting module is configured to detect data to be sent, and when detecting that the data to be sent arrives, indicating that the laser is turned on, when detecting that the data is to be sent At the end of the data transmission, the laser is turned off; and an additional sequence transmitting module (not shown) is provided for transmitting after the laser is turned off.
  • a binary full zero sequence of a particular length is sent, and the transmitting module 502 transmits the binary sequence.
  • burst data is received and processed.
  • FIG. 6 a flow chart of burst data reception in an embodiment of the present invention.
  • the data receiving module starts receiving data
  • the data receiving module shifts the data by one bit and continues to match (and can also perform group shifting) while receiving new data. If the match is successful, execute S604
  • shifting the data shifting the data by bits, shifting the data by one bit in this example, and skipping the length of one FEC plus BD in a specific operation, using bits or Block or other group shifting method;
  • determining whether the EOB matching is successful determining whether the EOB matching is successful, calculating a Hamming Distance between the received data and the EOB sequence, and determining that the matching is successful when the HD is lower than a preset threshold T2; if the matching is unsuccessful, moving the data Bit, shift according to Block (66 bits) and continue to match, and receive new data; if the EOB search matches successfully, it indicates that the current burst ends, then execute S601 to continue receiving and delimiting the next burst.
  • the matching process is called an additional matching, and the additional matching can be performed simultaneously with the EOB matching, and the EOB matching is considered successful after the additional matching is successful.
  • the all-zero sequence here can be a sequence that is naturally multiples of one block. It is recommended to use an all-zero sequence of two blocks.
  • the Burst Delimiter matches the received data, ie, calculates the Hamming Distance between the received data and the Burst Delimiter sequence.
  • the matching is considered successful; if the matching is unsuccessful, the shift operation is performed by the bit, and then the matching is performed until the matching is successful. If the Burst Delimiter match succeeds, the start position of the burst can be determined, and the EOB matching process is started.
  • the EOB of the embodiment of the present invention recommends the length of two blocks, and the Burst Delimiter is successfully matched, the block synchronization can be realized at the same time. Therefore, the matching process of the EOB is recommended to perform shift matching in units of Block (66 bits); calculate the Hamming Distance between the received data and the EOB sequence, when the HD is lower than a preset When the threshold is T2, the match is considered successful. If the EOB match is successful, the end position of the burst can be determined. At this time, the Burst Delimiter match is restarted, and the start position of the next burst is detected. The hair can be effectively detected its starting and ending positions.
  • the OLT receiver first enters the initial state "INIT”, and initializes the Boolean variables BD_lock and EOB_lock to "false”, respectively, where BD_lock and EOB_lock identify the Burst Delimiter and EOB matching states respectively, and the matching success is "true”.
  • start Burst Delimiter match enter the "TEST_BD” state; if the match is unsuccessful, enter the "BIT SLIP” state, perform data reception or shift, shift mode is bit shift or Group shift, then re-match; so loop, until the match is successful (ie BD-lock-success state becomes true), then set the variable BD_lock to "true", start EOB match, enter EOB match state" TEST_ EOB”; If the match is unsuccessful, enter the "BLOCK SLIP” state, perform data reception or shifting, shift mode by block shift or other shift mode, and then re-match; thus cycle until the match is successful (ie EOB-lock-success state becomes true), the variable EOB_lock is set to "true”, the current burst delimitation is completed; enter the "RESET” state Re-set the variables BD_lock and EOB-lock to "false", restart a new round of loops, and delimit the new burst
  • the block can be shifted as described above.
  • the invention also provides additional embodiments.
  • the shifting operation can be performed by bit shifting or by skipping a certain length of data before performing EOB shift matching. For example, one FEC codeword length can be skipped (in the 10G EPON system, the data portion is at least one FEC codeword length, and the single FEC codeword length is 31 blocks).
  • EOB matching success if EOB and Hamming distance to receive data HD ( Hamming Distance ) meets the following requirements: When EOB ⁇ is 000000... is a specific value, that is, the value is all zero binary sequence. If HD ⁇ T2, the match is considered successful; when EOB is used 010101... or 101010...
  • the length and the specific value of the burst end delimiter in the embodiment of the present invention may be set according to the actual situation of the system or the device.
  • the length of the burst end delimiter recommended by the embodiment of the present invention is 2 blocks, and the specific value is Is a binary sequence of values all zero binary sequence 000000... or a value of 0, 1 interleaved (010101... or 101010...);
  • EOB uses a binary sequence of 0, 1 interleaved binary sequence 010101... or 101010... as a specific value
  • the specific format of Pattern is also 10101010..., so it can provide secondary matching protection, but it may be caused by bit shifting due to the shift mode of Block, that is, when matching with 010101..., it may correspond.
  • the Hamming distance threshold is HD>132-T2 or HD ⁇ T2 decision strategy
  • the match can be successful, so that the previous burst ends before the new burst Burst Delimiter match, and the time starts. Burst Delimiter matches.
  • the EOB uses the binary sequence 000000... with a value of all zeros as the specific value, since there is no data transmission between the bursts, all zero data is reflected on the channel. Similarly, when the EOB generates a bit error due to channel transmission. When it is impossible to match correctly, the quadratic matching protection can be provided by using all zero data between bursts. If there is all zero data between bursts and may not reach the length of EOB and cannot achieve secondary matching, you can use the next burst of Sync Pattern, that is, except 00000... In the 010101... or 101010..., it can also be considered that the match is successful. Since the binary sequence 000000... with the value of all zeros is used as the specific value of the EOB, it also facilitates the faster entry of the Physical Medium Dependent (PMD) of the ONU sender.
  • PMD Physical Medium Dependent
  • the OLT receiving end 900 includes a data receiving module 901, a burst delimiter matching module 902, and a burst end delimiter matching module 903.
  • the data receiving module 901 receives and shifts data. When the OLT starts, device initialization is performed.
  • the data receiving module 901 starts receiving data, and closes the output switch to the burst delimiter matching module 902, and sends the received data to the burst delimiter matching module 902 in units of Burst Delimiter length (1 block).
  • the first calculation module of the sub-module of the burst delimiter matching module 902 calculates the Hamming Distance between the received data and the Burst Delimiter sequence, when the HD is lower than the preset When the threshold is T, the matching is considered successful; if the matching is unsuccessful, the data receiving module 901 shifts the data by one bit and sends it to the burst delimiter matching module 902 to continue matching (also group shifting) while receiving new Data, and can be cycled.
  • the Burst Delimiter is successfully matched, indicating that the burst data sent from an ONU is successfully synchronized, and the switch is closed to the burst end delimiter matching module 903 to start the EOB search matching; at this time, the data receiving module 901 has the EOB length.
  • (2 Blocks) sends the received data to the burst end delimiter matching module 902 for the EOB matching operation; the sub-module of the burst end delimiter matching module 903, the second calculation module calculates the received data and the EOB sequence
  • the EOB search matches successfully, indicating that the burst ends, and the data receiving module 901 recloses the output switch to the burst delimiter matching module 902.
  • the OLT receiving end 900 further includes an additional sequence matching module (not shown). After the burst delimiter matching module 902 successfully matches the burst delimiter, the total length is 66 bits. Zero sequence matching.
  • the Burst Delimiter synchronization search of the next burst can be started, and the burst data transmitted from each ONU can be realized. Synchronous reception and delimitation.
  • the EOB is matched to the receiving end for receiving the burst data.
  • the receiving end does not recognize whether the EOB is inserted into the burst data by the transmitting end, but from the receiving end to the EOB.
  • a match is considered to be a match to a particular sequence, which may be a binary value using a binary sequence of values all zeros 000000... or a binary sequence of values 0, 1 alternating
  • EOB is only the burst end delimiter for the receiver. Since there is an interval in the adjacent burst, all zero data is reflected on the channel, and the data sequence between them can still serve as the burst end identifier for the receiving end.
  • EOB is not limited to the data inserted by the transmitting end. It should be considered as a specific sequence, which can be inserted into the burst data by the sender, or it can be the data between adjacent bursts, and can also be a combination of the above two types of data.
  • the burst end identifier in the implementation, it may be the combination of the data inserted in the previous burst and the inter-burst data and the Sync Pattern in the subsequent burst or the inter-burst data and the subsequent burst.
  • a combination of Sync Patterns Therefore, it can be considered that the data of the burst data EOB can be inserted not only in the burst but also in the above cases.
  • the match of the EOB should be a match to a particular data sequence.
  • the embodiment of the present invention further provides a passive optical network communication system, where the system includes the above-mentioned optical network unit transmitting end and the above optical line terminal receiving end device.
  • the transmitting end of the optical network unit includes:
  • a data detecting module configured to detect data to be sent, and when detecting that the data to be sent arrives, instructing the laser to be turned on;
  • a synchronous mode sequence sending module configured to send a synchronous mode sequence after the laser is turned on
  • a burst delimiter sending module configured to send a burst delimiter after the laser is turned on
  • a burst end delimiter sending module configured to send a burst end delimiter
  • a sending module configured to send the to-be-sent data to an optical line terminal receiving end
  • the optical line terminal receiving end includes:
  • a data receiving module configured to receive and shift data
  • a burst delimiter matching module configured to perform a burst delimiter matching on data of the data receiving module
  • the burst end delimiter matching module is configured to perform a burst end delimiter matching on the data of the data receiving module.
  • the transmitting end of the optical network unit further includes:
  • the control character modification module is configured to: after the laser is turned off, set the control block in the data monitor first-in first-out queue to all zero data blocks before the laser is turned off.
  • the optical line terminal receiving end further includes:
  • An additional sequence matching module is used to match a burst length delimiter match to a full length sequence of a particular length after the burst delimiter matching module successfully matches.
  • the foregoing method and apparatus provided by the embodiments of the present invention implement delimitation of burst data by adding a burst end delimiter after the burst data, and the receiving end matches the pair of the burst end delimiter by adding The burst data is delimited.
  • the scheme does not need to increase the interface between the physical layer and the upper layer application, and does not need to change the functional independence of the MDIO register.
  • the physical layer can simply realize the demarcation of burst data, and the scheme The complexity is low.

Description

无源光网络系统中发送上行突发数据的方法、 装置及系统 本申请要求于 2008 年 04 月 28 日提交中国专利局、 申请号为 200810066881.1、 发明名称为"无源光网络系统中发送上行突发数据的方法、 装置及系统"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无源光网络技术,特别是涉及无源光网络中上行突发数据的方 法及装置、 系统。
背景技术
无源光网络( Passive Optical Network , PON ) 由于其易维护、 高带宽、 低成本等优点成为光接入技术的佼佼者,是通过单一平台综合接入语音、数据、 视频等多种业务的理想物理平台。 PON技术是点到多点 ( Point to Multipoint , Ρ2ΜΡ )的光纤接入技术。 PON由光线路终端( Optical Line Terminal, OLT ) 、 光网络单元( Opitcal Network Unit, ONU )和光分配网络 ( Optical Distribution Network, ODN ) 组成, 其优点来源于 ODN 中的无源光分 /合路器 ( Splitter/Coupler ), 因而 PON不需要使用具有放大和中继功能的元器件。 由 于 PON釆用点对多点的拓朴结构, 所以必须釆用点对多点多址接入协议使得 众多的 ONU能共享 OLT和主干光纤。 目前从承载的内容来分类, PON可分 为多种, 其中以太网无源光网络( Ethernet Passive Optical Network EPON )是 较为常用, 性能较优的一种。
PON系统中约定, 数据从 OLT到 ONU的方向为下行方向, 从 ONU到
OLT的方向为上行方向。 在 PON下行釆用时分复用 ( TDM )的广播方式和上 行釆用时分多址接入 ( TDMA ) 的接入方式是目前应用广泛的 PON系统的上 下行传输方式。 PON系统的上行传输是基于突发模式, 来自多个 ONU的数据 传送至 OLT, OLT需要对突发模式下各个 ONU的数据进行定界, 从而对接收 的各个 ONU的数据进行区分。 在现有的技术中由于每个 ONU的发送时隙是 由 OLT授权, OLT的 MAC层知道来自每个 ONU的突发数据的开始时间和结 束时间, 因此 OLT的 MAC层可以通过增加 MAC层和物理层的接口, 并利用 管理数据输入输出 (MDIO )寄存器(Register )来告知 OLT物理层所接收的 来自 ONU的数据何时结束。 当 OLT物理层得知此数据的结束位置后,开始启 动 Burst Delimiter搜索, 对后面接收的来自下一个 ONU的数据进行匹配, 当 匹配成功后, OLT获知 ONU数据的开始位置, 从而开始接收该 ONU的数据。 但是现有的技术中 MDIO寄存器需要和 OLT的上层应用进行通信, 从而需要 增加 MDIO寄存器和 OLT上层通信的接口, 所述方案既改变了 MDIO的功能 独立性, 又改变了 MAC层和物理层的接口, 实现过程比较复杂。
发明内容
本发明实施例提供一种发送无源光网络系统中上行突发数据的方法,该方 法中实现对上行突发数据结束进行定界。该方法不需要增加物理层与上层应用 之间的接口。
所述方法为: 打开激光器; 发送同步模式序列和突发定界符; 发送待发送 数据; 所述待发送数据发送结束后, 发送突发结束定界符。
进一步本发明实施例还提供另一发送无源光网络系统中上行突发数据的 方法, 该方法为: 打开激光器; 发送同步模式序列和突发定界符; 发送待发送 数据; 所述待发送数据发送结束后, 启动关闭所述激光器; 启动关闭所述激光 器之后发送一特定长度的二进制全零序列。
同时本发明实施例还提供一种接收无源光网络系统中上行突发数据的方 法, 所述方法为:
启动接收数据; 对接收到的数据进行突发定界符匹配,将接收到的数据以 突发定界符长度进行匹配; 如果匹配成功, 再进行突发结束定界符匹配, 如果 匹配成功则说明突发数据接收结束。
本发明实施例还提供一种光网络单元发送端装置, 所述装置包括: 数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开; 同步模式序列发送模块, 用于打开所述激光器后发送同步模 式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符; 突发 结束定界符发送模块, 用于发送突发结束定界符; 发送模块, 用于向光线路终 端接收端发送所述待发送数据。
进一步提供另一种光网络单元发送端装置, 所述装置包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开, 当检测到待发送数据结束时, 指示所述激光器关闭; 同步模 式序列发送模块, 用于打开所述激光器后发送同步模式序列; 突发定界符发送 模块, 用于打开所述激光器后发送突发定界符; 附加序列发送模块, 用于在启 动所述激光器关闭之后发送一特定长度的二进制全零序列; 发送模块, 用于向 光线路终端接收端发送所述待发送数据。
本发明实施例还提供了一种光线路终端接收端装置, 所述装置包括: 数据接收模块, 用于对数据进行接收和移位; 突发定界符匹配模块, 用于 对所述数据接收模块的数据进行突发定界符的匹配; 突发结束定界符匹配模 块, 用于对所述数据接收模块的数据进行突发结束定界符的匹配。
可以理解的,本发明实施例还提供了一种源光网络通信系统,其特征在于, 所述系统包括; 一光网络单元发送端与一光线路终端接收端,
所述光网络单元发送端包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开; 同步模式序列发送模块, 用于打开所述激光器后发送同步模 式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符; 突发 结束定界符发送模块, 用于发送突发结束定界符; 发送模块, 用于向光线路终 端接收端发送所述待发送数据;
所述光线路终端接收端包括:
数据接收模块, 用于对数据进行接收和移位; 突发定界符匹配模块, 用于 对所述数据接收模块的数据进行突发定界符的匹配; 突发结束定界符匹配模 块, 用于对所述数据接收模块的数据进行突发结束定界符的匹配。
本发明实施例提供的上述方法及装置通过在突发数据后加突发结束定界 符实现对突发数据的定界,接收端通过对增加的所述突发结束定界符的匹配对 突发数据进行定界, 该方案不需要增加物理层与上层应用这件的接口, 不需要 改变 MDIO寄存器的功能独立性, 在物理层既能简单的实现突发数据的定界, 并且该方案的复杂度低。
附图说明
图 1本发明实施例上行数据突发结构图;
图 2本发明实施例 ONU发送端突发发送流程图;
图 3本发明实施例 ONU发送端突发数据监控器 FIFO状态变化图; 图 4本发明实施例 ONU发送端突发发送状态转移图;
图 5本发明实施例 ONU发送端结构模块图;
图 6本发明实施例突发数据接收流程图;
图 7本发明实施例数据突发接收过程匹配过程示意图;
图 8本实施例中 OLT接收端突发定界的状态转移图;
图 9本发明实施例接收端结构模块图。
具体实施方式
本发明实施例结合 EPON系统进行说明,通过在每个上行突发数据的末尾 添加突发结束定界符 ( EOB: End of Burst ), 来实现对突发数据结束的定界。
参阅图 1所示, 本发明实施例上行数据突发结构, 该上行数据突发结构由 同步模式序列 (Sync Pattern, SP )、 突发定界符 (Burst Delimiter, BD )、 受 FEC ( Forward Error Correction, 前向纠错) 保护的数据及突发结束定界符构 成。 其中 Sync Pattern和 Burst Delimiter不受 FEC编码保护, Burst Delimiter 其后为 FEC码字, 即受 FEC保护的数据, 突发定界符不受 FEC保护。 Burst Delimiter用来标识突发中受 FEC保护的数据部分的开始( Start of Burst )。 EOB 具体格式可以为 10G EPON中定义的 Block (数据块, 每个数据块为 66比特) 为单位,并推荐釆用 2个 Block的长度,其对应的二进制数值可釆用 000000.... 或者 101010...或者 010101...序列, 即釆用全零二进制序列或者 0、 1交替的二 进制序列, 共 132比特。
参阅图 2 , 本发明实施例 ONU发送端突发数据发送流程图。
S201 检测是否有待发送数据, 如果没有待发送数据继续检测, 当检测到 有待发送以太网数据帧后执行 S202打开激光器;
5203 , 打开激光器后在待发送数据之前插入并发送 Sync Pattern和 Burst Delimiter,本例中 Sync Pattern为 0x555... , Burst Delimiter为 1个 Block长度, 66比特;
5204, 获得待发送数据;
5205 , 发送数据;
5206,判断数据是否发送结束,如果数据发送没有结束则继续读取待发送 数据, 如果数据发送结束则执行 S207; 5207,插入 EOB并发送该 EOB, 所插入的 EOB具体格式可以为以 Block (数据块, 每个数据块为 66比特)为单位, 并推荐采用 2个 Block的长度, 其对应的二进制数值可采用 000000....或者 101010…或者 010101...序列,即采 用全零二进制序列或者 0、 1交替的二进制序列, 共 132比特;
5208, EOB发送完成后关闭激光器;
激光器开关是由 ONU发送端的数据监测器(Data Detector ) 中的先入先 出队列 (FIFO )的具体状态来控制的。
参阅图 3 , ONU发送端突发数据监控器 FIFO状态变化图 :。 当 O J发送 端的数据检测器检测到待发送数据到达, 即 FIFO队列尾出现待发送的受 FEC 编码保护的数据时指示激光器打开, 即执行 S202, 本实施例中, 待发送数据 到达之前 FIFO均为控制块, 在本例中该控制块为 IDLE (空闲)控制符。 在 待发送数据之前插入 Sync Pattern ( 0x555... )和 Burst Delimiter ( 10GEPON中 为 1个 Block长度, 66比特)并发送所述的 Sync Pattern与 Burst Delimiter, 再发送待发送的数据。 当全部数据发送完毕, 数据监测器的 FIFO全部被控制 块填充,检测到 FIFO全部被控制块填充即认为数据发送完成,此时执行 S206, 插入并发送突发结束定界符 EOB。 待 EOB发送完毕后, 指示激光器关闭。 具' 体实施中可在启动关闭激光器时或启动关闭激光器之后将 FIFO中的控制块全 置为全零 Block。
参阅图 4, O U发送端突发发送状态转移图。 ONU初始状态为激光器关 闭状态 "Laser— Is_Off,,布尔变量 data— start标识待发送数据是否到达, 当布尔变 量 data—start的值为 "false"时, 表明未检测到待发送数据到达, 此时激光器将一 直处于关闭状态; 一旦布尔变量 data_start的值为 "true"时, 表明待发送数据到 达, 指示打开激光器, 状态改为" On"; 然后依次进 送 Sync Pattern和 Burst Delimiter 态, 即状态 "Transmit— Sync— Pattern,'和 "Transmit— Burst— Delimiter"; · Sync Pattern和 Burst Delimiter发送完毕后进 送受 FEC保护的数据状态 "FECJs_On"; 当布尔变量 data— end的值为 "false"时,表明当前突发数据尚未发 送完毕, 将一直处于突发数据发送状态" FEC— Is一 On"; —旦数据发送完毕, 即 布尔变量 data— end的值为 "true"时, 进入 E0B发送状态" TransmitJBOB"; 然后 指示关闭激光器, 重新回到激光器关闭状态" Laser— Is一 ΟίΓ, 等待下一个新
更正页 (细则笫 91奈) 的突发数据到来, 如此循环, 即能依次向 OLT发送多个连续的突发数据。 上述方案通过在每个上行突发数据的末尾添加 EOB, 来实现对突发数据 结束的定界。 作为扩展, 在具体实施过程中, 可以在受 FEC保护的数据(又 称为 FEC数据 )发送完后启动激光器关闭, 即检测到 FIFO队列中全为控制块 后启动关闭激光器。 由于关闭激光器需要一定时间, 在这段时间内, 激光器仍 然在发送数据, 但根据激光器的物理特性, 指示激光器关闭后, 激光器发射功 率逐渐减少, 直到最终关闭。 因此在启动关闭激光器后可以再插入并发送一个 二进制全零序列, 该二进制全零没有成为突发数据的一部分,但是紧跟在突发 数据之后, 所以该二进制全零序列可以作为其前一突发数据的 EOB。 该二进 制全零序列可以为 66比特的自然数倍长度, 推荐 132比特。
参阅图 5, ONU发送端结构模块图。 该 ONU发送端 500包括: 数据检测模块 501 , 用于对待发送数据进行检测, 当检测到待发送数据到 达时, 指示激光器打开。
具体地, 用于检测是否有待发送数据, 当检测到 FIFO队列尾出现待发送 的受 FEC编码保护的数据时认为有待发送数据到达, 指示激光器打开, 当检 测到待发送数据结束及突发结束定界符发送结束时, 指示激光器关闭。
同步模式序列发送模块 503 , 打开激光器后发送 Sync Pattern。
突发定界符发送模块 504, 打开激光器后发送 Burst Delimiter
数据读取模块 505, 用于从发送緩冲中读取待发送数据, 然后通过发送模 块 502发送。
突发结束定界符发送模块 506, 用于发送突发结束定界符。
发送模块 502 , 用于向光线路终端接收端发送所述待发送数据。
EOB发送完成后关闭激光器, 突发结束。
进一步该 ONU发送端还包括控制符修改模块(图未示), 用于在待发送 数据发送完毕后, 激光器关闭前将 FIFO中的控制块置为全零 Block。
本发明提供另一 ONU发送端的实施例, 与上述实施例的区别在于: 数据检测模块, 其用于对待发送数据进行检测, 当检测到待发送数据到达 时, 指示激光器打开, 当检测到待发送数据发送结束时, 指示激光器关闭; 还包括一附加序列发送模块(图未示), 其用于在启动激光器关闭之后发 送一特定长度的二进制全零序列, 发送模块 502将该二进制序列发送出去。 上述描述介绍了 ONU发送端突发数据的发送。
在 OLT接收端, 要对突发数据进行接收及处理。
参阅图 6, 本发明实施例突发数据接收流程图。
S600, 启动 OLT, 进行设备初始化;
5601 , 数据接收模块启动接收数据;
5602 , 对接收到的数据进行突发定界符匹配, 将接收到的数据以 Burst Delimiter长度( 1个 Block )进行匹配;
5603 , 判断匹配是否成功, 计算接收到的数据与 Burst Delimiter序列之间 的汉明距离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T1时, 认 为匹配成功;
如果匹配不成功,数据接收模块将数据移位一个比特后继续进行匹配(亦 可以进行分组移位 ), 同时接收新的数据。 如果匹配成功则执行 S604
5604 , 对数据进行移位; 按比特对数据进行移位操作, 在本例中将所述数 据移位一个比特, 在具体的操作中也可以跳过一个 FEC加 BD的长度, 釆用 比特或者 Block或者其他分组移位方式;
5605 , 对移位后的数据以 2个 Block为单位进行 EOB匹配;
5606,判断 EOB匹配是否成功,计算接收数据与 EOB序列之间的汉明距 离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T2时, 认为匹配成 功; 如果匹配不成功, 将数据移位, 按 Block ( 66比特)为单位移位后继续进 行匹配, 同时接收新的数据; 如果 EOB搜索匹配成功, 表明当前突发结束, 然后执行 S601 , 继续对下一个突发接收、 定界。
进一步在完成突发定界符后启动对一固定长度的全零序列的匹配,该匹配 过程称为附加匹配, 该附加匹配可与 EOB匹配同时进行, 并且附加匹配成功 后认为 EOB匹配成功。 此处的全零序列可以为以 1个 block自然数倍的序列, 推荐使用 2个 block的全零序列。
参阅图 7 , 本发明实施例数据突发接收过程匹配过程示意图。 进一步说明 S603及 S606中的匹配过程。 Burst Delimiter与接收到的数据进行匹配, 即计 算接收数据与 Burst Delimiter序列之间的汉明距离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T1时, 认为匹配成功; 如果匹配不成功, 按比特 进行移位操作, 再进行匹配, 一直到匹配成功为止。 如果 Burst Delimiter匹配 成功, 突发的起始位置即能够确定, 此时启动 EOB 匹配流程; 由于本发明实 施例推荐 EOB釆用 2个 Block的长度, 且 Burst Delimiter匹配成功, 可以同 时实现 Block的同步, 因此 EOB的匹配流程本发明技术方案推荐按 Block ( 66 比特)为单位进行移位匹配; 计算接收数据与 EOB序列之间的汉明距离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T2时, 认为匹配成功; 如 果 EOB 匹配成功, 突发的结束位置即能够确定, 此时再重新启动 Burst Delimiter匹配, 检测下一个突发的起始位置, 如此反复, 每个到达 OLT的突 发均能够被有效检测出其起始和结束位置。
参阅图 8, 本实施例中 OLT接收端突发定界的状态转移图。 OLT接收端 首先进入初始状态" INIT", 分别将布尔变量 BD— lock和 EOB— lock初始化为 "false",其中 BD— lock和 EOB— lock分别标识 Burst Delimiter和 EOB匹配状态, 匹配成功为" true", 否则为 "false"; 启动 Burst Delimiter匹配, 进入" TEST— BD" 状态; 如果匹配不成功, 则进入 "BIT SLIP"状态, 进行数据接收或移位, 移位 方式为按比特移位或分组移位, 然后重新进行匹配; 如此循环, 直到匹配成功 (即 BD— lock— success 状态变为 true ), 此时将变量 BD— lock置为" true", 启动 EOB匹配,进入 EOB匹配状态" TEST— EOB";如果匹配不成功,则进入 "BLOCK SLIP"状态, 进行数据接收或移位, 移位方式为按 Block移位或其他移位方式, 然后重新进行匹配; 如此循环, 直到匹配成功 (即 EOB— lock— success 状态变 为 true ), 此时将变量 EOB— lock 置为" true", 当前突发定界接收完毕; 进入 "RESET"状态, 将变量 BD— lock和 EOB— lock重新置为" false", 重新启动新一 轮循环, 以定界接收新的突发数据, 如此循环, 即能实现对所有接收到的突发 数据的定界和接收。
在 EOB具体匹配操作中可以按 block进行移位, 如前面所述。 本发明还 提供另外的实施例。 可釆用按比特移位或者还可在进行 EOB移位匹配前跳过 一定长度的数据再进行移位匹配操作。 比如可以跳跃一个 FEC码字长度(在 10G EPON系统中数据部分至少为一个 FEC码字长度, 单个 FEC码字长度为 31个 Block )。 对于 EOB匹配成功的定义, 如果 EOB和接收数据的汉明距离 HD ( Hamming Distance )满足以下要求: 当 EOB釆用 000000…为具体数值时, 即数值全零二进制序列, 若 HD<T2, 则认为匹配成功; 当 EOB釆用 010101... 或 101010...为具体数值时,即数值为 0、 1交错的二进制序列,若允许 010101... (以 01为循环的 0、 1交错的二进制序列) 匹配上 101010... (以 10为循环的 0、 1交错的二进制序列 )也认为匹配成功, 则当 HD>132-T2 或者 HD<T2时, 则认为匹配成功, 否则当 HD<T2 , 则认为匹配成功, 其中 T2为容忍门限。
本发明实施例中的突发结束定界符的长度和具体数值可根据系统或装置 的实际情况进行设定, 本发明实施例推荐的突发结束定界符的长度为 2 个 block, 具体数值为数值全零二进制序列 000000...或者数值为 0、 1交错的二进 制序列 (010101...或 101010... );
当 EOB釆用数值为 0、 1交错的二进制序列 010101...或 101010...为具体 数值时, 一旦 EOB由于信道传输产生误码导致无法正确匹配上, 此时由于下 一个突发的 Sync Pattern的具体格式也是 10101010... ,故而能够提供二次匹配 保护, 但可能由于釆用 Block 的移位方式导致出现比特错位的情况, 即当用 010101...做匹配时, 可能对应上的时 101010... , 但只要釆取汉明距离门限为 HD>132-T2 或者 HD<T2判决策略,同样能够匹配成功,从而在新的突发 Burst Delimiter匹配前结束前一个突发, 及时启动 Burst Delimiter匹配。
而当 EOB釆用数值全零的二进制序列 000000...为具体数值时, 由于突发 之间没有数据传输, 在信道上体现的就是全零数据, 同理, 当 EOB由于信道 传输产生误码导致无法正确匹配上时,可以利用突发间的全零数据提供二次匹 配保护。 如果存在突发之间的全零数据可能也达不到 EOB的长度而无法实现 二次匹配, 此时可以利用下一个突发的 Sync Pattern, 即除了 00000... , —旦匹 配上 Sync Pattern中的 010101...或 101010... ,也可以认为是匹配成功。 由于釆 用了数值全零的二进制序列 000000...作为 EOB 的具体数值, 同时也有利于 ONU发送端的物理媒质相关子层(PMD, Physical Medium Dependent ) 更快 地进入关闭状态。
参阅图 9,本发明实施例接收端结构模块图。该 OLT接收端 900包括数据 接收模块 901、 突发定界符匹配模块 902及突发结束定界符匹配模块 903。 数 据接收模块 901对数据进行接收和移位。 当 OLT启动时, 进行设备初始化, 数据接收模块 901启动接收数据,并将输出端开关闭合至突发定界符匹配模块 902, 将接收到的数据以 Burst Delimiter长度( 1个 Block ) 为单位送入突发定 界符匹配模块 902进行突发定界符同步匹配;突发定界符匹配模块 902的子模 块第一计算模块计算接收数据与 Burst Delimiter序列之间的汉明距离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T时, 认为匹配成功; 如 果匹配不成功,数据接收模块 901将数据移位一个比特后送入突发定界符匹配 模块 902继续进行匹配(亦可以进行分组移位), 同时接收新的数据, 并可以 循环操作。 Burst Delimiter匹配成功, 表明成功同步接收到从某个 ONU发送 过来的突发数据, 此时开关闭合到突发结束定界符匹配模块 903 , 启动 EOB 搜索匹配; 此时数据接收模块 901以 EOB长度( 2个 Block )为单位将接收到 的数据送入突发结束定界符匹配模块 902进行 EOB匹配操作; 突发结束定界 符匹配模块 903的子模块第二计算模块计算接收数据与 EOB序列之间的汉明 距离 HD ( Hamming Distance ), 当 HD低于预先设定的门限 T时, 认为匹配成 功; 如果匹配不成功, 数据接收模块 901将数据按 Block ( 66比特 )移位后送 入 EOB匹配模块继续进行匹配, 同时接收新的数据, 可循环操作。 EOB搜索 匹配成功,表明突发结束,数据接收模块 901重新将输出端开关闭合至突发定 界符匹配模块 902。同时,所述 OLT接收端 900还包括一附加序列匹配模块(图 未示 ),在突发定界符匹配模块 902成功对突发定界符匹配后对一以 66比特自 然数倍长度的全零序列的匹配。
通过上述描述,在数据接收模块 901重新将输出端开关闭合至突发定界符 匹配模块 902后可启动下一个突发的 Burst Delimiter同步搜索, 可实现对每个 从 ONU发送的突发数据的同步接收和定界。
上述对接收端对突发数据的接收中对 EOB进行匹配, 在实际的实施中, 对于接收端来将其并不识别 EOB是否是发送端插入突发数据中的, 但从接收 端对 EOB的匹配认为是对特定序列的匹配, 该特定序列可以为二进制数值可 釆用数值全零的二进制序列 000000... ...或数值为 0、 1 交替的二进制序列
( 010101 ...或 101010... ),推荐 132比特。 EOB对接收端仅是突发结束定界符。 由于在相邻突发中有间隔,信道上体现的就是全零数据, 其间的数据序列对接 收端仍可作为突发结束识别符。在接收端 EOB不限定为发送端所插入的数据, 应该认为是一特定序列, 可以是发送端插入突发数据中, 亦可以是相邻突发之 间的数据, 同样可以为上述两种数据的组合。 另外, 对于突发结束识别符, 在 实施中, 可以是在前一个突发中插入的数据与突发间数据及后一突发中 Sync Pattern的组合或者突发间数据及后一突发中 Sync Pattern的组合。 所以可以认 为在具体的实施中可以作为突发数据 EOB的不仅仅是在突发中插入的数据, 还可以为上述几种情况。 在接收时, EOB 的匹配应该是对特定数据序列的匹 配。
本发明实施例还提供了无源光网络通信系统,所述系统包括上述的光网络 单元发送端与上述的光线路终端接收端装置。
所述光网络单元发送端包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开;
同步模式序列发送模块, 用于打开所述激光器后发送同步模式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符;
突发结束定界符发送模块, 用于发送突发结束定界符;
发送模块, 用于向光线路终端接收端发送所述待发送数据;
所述光线路终端接收端包括:
数据接收模块, 用于对数据进行接收和移位;
突发定界符匹配模块,用于对所述数据接收模块的数据进行突发定界符的 匹配;
突发结束定界符匹配模块,用于对所述数据接收模块的数据进行突发结束 定界符的匹配。
所述光网络单元发送端还包括:
控制符修改模块, 用于在所述待发送数据发送完毕后, 所述激光器关闭前 将数据监控器先入先出队列中的控制块全置为全零数据块。
所述光线路终端接收端还包括:
附加序列匹配模块,用于在突发定界符匹配模块成功对突发定界符匹配后 对一特定长度的全零序列的匹配。
本发明实施例提供的上述方法及装置通过在突发数据后加突发结束定界 符实现对突发数据的定界,接收端通过对增加的所述突发结束定界符的匹配对 突发数据进行定界, 该方案不需要增加物理层与上层应用这件的接口, 不需要 改变 MDIO寄存器的功能独立性, 在物理层既能简单的实现突发数据的定界, 并且该方案的复杂度低。

Claims

权 利 '要 求
1、 一种发送无源光网络系统中上行突发数据的方法, 其特征在于, 所述 方法包括:
打开激光器;
发送同步模式序列和突发定界符;
发送待发送数据;
所述待发送数据发送结束后, 发送突发结束定界符。
2、 如权利要求 1所述的方法, 其特征在于, 所述突发结束定界符为: 二进制数值全零序列或者 0、 1交错的二进制序列。
3、 如权利要求 2所述的方法, 其特征在于, 当检测到数据检测器的先入 先出队列全部被控制块填充后发送所述突发结束定界符。
4、 如权利要求 1所述的方法, 其特征在于, 所述方法进一步包括: 关闭所述激光器。
5、 如权利要求 4所述的方法, 其特征在于, 所述方法还进一步包括: 在启动关闭激光器时或启动关闭激光器后将数据检测器的先入先出队列 中的控制块置为全零数据块。
6、 如权利要求 1所述的方法, 其特征在于, 在所述发送同步模式序列和 突发定界符之后还包括:
. 读取待发送数据。
7、 一种接收无源光网络系统中上行突发数据的方法, 其特征在于, 所述 方法为:
" 启动接收数据;
对接收到的数据进行突发定界符匹配,将接收到的数据以突发定界符长度 进行匹配;
如果匹配成功,再进行突发结束定界符匹配,如果匹配成功则说明突发数 据接收结束。
8、 如权利要求 7所述的方法, 其特征在于, 计算接收到的数据与突发定 界符序.列之间的汉明距离 , 当汉明距离低于预先设定的门限 T1时, 认为匹配 成功, 其中 T1为容忍门限。
更正页 (细则笫 91奈) OP080782
WO 2009/132540 PCT/CN2009/070939
- 14-
9、 如权利要求 7所述的方法, 其特征在于, 计算接收数据与突发结束定 界符序列之间的汉明距离, 当汉明距离低于预先设定的门限 T2时, 认为匹配 成功, 其中 T2为容忍门限。
10、 如权利要求 7所述的方法, 其特征在于, 如果突发结束定界符序列和 接收数据的汉明距离满足以下要求:当突发结束定界符序列釆用全零二进制序 列为具体数值时, 若汉明距离小于 T2 , 则认为匹配成功; 当突发结束定界符 序列釆用 0、 1交错的二进制序列为具体数值时, 若允许以 01为循环的 0、 1 交错的二进制序列匹配上以 10循环的 0、 1交错的二进制序列也认为匹配成功, 则当汉明距离大于 132-T2 或者汉明距离小于 T2时, 认为匹配成功, 否则汉 明距离小于 T2时, 则认为匹配成功, 其中 T2为容忍门限。
11、 如权利要求 10所述的方法, 其特征在于, 当突发结束定界符匹配不 成功时, 将数据移位, 移位后继续进行匹配。
12、 如权利要求 11所述的方法, 其特征在于, 对数据移位为:
按数据块长度为单位进行移位或者按比特进行移位或者跳过一定长度的 数据再进行移位。
13、 如权利要求 7所述的方法, 其特征在于, 在完成突发定界符后启动对 一特定长度的全零序列的匹配,如果匹配成功,认为突发结束定界符匹配成功。
14、 一种光网络单元发送端装置, 其特征在于, 所述装置包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开;
同步模式序列发送模块, 用于打开所述激光器后发送同步模式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符;
突发结束定界符发送模块, 用于发送突发结束定界符;
发送模块, 用于向光线路终端接收端发送所述待发送数据。
15、 如权利要求 14所述的装置, 其特征在于, 所述装置还包括: 控制符修改模块, 用于在所述待发送数据发送完毕后, 所述激光器关闭前 将数据监控器先入先出队列中的控制块置为全零数据块。
16、 如权利要求 14所述的装置, 其特征在于, 所述装置还包括: 数据读取模块, 用于从发送緩冲中读取所述待发送数据。 OP080782
WO 2009/132540 PCT/CN2009/070939
- 15 -
17、 一种光线路终端接收端装置, 其特征在于, 所述装置包括:
数据接收模块, 用于对数据进行接收和移位;
突发定界符匹配模块,用于对所述数据接收模块的数据进行突发定界符的 匹配;
突发结束定界符匹配模块,用于对所述数据接收模块的数据进行突发结束 定界符的匹配。
18、 如权利要求 17所述的装置, 其特征在于, 所述突发定界符匹配模块 还包括第一计算模块,用于计算接收的数据与突发定界符序列之间的汉明距 离。
19、 如权利要求 17所述的装置, 其特征在于, 所述突发结束定界符匹配 模块还包括第二计算模块,用于计算接收的数据与突发结束定界符序列之间的 汉明距离。
20、 如权利要求 17所述的装置, 其特征在于, 所述装置还包括: 附加序列匹配模块,用于在突发定界符匹配模块成功对突发定界符匹配后 对一特定长度的全零序列的匹配。
21、 一种无源光网络通信系统, 其特征在于, 所述系统包括;
一光网络单元发送端与一光线路终端接收端,
所述光网络单元发送端包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开;
同步模式序列发送模块, 用于打开所述激光器后发送同步模式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符;
突发结束定界符发送模块, 用于发送突发结束定界符;
发送模块, 用于向光线路终端接收端发送所述待发送数据;
所述光线路终端接收端包括:
数据接收模块, 用于对数据进行接收和移位;
突发定界符匹配模块,用于对所述数据接收模块的数据进行突发定界符的 匹配;
突发结束定界符匹配模块,用于对所述数据接收模块的数据进行突发结束 定界符的匹配。
22、 如权利要求 21所述的系统, 其特征在于, 所述光网络单元发送端还 包括:
'控制符修改模块,用于在所述待发送数据发送完毕后, 所述激光器关闭前 将数据监控器先入先出队列中的控制块全置为全零数据块。
23、 如权利要求 22所述的系统, 其特征在于, 所述光线路终端接收端还 包括:
附加序列匹配模块,用于在突发定界符匹配模块成功对突发定界符匹配后 对一特定长度的全零序列的匹配。
24、 一种发送无源光网络系统中上行突发数据的方法, 其特征在于, 所述 方法为:
打开激光器;
发送同步模式序列和突发定界符;
发送待发送数据;
所述待发送数据发送结束后, 启动关闭所述激光器;
启动关闭所述激光器之后发送一特定长度的二进制全零序列。
—25、 如权利要求 24所述—的方法, ^特征在于, 所述待发送数据发送结束 后, 启动关闭激光器为:
检测到数据检测器的先入先出队列全部被控制块填充后关闭激光器。
26、 一种光网络单元发送端装置, 其特征在于, 所述装置包括:
数据检测模块,用于对待发送数据进行检测,当检测到待发送数据到达时, 指示激光器打开, 当检测到待发送数据结束时, 指示所述激光器关闭;
同步模式序列发送模块, 用于打开所述激光器后发送同步模式序列; 突发定界符发送模块, 用于打开所述激光器后发送突发定界符;
附加序列发送模块,用于在启动所述激光器关闭之后发送一特定长度的二 进制全零序列; '
发送模块, 用于向光线路终端接收端发送所述待发送数据。
27、 如权利要求 26所示的装置, 其特征在于, 所述装置还包括: 数据读取模块, 用于从发送緩冲中读取所述待发送数据。
更正页 (细则笫 91奈)
PCT/CN2009/070939 2008-04-28 2009-03-23 无源光网络系统中发送上行突发数据的方法、装置及系统 WO2009132540A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09737651.1A EP2285020B1 (en) 2008-04-28 2009-03-23 A method, device and system for transmitting the uplink burst data in the passive optical network
KR1020090036602A KR101050810B1 (ko) 2008-04-28 2009-04-27 Pon 시스템에서 업스트림 버스트 데이터를 송신하는 방법, 장치 및 시스템
JP2009107660A JP2009284477A (ja) 2008-04-28 2009-04-27 Ponシステムにおいてアップストリームバーストデータを伝送するための方法、装置、およびシステム
US12/914,857 US9686036B2 (en) 2008-04-28 2010-10-28 Method, apparatus and system for transmitting upstream burst data in PON system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810066881.1 2008-04-28
CN2008100668811A CN101572833B (zh) 2008-04-28 2008-04-28 无源光网络系统中发送上行突发数据的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/914,857 Continuation US9686036B2 (en) 2008-04-28 2010-10-28 Method, apparatus and system for transmitting upstream burst data in PON system

Publications (1)

Publication Number Publication Date
WO2009132540A1 true WO2009132540A1 (zh) 2009-11-05

Family

ID=41232041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070939 WO2009132540A1 (zh) 2008-04-28 2009-03-23 无源光网络系统中发送上行突发数据的方法、装置及系统

Country Status (7)

Country Link
US (1) US9686036B2 (zh)
EP (1) EP2285020B1 (zh)
JP (1) JP2009284477A (zh)
KR (1) KR101050810B1 (zh)
CN (1) CN101572833B (zh)
HK (1) HK1136129A1 (zh)
WO (1) WO2009132540A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301670B (zh) 2009-02-16 2014-08-13 华为技术有限公司 无源光网络突发发送方法及接收机复位方法与装置
WO2012020450A1 (ja) 2010-08-10 2012-02-16 富士通テレコムネットワークス株式会社 局側装置およびponシステム
JP5508328B2 (ja) * 2011-03-31 2014-05-28 日本電信電話株式会社 符号語同期方法および回路
JP5786510B2 (ja) * 2011-07-14 2015-09-30 沖電気工業株式会社 バースト信号処理装置、親局通信装置、及びバースト信号処理方法
US9788193B2 (en) * 2012-05-25 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for controlling a mobile terminal in a radio access network to transition between a plurality of communication states
US9525542B2 (en) * 2013-07-02 2016-12-20 Viavi Solutions Deutschland Synchronization to upstream bursts
US9755746B1 (en) * 2014-10-03 2017-09-05 Adtran, Inc. Systems and methods for digitally splitting an optical line terminal across multiple fibers
JP6826020B2 (ja) * 2017-11-15 2021-02-03 日本電信電話株式会社 同期プログラム、記録媒体、通信装置及び同期方法
US11294678B2 (en) 2018-05-29 2022-04-05 Advanced Micro Devices, Inc. Scheduler queue assignment
CN109902055B (zh) * 2019-01-16 2023-01-10 北京左江科技股份有限公司 一种适用窄带数据网络的slip编码数据流传输方法
US11334384B2 (en) * 2019-12-10 2022-05-17 Advanced Micro Devices, Inc. Scheduler queue assignment burst mode
US11948000B2 (en) 2020-10-27 2024-04-02 Advanced Micro Devices, Inc. Gang scheduling for low-latency task synchronization
KR102639756B1 (ko) 2021-11-09 2024-02-23 한국전자통신연구원 버스트모드 광송신기
CN116684048B (zh) * 2023-08-02 2023-10-31 成都电科星拓科技有限公司 Serdes中继芯片主备链路切换方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171895A1 (en) * 2001-04-25 2002-11-21 Glory Telecommunications Co., Ltd. Automatic ranging in a passive optical network
CN1453944A (zh) * 2002-04-27 2003-11-05 桦光电讯股份有限公司 一种连接ip网络的被动式光纤网络及其连接方法
CN101039159A (zh) * 2006-03-13 2007-09-19 上海交通大学 一种无源光网络数据链路层数据传输方法
US20070242676A1 (en) * 2006-04-13 2007-10-18 Corrigent Systems Ltd. Interface between a synchronous network and high-speed ethernet
JP2008085970A (ja) * 2006-08-31 2008-04-10 Sumitomo Electric Ind Ltd 光受信機、光送信機、光通信システム及びブロック同期方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2063011B (en) * 1979-11-09 1983-10-12 Philips Electronic Associated Information transmission system
US20020080444A1 (en) * 2000-12-22 2002-06-27 David Phillips Multiple access system for communications network
US20030137975A1 (en) * 2001-07-10 2003-07-24 Jian Song Ethernet passive optical network with framing structure for native Ethernet traffic and time division multiplexed traffic having original timing
JP2004266524A (ja) * 2003-02-28 2004-09-24 Nippon Telegr & Teleph Corp <Ntt> フレーム同期方法
US7477845B2 (en) * 2003-08-18 2009-01-13 Teknovus, Inc. Method and apparatus for reducing data burst overhead in an ethernet passive optical network
CN1823547B (zh) * 2003-09-15 2010-08-18 泰克诺沃斯公司 用于在以太无源光网络中进行传输控制的方法和装置
KR100617684B1 (ko) * 2004-01-30 2006-08-28 삼성전자주식회사 방송통신 융합 시스템에서 이더넷 데이터를 송수신하는 방법
US7616901B2 (en) * 2005-08-10 2009-11-10 Enablence Usa Fttx Networks Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US9312955B2 (en) * 2006-05-22 2016-04-12 Alcatel Lucent Method and apparatus to reduce the impact of raman interference in passive optical networks with RF video overlay
US7613887B1 (en) * 2006-09-18 2009-11-03 Marvell International Ltd. System and method for managing a memory storage device
US7990937B2 (en) * 2007-11-05 2011-08-02 Freescale Semiconductor, Inc. Initiation of high speed overlay mode for burst data and real time streaming (audio) applications
WO2009152668A1 (zh) * 2008-06-19 2009-12-23 华为技术有限公司 提供无源光网络系统中上行突发数据的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171895A1 (en) * 2001-04-25 2002-11-21 Glory Telecommunications Co., Ltd. Automatic ranging in a passive optical network
CN1453944A (zh) * 2002-04-27 2003-11-05 桦光电讯股份有限公司 一种连接ip网络的被动式光纤网络及其连接方法
CN101039159A (zh) * 2006-03-13 2007-09-19 上海交通大学 一种无源光网络数据链路层数据传输方法
US20070242676A1 (en) * 2006-04-13 2007-10-18 Corrigent Systems Ltd. Interface between a synchronous network and high-speed ethernet
JP2008085970A (ja) * 2006-08-31 2008-04-10 Sumitomo Electric Ind Ltd 光受信機、光送信機、光通信システム及びブロック同期方法

Also Published As

Publication number Publication date
EP2285020A4 (en) 2011-07-27
JP2009284477A (ja) 2009-12-03
EP2285020B1 (en) 2013-06-26
EP2285020A1 (en) 2011-02-16
CN101572833A (zh) 2009-11-04
CN101572833B (zh) 2010-11-10
US20110044699A1 (en) 2011-02-24
US9686036B2 (en) 2017-06-20
HK1136129A1 (en) 2010-06-18
KR20090113782A (ko) 2009-11-02
KR101050810B1 (ko) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2009132540A1 (zh) 无源光网络系统中发送上行突发数据的方法、装置及系统
JP5343748B2 (ja) 受信部及び局側装置並びにクロック・データ再生回路における周波数校正方法
US20050058452A1 (en) Method and apparatus for transmission control in an ethernet passive optical network
US8724661B2 (en) Method and device for sending uplink burst data in passive optical network system
CN101401365A (zh) Pon系统和终端操作注册方法
US8755695B2 (en) Burst transmission method, and receiver resetting method and apparatus in a passive optical network
WO2012014365A1 (ja) 通信装置、通信システム、通信方法、プログラム
CN109076269B (zh) 一种通道训练的方法、装置及系统
JP2010114830A (ja) Pon光通信システム、局側装置、宅側装置及び消費電力制御方法
US9287981B2 (en) Station-side apparatus and PON system
US9054811B2 (en) Method and device for sending upstream transfer frame in passive optical network
WO2013093993A1 (ja) ネットワークシステム
CN101572834B (zh) 无源光网络数据处理的方法、装置和无源光网络系统
CN101958752B (zh) 无源光网络系统中发送上行突发数据的方法
WO2009152758A1 (zh) 无源光网络系统中发送上行突发数据的方法及装置
JP5591681B2 (ja) 親局通信装置、光通信ネットワークシステム、及び通信方法
WO2018165893A1 (zh) 一种光网络单元发送光信号的方法及光网络单元
JP6085244B2 (ja) 光通信システム、信号送信制御方法及び加入者側光回線終端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4161/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009737651

Country of ref document: EP