WO2009131103A1 - 積層造形装置 - Google Patents

積層造形装置 Download PDF

Info

Publication number
WO2009131103A1
WO2009131103A1 PCT/JP2009/057875 JP2009057875W WO2009131103A1 WO 2009131103 A1 WO2009131103 A1 WO 2009131103A1 JP 2009057875 W JP2009057875 W JP 2009057875W WO 2009131103 A1 WO2009131103 A1 WO 2009131103A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
powder material
base
additive manufacturing
manufacturing apparatus
Prior art date
Application number
PCT/JP2009/057875
Other languages
English (en)
French (fr)
Inventor
不破 勲
吉田 徳雄
東 喜万
阿部 諭
武南 正孝
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN2009801139803A priority Critical patent/CN102015258B/zh
Priority to US12/988,723 priority patent/US8550802B2/en
Priority to EP09735744.6A priority patent/EP2281677B1/en
Publication of WO2009131103A1 publication Critical patent/WO2009131103A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a three-dimensional shaped article manufacturing apparatus. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam.
  • the present invention relates to an additive manufacturing apparatus.
  • a method for producing a three-dimensional shaped object by irradiating a powder material with a light beam is known.
  • the powder at the predetermined portion is sintered or melt-solidified to form a solidified layer, and (ii) of the obtained solidified layer
  • a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated is manufactured by repeating the process of “laying a new powder layer on top and similarly irradiating a light beam to form a solidified layer”.
  • the obtained three-dimensional shaped object can be used as a mold, and organic powder materials such as resin powder and plastic powder can be used. In such a case, the obtained three-dimensional shaped object can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.
  • an additive manufacturing apparatus is used, and a three-dimensional object is manufactured on a base serving as a base.
  • a powder layer is formed on the base, and a light beam is irradiated to a predetermined portion of the powder layer to sinter or melt and solidify the portion to form a solidified layer.
  • the base is lowered stepwise (see, for example, Patent Document 1).
  • FIGS. 14A and 14B show a part of the configuration of this type of additive manufacturing apparatus.
  • the layered modeling apparatus includes a modeling unit 104 in which a powder layer and a solidified layer are formed, and a material supply unit 105 that supplies a powder material to the modeling unit 104.
  • the modeling unit 104 includes “a modeling table 140 that functions as a base”, “an elevator 142 that moves the modeling table 140 up and down”, and “a modeling frame 141 that surrounds the modeling table 140”.
  • the material supply unit 105 includes “a storage tank 151 that stores the powder material”, “an elevating mechanism 152 and a lift table 150 that push up the powder material in the storage tank 151”, and “a powder that is positioned above the powder material in the storage tank 151. It has a material supply blade 120 ”for transferring the material to the modeling table 140 side and leveling the surface of the powder material transferred to the modeling table 140.
  • the modeling table 140 is lowered and the powder layer of the next layer And a solidified layer is formed again.
  • the lifting table 150 is slightly raised so that the upper layer of the powder material in the storage tank 151 is positioned slightly higher than the upper surface of the modeling frame 141, and then the material supply blade 120 is slid. It is made to push out the powder material on the raising / lowering table 150 toward the modeling table 140 side.
  • the height H of the material supply unit 105 may be more than twice the height H1 of the storage tank 151 in order to move the lifting table 150 up and down.
  • the structure 105 caused the apparatus to become large (see FIG. 14B).
  • the powder material in the upper layer is supplied to the modeling unit 104 in order, for example, when a new powder material is supplied to the upper layer of the storage tank 151, the storage tank The powder material of the lower layer 151 is stagnated without being used, and the material circulation may be deteriorated.
  • the material circulation is poor, for example, when an easily oxidizable material is used as the powder material, the “oxidized material” and the “non-oxidized material” are likely to be mixed in the powder material, and the formation accuracy of the obtained solidified layer is improved. There is concern about the decline.
  • an object of the present invention is to provide an additive manufacturing apparatus including a material replenishing unit that can reduce the size of the apparatus and has good material circulation.
  • a powder layer forming means for forming a powder layer made of a powder material, and a predetermined position of the powder layer is irradiated with a light beam to sinter or melt and solidify the powder at the predetermined position.
  • a plurality of solidified layers stacked and integrated by repeating the formation of the powder layer by the powder layer forming means and the formation of the solidified layer by the solidified layer forming means.
  • An additive manufacturing apparatus for manufacturing a three-dimensional shaped object, It further comprises material replenishing means for supplying and replenishing the powder material above the base on which the powder layer and the solidified layer are laminated or on the upper surface of the base frame surrounding the outer periphery of the base,
  • the material replenishing means has a substantially cylindrical member in which the powder material is charged and a screw member embedded in the substantially cylindrical member, and the powder material in the substantially cylindrical member is transferred by rotation of the screw member;
  • the present invention is characterized in that the powder material is supplied by using a material replenishing means in which a screw member is housed in a substantially cylindrical member.
  • the “base” used in the present specification substantially means a member or a part that becomes a base of a manufactured object to be manufactured.
  • the “substantially cylindrical member” used in the present specification is a member having a hollow portion therein, and a member (for example, a powder material supply port and a powder material discharge port communicating with the hollow portion). (Barrel member) substantially means.
  • substantially orthogonal as used herein means that one direction and the other direction preferably form an angle of 80 ° to 100 °, more preferably 85 ° to 95 ° (for example, 90 °). Substantially.
  • the powder layer forming means includes a slide member that is slidably disposed along the upper surface of the base frame.
  • the slide member has a function of supplying the powder material supplied from the material replenishing means to a space or a region surrounded by the upper surface of the base and the base frame and leveling (or leveling) the surface of the supplied powder material. have.
  • the slide member further includes a cover portion that can cover the upper surface of the base.
  • the slide member is further provided with a material supply frame that is disposed above the base or on the upper surface of the base frame body and can surround a region to which the powder material is supplied.
  • the material supply frame preferably has a lid portion that covers the inside of the frame, and the powder material discharge port formed at the end of the substantially cylindrical member is in communication with the material supply frame. It is preferable.
  • the material replenishing means is provided so as to be movable in a direction substantially orthogonal to the sliding direction of the sliding member.
  • the powder material is preferably supplied via a discharge port formed at the end of the substantially cylindrical member.
  • a material discharge opening is provided for the barrel (barrel) of the substantially cylindrical member of the material replenishment means, and the powder material is supplied through the material discharge opening of the barrel.
  • the discharge port is provided in the trunk portion of the substantially cylindrical member, not in the end portion of the substantially cylindrical member.
  • the “material discharge opening” may be in the form of “a plurality of holes” provided in the barrel of the substantially cylindrical member, or “slit-like opening provided in the barrel of the substantially cylindrical member. Part "may be used.
  • the material replenishing means includes a material discharge opening formed in a body portion (barrel portion) of a substantially cylindrical member, and a lid portion that allows the material discharge opening to be opened and closed.
  • the powder material can be supplied by driving the lid to open and close the material discharge opening.
  • the additive manufacturing apparatus of the present invention preferably further includes a mechanism for transferring the powder material supplied above the base or the upper surface of the base frame in a direction substantially perpendicular to the sliding direction of the slide member.
  • a mechanism for transferring the powder material supplied above the base or the upper surface of the base frame in a direction substantially perpendicular to the sliding direction of the slide member.
  • sliding mechanism for transferring powder material in a direction substantially perpendicular to the sliding direction of the sliding member “conveyor mechanism for transferring powder material in a direction substantially orthogonal to the sliding direction of the sliding member”, or “powder material
  • the additive manufacturing apparatus of the present invention includes a screw mechanism that moves in a direction substantially orthogonal to the slide direction of the slide member.
  • the additive manufacturing apparatus of the present invention supplies and replenishes the powder material by a screw method, the height of the additive manufacturing apparatus can be suppressed, and the apparatus size is smaller than that of the conventional additive manufacturing apparatus.
  • the additive manufacturing apparatus of the present invention has an apparatus height of about 0.3 to 0.7 times the conventional apparatus height (for example, the conventional apparatus height as shown in FIG. 14).
  • the powder material is transported in one direction in the substantially cylindrical member and supplied to the upper part of the base or the upper surface of the base frame, so that the material circulation is further improved. It has become. In other words, even when a powder material that easily oxidizes is used, “decrease in formation accuracy of the solidified layer” can be prevented.
  • the powder layer forming means has a slide member
  • a powder layer having a uniform surface can be formed on the base.
  • the slide member has a cover portion
  • the contact between the powder layer and the outside air can be suppressed by the cover portion, so that a problem of solidified layer formation accompanying oxidation of the powder material can be prevented.
  • the powder material is supplied only to a limited area surrounded by the material supply frame. Powder material can be supplied on top.
  • the material replenishing means When the material replenishing means can be moved in a direction substantially perpendicular to the sliding direction of the slide member, the powder material can be supplied to a desired region, so that the amount of surplus powder can be reduced.
  • the inside of the material supply frame can be hermetically sealed, so that scattering of the powder material can be effectively suppressed.
  • a material discharge opening for example, “a plurality of holes” or “slit-like opening”
  • the body is driven by driving the lid.
  • the powder material can be supplied over a wide range above the base or the upper surface of the base frame without moving the material replenishing means.
  • the material replenishing means is not moved and the upper surface of the base frame or the upper surface of the base frame body
  • the powder material can be supplied uniformly over a wide range.
  • FIG. 1 is a partial cross-sectional view of an additive manufacturing apparatus according to a first embodiment of the present invention.
  • A) And (b) is a perspective view of the additive manufacturing apparatus which concerns on 1st Embodiment.
  • (A)-(c) is a partial sectional side view showing the operation of the additive manufacturing apparatus according to the first embodiment.
  • D)-(f) is a partial sectional side view showing the operation of the additive manufacturing apparatus according to the first embodiment.
  • (A) And (c) is a partial sectional side view of the additive manufacturing apparatus which concerns on 2nd Embodiment of this invention,
  • (b) is the perspective view.
  • (A) And (c) is a partial sectional side view of the additive manufacturing apparatus which concerns on 3rd Embodiment of this invention, (b) is the perspective view.
  • (A) is a sectional side view of the additive manufacturing apparatus which concerns on 4th Embodiment of this invention, (b) is the perspective view.
  • (A) And (b) is the sectional side view which showed the modification of the additive manufacturing apparatus which concerns on 4th Embodiment.
  • (A) And (b) is a sectional side view which showed the aspect of the modification of the additive manufacturing apparatus which concerns on 4th Embodiment.
  • (A) And (b) is a sectional side view of the additive manufacturing apparatus which concerns on 5th Embodiment of this invention.
  • (A) And (b) is a sectional side view showing a modification of the additive manufacturing apparatus according to the fifth embodiment.
  • (A) And (b) is a sectional side view which showed the modification of the additive manufacturing apparatus which concerns on 5th Embodiment
  • (c) is a perspective view of the screw mechanism in the embodiment.
  • (A) is a partial exploded perspective view of the conventional additive manufacturing apparatus
  • (b) is a sectional side view of the material supply unit of the additive manufacturing apparatus.
  • the additive manufacturing apparatus 1 mainly includes a powder layer forming unit, a solidified layer forming unit, and a material replenishing unit.
  • the powder layer forming means includes a powder layer forming section 2 that forms a powder layer Sa made of an inorganic or organic powder material M.
  • the solidified layer forming means includes an optical device 3 that forms a solidified layer Sb by sintering or melting and solidifying a predetermined portion of the powder layer Sa by irradiation with a light beam L.
  • the material replenishing means includes “the forming part 4 having the base 40 on which the powder layer Sa and the solidified layer Sb are formed and the base frame 41 surrounding the outer periphery of the base 40” and “the powder layer Sa and the solidified layer Sb. And a material replenishing device 5 ”for supplying the powder material M to the upper side of the base 40 or the upper surface of the base frame 41. It is preferable that the layered manufacturing apparatus 1 further includes a processing machine 6 that performs the cutting process on the surface of the three-dimensionally shaped object that is layered and integrated. In FIGS. 2A and 2B, a part of the configuration of the optical device 3, the modeling unit 4, and the processing machine 6 is omitted.
  • the powder layer forming unit 2 includes the “sliding member 20 slidably disposed along the upper surface of the base frame body 41”, “the horizontal rail 21 disposed in parallel with the upper surface of the base frame body 41”, and “the horizontal rail 21. And a slide drive unit 22 ”for sliding the slide member 20 along the axis.
  • the lower surface portion of the slide member 20 is provided substantially in contact with the upper surface of the base frame body 41, and can move along the horizontal rail 21 with the driving force of the slide drive portion 22.
  • the optical device 3 includes a “light source 31 having a laser oscillator”, a “scanning mechanism 32 having a condensing lens and a galvanometer mirror that deflects the irradiation direction of the light beam L”, and “light for connecting the light source 31 and the scanning mechanism 32. Fiber 33 ".
  • the light source 31 for example, when the powder material M contains iron powder, a carbon dioxide laser, an Nd: YAG laser, or the like is used.
  • the optical apparatus 3 is provided so as to be movable in the X-axis and Z-axis directions.
  • the modeling unit 4 includes a “table 42 for fixing the base 40”, an “elevator 43 for raising and lowering the base frame 41”, and a “table 42 with the Y axis shown in FIG. And a pedestal 44 ”movable in the direction. Since the base 40 is fixed to the table 42, when the elevator 43 raises the base frame body 41, a space surrounded by the inner surface of the base frame body 41, that is, “powder material M is replenished on the base 40. Space will be born.
  • the material replenishing device 5 includes “a substantially cylindrical member 50 filled with the powder material M”, “a screw member 51 housed in the substantially cylindrical member 50”, and “a rotational drive unit 52 that rotationally drives the screw member 51”. “A storage tank 53 connected to one end of the substantially cylindrical member 50 and supplying the powder material M into the substantially cylindrical member 50”. When the screw member 51 is rotated by driving by the rotation driving unit 52, the powder material M filled in the substantially cylindrical member 50 is transferred toward the other end portion to which the storage tank 53 is not connected. become.
  • the axial direction A of the screw member 51 is substantially parallel to the sliding direction B of the slide member 20 as shown in FIG.
  • the material replenishing device 5 may be arranged.
  • the material replenishing device 5 may be arranged so that the axial direction A of the screw member 51 is substantially orthogonal to the sliding direction B of the slide member 20 (FIG. 2B). .
  • the discharge port 54 is preferably formed at the end of the substantially cylindrical member 50, and the powder material M is discharged from the discharge port 54 to the outside.
  • the material replenishing device 5 is preferably provided so as to be movable in a direction substantially orthogonal to the sliding direction of the slide member 20.
  • the material replenishing device 5 can supply the powder material M from the discharge port 54 to the upper side of the base 40 or the upper surface of the base frame 41 while moving in a direction substantially orthogonal to the sliding direction of the slide member.
  • the powder material M can be supplied to a region between the base 40 and the slide member 20 in the upper surface of the base frame body 41.
  • the processing machine 6 has a surface of a molded object formed by laminating and integrating “a spindle head 61 capable of at least three-axis control with respect to the table 42”, “a spindle head 62 mounted on the spindle base 61”, and “solidified layer Sb”. And an end mill 63 ”for cutting.
  • the headstock 61 is configured such that the spindle head 62 is movable in the X-axis and Z-axis directions shown in FIG.
  • a mechanism for automatically changing the end mill 63 is provided.
  • the end mill 63 for example, a two-blade ball end mill made of a carbide material can be used.
  • a square end mill, a radius end mill, a drill, or the like may be used as appropriate according to the processing shape and purpose.
  • the scanning mechanism 32 of the optical device 3 may be configured to be detachably attached to the side surface of the spindle head 62 of the processing machine 6 or to be attached in place of the end mill 63 (not shown).
  • the operation mode of the additive manufacturing apparatus 1 will be described with reference to FIGS. 3 (a) to 3 (f).
  • the upper surface of the base 40 is provided in a state slightly lower than the upper surface of the base frame body 41 (see FIG. 3A).
  • the rotation member 52 is driven in the material replenishing device 5 to rotate the screw member 51.
  • the powder material M stored in the storage tank 53 is transferred into the substantially cylindrical member 50 by the rotation of the screw member 51.
  • the powder material M is transferred in the direction a shown in FIG.
  • the powder material M is discharged from the substantially cylindrical member 50 and supplied to the upper surface of the base frame body 41. More specifically, the powder material M discharged from the substantially cylindrical member 50 is supplied to a region between the base 40 and the slide member 20 as shown in FIG.
  • the powder material M is supplied onto the base 40 by sliding the slide member 20 along the upper surface of the base frame body 41.
  • the surface of the powder material M is leveled by the slide member 20 on the base 40, and the first powder layer Sa1 is formed as shown in FIG.
  • the shape of the slide member 20 is not particularly limited as long as it can move the powder material M while pushing it and level the surface of the powder material M supplied to the upper surface of the base 40. That is, the slide member 20 only needs to have at least a width larger than the width of the base 40, and is not necessarily limited to the blade-shaped member as shown in FIG.
  • a recovery unit (not shown) for recovering the surplus powder has a base frame body 41. May be provided.
  • the optical device 3 is operated following the formation of the powder layer. Specifically, the optical device 3 is used to irradiate a predetermined portion of the powder layer with the light beam L to sinter or melt and solidify the powder at that portion. As a result, the first solidified layer Sb1 is formed at the position irradiated with the light beam (see FIG. 3D).
  • the irradiation path (hatching path) of the light beam L is preferably created in advance from the three-dimensional CAD data of the layered object. That is, the irradiation path of the light beam L for each layer is created using the contour shape data of each cross-section obtained by slicing STL (Standard Triangulation language) data generated from the three-dimensional CAD model at an equal pitch.
  • STL Standard Triangulation language
  • the solidified layer is a sintered layer
  • at least the outermost surface of the shaped object is solidified so as to have a high density (porosity of 5% or less), while the inside of the shaped object has a low density. It is preferable to sinter so that.
  • the shape model data is divided into the surface layer portion and the inside in advance, and the inside is irradiated with the light beam L under sintering conditions that become porous, while the surface layer portion is almost completely melted with powder. It is preferable to irradiate the light beam L under the sintering conditions for high density. In this way, a three-dimensional shaped object having a dense surface can be finally obtained.
  • the base frame body 41 When the formation of the solidified layer is completed, as shown in FIG. 3E, the base frame body 41 is pushed up to a predetermined height using the elevator 43, and then the powder material M is supplied again to the upper surface of the base frame body 41 ( (See FIG. 3 (a)).
  • the height at which the base frame 41 is pushed up may correspond to the thickness of the second powder layer Sa2 to be formed on the first powder layer Sa1 and the solidified layer Sb1.
  • the thickness of each powder layer Sa or each solidified layer Sb is about 0.05 mm when assuming a case where a shaped article such as a molding die is formed.
  • the total thickness of the laminated solidified layer Sb reaches a required value calculated from the tool length of the end mill 63 of the processing machine 6 or the like.
  • Start the cutting process That is, as shown in FIG. 3 (f), the processing machine 6 is moved above the modeling unit 4, and the surface of the three-dimensionally shaped three-dimensional modeled object is cut by the end mill 63.
  • the cutting path by the processing machine 3 is created in advance from three-dimensional CAD data.
  • This cutting process removes the excess solidified portion caused by the adhered powder on the surface of the three-dimensional shaped object, so that a state where the high-density part is suitably exposed on the surface of the three-dimensional shaped object can be obtained.
  • the additive manufacturing apparatus 1 is preferably provided with dust removing means (not shown) including an air pump and a suction nozzle, and the dust removing means is operated before and / or after cutting by the processing machine 6. Also good. That is, in order to improve accuracy before cutting by the processing machine 6, an excess powder layer that has not been sintered may be excluded and cutting powder generated by cutting may be excluded after cutting.
  • the dust eliminator has a plurality of suction nozzles for each object to be excluded, such as a surplus powder layer or cutting powder, thereby collecting the surplus powder and cutting powder individually. More preferably, the recovered surplus powder is returned to the storage tank 53.
  • the powder material M can be supplied from the horizontal direction by a screw method, the height of the additive manufacturing apparatus can be suppressed.
  • the additive manufacturing apparatus of the present invention can be made more compact than a conventional apparatus.
  • the powder material M at the lower part of the storage tank 53 is transferred in one direction through the substantially cylindrical member 50 and supplied to the upper side of the base 40 or the upper surface of the base frame body 41. Therefore, the unused powder material M does not stagnate in the storage tank 53, and the material circulation can be improved.
  • the supply amount (replenishment amount) of the powder material M can be appropriately adjusted by controlling the rotation speed of the screw member 51. It should be noted here that the supply amount of the powder material M is not always constant. For example, when the surplus powder layer Sa is eliminated before cutting by the processing machine 6, the supply amount of the powder material M after cutting by the processing machine 6 is more than the supply amount in the step of repeatedly forming the powder layer Sa and the solidified layer Sb. Will also increase. In other words, in the present invention, the supply amount of the powder material M can be appropriately adjusted according to each step, and the amount of the supplied powder material M can be controlled so as not to be excessive or insufficient.
  • the powder material M can be supplied to an arbitrary region in the moving direction by moving the material replenishing device 5 in a direction substantially orthogonal to the sliding direction of the slide member 20.
  • the powder material M can be supplied only to a predetermined region, it can be said that the amount of surplus powder can be reduced.
  • the slide member 20 is configured in a form having a cover portion 23 that can cover the upper surface of the base 40.
  • the cover portion 23 is configured to be “provided on the upper surface of the frame body 24 so that the light beam L can be transmitted” and “the frame body 24 formed so that the opening area of the bottom surface is larger than the upper surface area of the base 40”.
  • Window 25 “.
  • Other configurations are the same as those of the first embodiment described above.
  • the cover 23 is disposed on the base 40, and the light beam is filled in an inert atmosphere gas (for example, nitrogen or argon) in the space surrounded by the base 40 and the cover 23. L irradiation is performed (FIG. 4C).
  • an inert atmosphere gas for example, nitrogen or argon
  • the contact between the powder layer Sa and the outside air can be suppressed by the covering portion 23, so that a failure in forming a solidified layer (for example, a failure in sintering) associated with the oxidation of the powder material M can be prevented.
  • an atmosphere gas generator (not shown) or the like is preferably connected to the side portion of the frame 24 of the cover portion 23.
  • an oxygen concentration meter (not shown) for measuring the oxygen concentration in the internal space A of the cover portion 23 is provided, and the atmospheric gas is generated only when the oxygen concentration in the cover portion 23 is higher than a predetermined oxygen concentration. It may be supplied to the internal space A.
  • quartz glass is preferably used when the light beam L is a YAG laser, and zinc selenium or the like is preferably used when the light beam L is a carbon dioxide gas laser.
  • the window 25 may be configured to function as an f ⁇ lens, for example, instead of a simple parallel plate. By doing so, the spot diameter of the light beam L on the sintered surface can be made constant, so that a solidified layer can be formed with higher accuracy.
  • the material replenishing device 5 is preferably arranged so that the axial direction of the screw member 51 is substantially perpendicular to the sliding direction of the cover portion 23.
  • the material replenishing device 5 is configured to be movable in a direction substantially orthogonal to the sliding direction of the cover portion 23, the axial direction of the screw member 51 is substantially parallel to the sliding direction of the cover portion 23. (See FIG. 2A).
  • the slide member 20 is configured in a form having a material supply frame 26 that can surround a region where the powder material M is supplied above the base 40 or on the upper surface of the base frame body 41.
  • FIGS. 5A to 5C show a configuration in which the cover portion 23 and the material supply frame 26 described above are integrally formed, but these may be configured as separate structures. Further, only the material supply frame 26 may be used. Other configurations are the same as those in the first or second embodiment described above.
  • the powder material M can be supplied only to a limited region surrounded by the material supply frame 26 on the upper side of the base 40 or the upper surface of the base frame body 41.
  • the powder material M does not scatter on the upper surface of the powder, and the powder material M can be supplied more efficiently.
  • the material supply frame 26 described above has a lid portion 27 arranged in the frame (particularly the upper region in the frame), and has a substantially cylindrical shape.
  • the discharge port 54 formed at the end of the shaped member 50 and the internal region of the material supply frame 26 may be in communication with each other. In this case, since the inside of the material supply frame 26 is in a sealed state, scattering of the powder material M can be more effectively suppressed.
  • the powder material is supplied through a discharge port provided in the body portion (that is, the cylindrical portion) of the substantially cylindrical member. That is, the material replenishing device 5 supplies the powder material M through the material discharge opening 55 in the body portion of the substantially cylindrical member 50.
  • the material replenishing device 5 supplies the powder material M through the material discharge opening 55 in the body portion of the substantially cylindrical member 50.
  • a plurality of holes 55a for example, 2 to 30 holes formed in the lower region of the body portion of the substantially cylindrical member 50. Powder material M is supplied.
  • the material supply frame 26 as in the third embodiment described above so that the powder material M is not scattered on the upper surface of the base frame body 41. It is preferable that the powder material M is supplied to (see FIG. 7B).
  • the material replenishing device 5 and the material supply frame 26 may be integrally configured.
  • the shape of the plurality of holes 55a is not particularly limited.
  • the cross-sectional shape cross-sectional shape cut out perpendicular to the material supply direction
  • the diameters of the plurality of holes 55a that is, the area of the cross-sectional shape described later
  • the material discharge opening in the present embodiment may have a form of a slit-like opening 55b formed in a lower region of the body of the substantially cylindrical member 50 (particularly FIG. 8). (See the lower plan view of the substantially cylindrical member 50 shown in (i) and (ii)).
  • the slit width of the slit-shaped opening 55b that is, the short dimension of the slit-shaped opening
  • the method is preferably formed so as to gradually increase from the end on the storage tank 53 side toward the other end (see (ii) of FIG. 8).
  • the powder material M can be supplied uniformly to the upper side of the base 40 or the upper surface of the base frame 41 without the powder material M being biased to the vicinity of the end on the storage tank 53 side. Further, even in the aspect of the slit-shaped opening 55b, the powder material M is contained in the material supply frame 26 as in the third embodiment described above so that the powder material M is not scattered on the upper surface of the base frame body 41. It is preferable to be configured to be supplied (in such a case, the material replenishing device 5 and the material supply frame 26 may be configured integrally).
  • the powder material M can be supplied over a wide range above the base 40 or the upper surface of the base frame 41 without moving the material replenishing device 5. That is, since the powder material M can be supplied without moving the material replenishing device 5 within a range that can correspond to the length of the body portion of the substantially cylindrical member 50, the movement of the material replenishing device 5 can be further suppressed. .
  • the material replenishing device 5 has a “material discharge opening formed in a lower region of the body portion of the substantially cylindrical member 50.
  • Part 55 slit-like opening 55b" in the illustrated embodiment
  • a lid part 57 that allows the material discharge opening 55 to be opened and closed
  • a lid driving part 58 that drives the lid part 57.
  • the lid drive unit 58 can supply the powder material M by driving the lid unit 57 to open and close the material discharge opening 55 (more specifically, the lid unit 57 except when supplying the powder material).
  • the material discharge opening 55 is closed to prevent leakage of the powder material M, while the powder material M is supplied, the lid 57 is moved to open the material discharge opening 55).
  • the powder material M can be supplied over a wide range above the base 40 or the upper surface of the base frame 41 without moving the material replenishing device 5.
  • the lid portion 57 also has a powder scattering prevention function. Specifically, as shown in FIG. 10, at the time of supplying the powder material, it is preferable that the lid portion 57 is disposed so as to cover the “powder material supply unit” from above the substantially cylindrical member 50. That is, the lid 57 closes the material discharge opening 55 to prevent leakage of the powder material except when the powder material is supplied (see FIG. 10B). However, when the powder material is supplied, the lid 57 is substantially cylindrical. It is preferably arranged so as to rotate around the shaped member so as to cover at least a part of the “powder material supply unit” from above (see FIG. 10A).
  • the supplied powder material will not scatter to a "modeling part", and a three-dimensional shape molded article can be manufactured in a more preferable aspect.
  • the lid portion 57 is arranged so as to cover the modeling part side of the “powder material supply part” from above.
  • the lid portion 57 may function in cooperation with the material supply frame 26, and the lid portion 57 is integrated with the edge portion 26a on the modeling portion side of the material supply frame 26 as shown in FIG. In this case, at least a part of the “powder material supply unit” may be covered.
  • the additive manufacturing apparatus 1 of the present embodiment is capable of transferring the powder material M supplied above the base 40 or the upper surface of the base frame body 41 in a direction substantially perpendicular to the sliding direction of the slide member 20. Is further provided. It is preferable that the slide mechanism 7 is configured to be able to slide the leveling plate 70 along the rail 71. When the leveling plate 70 slides along the rail 71, the powder material M supplied to the upper side of the base 40 or the upper surface of the base frame body 41 (preferably the powder material M supplemented to the above-described material supply frame 26).
  • the slide member 20 is transported in a direction substantially orthogonal to the slide direction, and the surface thereof is leveled.
  • the slide mechanism 7 may be attached to the base frame 41 or may be attached to the material supply frame 26.
  • Other configurations are the same as those in the first to fourth embodiments described above.
  • the powder material M can be supplied to the wide area above the base 40 or the upper surface of the base frame body 41 without moving the material replenishing device 5 with the surface leveled. That is, since the powder material M can be supplied without moving the material replenishing device 5 in the range where the leveling plate 70 slides, the movement of the material replenishing device 5 can be further suppressed and the material surface is leveled within the range. be able to.
  • the additive manufacturing apparatus 1 slides the powder material M supplied above the base 40 or the upper surface of the base frame body 41. It may further be provided with a conveyor mechanism 8 that can move in a direction substantially orthogonal to the sliding direction of the member 20.
  • the conveyor mechanism 8 preferably includes “a belt conveyor 81 disposed above the base 40 or on the upper surface of the base frame body 41” and “a conveyor drive unit 82 that drives the belt conveyor 81”.
  • the conveyor mechanism 8 may be arrange
  • the above-described material supply frame 26 may be used.
  • a leveling member 83 is fixedly arranged in a direction substantially orthogonal to the moving direction of the belt conveyor 81 in the frame of the material supply frame 26, and the leveling member 83 levels the surface of the powder material M transferred. It is preferable to make it. Thereby, the powder material M can be more easily supplied uniformly to a wide range of the upper surface of the base frame 41 without moving the material replenishing device 5.
  • This modification is preferably used particularly in a configuration in which the material supply frame 26 is provided with the lid portion 17 (see FIG. 6).
  • the additive manufacturing apparatus 1 uses the powder material M supplied above the base 40 or the upper surface of the base frame body 41. Further, a screw mechanism 9 that can be transferred in a direction substantially orthogonal to the slide direction of the slide member 20 may be provided.
  • the screw mechanism 9 includes “a screw housing 91 disposed above the base 40 or on an upper surface of the base frame body 41”, “a screw 92 disposed in the housing 91”, and “a screw driving unit 93 that drives the screw 92”. It is preferable to comprise.
  • the screw mechanism 9 may be disposed on the base frame 41, or the screw mechanism 9 itself is configured to be slidable, and is disposed above the base 40 or on the upper surface of the base frame 41 only when a material is supplied. You may make it do.
  • the powder material M can be supplied more easily and uniformly to a wide range of the upper surface of the base frame 41, and the powder material M itself can be kneaded. (This is particularly effective when the particle size of the powder material M varies, or when the powder material M is a mixture of powders of different materials).
  • Powder layer forming means for forming a powder layer made of a powder material, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt solidify the powder at the predetermined portion to form a solidified layer
  • Three-dimensionally integrated with a plurality of solidified layers by repeating the formation of the powder layer by the powder layer forming means and the formation of the solidified layer by the solidified layer forming means.
  • An additive manufacturing apparatus for manufacturing a shaped object, Further comprising a material replenishing means for supplying the powder material to the upper surface of the base frame surrounding the base on which the powder layer and the solidified layer are laminated or surrounding the outer periphery of the base;
  • the material replenishing means includes a substantially cylindrical member filled with the powder material and a screw member housed in the substantially cylindrical member, and the rotation of the screw member causes the inside of the substantially cylindrical member.
  • An additive manufacturing apparatus for transferring the powder material.
  • the powder layer forming means has a slide member arranged so as to be slidable along the upper surface of the base frame, The additive manufacturing apparatus, wherein the slide member transports the powder material supplied from the material replenishing means to the upper surface or the upper side of the base and smoothes the surface of the transferred powder material.
  • the slide member further includes a cover part (cover frame) capable of covering the upper surface of the base.
  • the slide member has a material supply frame surrounding an area to which the powder material is supplied.
  • the material replenishing means is provided so as to be movable in a direction substantially perpendicular to the sliding direction of the slide member, An additive manufacturing apparatus, wherein the powder material is supplied through a discharge port formed at an end of a substantially cylindrical member.
  • the material supply has a lid that can cover the upper surface thereof, The additive manufacturing apparatus, wherein the discharge port of the substantially cylindrical member and the inside of the material supply frame are in communication with each other.
  • a material discharge opening for example, “a plurality of holes” or a “slit-like opening” is formed in the body of the substantially cylindrical member of the material replenishing means.
  • the material replenishing means further includes a lid part that can open and close the material ejection opening part, and the material ejection opening part is driven by driving the lid part.
  • the additive manufacturing apparatus is characterized in that the powder material is supplied by opening and closing.
  • the powder material supplied to the upper side of the base or the upper surface of the base frame is used as a sliding direction of the slide member.
  • An additive manufacturing apparatus further comprising a slide mechanism for transferring in a substantially orthogonal direction.
  • the powder material supplied above the base or on the upper surface of the base frame is made to have a sliding direction of the slide member.
  • An additive manufacturing apparatus further comprising a conveyor mechanism for transferring in a substantially orthogonal direction.
  • the powder layer Sa and the solidified layer Sb can be stacked without moving the base 40 itself.
  • the base frame body may be fixed and the base may be lowered.
  • the storage tank 32 is fixed to the material replenishing device 5, but is not necessarily limited to such an embodiment.
  • a removable cartridge or the like may be used as the storage tank 53.
  • the screw member internally mounted by the substantially cylindrical member is shown by one, it is not necessarily limited to this aspect, In the aspect by which the several screw member was internally mounted by the substantially cylindrical member. It does not matter. That is, not only uniaxial material replenishing means but also multi-axial (for example, biaxial or triaxial) material replenishing means may be used. For example, taking a biaxial material replenishing means as an example, the rotation of the two screw members may be either “same direction rotation” or “different direction rotation”.
  • the additive manufacturing apparatus of the present invention When the additive manufacturing apparatus of the present invention is used, various articles can be manufactured.
  • the resulting three-dimensional shaped article is a plastic injection mold, press mold, die casting mold, casting mold. It can be used as a mold such as a mold or a forged mold.
  • the obtained three-dimensional shaped article can be used as a resin molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明では、粉末層Saを形成する粉末層形成部2と、粉末層の所定箇所に光ビームLを照射して固化層Sbを形成する光学機器3と、粉末層Sa及び固化層Sbが積層されるベース40又はベース40の外周を囲むベース枠体41の上面に対して粉末材料Mを供給する材料補充装置5とを有して成る積層造形装置が提供される。特に材料補充装置5は、粉末材料Mが仕込まれる略筒状部材50と、略筒状部材50に内装されたスクリュー部材51とを有して成り、スクリュー部材51の回転により略筒状部材50内の粉末材料Mを移送させることができる。かかる積層造形装置では、スクリュー方式で粉末材料Mを供給できるので、装置の高さを抑制することができるだけでなく、粉末材料Mが一方向に移送されるので、材料循環を良くすることができる。

Description

積層造形装置
 本発明は、三次元形状造形物の製造装置に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造するための積層造形装置に関する。
 粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、「(i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成し、(ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する」といったことを繰り返して、複数の固化層が積層一体化した三次元形状造形物を製造している。粉末材料として金属粉末やセラミック粉末などの無機質の粉末材料を用いた場合では、得られた三次元形状造形物を金型として用いることができ、樹脂粉末やプラスチック粉末などの有機質の粉末材料を用いた場合では、得られた三次元形状造形物をモデルとして用いることができる。このような製造技術によれば、複雑な三次元形状造形物を短時間で製造することが可能である。
 粉末焼結積層法では、積層造形装置が用いられており、基台となるベース上で三次元形状造形物が製造される。具体的には、積層造形装置では、ベース上に粉末層を形成すると共に、この粉末層の所定箇所に光ビームを照射して当該箇所を焼結又は溶融固化させて固化層を形成しているが、粉末層および固化層をそれぞれ1つ形成する毎に、上記ベースを段階的に下げている(例えば、特許文献1参照)。
 図14(a)および(b)は、この種の積層造形装置の構成の一部を示す。積層造形装置は、粉末層及び固化層が形成される造形部104と、造形部104に粉末材料を供給する材料供給部105とを備えている。造形部104は、「ベースとして機能する造形テーブル140」と「造形テーブル140を昇降させる昇降機142」と「造形テーブル140を囲む造形枠141」とを有する。材料供給部105は、「粉末材料を収容する収容タンク151」と「収容タンク151内の粉末材料を押し上げる昇降機構152及び昇降テーブル150」と「収容タンク151内の粉末材料の上層に位置する粉末材料を造形テーブル140側へと移送すると共に、造形テーブル140に移送された粉末材料の表面を均す材料供給ブレード120」とを有する。
 このような積層造形装置では、造形テーブル140上に形成された粉末層の所定箇所を焼結又は溶融固化させることで固化層を形成した後、造形テーブル140を下降させて、次層の粉末層を形成して、再度固化層の形成を行う。次層の粉末層の形成は、昇降テーブル150を僅かに上昇させて、収容タンク151内の粉末材料の上層を造形枠141の上面よりも僅かに高い位置にした後、材料供給ブレード120をスライドさせて、昇降テーブル150上の粉末材料を造形テーブル140側に向かって押し出すことにより行われる。
特開2002-115004号公報
 上述した積層造形装置においては、昇降テーブル150を昇降させるために、材料供給部105の高さHが、収容タンク151の高さH1の2倍以上になることがあり、このような材料供給部105の構造が装置の大型化を招く原因となっていた(図14(b)参照)。また、収容タンク151に収容された粉末材料のうち、上層にある粉末材料から順に造形部104側に供給されるため、例えば、収容タンク151上層に新たな粉末材料が供給されると、収容タンク151下層の粉末材料が用いられることなく停滞することになり、材料循環が悪くなることがあった。材料循環が悪いと、例えば粉末材料に酸化し易い材料を用いる際、粉末材料中に“酸化した材料”と“酸化していない材料”とが混在し易くなり、得られる固化層の形成精度が低下することが懸念される。
 本発明は、上記事情に鑑みてなされたものである。即ち、本発明の課題は、装置の小型化が可能で、しかも材料循環の良い材料補充手段を備えた積層造形装置を提供することである。
 上記課題を解決するため、本発明では、粉末材料から成る粉末層を形成する粉末層形成手段と、粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する固化層形成手段とを有して成り、粉末層形成手段による粉末層の形成と、固化層形成手段による固化層の形成とを繰り返すことにより複数の固化層が積層一体化された三次元形状造形物を製造するための積層造形装置であって、
 粉末層及び固化層が積層されるベースの上方又はそのベースの外周を囲むベース枠体の上面に粉末材料を供給・補充する材料補充手段を更に有して成り、
 材料補充手段は、粉末材料が仕込まれる略筒状部材と、略筒状部材に内装されたスクリュー部材とを有し、スクリュー部材の回転により略筒状部材内の粉末材料を移送すること特徴とする積層造形装置が提供される。
 本発明は、略筒状部材にスクリュー部材を内装した材料補充手段を用いて、粉末材料を供給することを特徴の1つとしている。
 本明細書で用いられる「ベース」とは、製造される造形物の土台となる部材または部分を実質的に意味している。また、本明細書で用いる「略筒状部材」とは、内部に中空部分を有した部材であって、かかる中空部分と連通した粉末材料供給口および粉末材料排出口を少なくとも備えた部材(例えばバレル部材)のことを実質的に意味している。更に、本明細書で用いる「略直交」とは、一方の方向と他方の方向とが、好ましくは80°~100°、より好ましくは85°~95°(例えば90°)の角度を成すような態様を実質的に指している。
 ある好適な態様では、粉末層形成手段が、ベース枠体の上面に沿ってスライド自在に配置されたスライド部材を備えている。かかるスライド部材は、材料補充手段から供される粉末材料をベースの上面とベース枠体とで囲まれる空間または領域に供給すると共に、供給された粉末材料の表面を均す(又はレベリングする)機能を有している。
 スライド部材は、ベースの上面を覆うことができる覆い部を更に有して成ることが好ましい。また、スライド部材には、ベースの上方又はベース枠体の上面に配され、粉末材料が供給される領域を囲うことができる材料供給枠が更に設けられることが好ましい。かかる場合、材料供給枠は、その枠内を覆う蓋部を有していることが好ましく、略筒状部材の端部に形成された粉末材料排出口と材料供給枠内とが連通状態となっていることが好ましい。
 ある好適な態様では、材料補充手段が、スライド部材のスライド方向に対して略直交する方向に移動自在に設けられている。この場合、粉末材料は略筒状部材の端部に形成された排出口を介して供給されることが好ましい。
 ある好適な態様では、材料補充手段の略筒状部材の胴部(バレル部)に対して材料吐出開口部が設けられており、この胴部の材料吐出開口部を介して粉末材料の供給が行われる。即ち、かかる態様では、略筒状部材の端部ではなく、略筒状部材の胴部に排出口が設けられている。例えば、「材料吐出開口部」は、略筒状部材の胴部に設けられた“複数の穴”の形態であってよく、あるいは、略筒状部材の胴部に設けられた“スリット状開口部”の形態であってもよい。
 ある好適な態様において、材料補充手段は、略筒状部材の胴部(バレル部)に形成された材料吐出開口部と、かかる材料吐出開口部を開閉自在とする蓋部とを備えている。かかる場合、蓋部を駆動させて材料吐出開口部を開閉することにより粉末材料の供給を行うことができる。
 本発明の積層造形装置は、ベースの上方又はベース枠体の上面に供給された粉末材料を、スライド部材のスライド方向と略直交する方向に移送する機構を更に有して成ることが好ましい。例えば、「粉末材料をスライド部材のスライド方向と略直交する方向に移送するスライド機構」、 「粉末材料をスライド部材のスライド方向と略直交する方向に移送するコンベア機構」、または、「粉末材料をスライド部材のスライド方向と略直交する方向に移送するスクリュー機構」等が本発明の積層造形装置に設けられていることが好ましい。
 本発明の積層造形装置は、スクリュー方式で粉末材料を供給・補充するので、積層造形装置の高さを抑制することができ、従来の積層造形装置と比べてコンパクトな装置サイズとなっている。例えば、本発明の積層造形装置は、従来の装置高さ(例えば、図14に示すような従来装置高さ)の0.3~0.7倍程度の装置高さとなる。また、本発明の積層造形装置では、粉末材料が略筒状部材内を一方向に移送して、ベースの上方又はベース枠体の上面へと供給されるので、材料循環がより向上したものとなっている。換言すれば、酸化し易い粉末材料を用いる場合であっても、“固化層の形成精度の低下”を防止することができる。
 粉末層形成手段がスライド部材を有して成る場合では、ベース上に表面が均された粉末層を形成することができる。
スライド部材が覆い部を有する場合では、覆い部により粉末層と外気との接触を抑制できるので、粉末材料の酸化に伴う固化層形成の不具合を防止できる。
 スライド部材が材料供給枠を有して成る場合、材料供給枠よって囲われた限定的な領域にのみ粉末材料が供給されるので、ベース枠体の上面に粉末材料が飛び散らず、効率的にベース上に粉末材料を供給することができる。
 材料補充手段がスライド部材のスライド方向と略直交する方向に移動させることができる場合では、所望の領域に粉末材料を供給することができるので、余剰粉末の量を低減することができる。
 材料供給枠が蓋部を有して成る場合、材料供給枠内を密閉状態にできるので、粉末材料の飛び散りを効果的に抑制することできる。
 略筒状部材の胴部に設けられた材料吐出開口部(例えば“複数の穴”又は“スリット状開口部”)を介して粉末材料の供給を行う場合、また、蓋部の駆動により胴部の材料吐出開口部を開閉して粉末材料の供給を行う場合、材料補充手段を移動させずに、ベースの上方又はベース枠体の上面の広い範囲に粉末材料を供給することができる。
 スライド方向と略直交する方向に移送する機構(例えば、スライド機構、コンベア機構またはスクリュー機構)が設けられている場合では、材料補充手段を移動させずに、ベースの上方又はベース枠体の上面の広い範囲に均一に粉末材料を供給することができる。
本発明の第1実施形態に係る積層造形装置の一部側断面図。 (a)および(b)は第1実施形態に係る積層造形装置の斜視図。 (a)~(c)は第1実施形態に係る積層造形装置の動作を表した一部側断面図。 (d)~(f)は第1実施形態に係る積層造形装置の動作を表した一部側断面図。 (a)および(c)は本発明の第2実施形態に係る積層造形装置の一部側断面図、(b)は同斜視図。 (a)および(c)は本発明の第3実施形態に係る積層造形装置の一部側断面図、(b)は同斜視図。 第3実施形態に係る積層造形装置の変形例を示した一部側断面図。 (a)は本発明の第4実施形態に係る積層造形装置の側断面図、(b)は同斜視図。 本発明の第4実施形態に係る積層造形装置における材料補充装置の斜視図、下部平面図および垂直断面図。 (a)および(b)は第4実施形態に係る積層造形装置の変形例を示した側断面図。 (a)および(b)は第4実施形態に係る積層造形装置の変形例の態様を示した側断面図。 (a)および(b)は本発明の第5実施形態に係る積層造形装置の側断面図。 (a)および(b)は第5実施形態に係る積層造形装置の変形例を示した側断面図。 (a)および(b)は第5実施形態に係る積層造形装置の変形例を示した側断面図、(c)は同実施形態におけるスクリュー機構の斜視図。 (a)は従来の積層造形装置の一部分解斜視図、(b)は同積層造形装置の材料供給部の側断面図。
 以下では、図面を参照して本発明をより詳細に説明する。
[第1実施形態]
 本発明の第1実施形態に係る積層造形装置について、図1ならびに図2(a)および(b)を参照して説明する。本実施形態では、積層造形装置1は、主として、粉末層形成手段、固化層形成手段および材料補充手段を備えている。粉末層形成手段は、無機質又は有機質の粉末材料Mから成る粉末層Saを形成する粉末層形成部2を有して成る。固化層形成手段は、粉末層Saの所定箇所を光ビームLの照射により焼結又は溶融固化させて固化層Sbを形成する光学機器3を有して成る。材料補充手段は、「粉末層Sa及び固化層Sbがその上面側に形成されるベース40及びかかるベース40の外周を囲むベース枠体41を有する造形部4」と「粉末層Sa及び固化層Sbが積層されるベース40の上方又はベース枠体41の上面に粉末材料Mを供給する材料補充装置5」とを有して成る。積層造形装置1は、積層一体化された三次元形状造形物の表面の切削加工を行う加工機6を更に有して成ることが好ましい。尚、図2(a)および(b)では、光学機器3、造形部4及び加工機6の構成の一部を省略して示している。
 粉末層形成部2は、「ベース枠体41の上面に沿ってスライド自在に配置されたスライド部材20」と「ベース枠体41の上面と平行に配置された水平レール21」と「水平レール21に沿ってスライド部材20をスライドさせるスライド駆動部22」とを有して成る。スライド部材20は、その下面部がベース枠体41の上面と略接して設けられており、スライド駆動部22の駆動力を得て水平レール21に沿って移動することができる。スライド部材20が移動すると、材料補充装置5からベース枠体41の上面へと供給された粉末材料Mがスライド部材の移動方向へと押し出されることになる。
 光学機器3は、「レーザ発振器を有する光源31」と「集光レンズや光ビームLの照射方向を偏向するガルバノメータミラー等を有するスキャン機構32」と「光源31とスキャン機構32とを接続する光ファイバ33」とを有して成る。光源31としては、例えば、粉末材料Mが鉄粉を含む場合、炭酸ガスレーザやNd:YAGレーザ等が用いられる。この光学機器3は、図1に示すようにX軸及びZ軸方向に可動自在に設けられている。
 造形部4は、上述したベース40及びベース枠体41に加えて、「ベース40を固定するテーブル42」と「ベース枠体41を昇降させる昇降機43」と「テーブル42を図1に示すY軸方向に可動とする台座44」とを有している。ベース40はテーブル42に固定されているので、昇降機43がベース枠体41を上昇させることにより、ベース40上にベース枠体41の内側面に囲われた空間、すなわち“粉末材料Mが補充される空間”が生まれることになる。
 材料補充装置5は、「粉末材料Mが充填される略筒状部材50」と「略筒状部材50に内装されたスクリュー部材51」と「スクリュー部材51を回転駆動させる回転駆動部52」と「略筒状部材50の一方の端部に連結され、略筒状部材50内に粉末材料Mを供給する貯留タンク53」とを有して成る。回転駆動部52による駆動でスクリュー部材51が回転することによって略筒状部材50内に充填されている粉末材料Mが、貯留タンク53が連結されていない他方の端部に向けて移送されることになる。材料補充装置5の配置方向(即ち、“装置の向き”)についていえば、図2(a)に示すように、スクリュー部材51の軸方向Aがスライド部材20のスライド方向Bと略平行になるように材料補充装置5が配置されていればよい。あるいは、図2(b)に示すように、スクリュー部材51の軸方向Aがスライド部材20のスライド方向Bと略直交(図2(b))するように材料補充装置5が配置されてもよい。
 材料補充装置5では、排出口54が略筒状部材50の端部に形成されていることが好ましく、かかる排出口54から粉末材料Mが外部へと排出される。また、材料補充装置5はスライド部材20のスライド方向と略直交する方向に移動自在に設けられることが好ましい。かかる場合、材料補充装置5はスライド部材のスライド方向と略直交する方向に移動しながら、排出口54から粉末材料Mをベース40の上方又はベース枠体41の上面へと供給できる。特に好ましい態様では、ベース枠体41の上面のうちベース40とスライド部材20との間の領域に粉末材料Mを供給することができる。
 加工機6は、「少なくともテーブル42に対して3軸制御が可能な主軸台61」と「主軸台61に搭載されるスピンドルヘッド62」と「固化層Sbが積層一体化して成る造形物の表面に対して切削加工するエンドミル63」とを備える。主軸台61は、スピンドルヘッド62が図1に示すX軸及びZ軸方向に可動となるように構成されている。好ましくは、エンドミル63を自動交換する機構が備えられている。エンドミル63としては、例えば、超硬素材の二枚刃ボールエンドミルを用いることができる。加工形状や目的に応じて、適宜にスクエアエンドミル、ラジアスエンドミル又はドリル等を用いてもよい。尚、光学機器3のスキャン機構32は、加工機6のスピンドルヘッド62の側面に着脱自在となるように又はエンドミル63に代えて装着されるように構成されてもよい(図示せず)。
 次に、積層造形装置1の動作態様について、図3(a)~(f)を参照して説明する。まず、ベース40の上面がベース枠体41の上面より僅かに低い状態に設けておく(図3(a)参照)。そして、材料補充装置5において回転駆動部52を駆動させてスクリュー部材51を回転させる。スクリュー部材51の回転により、貯留タンク53に貯留された粉末材料Mが略筒状部材50内に移送される。引き続いてスクリュー部材51の回転に伴って略筒状部材50内にて粉末材料Mは図3(a)に示すa方向に移送される。最終的には、粉末材料Mが略筒状部材50から排出され、ベース枠体41の上面に供給される。より具体的には、略筒状部材50から排出された粉末材料Mは、図3(a)に示すように、ベース40とスライド部材20との間の領域に供給されることになる。
 次いで、図3(b)に示すように、スライド部材20をベース枠体41の上面に沿ってスライドさせることによってベース40上へと粉末材料Mを供給する。この際、ベース40上ではスライド部材20によって、粉末材料Mの表面が均されることになり、図3(c)に示すように第1層目の粉末層Sa1が形成される。スライド部材20は、粉末材料Mを押しながら移動させると共に、ベース40の上面に供給された粉末材料Mの表面を均すことができるものであれば、その形態には特に制限がない。つまり、スライド部材20は、少なくともベース40の幅よりも大きな幅を有するものであればよく、必ずしも図1に示したようなブレード状の部材に限られない。押し出された粉末材料Mがスライド部材の幅方向の一方に偏ってしまうことを抑制するためには、粉末材料Mを押し出すスライド部材表面には凹凸が形成されていることが好ましい。また、余剰粉末によりスライド部材20のスライド動作が阻害されて粉末層Saの表面が不均一となる事態を防止するためには、余剰粉末を回収する回収部(図示せず)がベース枠体41に設けられていてもよい。
 粉末層の形成に引き続いて光学機器3を作動させる。具体的には、光学機器3を用いて、粉末層の所定箇所に対して光ビームLを照射してその箇所の粉末を焼結又は溶融固化させる。これにより、光ビームの照射箇所において第1層目の固化層Sb1が形成されることになる(図3(d)参照)。
 光ビームLの照射経路(ハッチング経路)は、積層造形物の三次元CADデータから予め作成しておくことが好ましい。即ち、三次元CADモデルから生成したSTL(Standard Triangulation language)データを等ピッチでスライスした各断面の輪郭形状データを用いて各層毎の光ビームLの照射経路を作成しておく。尚、粉末として金属粉末を用い、固化層が焼結層となる場合では、造形物の少なくとも最表面が高密度(気孔率5%以下)となるように固化させる一方、造形物内部が低密度となるように焼結させることが好ましい。すなわち、形状モデルデータを、予め表層部と内部とに分割しておき、内部についてはポーラスとなるような焼結条件で光ビームLを照射する一方、表層部は粉末が略完全に溶融して高密度となる焼結条件でもって光ビームLを照射することが好ましい。このようにすれば、緻密な表面を持つ三次元形状造形物を最終的に得ることができる。
 固化層の形成が終了すると、図3(e)に示すように、昇降機43を用いてベース枠体41を所定高さまで押し上げた後、ベース枠体41の上面に再び粉末材料Mを供給する(図3(a)参照)。ベース枠体41を押し上げる高さは、第1層目の粉末層Sa1及び固化層Sb1の上に形成されることになる第2層目の粉末層Sa2の厚みに相当し得る。尚、この各粉末層Sa又は各固化層Sbの厚みは、例えば、成形用金型等の造形物を形成する場合を想定すると0.05mm程度である。粉末層Saの形成と固化層Sbの形成とを繰り返すことによって複数の固化層Sbが積層一体化された造形物を得ることができる。
 図3(a)~(e)の工程が繰り返されることにより、積層された固化層Sbの全厚みが、加工機6のエンドミル63の工具長さ等から算出された所要の値になったとき、切削工程を開始する。つまり、図3(f)に示すように、加工機6を造形部4の上方に移動させて、積層一体化された三次元形状造形物の表面をエンドミル63により切削する。加工機3による切削経路も、光ビームLの照射経路と同様に、三次元CADデータから予め作成しておく。この切削加工によって、三次元形状造形物の表面の付着粉末に起因した余剰固化部が除去されるので、三次元形状造形物の表面にて高密度部が好適に露出した状態を得ることができる。加工機6による切削が完了すると、再び粉末層Saの形成と固化層Sbの形成とを繰り返すことになる。尚、積層造形装置1は、エアポンプ及び吸引ノズル等から成る粉塵排除手段(図示せず)を備えていることが好ましく、かかる粉塵排除手段を加工機6による切削前および/または切削後に作動させてもよい。つまり、加工機6による切削前に、精度を向上させるため、焼結されなかった余剰粉末層を排除すると共に、切削後には、切削により生じた切削粉を排除してもよい。好ましくは、粉塵排除手段は、余剰粉末層又は切削粉といった排除対象毎に複数の吸引ノズルを有しており、それによって、余剰粉末及び切削粉を個別に回収する。更に好ましくは、回収された余剰粉末は貯留タンク53へと戻される。
 以上のような工程を通じることによって、最終的には、所望の三次元形状造形物を得ることができる。
 本実施形態によれば、スクリュー方式で粉末材料Mを水平方向から供給できるので、積層造形装置の高さを抑制することができる。つまり、本発明の積層造形装置は、従来の装置と比べて、よりコンパクトなサイズにすることができる。また、本実施形態によれば、貯留タンク53の下部にある粉末材料Mが、略筒状部材50内を一方向に移送されて、ベース40の上方又はベース枠体41の上面へと供給されることになるので、貯留タンク53内にて未使用の粉末材料Mが停滞することがなく、材料循環を良くすることができる。
 更に、本実施形態においては、スクリュー部材51の回転数を制御することにより、適宜に粉末材料Mの供給量(補充量)を調整できる。ここで、粉末材料Mの供給量は常に一定であるとは限らないことに留意されたい。例えば、加工機6による切削前に余剰粉末層Saが排除されると、加工機6による切削後の粉末材料Mの供給量は、粉末層Sa及び固化層Sbを繰り返し形成する工程における供給量よりも多くなる。換言すれば、本発明では、各工程に応じて適宜に粉末材料Mの供給量を調整することができ、供給された粉末材料Mの量が過不足ならないように制御できる。
 尚、製造される三次元形状造形物が小さい場合、すなわち光ビームLにより焼結される粉末層が狭い領域に限定される場合、この領域にのみ粉末材料Mを供給すれば足りることがある。この点、本発明では、材料補充装置5を、スライド部材20のスライド方向と略直交する方向に移動させることにより、この移動方向の任意の領域に粉末材料を供給することができる。すなわち、本発明では、所定領域にのみ粉末材料Mを供給することができるので、余剰粉末の量を低減できるといえる。
[第2実施形態]
 次に、本発明の第2実施形態に係る積層造形装置について、図4(a)~(c)を参照して説明する。本実施形態の積層造形装置1では、スライド部材20が、ベース40の上面を覆うことができる覆い部23を有する形態で構成されている。覆い部23は、「底面の開口面積がベース40の上面面積よりも大きくなるよう形成された枠体24」と「枠体24の上面に設けられて光ビームLが透過できるように構成されたウィンドウ25」とを有して成ることが好ましい。その他の構成は上述した第1実施形態と同様である。
 光ビームLを粉末層Saに照射して焼結などの固化を行うとき、使用される粉末材料の種類によっては粉末層Saが外気に触れて酸化し、所望の固化層を得ることができない場合がある。そこで、本実施形態では、ベース40上に覆い部23を配すると共に、ベース40及び覆い部23で囲まれた空間内に不活性な雰囲気ガス(例えば窒素やアルゴン)を充填した状態で光ビームLの照射を行う(図4(c))。こうすれば、覆い部23により粉末層Saと外気との接触を抑制できるので、粉末材料Mの酸化に伴う固化層形成の不具合(例えば焼結の不具合)を防止できる。なお、覆い部23の枠体24の側部には、雰囲気ガス発生装置(図示せず)等が接続されることが好ましい。また、覆い部23の内部空間Aの酸素濃度を計測するための酸素濃度計(図示せず)が設けられ、所定の酸素濃度より覆い部23内の酸素濃度が高くなったときのみ雰囲気ガスが内部空間Aに供給されるようにしてもよい。
 なお、覆い部23に設けられるウィンドウ25としては、例えば、光ビームLがYAGレーザであれば石英ガラスを用いることが好ましく、光ビームLが炭酸ガスレーザであればジンクセレン等を用いることが好ましい。また、ウィンドウ25は、単なる平行板ではなく、例えば、fθレンズとして機能するように構成されているものであってもよい。こうすれば、焼結面における光ビームLのスポット径を一定にすることができるので、より高精度の固化層形成が可能になる。
 本実施形態においては、覆い部23がベース枠体41の上面に沿ってスライドすると、覆い部23の枠体24の外側面によって粉末材料Mが、ベースの上面とベース枠体とで囲まれる空間または領域に供給されると共に、供給された粉末材料の表面が均されることになる(図4(a))。なお、図4(b)に示すように、好ましくは、スクリュー部材51の軸方向が覆い部23のスライド方向と略直交する方向になるように材料補充装置5が配置される。但し、材料補充装置5が覆い部23のスライド方向と略直交な方向にて可動となるよう構成されていれば、スクリュー部材51の軸方向が覆い部23のスライド方向と略平行な方向になるよう配置されてもよい(図2(a)参照)。
[第3実施態様]
 次に、本発明の第3実施形態に係る積層造形装置について、図5(a)~(c)を参照して説明する。本実施形態の積層造形装置1では、スライド部材20が、ベース40の上方又はベース枠体41の上面における粉末材料Mが供給される領域を囲うことができる材料供給枠26を有する形態で構成されている。ちなみに、図5(a)~(c)は、上述した覆い部23と材料供給枠26とが一体的に形成された構成を示すが、これらは別の構造体として構成されていてもよく、また、材料供給枠26のみが用いられてもよい。その他の構成は上述した第1又は第2の実施形態と同様である。
 本実施形態によれば、ベース40の上方又はベース枠体41の上面のうち、材料供給枠26によって囲われた限定的な領域にのみ粉末材料Mを供給することができるので、ベース枠体41の上面に粉末材料Mが飛び散らず、より効率的に粉末材料Mを供給することができる。
 尚、第3実施形態の変形例として、図6に示すように、上述した材料供給枠26が、その枠内(特に枠内の上方領域)に配された蓋部27を有すると共に、略筒状部材50の端部に形成された排出口54と材料供給枠26の内部領域とが連通状態となっていてもよい。この場合、材料供給枠26内が密閉状態となるので、粉末材料Mの飛び散りをより効果的に抑制することできる。
[第4実施態様]
 次に、本発明の第4実施形態に係る積層造形装置について、図7(a)および(b)ならびに図8を参照して説明する。本実施形態の積層造形装置1では、略筒状部材の胴部(即ち、筒状部)に設けられた排出口を介して粉末材料供給を行う。即ち、材料補充装置5は、略筒状部材50の胴部の材料吐出開口部55を介して粉末材料Mを供給する。好ましくは、図7(a)および(b)に示すように、略筒状部材50の胴部の下部領域に形成された複数の穴55a(例えば、2個~30個の穴)を介して粉末材料Mを供給する。その他の構成は上述した第1乃至第3の実施形態と同様であるが、ベース枠体41の上面に粉末材料Mが飛び散らないように、上述した第3実施形態のように材料供給枠26内に粉末材料Mが供給されるように構成することが好ましい(図7(b)参照)。かかる場合、材料補充装置5と材料供給枠26とが一体的に構成されている態様であってもかまわない。複数の穴55aの形状は、特に制限はないが、例えば、断面形状(材料供給方向に対して垂直に切り取った断面形状)が、円形状、楕円形状または多角形状などであってもよい。尚、材料供給枠26(スライド部材20)のスライド方向と略直交する方向において、複数の穴55aの口径(即ち、後述の断面形状の面積)は、貯留タンク53側の端部から他方の端部へ向けて次第に大きくなるように形成しておくことが好ましい。こうすれば、粉末材料Mが貯留タンク53側の端部の近傍に偏ることなく、ベース40の上方又はベース枠体41の上面に対して均一に粉末材料Mを供給できる。
 本実施形態における材料吐出開口部は、図8に示すように、略筒状部材50の胴部の下部領域に形成されたスリット状開口部55bの形態を有していてもよい(特に図8の(i)および(ii)に示す略筒状部材50の下部平面図を参照のこと)。“複数の穴”の場合と同様、材料供給枠26またはスライド部材20のスライド方向と略直交する方向(a方向)において、スリット状開口部55bのスリット幅(即ち、スリット状開口部の短尺寸法)が、貯留タンク53側の端部から他方の端部へ向けて次第に大きくなるように形成しておくことが好ましい(図8の(ii)参照)。こうすれば、粉末材料Mが貯留タンク53側の端部の近傍に偏ることなく、ベース40の上方又はベース枠体41の上面に対して均一に粉末材料Mを供給できる。また、かかるスリット状開口部55bの態様であっても、ベース枠体41の上面に粉末材料Mが飛び散らないように、上述した第3実施形態のように材料供給枠26内に粉末材料Mが供給されるように構成することが好ましい(かかる場合、材料補充装置5と材料供給枠26とが一体的に構成されている態様であってよい)。
 第4実施形態によれば、材料補充装置5を移動させずに、ベース40の上方又はベース枠体41の上面の広い範囲に粉末材料Mを供給することができる。つまり、略筒状部材50の胴部の長さに相当し得る範囲では材料補充装置5を動かさずに粉末材料Mを供給することができるので、材料補充装置5の移動をより抑えることができる。
 尚、第4実施形態の変形例として、図9(a)および(b)に示すように、材料補充装置5が、「略筒状部材50の胴部の下部領域に形成された材料吐出開口部55(図示する態様では“スリット状開口部55b”)」と「材料吐出開口部55を開閉自在とする蓋部57」と「蓋部57を駆動する蓋駆動部58」とを備えていてもよい。かかる場合、蓋駆動部58が蓋部57を駆動させて材料吐出開口部55を開閉することにより粉末材料Mを供給することができる(より具体的には、粉末材料供給時以外では蓋部57で材料吐出開口部55を塞いで粉末材料Mの漏出を防ぐ一方、粉末材料供給時では蓋部57を移動させて材料吐出開口部55を“開”にする)。つまり、この場合であっても、材料補充装置5を移動させずに、ベース40の上方又はベース枠体41の上面の広い範囲に粉末材料Mを供給できる。
 この第4実施形態の変形例では、蓋部57が粉末飛散防止機能を兼ね備えていることが好ましい。具体的には、図10に示すように、粉末材料供給時においては、略筒状部材50の上方から“粉末材料供給部”を覆うように蓋部57が配置されることが好ましい。つまり、粉末材料供給時以外では蓋部57が材料吐出開口部55を塞いで粉末材料の漏出を防いでいるが(図10(b)参照)、粉末材料供給時では、蓋部57が略筒状部材の周りを回動して“粉末材料供給部”の少なくとも一部を上方から覆うように配置されることが好ましい(図10(a)参照)。これにより、供給された粉末材料が“造形部”へと飛び散らないことになり、より好適な態様で三次元形状造形物を製造することができる。例えば、“粉末材料供給部”を覆うように蓋部57が配置されることによって、粉末材料がウィンドウ25に飛来することが防止できるので、“造形部”へと入射される光ビームの透過率低下を未然に防止することができる。尚、特に好ましい態様では、蓋部57は“粉末材料供給部”の造形部側を上方から覆うように配置される。かかる場合、蓋部57が材料供給枠26と協働して機能してよく、図10(a)に示すように、蓋部57が材料供給枠26の造形部側の縁部26aと一体化して“粉末材料供給部”の少なくとも一部を覆うようになっていてもよい。
[第5実施態様]
 次に、本発明の第5実施形態に係る積層造形装置について、図11(a)および(b)を参照して説明する。本実施形態の積層造形装置1は、ベース40の上方又はベース枠体41の上面に供給された粉末材料Mを、スライド部材20のスライド方向と略直交する方向に移送することができるスライド機構7を更に備えたものである。かかるスライド機構7は均し板70をレール71に沿ってスライドさせることができるように構成されていることが好ましい。均し板70がレール71に沿ってスライドすると、ベース40の上方又はベース枠体41の上面に供給された粉末材料M(好ましくは、上述した材料供給枠26に補充された粉末材料M)がスライド部材20のスライド方向と略直交する方向に移送されると共に、その表面が均されることになる。スライド機構7は、ベース枠体41に取り付けられていてもよいし、材料供給枠26に取り付けられていてもよい。その他の構成は上述した第1乃至第4の実施形態と同様である。
 本実施形態によれば、材料補充装置5を移動させずに、ベース40の上方又はベース枠体41の上面の広い範囲に粉末材料Mを、その表面を均した状態で供給することができる。つまり、均し板70がスライドする範囲では材料補充装置5を動かさずに粉末材料Mを供給できるので、材料補充装置5の移動をより抑えることができると共に、その範囲内で材料表面を均すことができる。
 第5実施形態の変形例として、図12(a)および(b)に示すように、積層造形装置1は、ベース40の上方又はベース枠体41の上面に供給された粉末材料Mを、スライド部材20のスライド方向と略直交する方向に移送することができるコンベア機構8を更に備えたものであってもよい。コンベア機構8は、「ベース40の上方又はベース枠体41の上面に配置されたベルトコンベア81」と「ベルトコンベア81を駆動するコンベア駆動部82」を有して成ることが好ましい。また、コンベア機構8は、図示するように、ベース枠体41上に配置されていてもよいし、あるいは、コンベア機構8自体がスライド自在に構成され、材料供給時のみベース40の上方又はベース枠体41の上面に配置するようにしてもよい。好ましくは、この変形例においても、上述した材料供給枠26を用いてよい。特に、材料供給枠26の枠内に、ベルトコンベア81の移動方向と略直交する方向に均し部材83が固定配置され、この均し部材83が移送された粉末材料Mの表面を均すようにすることが好ましい。これにより、材料補充装置5を移動させずに、ベース枠体41の上面の広い範囲に均一に粉末材料Mをより容易に供給することができる。この変形例は、特に、材料供給枠26に蓋部17を設けた構成(図6参照)において好適に用いられる。
 第5実施形態の更なる変形例として、図13(a)および(b)に示すように、積層造形装置1は、ベース40の上方又はベース枠体41の上面に供給された粉末材料Mを、スライド部材20のスライド方向と略直交する方向に移送することができるスクリュー機構9を更に備えたものであってもよい。スクリュー機構9は、「ベース40の上方又はベース枠体41の上面に配置されたスクリュー・ハウジング91」と「ハウジング91内に配されるスクリュー92」と「スクリュー92を駆動するスクリュー駆動部93」とを有して成ることが好ましい。かかるスクリュー機構9は、ベース枠体41上に配置されていてもよいし、あるいは、スクリュー機構9自体がスライド自在に構成され、材料供給時のみベース40の上方又はベース枠体41の上面に配置するようにしてもよい。かかるスクリュー機構9では、材料補充装置5を移動させずに、ベース枠体41の上面の広い範囲に均一に粉末材料Mをより容易に供給できるだけでなく、粉末材料M自体を混練することができる(これは、粉末材料Mの粒径にばらつきがある場合や、粉末材料Mが異なる材質の粉末から成る混合物である場合に特に有効である)。
 尚、上述した本発明は、次の態様を包含することを理解されよう。
 第1の態様: 粉末材料から成る粉末層を形成する粉末層形成手段と、前記粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する固化層形成手段とを有して成り、粉末層形成手段による粉末層の形成と、前記固化層形成手段による固化層の形成とを繰り返すことにより複数の固化層が積層一体化された三次元形状造形物を製造する積層造形装置であって、
 前記粉末層及び前記固化層が積層されるベースの上方又は前記ベースの外周を囲むベース枠体の上面に対して前記粉末材料を供給する材料補充手段を更に有して成り、
 前記材料補充手段は、前記粉末材料が充填される略筒状部材と、前記略筒状部材に内装されたスクリュー部材とを有して成り、前記スクリュー部材の回転により前記略筒状部材内の前記粉末材料を移送すること特徴とする積層造形装置。
 第2の態様:上記第1の態様において、前記粉末層形成手段は、前記ベース枠体の上面に沿ってスライド自在となるように配置されたスライド部材を有して成り、
 前記スライド部材が、前記材料補充手段から供給された粉末材料を前記ベースの上面または上方に移送させると共に、移送された粉末材料の表面を均すことを特徴とする積層造形装置。
 第3の態様:上記第2の態様において、前記スライド部材は、前記ベースの上面を覆うことができる覆い部(覆い枠)を更に有して成ることを特徴とする積層造形装置。
 第4の態様:上記第2または第3の態様において、前記スライド部材は、前記粉末材料が供給される領域を囲う材料供給枠を有して成ることを特徴とする積層造形装置。
 第5の態様:上記第2~第4の態様のいずれかにおいて、前記材料補充手段が、前記スライド部材のスライド方向に対して略直交する方向に移動自在となるように設けられており、前記略筒状部材の端部に形成された排出口を介して前記粉末材料を供給することを特徴とする積層造形装置。
 第6の態様:上記第4の態様において、前記材料供給が、その上面を覆うことができる蓋部を有し、
 前記略筒状部材の前記排出口と前記材料供給枠内とが連通状態となっていることを特徴とする積層造形装置。
 第7の態様:上記第1~第4の態様のいずれかにおいて、前記材料補充手段の前記略筒状部材の胴部には材料吐出開口部(例えば、“複数の穴”または“スリット状開口部”)が設けられており、
 前記材料吐出開口部を介して前記粉末材料の供給を行うことができることを特徴とする積層造形装置。
 第8の態様:上記第7の態様において、前記材料補充手段が、前記材料吐出開口部を開閉自在とする蓋部とを更に有して成り、前記蓋部を駆動させて前記材料吐出開口部を開閉することにより前記粉末材料の供給を行うことを特徴とする積層造形装置。
 第9の態様:上記第2~第4の態様または上記第6の態様のいずれかにおいて、前記ベースの上方又はベース枠体の上面に供給された前記粉末材料を、前記スライド部材のスライド方向と略直交する方向に移送するスライド機構を更に有して成る積層造形装置。
 第10の態様:上記第2~第4の態様または上記第6の態様のいずれかにおいて、 前記ベースの上方又はベース枠体の上面に供給された前記粉末材料を、前記スライド部材のスライド方向と略直交する方向に移送するコンベア機構を更に有して成ることを特徴とする積層造形装置。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。
 例えば、上述の本発明の積層造形装置では、ベース枠体41を動かせば、ベース40自体を動かすことなく粉末層Saおよび固化層Sbを積層できるので、三次元形状造形物を精度良く製造することができるが、必ずしもかかる態様に限定されない。例えば、ベース枠体を固定状態としてベースの方を下降させるようにしてもよい。
 また、図示する態様では、貯留タンク32が材料補充装置5に固定されているが、必ずしもかかる態様に限定されない。例えば、貯留タンク53として取り外しが可能なカートリッジ等を用いてもよい。
 更に、図示する態様では、略筒状部材に内装されるスクリュー部材が1つで示されているが、必ずしもかかる態様に限定されず、複数のスクリュー部材が略筒状部材に内装された態様であってもかまわない。つまり、単軸の材料補充手段のみならず、多軸(例えば二軸または三軸)の材料補充手段であってもかまわない。例えば、二軸の材料補充手段を例にとると、2つのスクリュー部材の回転は「同方向回転」または「異方向回転」のいずれであってもよい。
 本発明の積層造形装置を用いると、種々の物品を製造することができる。例えば、『粉末層が金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。また、『粉末層が樹脂粉末層であって、固化層が硬化層となる場合』では、得られる三次元形状造形物を樹脂成形品して用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2008-110281号(出願日:2008年4月21日、発明の名称:「積層造形装置」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
  1   積層造形装置
  2   粉末層形成部(粉末層形成手段)
  20  スライド部材
  21  水平レール
  22  スライド駆動部
  23  覆い部
  24  覆い部の枠体
  25  覆い部のウィンドウ
  26  材料供給枠
  26a 材料供給枠の造形部側の縁部
  27  材料供給枠の蓋部
  3   光学機器(固化層形成手段)
  31  光源
  32  スキャン機構
  33  光ファイバ
  4   造形部
  40  ベース
  41  ベース枠体
  42  テーブル
  43  昇降機
  44  台座
  5   材料補充装置(材料補充手段)
  50  略筒状部材
  51  スクリュー部材
  52  回転駆動部
  53  貯留タンク
  54  排出口
  55  略筒状部材の胴部に設けられた材料吐出開口部
  55a 複数の穴
  55b スリット状開口部
  57  蓋部
  58  蓋駆動部
  6   加工機
  61  主軸台
  62  スピンドルヘッド
  63  エンドミル
  7   スライド機構
  70  均し板
  71  均し板のレール
  8   コンベア機構
  81  ベルトコンベア
  82  コンベア駆動部
  83  均し部材
  9   スクリュー機構
  91  スクリュー・ハウジング
  92  スクリュー
  93  スクリュー駆動部
  104 造形部
  140 造形テーブル
  141 造形枠
  142 昇降機
  105 材料供給部
  150 昇降テーブル
  151 収容タンク
  152 昇降機構
  L   光ビーム
  M   粉末材料
  Sa  粉末層
  Sb  固化層

Claims (9)

  1.  粉末材料から成る粉末層を形成する粉末層形成手段と、前記粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する固化層形成手段とを有して成り、粉末層形成手段による粉末層の形成と、前記固化層形成手段による固化層の形成とを繰り返すことにより複数の固化層が積層一体化された三次元形状造形物を製造するための積層造形装置であって、
     前記粉末層及び前記固化層が設けられるベースの上方又は前記ベースの外周を囲むベース枠体の上面に対して前記粉末材料を供給する材料補充手段を更に有して成り、
     前記材料補充手段は、前記粉末材料が仕込まれる略筒状部材と、前記略筒状部材に内装されたスクリュー部材とを有して成り、前記スクリュー部材の回転により前記略筒状部材内の前記粉末材料を移送すること特徴とする積層造形装置。
  2.  前記粉末層形成手段は、前記ベース枠体の上面に沿ってスライド自在となるように設けられたスライド部材を有して成り、
     前記スライド部材が、前記材料補充手段から供給された前記粉末材料を前記ベースの上面または上方に移送させると共に、移送された粉末材料の表面を均すことを特徴とする、請求項1に記載の積層造形装置。
  3.  前記スライド部材が、前記ベースの上面を覆うことができる覆い部を有して成ることを特徴とする、請求項2に記載の積層造形装置。
  4.  前記スライド部材が、前記粉末材料が供給される領域を囲う材料供給枠を有して成ることを特徴とする、請求項2に記載の積層造形装置。
  5.  前記材料補充手段は、前記スライド部材のスライド方向に対して略直交する方向に移動自在となるように設けられていることを特徴とする、請求項2に記載の積層造形装置。
  6.  前記材料供給枠が、その枠内を覆う蓋部を有して成り、
     前記略筒状部材の粉末材料排出口と前記材料供給枠内とが連通状態となっていることを特徴とする請求項4に記載の積層造形装置。
  7.  前記材料補充手段の前記略筒状部材の胴部に対して材料吐出開口部が設けられており、
     前記材料吐出開口部を介して前記粉末材料の供給が行われることを特徴とする、請求項1に記載の積層造形装置。
  8.  前記材料補充手段が、前記材料吐出開口部を開閉自在とする蓋部を更に有して成り、前記蓋部を駆動させて前記材料吐出開口部を開閉することにより前記粉末材料の供給が行われることを特徴とする、請求項7に記載の積層造形装置。
  9.  前記ベースの上方又は前記ベース枠体の上面に供給された前記粉末材料を、前記スライド部材のスライド方向と略直交する方向に移送する機構を更に有して成ることを特徴とする、請求項2に記載の積層造形装置。
PCT/JP2009/057875 2008-04-21 2009-04-20 積層造形装置 WO2009131103A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801139803A CN102015258B (zh) 2008-04-21 2009-04-20 层叠造形装置
US12/988,723 US8550802B2 (en) 2008-04-21 2009-04-20 Stacked-layers forming device
EP09735744.6A EP2281677B1 (en) 2008-04-21 2009-04-20 Laminate molding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-110281 2008-04-21
JP2008110281 2008-04-21

Publications (1)

Publication Number Publication Date
WO2009131103A1 true WO2009131103A1 (ja) 2009-10-29

Family

ID=41216835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057875 WO2009131103A1 (ja) 2008-04-21 2009-04-20 積層造形装置

Country Status (5)

Country Link
US (1) US8550802B2 (ja)
EP (1) EP2281677B1 (ja)
JP (1) JP5272871B2 (ja)
CN (1) CN102015258B (ja)
WO (1) WO2009131103A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140147328A1 (en) * 2011-05-23 2014-05-29 Panasonic Corporation Method for producing three-dimensional shaped object
JP6026698B1 (ja) * 2016-07-13 2016-11-16 株式会社松浦機械製作所 三次元造形装置

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050679A1 (de) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
WO2009084991A1 (en) 2008-01-03 2009-07-09 Arcam Ab Method and apparatus for producing three-dimensional objects
JP4798185B2 (ja) * 2008-08-05 2011-10-19 パナソニック電工株式会社 積層造形装置
JP5364439B2 (ja) 2009-05-15 2013-12-11 パナソニック株式会社 三次元形状造形物の製造方法
CN102458722B (zh) 2009-06-23 2015-03-18 松下电器产业株式会社 三维形状造型物的制造方法及由其获得的三维形状造型物
KR101596432B1 (ko) 2009-07-15 2016-02-22 아르켐 에이비 삼차원 물체의 제작 방법 및 장치
CN103338880B (zh) 2011-01-28 2015-04-22 阿卡姆股份有限公司 三维物体生产方法
JP5861117B2 (ja) * 2011-05-30 2016-02-16 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法および製造装置
CN102514950B (zh) * 2011-11-16 2013-10-30 华中科技大学 一种移动臂式粉床铺粉装置
EP2797730B2 (en) 2011-12-28 2020-03-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
JP6101707B2 (ja) 2011-12-28 2017-03-22 ア−カム アーベー 積層造形法による三次元物品の解像度を向上させるための方法および装置
TWI472427B (zh) * 2012-01-20 2015-02-11 財團法人工業技術研究院 粉體鋪層裝置與方法及其積層製造方法
US9687911B2 (en) 2012-03-09 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
DE112012006355B4 (de) 2012-05-11 2023-05-11 Arcam Ab Pulververteilung bei additiver Herstellung
GB2503215A (en) * 2012-06-18 2013-12-25 Rolls Royce Plc Method of making an object using a deposition control plate
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
EP2916980B1 (en) 2012-11-06 2016-06-01 Arcam Ab Powder pre-processing for additive manufacturing
US9505172B2 (en) 2012-12-17 2016-11-29 Arcam Ab Method and apparatus for additive manufacturing
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
WO2014144255A2 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Laser sintering apparatus and methods
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9415443B2 (en) 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
US9498593B2 (en) 2013-06-17 2016-11-22 MetaMason, Inc. Customized medical devices and apparel
US9468973B2 (en) 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
JP5612735B1 (ja) 2013-07-10 2014-10-22 パナソニック株式会社 三次元形状造形物の製造方法およびその製造装置
JP5599921B1 (ja) * 2013-07-10 2014-10-01 パナソニック株式会社 三次元形状造形物の製造方法
US9505057B2 (en) 2013-09-06 2016-11-29 Arcam Ab Powder distribution in additive manufacturing of three-dimensional articles
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9102099B1 (en) * 2014-02-05 2015-08-11 MetaMason, Inc. Methods for additive manufacturing processes incorporating active deposition
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
JP6647771B2 (ja) * 2014-05-23 2020-02-14 大同特殊鋼株式会社 金型用鋼及び金型
JP2016002698A (ja) * 2014-06-17 2016-01-12 三菱鉛筆株式会社 粉末焼結積層造形法によって形成された筆記ボール及び該筆記ボールを有した筆記具
EP3159141A4 (en) * 2014-06-20 2018-01-24 Fujimi Incorporated Powder material to be used in powder lamination shaping and powder lamination shaping method using same
EP3175972B1 (en) 2014-07-30 2020-05-20 Panasonic Intellectual Property Management Co., Ltd. Method for producing a mold, and mold
US9347770B2 (en) 2014-08-20 2016-05-24 Arcam Ab Energy beam size verification
JP6458416B2 (ja) * 2014-09-16 2019-01-30 株式会社リコー 立体造形装置、立体造形物の製造方法
JP5841649B1 (ja) * 2014-10-08 2016-01-13 株式会社ソディック 積層造形装置
EP3023227B1 (en) * 2014-11-24 2018-01-03 SLM Solutions Group AG Powder circuit for use in an apparatus for producing three-dimensional work pieces
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
CN104475730A (zh) * 2015-01-15 2015-04-01 钱波 小型金属粉末快速成形牙齿机
US9406483B1 (en) 2015-01-21 2016-08-02 Arcam Ab Method and device for characterizing an electron beam using an X-ray detector with a patterned aperture resolver and patterned aperture modulator
JP6601051B2 (ja) * 2015-01-28 2019-11-06 大同特殊鋼株式会社 鋼の粉末
US10975460B2 (en) 2015-01-28 2021-04-13 Daido Steel Co., Ltd. Steel powder and mold using the same
WO2016151783A1 (ja) 2015-03-24 2016-09-29 技術研究組合次世代3D積層造形技術総合開発機構 粉末供給装置、粉末供給装置の制御方法、粉末供給装置の制御プログラムおよび3次元造形装置
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US10315408B2 (en) 2015-04-28 2019-06-11 General Electric Company Additive manufacturing apparatus and method
US10391556B2 (en) 2015-04-28 2019-08-27 General Electric Company Powder transfer apparatus and method for additive manufacturing
JP6536199B2 (ja) 2015-06-16 2019-07-03 セイコーエプソン株式会社 3次元形成装置
EP3271141B1 (en) * 2015-07-07 2021-04-21 Hewlett-Packard Development Company, L.P. Supplying build material
US10357827B2 (en) 2015-07-29 2019-07-23 General Electric Comany Apparatus and methods for production additive manufacturing
KR20180043303A (ko) * 2015-09-16 2018-04-27 어플라이드 머티어리얼스, 인코포레이티드 적층 제조를 위한 파우더 전달
KR20180042305A (ko) * 2015-09-16 2018-04-25 어플라이드 머티어리얼스, 인코포레이티드 적층 제조 시스템을 위한 조절가능한 z축 프린트헤드 모듈
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
EP3380305B1 (en) 2015-11-23 2020-04-22 Hewlett-Packard Development Company, L.P. Supplying build material
FR3046094A1 (fr) * 2015-12-23 2017-06-30 Michelin & Cie Procede de fabrication additive d'une piece par fusion selective totale ou partielle d'une poudre et machine adaptee a la mise en oeuvre d'un tel procede
FR3046095B1 (fr) * 2015-12-23 2018-01-26 Addup Machine de fabrication additive et procede de fabrication additive mettant en oeuvre une telle machine
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
CN109070450B (zh) 2016-04-10 2022-01-11 惠普发展公司,有限责任合伙企业 分配用于增材制造的粉末状构造材料
US11377302B2 (en) 2016-05-12 2022-07-05 Hewlett-Packard Development Company, L.P. Distributing powder
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
JP2017226084A (ja) * 2016-06-20 2017-12-28 株式会社オメガ 三次元造形方法
KR102206145B1 (ko) * 2016-08-31 2021-01-21 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3차원 프린팅 기법
EP3796116A3 (en) * 2016-09-15 2021-06-23 IO Tech Group, Ltd. Method and system for additive-ablative fabrication
DE202016006355U1 (de) * 2016-10-12 2018-01-15 Realizer Gmbh Anlage zur Objektherstellung aus Werkstoffpulver mit Bereitstellung des Pulvers in Linienform
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
DE102016122838A1 (de) 2016-11-27 2018-05-30 Fit Ag Transportieren von pulverförmigem Aufbaumaterial für die Herstellung dreidimensionaler Objekte
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
DE102017105057A1 (de) 2017-03-09 2018-09-13 Cl Schutzrechtsverwaltungs Gmbh Belichtungseinrichtung für eine Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
JP6879802B2 (ja) * 2017-03-31 2021-06-02 ダイハツ工業株式会社 三次元積層造形装置
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11465358B2 (en) * 2017-08-02 2022-10-11 Matsuura Machinery Corporation Three-dimensional object shaping method
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
BR112020004447A2 (pt) * 2017-10-05 2020-09-15 Hewlett-Packard Development Company, L.P. recipiente de material de construção para uma impressora tridimensional
WO2019070257A1 (en) 2017-10-05 2019-04-11 Hewlett-Packard Development Company, L.P. GUIDE PART FOR CONTAINER OF PRINTING MATERIAL
WO2019094286A1 (en) * 2017-11-08 2019-05-16 General Electric Company Omnidirectional recoater
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
DE102017126665A1 (de) 2017-11-13 2019-05-16 Eos Gmbh Electro Optical Systems 3D-Druck-Vorrichtung und -Verfahren
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10518356B2 (en) * 2018-02-05 2019-12-31 General Electric Company Methods and apparatus for generating additive manufacturing scan paths using thermal and strain modeling
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
FR3080796B1 (fr) * 2018-05-03 2020-04-17 Addup Machine de fabrication additive comprenant un dispositif de distribution de poudre par doseur a vis sur une surface mobile
US10723074B1 (en) * 2019-01-04 2020-07-28 Thermwood Corporation Print head for additive manufacturing
JP7018414B2 (ja) * 2019-05-23 2022-02-10 株式会社ソディック 積層造形装置
JP7300892B2 (ja) * 2019-05-23 2023-06-30 株式会社小糸製作所 車両用灯具及びその製造方法
US11312076B2 (en) * 2019-09-23 2022-04-26 The Boeing Company Apparatuses for additively manufacturing an object from a powder material
JP7323426B2 (ja) 2019-10-29 2023-08-08 日本電子株式会社 3次元積層造形装置
WO2021095096A1 (ja) * 2019-11-11 2021-05-20 三菱電機株式会社 積層造形装置
GB2593453B (en) * 2020-03-17 2024-06-05 C4 Carbides Ltd Powder feeder
WO2022015831A1 (en) 2020-07-15 2022-01-20 Applied Materials, Inc. Large area recoating for additive manufacturing
EP4015112A1 (en) * 2020-12-15 2022-06-22 Siemens Energy Global GmbH & Co. KG Method and apparatus for the additive manufacture of a workpiece
US11878471B2 (en) * 2022-03-18 2024-01-23 Taiwan Mercury Medical Corporation Magnetic powder dispensing structure for tablet printing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (ja) 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2004277881A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2006205456A (ja) * 2005-01-26 2006-08-10 Toyota Motor Corp 粉末積層造形用粉末供給装置
JP2008110281A (ja) 2006-10-30 2008-05-15 Taiheiyo Cement Corp 排ガス処理方法及び処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69621001T2 (de) * 1995-02-01 2003-04-03 3D Systems Inc Schnelles glättungsverfahren für schichtweise hergestellte dreidimensionale gegenstände
TW506868B (en) * 2000-10-05 2002-10-21 Matsushita Electric Works Ltd Method of and apparatus for making a three-dimensional object
AU2002222885A1 (en) * 2000-11-27 2002-06-03 Kinergy Pte Ltd Method and apparatus for creating a three-dimensional metal part using high-temperature direct laser melting
US7754135B2 (en) * 2003-02-25 2010-07-13 Panasonic Electric Works Co., Ltd. Three dimensional structure producing method and producing device
DE102005022308B4 (de) * 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
DE102005024790A1 (de) * 2005-05-26 2006-12-07 Eos Gmbh Electro Optical Systems Strahlungsheizung zum Heizen des Aufbaumaterials in einer Lasersintervorrichtung
DE102005056260B4 (de) * 2005-11-25 2008-12-18 Prometal Rct Gmbh Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material
JP4866145B2 (ja) * 2006-05-17 2012-02-01 株式会社アスペクト 粉末焼結積層造形装置及びその使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (ja) 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2004277881A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2006205456A (ja) * 2005-01-26 2006-08-10 Toyota Motor Corp 粉末積層造形用粉末供給装置
JP2008110281A (ja) 2006-10-30 2008-05-15 Taiheiyo Cement Corp 排ガス処理方法及び処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2281677A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140147328A1 (en) * 2011-05-23 2014-05-29 Panasonic Corporation Method for producing three-dimensional shaped object
US9592554B2 (en) * 2011-05-23 2017-03-14 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JP6026698B1 (ja) * 2016-07-13 2016-11-16 株式会社松浦機械製作所 三次元造形装置
JP2018009210A (ja) * 2016-07-13 2018-01-18 株式会社松浦機械製作所 三次元造形装置
US9969002B2 (en) 2016-07-13 2018-05-15 Matsuura Machinery Corporation Three-dimensional shaping device

Also Published As

Publication number Publication date
US8550802B2 (en) 2013-10-08
JP5272871B2 (ja) 2013-08-28
EP2281677A1 (en) 2011-02-09
CN102015258A (zh) 2011-04-13
CN102015258B (zh) 2013-03-27
JP2009279928A (ja) 2009-12-03
EP2281677A4 (en) 2013-09-04
US20110109016A1 (en) 2011-05-12
EP2281677B1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5272871B2 (ja) 積層造形装置
US9724758B2 (en) Apparatus for producing an integrally laminated three-dimensional object by repeating formation of powder layer and solidified layer
JP5027780B2 (ja) 積層造形装置
US9073264B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP5355213B2 (ja) 三次元形状造形物を造形する積層造形装置
JP4661551B2 (ja) 三次元形状造形物製造装置
US9902113B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP5364439B2 (ja) 三次元形状造形物の製造方法
JP5861117B2 (ja) 三次元形状造形物の製造方法および製造装置
US10583607B2 (en) Lamination molding apparatus
JP4487636B2 (ja) 三次元形状造形物の製造方法
WO2015151313A1 (ja) 積層造形物の製造方法および混合材料
JP2010132961A (ja) 積層造形装置及び積層造形方法
JP2007146216A5 (ja)
JP2011026668A (ja) 三次元形状造形物の製造装置および製造方法
JP2010065259A (ja) 三次元形状造形物の製造方法
JP4340383B2 (ja) 金属とセラミックスの複合造形体の製造方法および装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113980.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7360/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009735744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12988723

Country of ref document: US