WO2009130996A1 - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
WO2009130996A1
WO2009130996A1 PCT/JP2009/057118 JP2009057118W WO2009130996A1 WO 2009130996 A1 WO2009130996 A1 WO 2009130996A1 JP 2009057118 W JP2009057118 W JP 2009057118W WO 2009130996 A1 WO2009130996 A1 WO 2009130996A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
crucible
base substrate
height
raw material
Prior art date
Application number
PCT/JP2009/057118
Other languages
French (fr)
Japanese (ja)
Inventor
修二 胡間
浩司 吉田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2009130996A1 publication Critical patent/WO2009130996A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • F27D3/145Runners therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Definitions

  • the present invention relates to a melting furnace, in particular, it is possible to perform additional supply of stable raw materials without stopping production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt,
  • the present invention also relates to a melting furnace capable of improving the productivity of the crystal thin plate by reducing the quality deterioration and variation and improving the production yield of the crystal thin plate.
  • a conventional melting furnace used for manufacturing a crystal thin plate on the surface of a base substrate is provided with a main crucible for holding a melt as a raw material for the crystal thin plate.
  • a main crucible for holding a melt as a raw material for the crystal thin plate.
  • FIG. 6 schematically shows a configuration of a conventional melting furnace used for manufacturing a crystal thin plate.
  • the conventional melting furnace 3000 includes a main chamber 3001 in which a thin crystal plate is manufactured, a first sub chamber 3002 disposed adjacent to one side of the main chamber 3001, and the other of the main chamber 3001. And a second sub-chamber 3003 disposed adjacent to the side portion.
  • a first crucible 3100 and a base substrate gripping device 3004 for immersing the base substrate 1001 in a melt such as a silicon melt in the first crucible 3100 are provided at the center of the main chamber 3001.
  • a first crucible preparation chamber 3101, a second crucible preparation chamber 3201, and a third crucible preparation chamber 3301 are installed on the outer periphery of the main chamber 3001.
  • the first crucible preparation chamber 3101 is provided with a first solid material supply device 3102 for supplying the solid material 3103 to the first crucible 3100.
  • the second crucible preparation chamber 3201 is provided with a second crucible 3200 and a second solid material supply device 3202 for supplying the solid material 3203 to the second crucible 3200.
  • the third crucible preparation chamber 3301 is provided with a third crucible 3300 and a third solid material supply device 3302 for supplying the solid material 3303 to the third crucible 3300.
  • first crucible 3100, the second crucible 3200, and the third crucible 3300 each have a side surface protected by a heat insulating material, and an induction heating heating device is installed around each heat insulating material. Yes.
  • the base substrate 1001 is transferred from the first sub chamber 3002 to the main chamber 3001, the base substrate 1001 is gripped by the base substrate gripping device 3004, and the first crucible 3100. It is immersed in the melt inside. Then, the melt adheres to the surface of the base substrate 1001, and after the base substrate 1001 is taken out of the melt in the first crucible 3100, it solidifies, so that the crystal thin plate 1002 is formed on the surface of the base substrate 1001. It is formed. Thereafter, the base substrate 1001 on which the crystal thin plate 1002 is formed is carried out from the second sub chamber 3003 to the outside. By repeating the above steps, the crystal thin plate 1002 can be continuously manufactured.
  • the amount of the melt held in the first crucible 3100 decreases, and the height of the liquid level of the melt decreases.
  • a solid raw material to be a raw material for the melt is added to the first crucible 3100, and the temperature of the first crucible 3100 is increased by an induction heating type heating device, so that the solid raw material is melted to form a melt.
  • an induction heating type heating device so that the solid raw material is melted to form a melt.
  • the temperature of the first crucible 3100 is once increased after the solid raw material is charged, After that, the temperature of the first crucible 3100 needs to be lowered and then the production of the crystal thin plate 1002 needs to be resumed.
  • any one of the crucibles of the first crucible 3100, the second crucible 3200, or the third crucible 3300 is used to improve the production amount of the crystal thin plate 1002. While the crystal thin plate 1002 is manufactured using the solid crucible, a solid raw material is added to the remaining crucible and the temperature of the crucible is increased to melt the solid raw material to form a melt. After forming the melt, The process of lowering the temperature is performed in parallel.
  • the second crucible 3200 is installed in the second crucible preparation chamber 3201, and the third crucible 3300 is also the third crucible 3300. It is installed in the crucible preparation chamber 3301. Then, after the solid raw material 3203 is charged into the second crucible 3200 from the second solid raw material supply apparatus 3202, the temperature of the second crucible 3200 is raised and then lowered to lower the melt in the second crucible 3200. Prepare.
  • the temperature of the third crucible 3300 is increased, and then the temperature of the third crucible 3300 is decreased.
  • the solid raw material is melted to prepare a melt.
  • the production of the crystal thin plate 1002 is temporarily interrupted, and the first crucible 3100 is moved to the first crucible preparation chamber 3101. Then, the second crucible 3200 or the third crucible 3300 in which the melt is sufficiently produced is installed in the main chamber 3001 instead of the first crucible 3100, and the production of the crystal thin plate 1002 proceeds.
  • the solid crucible 3103 is charged into the first crucible 3100 in which the amount of the melt is equal to or less than the specified amount, and the melt is supplied in the same manner as in the second crucible 3200 and the third crucible 3300 described above. Prepare and replenish the melt.
  • the interruption of the production of the crystal thin plate 1002 with the addition of the solid raw material to the crucible can be minimized.
  • the interruption time of the production of the crystal thin plate 1002 can be limited to the movement time of the crucible.
  • Such a melting furnace is disclosed in, for example, International Publication WO 2004/025000 Pamphlet.
  • FIG. 7 shows another configuration of a conventional melting furnace used for manufacturing a crystal thin plate.
  • This melting furnace 4000 is a melting furnace in which a melt is directly added to the main crucible 4101.
  • the melting furnace 4000 having such a configuration is disclosed in Japanese Patent Application Laid-Open No. 2007-290914.
  • the melting furnace 4000 shown in FIG. 7 includes a main crucible 4101 and a secondary crucible 4201, and a heat insulating material 4103 is provided on a side surface of the main crucible 4101, and a refractory is provided on the bottom surface of the main crucible 4101.
  • a brick 4105 is provided.
  • an induction heating type main crucible heating device 4104 is provided so as to surround the heat insulating material 4103 provided on the side surface of the main crucible 4101.
  • a heat insulating material 4203 is provided on a side surface of the sub crucible 4201 and a position at a predetermined gap 4207 from the sub crucible 4201.
  • a secondary crucible heating device 4204 is provided so as to surround the outer periphery of the heat insulating material 4203.
  • a refractory brick 4205 is provided on the bottom surface of the auxiliary crucible 4201, and the refractory brick 4205 is attached on the surface of the crucible receiver 4206.
  • the melt 4102 is held in the main crucible 4101, and the melt 4202 is held inside the auxiliary crucible 4201.
  • the melt 4202 overflows from the auxiliary crucible 4201, and is supplied into the main crucible 4101 through the gap 4207.
  • the melt is supplied from the secondary crucible 4201 to the main crucible 4101, so that the crystal thin plate 1002 can be manufactured without replacing the main crucible 4101.
  • the height of the melt level in the crucible is greatly reduced by continuously manufacturing the crystal thin plate 1002 for a certain period, the height of the crucible Alternatively, since it is possible to maintain an arbitrary immersion depth of the base substrate 1001 by adjusting the height of the base substrate 1001, it is considered that the production of the crystal thin plate 1002 can be continued.
  • the temperature or temperature distribution of the melt in the crucible changes, and the quality of the crystal thin plate 1002 produced at a high position of the melt in the crucible and the quality of the crystal thin plate 1002 produced at a low position ( (Plate thickness, plate thickness distribution) may not be stable, or the manufacturing yield of the crystal thin plate 1002 may be reduced.
  • the melt 4202 is supplied from the auxiliary crucible 4201 to the main crucible 4101 as needed, as in the melting furnace 4000 having the configuration shown in FIG. 7, the production of the crystal thin plate 1002 is not interrupted, and the solid crucible 4202 is solid. Raw materials can be input.
  • a melt 4202 such as a silicon melt is allowed to flow in the gap 4207 on the side surface of the auxiliary crucible 4201, the melt 4202 such as a silicon melt comes into contact with the heat insulating material 4203 on the side surface of the auxiliary crucible 4201, so May deteriorate.
  • the auxiliary crucible heating device 4204 such as a coil may be heated and damaged by radiation from the molten liquid 4202 such as the auxiliary crucible 4201 or silicon melt.
  • the melt 4202 such as a silicon melt in contact with the heat insulating material 4203 flows into the main crucible 4101 while being contaminated by the heat insulating material 4203, so that the melt 4102 in the main crucible 4101 is also contaminated and the crystal thin plate 1002 is manufactured. Is done.
  • the crystal thin plate 1002 manufactured by such a method is used as a semiconductor material or a solar cell material, and therefore causes deterioration of characteristics when contaminated material is mixed.
  • the melt 4202 supplied from the sub crucible 4201 to the main crucible 4101 is insulated. It is necessary not to contact the material 4203.
  • the present invention has been made in view of the above problems, and an object of the present invention is to stop the production of a crystal thin plate formed on the surface of a base substrate by immersing the base substrate in a melt. Provides a melting furnace that can improve the productivity of thin crystal sheets by reducing the quality deterioration and dispersion and improving the production yield of thin crystal sheets. There is to do.
  • the present invention provides a main crucible for holding a melt of a substance containing at least one of a metal material and a semiconductor material, a main crucible heating device for heating the melt held in the main crucible, and supplying the main crucible
  • It is equipped with a charging device and a melt transfer unit for supplying the melt from the auxiliary crucible to the main crucible.
  • the melt transfer unit is joined to the auxiliary crucible, and the solid material is input from the solid material input device to the auxiliary crucible.
  • This is a melting furnace in which the melt overflowing from the auxiliary crucible is supplied to the main crucible through the melt transport section.
  • the melting furnace of the present invention further includes a melt transport unit heating device for heating the melt transport unit, and the melt transport unit is made of a hollow member heated by the melt transport unit heating device. Is preferred.
  • the melting furnace of the present invention further includes a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by being immersed in the melt held in the main crucible. It is preferable.
  • the melting furnace of the present invention includes a melt height detector for detecting the height of the melt level held in the main crucible, and whether or not the solid raw material is charged into the auxiliary crucible from the solid raw material charging device. And a solid raw material charging control device for determining the solid raw material charging control device in the secondary crucible based on the liquid level of the melt held in the main crucible detected by the melt height detector. It is preferable to determine whether or not to input.
  • the solid raw material charging control device also determines the amount of the solid raw material charged into the auxiliary crucible.
  • the melting furnace of the present invention further includes a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by being immersed in the melt held in the main crucible. It is preferable.
  • the melting furnace of the present invention includes a crucible lifting / lowering device for moving the main crucible in the vertical direction based on the height of the liquid level of the melt held in the main crucible detected by the melt height detector. Furthermore, it is preferable to adjust the immersion depth of the base substrate in the melt by controlling the height of the main crucible by the crucible lifting device.
  • the base substrate dipping device determines the track height of the base substrate based on the level of the melt held in the main crucible detected by the melt height detector. It is preferable to adjust the immersion depth of the base substrate in the melt by controlling.
  • the melting furnace of the present invention includes a melt height detector for detecting the height of the melt level held in the main crucible, and whether or not the solid raw material is charged into the auxiliary crucible from the solid raw material charging device.
  • a solid raw material charging control device to determine, a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by dipping in the melt held in the main crucible, and the melt height
  • a crucible lifting / lowering device for moving the main crucible in the vertical direction based on the height of the melt level held in the main crucible detected by the height detector, and controlled by the crucible lifting / lowering device It is preferable that the solid raw material input control device determines whether or not to supply the solid raw material to the auxiliary crucible based on at least one of the height of the base substrate and the height of the orbit of the base substrate controlled by the base substrate immersion device.
  • the solid raw material charging control device also determines the amount of the solid raw material charged into the auxiliary crucible based on at least one of the height of the main crucible and the height of the orbit of the base substrate. Is preferred.
  • the immersion depth of the base substrate in the melt is adjusted by controlling the height of the main crucible by the crucible lifting device.
  • the immersion depth of the underlying substrate with respect to the melt is adjusted by controlling the height of the orbit of the underlying substrate by the underlying substrate immersion device.
  • the melt height detector detects the height of the melt surface using an electrical signal when the melt held in the main crucible and the base substrate come into contact with each other. It is preferable to do.
  • the present invention it is possible to perform additional supply of stable raw materials without suspending the production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt, and deterioration in quality. Further, it is possible to provide a melting furnace capable of improving the productivity of the crystal thin plate by reducing the variation and improving the production yield of the crystal thin plate.
  • FIG. 1 the typical structure of a preferable example of the melting furnace of this invention is shown.
  • the melting furnace 1000 has a main crucible 1101 and an auxiliary crucible 1201.
  • a heat insulating material 1103 is provided on a side surface of the main crucible 1101, and a main crucible heating device 1104 is provided so as to surround the outer periphery of the heat insulating material 1103.
  • a refractory brick 1105 is attached to the bottom surface of the main crucible 1101, and the refractory brick 1105 is installed on the main crucible receiver 1106.
  • a heat insulating material 1203 is also provided on the side surface of the sub crucible 1201, and a sub crucible heating device 1204 is provided so as to surround the outer periphery of the heat insulating material 1203.
  • a refractory brick 1205 is attached to the bottom surface of the auxiliary crucible 1201, and the refractory brick 1205 is installed on the auxiliary crucible receptacle 1206.
  • a melt transfer unit 1301 is connected to the sub crucible 1201, and the melt transfer unit 1301 is provided to transfer the melt 1202 overflowing from the sub crucible 1201 to the main crucible 1101.
  • a heat insulating material 1303 is attached to the outer periphery of the melt conveying unit 1301, and a melt conveying unit heating device 1304 is attached so as to surround the outer periphery of the heat insulating material 1303.
  • a solid material input device 1401 is installed above the sub crucible 1201, and the solid material 1402 is input into the sub crucible 1201 by the solid material input device 1401.
  • Both the main crucible receptacle 1106 and the auxiliary crucible receptacle 1206 are installed on the crucible elevating device 1107, and the crucible elevating device 1107 has a function of moving the positions of the main crucible 1101 and the auxiliary crucible 1201 up and down (moving in the vertical direction). have.
  • the melt height detector 1503 is connected to the main crucible 1101 through the electric wiring 1052, and is also connected to the base substrate immersion apparatus described later through the electric wiring 1051.
  • the melt height detector 1503 can control the up-and-down movement of the crucible lifting / lowering device 1107 through the path 1504, and the liquid level of the melt 1102 in the main crucible 1101 is transferred to the solid raw material charging control device 1506 through the path 1505. Can transmit height.
  • the solid material input control device 1506 can determine whether or not the solid material 1402 of the solid material input device 1401 is input and the input amount through the path 1507.
  • the main crucible 1101 and the sub crucible 1201 are filled with a solid raw material in advance, the main crucible heating device 1104 heats the main crucible 1101, and the sub crucible heating device 1204 heats the sub crucible 1201.
  • the solid material in the main crucible 1101 is melted to become the melt 1102
  • the solid material in the auxiliary crucible 1201 is melted to become the melt 1202.
  • the melt 1202 held in the sub crucible 1201 overflows from the sub crucible 1201 and flows into the melt transport unit 1301. Then, the melt 1202 that has flowed into the melt transport unit 1301 is supplied to the main crucible 1101. Thereby, the amount of the melt 1102 held in the main crucible 1101 can be increased.
  • the amount of the melt 1202 held in the auxiliary crucible 1201 increases.
  • the melt 1202 flows into the melt transport unit 1301 from the opening provided in the crucible 1201.
  • the sub crucible receiver 1206 that receives the melt 1202 that leaks when the sub crucible 1201 breaks is installed below the sub crucible 1201. It is possible to effectively prevent the other members constituting the melting furnace 1000 from being damaged.
  • the sub crucible 1201 can be installed at a position away from the top of the melt 1102 held in the main crucible 1101. Even if the melt 1202 leaks out of the crucible receptacle 1206, it is possible to effectively prevent other members constituting the melting furnace 1000 from being damaged.
  • melt conveyance unit 1301 deterioration of the heat insulating material 1303 due to the melt 1202 overflowing from the auxiliary crucible 1201 coming into contact with the heat insulating material 1303 and contamination of the melt by the heat insulating material 1303 can be suppressed. it can. Further, by providing the melt transport unit heating device 1304 in the melt transport unit 1301, the temperature drop of the melt transport unit 1301 can be suppressed.
  • the melt transporting part 1301 as a hollow member, it is possible to reliably prevent the melt 1202 overflowing from the auxiliary crucible 1201 from coming into contact with the heat insulating material 1303. It is possible to suppress solidification of the melt 1202 due to the temperature drop of the transport unit 1301 inside the melt transport unit 1301 and damage to the melt transport unit heating device 1304 due to heat.
  • main crucible heating device 1104, the sub crucible heating device 1204, and the melt transport unit heating device 1304 are each of an induction heating method.
  • main crucible heating device 1104, sub crucible heating device 1204, and melt transport unit heating device 1304 are induction heating systems, main crucible 1101, sub crucible 1201 and melt transport unit 1301 are heated by induction heating.
  • a high melting point material which does not contaminate melts, such as a silicon
  • the melt 1102 held in the main crucible 1101 and the melt 1202 held in the sub crucible 1201 are silicon melts, respectively, the main crucible 1101, the sub crucible 1201, and the melt transport unit
  • the surface in contact with the silicon melt 1301 is preferably made of graphite, but may be made of a material other than graphite.
  • the main crucible 1101, the surface of the main crucible 1101, the auxiliary crucible 1201, and the melt transport unit 1301 that are in contact with the silicon melt are coated with, for example, SiC (silicon carbide) and / or SiN (silicon nitride).
  • SiC silicon carbide
  • SiN silicon nitride
  • the solid material charging device 1401 has a handle shape in the present embodiment, it is needless to say that the shape is not limited to this shape.
  • the solid raw material charging device 1401 is filled with the solid raw material 1402 outside the melting furnace 1000, and then the solid raw material charging device 1401 is moved to above the auxiliary crucible 1201, and the opening of the solid raw material charging device 1401 passes through the sub crucible 1201. By rotating in the direction, an arbitrary amount of the solid raw material 1402 can be put into the auxiliary crucible 1201.
  • the solid raw material charging device 1401 is configured such that the amount of the solid raw material 1402 charged into the auxiliary crucible 1201 is controlled by, for example, the solid raw material charging control device 1506. Moreover, it is preferable that the solid raw material charging device 1401 is configured so that the solid raw material 1402 can be charged into the auxiliary crucible 1201 at an arbitrary timing.
  • the melt 1102 and the melt 1202 can each be a melt of a substance containing at least one of a metal material and a semiconductor material, for example, a melt such as silicon, but a metal material other than silicon.
  • a melt such as silicon
  • a metal material other than silicon e.g., silicon oxide
  • at least one melt of a semiconductor material may be used.
  • the base substrate 1001 is installed in a base substrate immersion apparatus to be described later, and the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101 to attach the melt 1102 on the surface of the base substrate 1001. As the adhered melt 1102 solidifies, a crystal thin plate 1002 is formed on the surface of the base substrate 1001.
  • FIG. 2 shows a schematic configuration of an example of the base substrate immersion apparatus used in the present invention.
  • the base substrate immersion apparatus 2000 includes a horizontal operation shaft 2101 that operates in a horizontal direction by a horizontal operation motor (not shown), and a horizontal operation shaft 2101 that is fixed to the horizontal operation shaft 2101 and moves in the horizontal direction.
  • a horizontal axis pedestal 2102 that moves in the horizontal direction, a lifting operation motor 2103 attached to the horizontal axis pedestal 2102, a suspension column 2104 attached to the elevation operation motor 2103 and extending in the vertical direction, and a suspension column 2104.
  • rotating column 2106 that rotates independently of the suspension column 2104, a rotating column 2106 that is fixed to the rotating mechanism 2105 and rotates along with the rotating unit 2105.
  • Auxiliary column 2107 extending in the vertical direction, rotating column 2106 and auxiliary column 2107 Thus it is supported and a fixed base 2108 for mounting the base substrate 1001.
  • the horizontal position of the base substrate 1001 mounted on the fixed base 2108 can be controlled by moving the horizontal operation shaft 2101 in the horizontal direction.
  • the vertical position of the base substrate 1001 can be controlled by raising and lowering the suspension column 2104 in the vertical direction by the elevating operation motor 2103.
  • the rotating mechanism 2105 and tilting the rotating support 2106 with respect to the horizontal direction the tilt of the surface of the base substrate 1001 mounted on the fixed base 2108 with respect to the horizontal direction can be controlled.
  • the base substrate immersion apparatus 2000 is configured such that the horizontal position, the vertical position, and the base position of the base substrate 1001 mounted on the fixed base 2108 by the lifting / lowering motor 2103, the horizontal operation motor (not shown), and the rotation mechanism 2105.
  • the inclination of the surface of the substrate 1001 with respect to the horizontal direction can be controlled independently.
  • the base substrate 1001 is first fitted on the fixed base 2108, and then the base substrate 1001 is moved in the horizontal direction ( Horizontal movement), vertical movement (vertical movement), and rotational movement to move the liquid 1102 directly above the melt 1102 held in the main crucible 1101, and the surface of the base substrate 1001 is the melt 1102 in the main crucible 1101. Carry to the position facing. Then, after the surface of the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101, the base substrate 1001 is taken out from the melt 1102.
  • the base substrate 1001 of the base substrate immersion apparatus 2000 Under the control of the base substrate 1001 of the base substrate immersion apparatus 2000 described above, the base substrate 1001 is moved, for example, as indicated by an arrow 2120, and the melt 1102 is solidified on the surface of the base substrate 1001. A thin plate 1002 can be obtained. Thereafter, the base substrate 1001 on which the crystal thin plate 1002 is formed is returned to the original position by horizontally moving, vertically moving, and rotating, and the base substrate 1001 on which the crystal thin plate 1002 is formed is removed from the fixed base 2108. Then, a new base substrate 1001 can be fitted and attached to the fixed base 2108, and the next crystal thin plate 1002 manufacturing process can be started.
  • a horizontal movement command, a vertical movement command, and a rotation operation command for the base substrate 1001 are programmed by a normal personal computer or the like and transmitted to a controller (not shown).
  • the base substrate 1001 moves along a trajectory as programmed.
  • the base substrate immersion apparatus 2000 controls the height of the base substrate 1001 (that is, the vertical position of the base substrate 1001), thereby immersing the base substrate 1001 in the melt 1102 (the base substrate 1001's immersion depth).
  • the crystal thin plate 1002 can be manufactured while adjusting so that is within a certain range (for example, the absolute value of the difference between the maximum value and the minimum value of the immersion depth is within a range of 1 mm). Thus, a thin crystal plate 1002 with little variation can be obtained.
  • the electrical wiring 1051 is connected to the base substrate immersion apparatus 2000, and the electrical wiring 1052 is connected to the main crucible 1101.
  • the electrical wiring 1052 is connected to the power supply device 1508.
  • the electrical wiring 1051 and the electrical wiring 1052 are connected to a melt height detector 1503 via a relay 1509. Thereby, the base substrate immersion device 2000, the main crucible 1101, the power supply device 1508, the relay 1509, and the melt height detector 1503 are connected.
  • the base substrate immersion device 2000 and the main crucible 1101 are electrically insulated, and the base substrate 1001 and the base substrate immersion device 2000 are electrically connected.
  • the base substrate 1001 and the base substrate immersion device 2000 are electrically connected.
  • the base substrate 1001 is first mounted on the fixed base 2108 of the base substrate immersion apparatus 2000 shown in FIG.
  • the crucible lifting / lowering device 1107 shown in FIG. 1 is operated to adjust the height of the main crucible 1101 to a specified height.
  • the base substrate 1001 is moved by the base substrate immersion device 2000, for example, as shown by an arrow 2120 in FIG. 2, and the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101.
  • the base substrate immersion device 2000 and the main crucible 1101 are electrically connected to each other so that the open circuit is switched to the short circuit state. Become. This is because the base substrate immersion apparatus 2000 and the base substrate 1001 are electrically connected, and the melt 1102 and the main crucible 1101 are electrically connected.
  • the melt height detector 1503 detects a change in electrical resistance, and can grasp the moment when the base substrate 1001 comes into contact with the liquid surface of the melt 1102. That is, it is possible to detect the height of the liquid level of the melt 1102 in the main crucible 1101 using an electric signal when the melt 1102 held in the main crucible 1101 comes into contact with the base substrate 1001.
  • any device capable of measuring voltage, current, and resistance may be used instead of the relay 1509 for measuring electrical resistance.
  • the coordinates of the base substrate 1001 at the moment when the base substrate 1001 comes into contact with the melt 1102, that is, the moment when the relay 1509 operates are read.
  • the position of the base substrate 1001 in operation can be ascertained at any time by a servo motor controller or a higher-order personal computer.
  • the coordinates of the base substrate 1001 at the moment of contact with the melt 1102 can be recognized.
  • the coordinates of the base substrate 1001 at the moment of contact with the melt 1102 can be recognized by geometric calculation based on the position of the horizontal axis base 2102, the position of the suspension column 2104, the rotation angle of the rotation mechanism 2105, and the like. Is possible.
  • the horizontal position and the vertical position of the base substrate 1001 at the moment when the base substrate 1001 contacts the melt 1102 are grasped.
  • the rotation angle of the base substrate 1001 is also grasped.
  • the height of the liquid surface of the melt 1102 is calculated by calculating, for example, as follows from the horizontal position, vertical position and rotation angle of the base substrate 1001 at the moment when the base substrate 1001 contacts the melt 1102. Detection is possible.
  • FIG. 4 schematically illustrates an example of a moment when the base substrate 1001 is immersed in the melt 1102 in the present invention.
  • H21 indicates the relative height of the liquid level of the melt 1102 with respect to the horizontal axis pedestal 2102
  • H22 indicates the relative height of the lower end 2104a of the suspension column 2104 with respect to the horizontal axis pedestal 2102.
  • R2 indicates the shortest distance between the contact point 1001a at the moment when the base substrate 1001 contacts the melt 1102 and the lower end 2104a of the suspension column 2104
  • A2 connects the contact point 1001a and the lower end 2104a of the suspension column 2104.
  • the inclination angle with respect to the horizontal direction of the straight line is shown.
  • the height H21 of the liquid level of the melt 1102 held in the main crucible 1101 can be calculated by the following equation (1).
  • the temperature of the main crucible 1101 is set to a temperature close to the melting point of the melt 1102 suitable for manufacturing the crystal thin plate 1002.
  • the temperature of the melt 1202 held in the auxiliary crucible 1201 is usually adjusted to a temperature higher than the melting point of the melt 1102 in order to melt the solid material 1402 charged from the solid material charging device 1401. . Therefore, when the amount of the melt 1202 supplied from the auxiliary crucible 1201 to the main crucible 1101 is large, the temperature of the main crucible 1101 increases. In addition, when a large amount of melt is supplied after the amount of the melt 1102 in the main crucible 1101 is significantly reduced, the temperature and temperature distribution of the melt 1102 in the main crucible 1101 change.
  • the melt from the sub crucible 1201 to the main crucible 1101 in small portions so that the liquid level of the melt 1102 in the main crucible 1101 does not change as much as possible.
  • the melt 1202 overflowed by the amount of the solid raw material 1402 supplied to the auxiliary crucible 1201 as in the present invention. It is preferable to supply the melt to the main crucible 1101 in small portions by using a method of supplying the melt to the main crucible 1101 through the melt transfer unit 1301.
  • the melt 1102 in the main crucible 1101 overflows. Conversely, when the amount of the melt 1202 supplied from the auxiliary crucible 1201 is smaller than the production amount of the crystal thin plate 1002, the amount of the melt 1102 in the main crucible 1101 decreases.
  • the height of the liquid level of the melt 1102 in the main crucible 1101 (the distance from the bottom surface of the main crucible 1101 to the level of the melt 1102) is adjusted as follows.
  • an appropriate immersion depth is maintained by adjusting the height of the main crucible 1101 in the vertical direction (hereinafter referred to as “crucible height”) so that the immersion depth of the base substrate 1001 is close to a specified value. can do.
  • the level of the melt 1102 in the main crucible 1101 can be determined, and whether or not the solid raw material 1402 is charged and the amount of the solid raw material 1402 charged can be determined.
  • the liquid level of melt 1102 in main crucible 1101 is determined based on the crucible height. The method is effective.
  • the crucible height becomes equal to or less than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too large, and the charging of the fixed raw material 1402 is stopped.
  • the crucible height is equal to or higher than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too small, and the charging of the solid raw material 1402 is continued.
  • the solid material 1402 can be introduced at an appropriate timing while adjusting the crucible height while manufacturing the crystal thin plate 1002. Further, since it is not necessary to adjust the height of the melt 1102 in the main crucible 1101 by interrupting the manufacture of the crystal thin plate 1002, the productivity of manufacturing the crystal thin plate 1002 can be improved.
  • the height of the melt 1102 in the main crucible 1101 is determined from the height of the crucible, and the shortage of the melt 1102 in the main crucible 1101 is calculated to be insufficient. This is a method of adding the solid raw material 1402 by the amount.
  • the crystal thin plate 1002 can be manufactured by determining whether or not the solid raw material 1402 has been charged, the amount to be charged, or both, based on the height of the liquid level of the melt 1102 held in the main crucible 1101.
  • the crucible height can be adjusted without interruption, and the solid material 1402 can be charged at an appropriate timing while maintaining an appropriate substrate height.
  • the height of the liquid level of the melt 1102 in the main crucible 1101 (the distance from the bottom surface of the main crucible 1101 to the level of the melt 1102) is adjusted as follows.
  • the height of the trajectory in the vertical direction of the base substrate 1001 (hereinafter referred to as “substrate height”) so that the immersion depth of the base substrate 1001 is close to a specified value.
  • the base substrate 1001 depends on the position of the liquid surface of the melt 1102. It is possible to maintain an appropriate immersion depth by adjusting whether to move deeply or shallowly.
  • the substrate height is in the vicinity of the specified value, it can be determined that the liquid level of the melt 1102 of the main crucible 1101 is close to the specified value. Further, when the substrate height is higher than the specified value, it can be determined that the amount of the melt 1102 in the main crucible 1101 is larger than the specified value. When the substrate height is lower than the specified value, it can be determined that the amount of the melt 1102 held in the main crucible 1101 is less than the specified value. By utilizing this, the level of the melt 1102 in the main crucible 1101 can be determined, and whether or not the solid raw material 1402 is charged and the amount of the solid raw material 1402 charged can be determined.
  • the liquid level of melt 1102 in main crucible 1101 is determined based on the substrate height. The method is effective.
  • the substrate height exceeds the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too large, and the charging of the fixed raw material 1402 is stopped.
  • the substrate height is equal to or less than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too small, and the charging of the solid material 1402 is continued.
  • the solid material 1402 can be introduced at an appropriate timing while adjusting the substrate height while manufacturing the crystal thin plate 1002. Further, since it is not necessary to adjust the height of the melt 1102 in the main crucible 1101 by interrupting the manufacture of the crystal thin plate 1002, the productivity of manufacturing the crystal thin plate 1002 can be improved.
  • the height of the melt 1102 in the main crucible 1101 is determined from the height of the substrate, and the shortage of the melt 1102 in the main crucible 1101 is calculated to be insufficient. This is a method of adding the solid raw material 1402 by the amount.
  • the crystal thin plate 1002 can be manufactured by determining whether or not the solid raw material 1402 has been charged, the amount to be charged, or both, based on the height of the liquid level of the melt 1102 held in the main crucible 1101.
  • the crucible height and / or substrate height can be adjusted without interruption, and the solid material 1402 can be charged at an appropriate timing while maintaining the appropriate substrate height.
  • the method of determining the height of the liquid level of the melt 1102 in the main crucible 1101 from the resistance change due to electrical contact when the base substrate 1001 contacts the melt 1102 has been described.
  • a method may be used.
  • a method of directly contacting the confirmation member with the liquid level of the melt 1102 in the main crucible 1101 or a method of detecting the height by applying a laser beam to the liquid level of the melt 1102 can be used.
  • the present invention is applicable to any method for producing and taking out a solid from the melt 1102 of the main crucible 1101. Can do.
  • the present invention can also be applied to a method for producing a solid from a high melting point melt such as a silicon melt, such as a method of pulling up a single crystal ingot in the vertical direction or a method of pulling up a polycrystalline thin plate in the vertical direction.
  • the main crucible 1101 is supplied by supplying the melt 1202 from the auxiliary crucible 1201 while controlling the height of the melt 1102 so that the liquid level of the melt 1102 of the main crucible 1101 is constant. It is possible to produce a solid continuously without greatly changing the temperature of the melt 1102.
  • a silicon crystal thin plate 1002 was manufactured on the surface of a base substrate 1001 made of graphite using a melting furnace 1000 having the configuration shown in FIG. 1 and a base substrate immersion device 2000 shown in FIG.
  • graphite was used as the material of the main crucible 1101, and a method of using an electric circuit shown in FIG. 3 was adopted as a method of determining the height of the melt 1102 in the main crucible 1101.
  • the silicon crystal thin plate 1002 is manufactured 100 times by the method described in the above embodiment, and the contact timing between the base substrate 1001 and the melt 1102 is manufactured every time the crystal thin plate 1002 is manufactured.
  • the immersion depth D was measured by the above equation (2).
  • the difference between the immersion depth D and the specified value was calculated, and the crucible height was always adjusted by the crucible lifting device 1107 so that the immersion depth D approached the specified value.
  • the additional amount of the solid raw material 1402 is 500 g per time, and when the crucible height is equal to or higher than the reference value (0 mm), it is not added.
  • the silicon crystal thin plate 1002 was manufactured by full automation by making automatic determination by the melt height detector 1503 and the solid material input controller 1506.
  • FIG. 5 shows the relationship between the amount of deviation from the prescribed value of the immersion depth D and the amount of deviation from the reference value of the crucible height when the silicon crystal thin plate 1002 is manufactured in this example.
  • the immersion depth D was able to be suppressed to approximately the specified value ⁇ 0.5 mm. Also, the height of the crucible was generally within the standard value ⁇ 0.5 mm, and it was confirmed that continuous production of the silicon crystal thin plate 1002 could be performed without causing excessive supply or insufficient supply of the solid raw material 1402.
  • the present invention it is possible to perform additional supply of stable raw materials without suspending the production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt, and deterioration in quality. Further, it is possible to provide a melting furnace capable of improving the productivity of the crystal thin plate by reducing the variation and improving the production yield of the crystal thin plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

Disclosed is a melting furnace (1000) provided with a main crucible (1101) for holding a melt (1102); a main crucible heating apparatus (1104) for heating the melt (1102) in the main crucible (1101); a sub-crucible (1201) for holding the melt (1102) to be supplied to the main crucible (1101); a sub-crucible heating apparatus (1204) for heating the melt (1102) in the sub-crucible (1201); a solid raw material applying apparatus (1401) for applying a solid raw material (1402); a melt transfer section (1301) for supplying the melt (1102) from the sub-crucible (1201) to the main crucible (1101); and a solid raw material application control apparatus (1506) which determines whether to apply the solid raw material (1402) to the sub-crucible (1201) from the solid raw material applying apparatus (1401).

Description

溶融炉Melting furnace
 本発明は、溶融炉に関し、特に、下地基板を融液に浸漬させることにより下地基板の表面上に形成される結晶薄板の生産を停止することなく安定した原料の追加供給を行なうことができ、また品質の劣化やばらつきを低減するとともに結晶薄板の製造歩留まりを向上することによって、結晶薄板の生産性を向上させることができる溶融炉に関する。 The present invention relates to a melting furnace, in particular, it is possible to perform additional supply of stable raw materials without stopping production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt, The present invention also relates to a melting furnace capable of improving the productivity of the crystal thin plate by reducing the quality deterioration and variation and improving the production yield of the crystal thin plate.
 下地基板の表面上に結晶薄板を製造するのに用いられる従来の溶融炉には、結晶薄板の原料となる融液を保持するための主坩堝が備えられている。しかしながら、結晶薄板の製造が進行するにつれて、主坩堝内の融液量が減少するため主坩堝に融液を追加する必要がある。 A conventional melting furnace used for manufacturing a crystal thin plate on the surface of a base substrate is provided with a main crucible for holding a melt as a raw material for the crystal thin plate. However, since the amount of the melt in the main crucible decreases as the production of the crystal thin plate proceeds, it is necessary to add the melt to the main crucible.
 図6に、結晶薄板の製造に用いられる従来の溶融炉の構成を模式的に示す。この従来の溶融炉3000には、結晶薄板の製造が行なわれる主室3001と、主室3001の一方の側部に隣接して配置されている第1の副室3002と、主室3001の他方の側部に隣接して配置されている第2の副室3003とが備えられている。 FIG. 6 schematically shows a configuration of a conventional melting furnace used for manufacturing a crystal thin plate. The conventional melting furnace 3000 includes a main chamber 3001 in which a thin crystal plate is manufactured, a first sub chamber 3002 disposed adjacent to one side of the main chamber 3001, and the other of the main chamber 3001. And a second sub-chamber 3003 disposed adjacent to the side portion.
 また、主室3001の中央部には、第1の坩堝3100と、下地基板1001を第1の坩堝3100内のたとえばシリコン融液等の融液に浸漬させるための下地基板把持装置3004とが備え付けられており、主室3001の外周には第1の坩堝準備室3101、第2の坩堝準備室3201および第3の坩堝準備室3301が設置されている。 Further, a first crucible 3100 and a base substrate gripping device 3004 for immersing the base substrate 1001 in a melt such as a silicon melt in the first crucible 3100 are provided at the center of the main chamber 3001. In addition, a first crucible preparation chamber 3101, a second crucible preparation chamber 3201, and a third crucible preparation chamber 3301 are installed on the outer periphery of the main chamber 3001.
 また、第1の坩堝準備室3101には、第1の坩堝3100に固体原料3103を供給するための第1の固体原料供給装置3102が備え付けられている。また、第2の坩堝準備室3201には、第2の坩堝3200と第2の坩堝3200に固体原料3203を供給するための第2の固体原料供給装置3202が備え付けられている。また、第3の坩堝準備室3301には、第3の坩堝3300と第3の坩堝3300に固体原料3303を供給するための第3の固体原料供給装置3302が備え付けられている。 Also, the first crucible preparation chamber 3101 is provided with a first solid material supply device 3102 for supplying the solid material 3103 to the first crucible 3100. The second crucible preparation chamber 3201 is provided with a second crucible 3200 and a second solid material supply device 3202 for supplying the solid material 3203 to the second crucible 3200. The third crucible preparation chamber 3301 is provided with a third crucible 3300 and a third solid material supply device 3302 for supplying the solid material 3303 to the third crucible 3300.
 また、第1の坩堝3100、第2の坩堝3200および第3の坩堝3300は、それぞれ側面が断熱材によって保護されており、それぞれの断熱材の周囲には誘導加熱方式の加熱装置が設置されている。 In addition, the first crucible 3100, the second crucible 3200, and the third crucible 3300 each have a side surface protected by a heat insulating material, and an induction heating heating device is installed around each heat insulating material. Yes.
 以上のような構成を有する溶融炉3000において、第1の副室3002から主室3001に下地基板1001が搬送された後に、下地基板1001は下地基板把持装置3004に把持され、第1の坩堝3100内の融液に浸漬させられる。そして、下地基板1001の表面に融液が付着し、下地基板1001が第1の坩堝3100内の融液から取り出された後にそれが凝固することによって、下地基板1001の表面上に結晶薄板1002が形成される。その後、結晶薄板1002が形成された下地基板1001は、第2の副室3003から外部に搬出される。以上の工程を繰り返すことによって、結晶薄板1002を連続して製造することが可能となる。 In the melting furnace 3000 having the above-described configuration, after the base substrate 1001 is transferred from the first sub chamber 3002 to the main chamber 3001, the base substrate 1001 is gripped by the base substrate gripping device 3004, and the first crucible 3100. It is immersed in the melt inside. Then, the melt adheres to the surface of the base substrate 1001, and after the base substrate 1001 is taken out of the melt in the first crucible 3100, it solidifies, so that the crystal thin plate 1002 is formed on the surface of the base substrate 1001. It is formed. Thereafter, the base substrate 1001 on which the crystal thin plate 1002 is formed is carried out from the second sub chamber 3003 to the outside. By repeating the above steps, the crystal thin plate 1002 can be continuously manufactured.
 上記構成の従来の溶融炉3000においても、結晶薄板1002の製造が進行するにつれて、第1の坩堝3100に保持されている融液の量は減少し、融液の液面の高さが低下する。 Also in the conventional melting furnace 3000 having the above configuration, as the production of the crystal thin plate 1002 progresses, the amount of the melt held in the first crucible 3100 decreases, and the height of the liquid level of the melt decreases. .
 そこで、融液の原料となる固体原料を第1の坩堝3100に添加し、第1の坩堝3100の温度を誘導加熱方式の加熱装置によって上昇させることによって、固体原料を溶融して融液とする必要がある。 Therefore, a solid raw material to be a raw material for the melt is added to the first crucible 3100, and the temperature of the first crucible 3100 is increased by an induction heating type heating device, so that the solid raw material is melted to form a melt. There is a need.
 しかしながら、固体原料を溶融させるためには第1の坩堝3100の温度を固体原料の融点近傍まで上昇させる必要があるため、固体原料を投入した後には第1の坩堝3100の温度を一旦上昇させ、その後第1の坩堝3100の温度を低下させてから結晶薄板1002の製造を再開する必要がある。 However, since it is necessary to raise the temperature of the first crucible 3100 to near the melting point of the solid raw material in order to melt the solid raw material, the temperature of the first crucible 3100 is once increased after the solid raw material is charged, After that, the temperature of the first crucible 3100 needs to be lowered and then the production of the crystal thin plate 1002 needs to be resumed.
 そこで、図6に示す溶融炉3000においては、結晶薄板1002の生産量を向上させるために、第1の坩堝3100、第2の坩堝3200または第3の坩堝3300の坩堝のうちいずれか1つの坩堝を用いて結晶薄板1002を製造している間に残りの坩堝に固体原料を追加するとともに坩堝の温度を上昇させて固体原料を溶融して融液を形成し、融液の形成後には坩堝の温度を低下させる工程を並行して実施している。 Therefore, in the melting furnace 3000 shown in FIG. 6, any one of the crucibles of the first crucible 3100, the second crucible 3200, or the third crucible 3300 is used to improve the production amount of the crystal thin plate 1002. While the crystal thin plate 1002 is manufactured using the solid crucible, a solid raw material is added to the remaining crucible and the temperature of the crucible is increased to melt the solid raw material to form a melt. After forming the melt, The process of lowering the temperature is performed in parallel.
 すなわち、第1の坩堝3100を用いて結晶薄板1002を製造している間に、第2の坩堝3200を第2の坩堝準備室3201内に設置するとともに、第3の坩堝3300についても第3の坩堝準備室3301内に設置しておく。そして、第2の固体原料供給装置3202から固体原料3203を第2の坩堝3200に投入した後に、第2の坩堝3200の温度を上昇させ、その後低下させることによって第2の坩堝3200内の融液を作製しておく。その一方で、第3の固体原料供給装置3302から固体原料3303を第3の坩堝3300に投入した後に、第3の坩堝3300の温度を上昇させ、その後第3の坩堝3300の温度を低下させることによって固体原料を溶融し融液を作製しておく。 That is, while the crystal thin plate 1002 is manufactured using the first crucible 3100, the second crucible 3200 is installed in the second crucible preparation chamber 3201, and the third crucible 3300 is also the third crucible 3300. It is installed in the crucible preparation chamber 3301. Then, after the solid raw material 3203 is charged into the second crucible 3200 from the second solid raw material supply apparatus 3202, the temperature of the second crucible 3200 is raised and then lowered to lower the melt in the second crucible 3200. Prepare. On the other hand, after the solid raw material 3303 is charged into the third crucible 3300 from the third solid raw material supply apparatus 3302, the temperature of the third crucible 3300 is increased, and then the temperature of the third crucible 3300 is decreased. The solid raw material is melted to prepare a melt.
 そして、第1の坩堝3100内の融液量が規定量以下に低下したら、結晶薄板1002の製造を一旦中断し、第1の坩堝3100を第1の坩堝準備室3101に移動させる。そして、融液が十分に作製されている第2の坩堝3200または第3の坩堝3300を第1の坩堝3100に代えて主室3001に設置して結晶薄板1002の製造を進行させる。 Then, when the amount of the melt in the first crucible 3100 falls below a specified amount, the production of the crystal thin plate 1002 is temporarily interrupted, and the first crucible 3100 is moved to the first crucible preparation chamber 3101. Then, the second crucible 3200 or the third crucible 3300 in which the melt is sufficiently produced is installed in the main chamber 3001 instead of the first crucible 3100, and the production of the crystal thin plate 1002 proceeds.
 一方、融液量が規定量以下となった第1の坩堝3100には固体原料3103を投入して上記で説明した第2の坩堝3200と第3の坩堝3300のときと同様にして融液を作製して融液の補給を行なう。 On the other hand, the solid crucible 3103 is charged into the first crucible 3100 in which the amount of the melt is equal to or less than the specified amount, and the melt is supplied in the same manner as in the second crucible 3200 and the third crucible 3300 described above. Prepare and replenish the melt.
 このように、図6に示す溶融炉3000においては、坩堝への固体原料の追加の伴う結晶薄板1002の製造の中断を極力少なくすることができる。このように、坩堝の数を増やすことによって、結晶薄板1002の製造の中断時間は坩堝の移動時間のみとすることができる。このような溶融炉はたとえば国際公開WO2004/025000号パンフレットにおいて開示されている。 As described above, in the melting furnace 3000 shown in FIG. 6, the interruption of the production of the crystal thin plate 1002 with the addition of the solid raw material to the crucible can be minimized. As described above, by increasing the number of crucibles, the interruption time of the production of the crystal thin plate 1002 can be limited to the movement time of the crucible. Such a melting furnace is disclosed in, for example, International Publication WO 2004/025000 Pamphlet.
 また、図7に、結晶薄板の製造に用いられる従来の溶融炉の他の構成を示す。この溶融炉4000は、主坩堝4101に直接融液を追加する形態の溶融炉であって、このような構成の溶融炉4000は特開2007-290914号公報に開示されている。 FIG. 7 shows another configuration of a conventional melting furnace used for manufacturing a crystal thin plate. This melting furnace 4000 is a melting furnace in which a melt is directly added to the main crucible 4101. The melting furnace 4000 having such a configuration is disclosed in Japanese Patent Application Laid-Open No. 2007-290914.
 ここで、図7に示す溶融炉4000は、主坩堝4101と、副坩堝4201とを備えており、主坩堝4101の側面には断熱材4103が備え付けられており、主坩堝4101の底面には耐火煉瓦4105が備え付けられている。 Here, the melting furnace 4000 shown in FIG. 7 includes a main crucible 4101 and a secondary crucible 4201, and a heat insulating material 4103 is provided on a side surface of the main crucible 4101, and a refractory is provided on the bottom surface of the main crucible 4101. A brick 4105 is provided.
 また、主坩堝4101の側面に備え付けられた断熱材4103を取り囲むようにして誘導加熱方式の主坩堝加熱装置4104が備え付けられている。また、副坩堝4201の側面および副坩堝4201から所定の隙間4207を隔てた位置に断熱材4203が備え付けられている。また、断熱材4203の外周を取り巻くように副坩堝加熱装置4204が備え付けられている。副坩堝4201の底面には耐火煉瓦4205が備え付けられており、耐火煉瓦4205は坩堝受け4206の表面上に取り付けられている。 Further, an induction heating type main crucible heating device 4104 is provided so as to surround the heat insulating material 4103 provided on the side surface of the main crucible 4101. In addition, a heat insulating material 4203 is provided on a side surface of the sub crucible 4201 and a position at a predetermined gap 4207 from the sub crucible 4201. In addition, a secondary crucible heating device 4204 is provided so as to surround the outer periphery of the heat insulating material 4203. A refractory brick 4205 is provided on the bottom surface of the auxiliary crucible 4201, and the refractory brick 4205 is attached on the surface of the crucible receiver 4206.
 以上のような構成の溶融炉4000において、主坩堝4101には融液4102が保持されており、副坩堝4201の内部には融液4202が保持されている。そして、副坩堝4201内の融液4202に固体原料を投入した場合には、融液4202が副坩堝4201から溢れ出て隙間4207を通って主坩堝4101内に供給される。これにより、副坩堝4201から主坩堝4101に融液が供給されることになるため、主坩堝4101を取り替えることなく、結晶薄板1002の作製が可能となる。 In the melting furnace 4000 having the above-described configuration, the melt 4102 is held in the main crucible 4101, and the melt 4202 is held inside the auxiliary crucible 4201. When the solid raw material is charged into the melt 4202 in the auxiliary crucible 4201, the melt 4202 overflows from the auxiliary crucible 4201, and is supplied into the main crucible 4101 through the gap 4207. As a result, the melt is supplied from the secondary crucible 4201 to the main crucible 4101, so that the crystal thin plate 1002 can be manufactured without replacing the main crucible 4101.
国際公開WO2004/025000号パンフレットInternational Publication WO 2004/025000 Pamphlet 特開2007-290914号公報JP 2007-290914 A
 図6に示す構成の従来の溶融炉3000において、結晶薄板1002を一定期間連続して製造することによって坩堝内の融液の液面の高さが大幅に減少した場合には、坩堝の高さ若しくは下地基板1001の高さを調整することによって、下地基板1001の任意の浸漬深さを維持することは可能であるため、結晶薄板1002の製造を継続することも可能であるように考えられる。 In the conventional melting furnace 3000 having the configuration shown in FIG. 6, if the height of the melt level in the crucible is greatly reduced by continuously manufacturing the crystal thin plate 1002 for a certain period, the height of the crucible Alternatively, since it is possible to maintain an arbitrary immersion depth of the base substrate 1001 by adjusting the height of the base substrate 1001, it is considered that the production of the crystal thin plate 1002 can be continued.
 しかしながら、図6に示す溶融炉3000において、結晶薄板1002の製造に用いられている坩堝内の融液の液面の高さが大きく低下した場合には、坩堝の加熱装置として誘導加熱方式を用いているため、坩堝の側壁上部から坩堝内の融液の融液面に入り込む磁力が変化したり、坩堝の内壁面の露出が大きくなって坩堝からの輻射損失が増大することがある。これにより、坩堝内の融液の温度若しくは温度分布が変化し、坩堝内の融液の融液面が高い位置で作製された結晶薄板1002と、低い位置で作製された結晶薄板1002の品質(板厚、板厚分布)が安定しなかったり、結晶薄板1002の製造歩留まりが低下したりすることがある。 However, in the melting furnace 3000 shown in FIG. 6, when the height of the melt level in the crucible used for the production of the crystal thin plate 1002 is greatly reduced, an induction heating method is used as the crucible heating device. For this reason, the magnetic force that enters the melt surface of the melt in the crucible from the upper part of the side wall of the crucible may change, or the exposure of the inner wall surface of the crucible may increase to increase the radiation loss from the crucible. As a result, the temperature or temperature distribution of the melt in the crucible changes, and the quality of the crystal thin plate 1002 produced at a high position of the melt in the crucible and the quality of the crystal thin plate 1002 produced at a low position ( (Plate thickness, plate thickness distribution) may not be stable, or the manufacturing yield of the crystal thin plate 1002 may be reduced.
 また、図7に示す構成の溶融炉4000のように、副坩堝4201から主坩堝4101に融液4202を随時供給する場合には、結晶薄板1002の製造を中断することなく、副坩堝4201に固体原料の投入が可能となる。しかしながら、副坩堝4201の側面の隙間4207にシリコン融液などの融液4202を流す場合に、シリコン融液などの融液4202が副坩堝4201の側面の断熱材4203に接触することによって断熱材4203が劣化することがある。 Further, when the melt 4202 is supplied from the auxiliary crucible 4201 to the main crucible 4101 as needed, as in the melting furnace 4000 having the configuration shown in FIG. 7, the production of the crystal thin plate 1002 is not interrupted, and the solid crucible 4202 is solid. Raw materials can be input. However, when a melt 4202 such as a silicon melt is allowed to flow in the gap 4207 on the side surface of the auxiliary crucible 4201, the melt 4202 such as a silicon melt comes into contact with the heat insulating material 4203 on the side surface of the auxiliary crucible 4201, so May deteriorate.
 副坩堝4201の側面の断熱材4203が劣化した場合には、副坩堝4201やシリコン融液などの融液4202からの輻射によってコイルなどの副坩堝加熱装置4204が加熱されて破損する可能性がある。 When the heat insulating material 4203 on the side surface of the auxiliary crucible 4201 is deteriorated, the auxiliary crucible heating device 4204 such as a coil may be heated and damaged by radiation from the molten liquid 4202 such as the auxiliary crucible 4201 or silicon melt. .
 また、断熱材4203と接したシリコン融液などの融液4202は断熱材4203によって汚染された状態で主坩堝4101に流れ込むため、主坩堝4101内の融液4102も汚染されて結晶薄板1002が製造される。一般的に、このような方法で製造された結晶薄板1002は、半導体材料若しくは太陽電池材料として用いられるため、汚染物が混入した場合には特性劣化を引き起こす。 Further, the melt 4202 such as a silicon melt in contact with the heat insulating material 4203 flows into the main crucible 4101 while being contaminated by the heat insulating material 4203, so that the melt 4102 in the main crucible 4101 is also contaminated and the crystal thin plate 1002 is manufactured. Is done. In general, the crystal thin plate 1002 manufactured by such a method is used as a semiconductor material or a solar cell material, and therefore causes deterioration of characteristics when contaminated material is mixed.
 したがって、結晶薄板1002の品質を安定させ、結晶薄板1002の製造歩留まりを向上して結晶薄板1002の生産性を向上するためには、副坩堝4201から主坩堝4101に供給される融液4202が断熱材4203に接触しないようにする必要がある。 Therefore, in order to stabilize the quality of the crystal thin plate 1002, improve the production yield of the crystal thin plate 1002, and improve the productivity of the crystal thin plate 1002, the melt 4202 supplied from the sub crucible 4201 to the main crucible 4101 is insulated. It is necessary not to contact the material 4203.
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、下地基板を融液に浸漬させることにより下地基板の表面上に形成される結晶薄板の生産を停止することなく安定した原料の追加供給を行なうことができ、また品質の劣化やばらつきを低減するとともに結晶薄板の製造歩留まりを向上することによって、結晶薄板の生産性を向上させることができる溶融炉を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to stop the production of a crystal thin plate formed on the surface of a base substrate by immersing the base substrate in a melt. Provides a melting furnace that can improve the productivity of thin crystal sheets by reducing the quality deterioration and dispersion and improving the production yield of thin crystal sheets. There is to do.
 本発明は、金属材料および半導体材料の少なくとも一方を含む物質の融液を保持するための主坩堝と、主坩堝に保持された融液を加熱するための主坩堝加熱装置と、主坩堝に供給される融液を保持するための副坩堝と、副坩堝に保持された融液を加熱するための副坩堝加熱装置と、副坩堝に融液の原料となる固体原料を投入するための固体原料投入装置と、副坩堝から主坩堝に融液を供給するための融液搬送部とを備え、融液搬送部は副坩堝に接合されており、固体原料投入装置から副坩堝に固体原料を投入することによって副坩堝から溢れ出した融液が融液搬送部を通って主坩堝に供給される溶融炉である。 The present invention provides a main crucible for holding a melt of a substance containing at least one of a metal material and a semiconductor material, a main crucible heating device for heating the melt held in the main crucible, and supplying the main crucible A sub crucible for holding the melt melt, a sub crucible heating device for heating the melt held in the sub crucible, and a solid raw material for charging the sub crucible with a solid raw material as a raw material of the melt It is equipped with a charging device and a melt transfer unit for supplying the melt from the auxiliary crucible to the main crucible. The melt transfer unit is joined to the auxiliary crucible, and the solid material is input from the solid material input device to the auxiliary crucible. This is a melting furnace in which the melt overflowing from the auxiliary crucible is supplied to the main crucible through the melt transport section.
 ここで、本発明の溶融炉においては、融液搬送部を加熱するための融液搬送部加熱装置をさらに備え、融液搬送部は融液搬送部加熱装置によって加熱される中空部材からなることが好ましい。 Here, the melting furnace of the present invention further includes a melt transport unit heating device for heating the melt transport unit, and the melt transport unit is made of a hollow member heated by the melt transport unit heating device. Is preferred.
 また、本発明の溶融炉は、主坩堝に保持された融液に浸漬させることにより下地基板の表面に融液が凝固してなる結晶薄板を形成するための下地基板浸漬装置をさらに備えていることが好ましい。 The melting furnace of the present invention further includes a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by being immersed in the melt held in the main crucible. It is preferable.
 また、本発明の溶融炉は、主坩堝に保持された融液の液面の高さを検知する融液高さ検知器と、固体原料投入装置から副坩堝への固体原料の投入の有無を決定する固体原料投入制御装置とをさらに備え、融液高さ検知器によって検知された主坩堝に保持された融液の液面の高さに基づいて固体原料投入制御装置が副坩堝に固体原料を投入するか否かを決定することが好ましい。 Further, the melting furnace of the present invention includes a melt height detector for detecting the height of the melt level held in the main crucible, and whether or not the solid raw material is charged into the auxiliary crucible from the solid raw material charging device. And a solid raw material charging control device for determining the solid raw material charging control device in the secondary crucible based on the liquid level of the melt held in the main crucible detected by the melt height detector. It is preferable to determine whether or not to input.
 また、本発明の溶融炉においては、固体原料投入制御装置が副坩堝に投入される固体原料の投入量も決定することが好ましい。 Moreover, in the melting furnace of the present invention, it is preferable that the solid raw material charging control device also determines the amount of the solid raw material charged into the auxiliary crucible.
 また、本発明の溶融炉は、主坩堝に保持された融液に浸漬させることにより下地基板の表面に融液が凝固してなる結晶薄板を形成するための下地基板浸漬装置をさらに備えていることが好ましい。 The melting furnace of the present invention further includes a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by being immersed in the melt held in the main crucible. It is preferable.
 また、本発明の溶融炉は、融液高さ検知器によって検知された主坩堝に保持された融液の液面の高さに基づいて主坩堝を鉛直方向に移動させるための坩堝昇降装置をさらに備え、坩堝昇降装置による主坩堝の高さを制御することにより、下地基板の融液に対する浸漬深さを調整することが好ましい。 Further, the melting furnace of the present invention includes a crucible lifting / lowering device for moving the main crucible in the vertical direction based on the height of the liquid level of the melt held in the main crucible detected by the melt height detector. Furthermore, it is preferable to adjust the immersion depth of the base substrate in the melt by controlling the height of the main crucible by the crucible lifting device.
 また、本発明の溶融炉においては、融液高さ検知器によって検知された主坩堝に保持された融液の液面の高さに基づいて下地基板浸漬装置が下地基板の軌道の高さを制御することにより、下地基板の融液に対する浸漬深さが調整されることが好ましい。 Further, in the melting furnace of the present invention, the base substrate dipping device determines the track height of the base substrate based on the level of the melt held in the main crucible detected by the melt height detector. It is preferable to adjust the immersion depth of the base substrate in the melt by controlling.
 また、本発明の溶融炉は、主坩堝に保持された融液の液面の高さを検知する融液高さ検知器と、固体原料投入装置から副坩堝への固体原料の投入の有無を決定する固体原料投入制御装置と、主坩堝に保持された融液に浸漬させることにより下地基板の表面に融液が凝固してなる結晶薄板を形成するための下地基板浸漬装置と、融液高さ検知器によって検知された主坩堝に保持された融液の液面の高さに基づいて主坩堝を鉛直方向に移動させるための坩堝昇降装置とを備え、坩堝昇降装置によって制御された主坩堝の高さおよび下地基板浸漬装置によって制御された下地基板の軌道の高さの少なくとも一方に基づいて固体原料投入制御装置が副坩堝に固体原料を投入するか否かを決定することが好ましい。 Further, the melting furnace of the present invention includes a melt height detector for detecting the height of the melt level held in the main crucible, and whether or not the solid raw material is charged into the auxiliary crucible from the solid raw material charging device. A solid raw material charging control device to determine, a base substrate dipping device for forming a crystal thin plate formed by solidifying the melt on the surface of the base substrate by dipping in the melt held in the main crucible, and the melt height And a crucible lifting / lowering device for moving the main crucible in the vertical direction based on the height of the melt level held in the main crucible detected by the height detector, and controlled by the crucible lifting / lowering device It is preferable that the solid raw material input control device determines whether or not to supply the solid raw material to the auxiliary crucible based on at least one of the height of the base substrate and the height of the orbit of the base substrate controlled by the base substrate immersion device.
 また、本発明の溶融炉においては、主坩堝の高さおよび下地基板の軌道の高さの少なくとも一方に基づいて固体原料投入制御装置が副坩堝に投入される固体原料の投入量も決定することが好ましい。 In the melting furnace of the present invention, the solid raw material charging control device also determines the amount of the solid raw material charged into the auxiliary crucible based on at least one of the height of the main crucible and the height of the orbit of the base substrate. Is preferred.
 また、本発明の溶融炉においては、坩堝昇降装置による主坩堝の高さを制御することにより、下地基板の融液に対する浸漬深さが調整されることが好ましい。 In the melting furnace of the present invention, it is preferable that the immersion depth of the base substrate in the melt is adjusted by controlling the height of the main crucible by the crucible lifting device.
 また、本発明の溶融炉においては、下地基板浸漬装置が下地基板の軌道の高さを制御することにより、下地基板の融液に対する浸漬深さを調整することが好ましい。 In the melting furnace of the present invention, it is preferable that the immersion depth of the underlying substrate with respect to the melt is adjusted by controlling the height of the orbit of the underlying substrate by the underlying substrate immersion device.
 また、本発明の溶融炉においては、融液高さ検知器は、主坩堝に保持された融液と下地基板とが接触したときの電気信号を用いて融液の液面の高さを検出することが好ましい。 In the melting furnace of the present invention, the melt height detector detects the height of the melt surface using an electrical signal when the melt held in the main crucible and the base substrate come into contact with each other. It is preferable to do.
 本発明によれば、下地基板を融液に浸漬させることにより下地基板の表面上に形成される結晶薄板の生産を停止することなく安定した原料の追加供給を行なうことができ、また品質の劣化やばらつきを低減するとともに結晶薄板の製造歩留まりを向上することによって、結晶薄板の生産性を向上させることができる溶融炉を提供することができる。 According to the present invention, it is possible to perform additional supply of stable raw materials without suspending the production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt, and deterioration in quality. Further, it is possible to provide a melting furnace capable of improving the productivity of the crystal thin plate by reducing the variation and improving the production yield of the crystal thin plate.
本発明の溶融炉の一例の模式的な構成図である。It is a typical block diagram of an example of the melting furnace of this invention. 本発明に用いられる下地基板浸漬装置の一例の模式的な構成図である。It is a typical block diagram of an example of the base substrate immersion apparatus used for this invention. 本発明において融液の液面の高さを検知する方法の一例に用いられる電気回路を示す図である。It is a figure which shows the electric circuit used for an example of the method of detecting the height of the liquid level of a melt in this invention. 本発明において下地基板を融液に浸漬させる瞬間の一例を図解する模式図である。It is a schematic diagram illustrating an example of the moment when the base substrate is immersed in the melt in the present invention. 本発明の実施例におけるシリコンの結晶薄板の製造時の浸漬深さDの規定値からのずれ量と坩堝高さの基準値からのずれ量との関係を示す図である。It is a figure which shows the relationship between the deviation | shift amount from the regulation value of the immersion depth D at the time of manufacture of the silicon crystal thin plate in the Example of this invention, and the deviation | shift amount from the reference value of the crucible height. 従来の溶融炉の一例の模式的な構成図である。It is a typical block diagram of an example of the conventional melting furnace. 従来の溶融炉の他の一例の模式的な構成図である。It is a typical block diagram of other examples of the conventional melting furnace.
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <溶融炉の構成>
 図1に、本発明の溶融炉の好ましい一例の模式的な構成を示す。ここで、溶融炉1000は、主坩堝1101と、副坩堝1201とを有している。主坩堝1101の側面には断熱材1103が備え付けられており、断熱材1103の外周を取り囲むように主坩堝加熱装置1104が備え付けられている。また、主坩堝1101の底面には耐火煉瓦1105が取り付けられており、耐火煉瓦1105は主坩堝受け1106上に設置されている。
<Composition of melting furnace>
In FIG. 1, the typical structure of a preferable example of the melting furnace of this invention is shown. Here, the melting furnace 1000 has a main crucible 1101 and an auxiliary crucible 1201. A heat insulating material 1103 is provided on a side surface of the main crucible 1101, and a main crucible heating device 1104 is provided so as to surround the outer periphery of the heat insulating material 1103. A refractory brick 1105 is attached to the bottom surface of the main crucible 1101, and the refractory brick 1105 is installed on the main crucible receiver 1106.
 また、副坩堝1201の側面にも断熱材1203が備え付けられており、断熱材1203の外周を取り囲むように副坩堝加熱装置1204が備え付けられている。また、副坩堝1201の底面には耐火煉瓦1205が取り付けられており、耐火煉瓦1205は副坩堝受け1206上に設置されている。 Further, a heat insulating material 1203 is also provided on the side surface of the sub crucible 1201, and a sub crucible heating device 1204 is provided so as to surround the outer periphery of the heat insulating material 1203. In addition, a refractory brick 1205 is attached to the bottom surface of the auxiliary crucible 1201, and the refractory brick 1205 is installed on the auxiliary crucible receptacle 1206.
 また、副坩堝1201には融液搬送部1301が接続されており、融液搬送部1301は副坩堝1201から溢れ出した融液1202を主坩堝1101に搬送するために設けられている。また、融液搬送部1301の外周には断熱材1303が取り付けられており、断熱材1303の外周を取り囲むようにして融液搬送部加熱装置1304が取り付けられている。さらに、副坩堝1201の上方には固体原料投入装置1401が設置されており、固体原料投入装置1401によって固体原料1402が副坩堝1201内に投入される。 In addition, a melt transfer unit 1301 is connected to the sub crucible 1201, and the melt transfer unit 1301 is provided to transfer the melt 1202 overflowing from the sub crucible 1201 to the main crucible 1101. Further, a heat insulating material 1303 is attached to the outer periphery of the melt conveying unit 1301, and a melt conveying unit heating device 1304 is attached so as to surround the outer periphery of the heat insulating material 1303. Further, a solid material input device 1401 is installed above the sub crucible 1201, and the solid material 1402 is input into the sub crucible 1201 by the solid material input device 1401.
 また、主坩堝受け1106および副坩堝受け1206はともに坩堝昇降装置1107上に設置されており、坩堝昇降装置1107は主坩堝1101および副坩堝1201の位置を上下に移動(鉛直方向に移動)させる機能を有している。 Both the main crucible receptacle 1106 and the auxiliary crucible receptacle 1206 are installed on the crucible elevating device 1107, and the crucible elevating device 1107 has a function of moving the positions of the main crucible 1101 and the auxiliary crucible 1201 up and down (moving in the vertical direction). have.
 また、融液高さ検知器1503は、主坩堝1101に電気配線1052を通じて接続されているとともに、後述する下地基板浸漬装置に電気配線1051を通じて接続されている。ここで、融液高さ検知器1503は、経路1504を通して坩堝昇降装置1107の昇降移動を制御することができ、経路1505を通して固体原料投入制御装置1506に主坩堝1101の融液1102の液面の高さを伝達することができる。 Further, the melt height detector 1503 is connected to the main crucible 1101 through the electric wiring 1052, and is also connected to the base substrate immersion apparatus described later through the electric wiring 1051. Here, the melt height detector 1503 can control the up-and-down movement of the crucible lifting / lowering device 1107 through the path 1504, and the liquid level of the melt 1102 in the main crucible 1101 is transferred to the solid raw material charging control device 1506 through the path 1505. Can transmit height.
 また、固体原料投入制御装置1506は、経路1507を通して固体原料投入装置1401の固体原料1402の投入の有無および投入量を決定することができる。 Further, the solid material input control device 1506 can determine whether or not the solid material 1402 of the solid material input device 1401 is input and the input amount through the path 1507.
 ここで、主坩堝1101および副坩堝1201には予め固体原料が充填されており、主坩堝加熱装置1104によって主坩堝1101を加熱し、副坩堝加熱装置1204によって副坩堝1201を加熱する。これにより、主坩堝1101内の固体原料が溶融して融液1102となり、副坩堝1201内の固体原料が溶融して融液1202となる。 Here, the main crucible 1101 and the sub crucible 1201 are filled with a solid raw material in advance, the main crucible heating device 1104 heats the main crucible 1101, and the sub crucible heating device 1204 heats the sub crucible 1201. As a result, the solid material in the main crucible 1101 is melted to become the melt 1102, and the solid material in the auxiliary crucible 1201 is melted to become the melt 1202.
 そして、固体原料投入装置1401から固体原料1402を副坩堝1201に投入することによって、副坩堝1201に保持されていた融液1202が副坩堝1201から溢れ出し、融液搬送部1301に流れ込む。そして、融液搬送部1301に流れ込んだ融液1202は、主坩堝1101に供給される。これにより、主坩堝1101に保持されている融液1102の量を増加させることができる。 Then, by feeding the solid material 1402 from the solid material charging device 1401 into the sub crucible 1201, the melt 1202 held in the sub crucible 1201 overflows from the sub crucible 1201 and flows into the melt transport unit 1301. Then, the melt 1202 that has flowed into the melt transport unit 1301 is supplied to the main crucible 1101. Thereby, the amount of the melt 1102 held in the main crucible 1101 can be increased.
 固体原料投入装置1401から副坩堝1201への固体原料1402の投入を繰り返すことにより、副坩堝1201に保持された融液1202の量が増加し、ある一定以上の量になった場合には、副坩堝1201に設けられた開口から融液1202が融液搬送部1301に流れ込むこととなる。 By repeating the charging of the solid raw material 1402 from the solid raw material charging device 1401 to the auxiliary crucible 1201, the amount of the melt 1202 held in the auxiliary crucible 1201 increases. The melt 1202 flows into the melt transport unit 1301 from the opening provided in the crucible 1201.
 このように、副坩堝1201に接続された融液搬送部1301を設けることによって、副坩堝1201が破損した際に漏れ出す融液1202を受け止める副坩堝受け1206を副坩堝1201の下方に設置することが可能となり、溶融炉1000を構成する他の部材にダメージを与えることを有効に防止することができる。 In this way, by providing the melt conveying unit 1301 connected to the sub crucible 1201, the sub crucible receiver 1206 that receives the melt 1202 that leaks when the sub crucible 1201 breaks is installed below the sub crucible 1201. It is possible to effectively prevent the other members constituting the melting furnace 1000 from being damaged.
 また、副坩堝1201に接続された融液搬送部1301を設けることによって、副坩堝1201を主坩堝1101に保持されている融液1102の上方から外れた位置に設置することができるため、仮に副坩堝受け1206から外に融液1202が漏れ出したとしても、溶融炉1000を構成する他の部材にダメージを与えることを有効に防止することができる。 In addition, by providing the melt conveying unit 1301 connected to the sub crucible 1201, the sub crucible 1201 can be installed at a position away from the top of the melt 1102 held in the main crucible 1101. Even if the melt 1202 leaks out of the crucible receptacle 1206, it is possible to effectively prevent other members constituting the melting furnace 1000 from being damaged.
 また、融液搬送部1301を設けることによって、副坩堝1201から溢れ出した融液1202が断熱材1303と接触することによる断熱材1303の劣化および断熱材1303による融液の汚染を抑止することができる。また、融液搬送部1301に融液搬送部加熱装置1304を設けることによって融液搬送部1301の温度低下を抑制することができる。 In addition, by providing the melt conveyance unit 1301, deterioration of the heat insulating material 1303 due to the melt 1202 overflowing from the auxiliary crucible 1201 coming into contact with the heat insulating material 1303 and contamination of the melt by the heat insulating material 1303 can be suppressed. it can. Further, by providing the melt transport unit heating device 1304 in the melt transport unit 1301, the temperature drop of the melt transport unit 1301 can be suppressed.
 また、融液搬送部1301を中空部材とすることによって、副坩堝1201から溢れ出した融液1202が断熱材1303と接触することを確実に防止することができ、断熱材1303の劣化により融液搬送部1301の温度低下による融液1202の融液搬送部1301内部における凝固および融液搬送部加熱装置1304への熱による損傷を抑制することが可能となる。 Further, by using the melt transporting part 1301 as a hollow member, it is possible to reliably prevent the melt 1202 overflowing from the auxiliary crucible 1201 from coming into contact with the heat insulating material 1303. It is possible to suppress solidification of the melt 1202 due to the temperature drop of the transport unit 1301 inside the melt transport unit 1301 and damage to the melt transport unit heating device 1304 due to heat.
 なお、主坩堝加熱装置1104、副坩堝加熱装置1204および融液搬送部加熱装置1304はそれぞれ誘導加熱方式であることが好ましい。主坩堝加熱装置1104、副坩堝加熱装置1204および融液搬送部加熱装置1304がそれぞれ誘導加熱方式である場合には、主坩堝1101、副坩堝1201および融液搬送部1301は誘導加熱によって加熱される材料によって形成する必要があるが、たとえばシリコン等の融液を汚染しない高融点材料で形成されることが好ましい。 In addition, it is preferable that the main crucible heating device 1104, the sub crucible heating device 1204, and the melt transport unit heating device 1304 are each of an induction heating method. When main crucible heating device 1104, sub crucible heating device 1204, and melt transport unit heating device 1304 are induction heating systems, main crucible 1101, sub crucible 1201 and melt transport unit 1301 are heated by induction heating. Although it is necessary to form with a material, it is preferable to form with a high melting point material which does not contaminate melts, such as a silicon | silicone, for example.
 たとえば、主坩堝1101内に保持されている融液1102および副坩堝1201内に保持されている融液1202がそれぞれシリコン融液である場合には、主坩堝1101、副坩堝1201および融液搬送部1301のシリコン融液と接触する面は黒鉛から形成されていることが好ましいが、黒鉛以外の物質から形成されていてもよい。 For example, when the melt 1102 held in the main crucible 1101 and the melt 1202 held in the sub crucible 1201 are silicon melts, respectively, the main crucible 1101, the sub crucible 1201, and the melt transport unit The surface in contact with the silicon melt 1301 is preferably made of graphite, but may be made of a material other than graphite.
 また、主坩堝1101、副坩堝1201および融液搬送部1301のシリコン融液と接触する面に、たとえば、SiC(炭化ケイ素)および/またはSiN(窒化ケイ素)をコーティングすることによって、主坩堝1101、副坩堝1201および融液搬送部1301の耐久性を向上させることもできる。 Further, the main crucible 1101, the surface of the main crucible 1101, the auxiliary crucible 1201, and the melt transport unit 1301 that are in contact with the silicon melt are coated with, for example, SiC (silicon carbide) and / or SiN (silicon nitride). The durability of the auxiliary crucible 1201 and the melt transfer unit 1301 can also be improved.
 また、固体原料投入装置1401は、本実施の形態においては柄杓形状とされているがこの形状に限定されないことは言うまでもない。固体原料投入装置1401には溶融炉1000の外部において固体原料1402が充填され、その後固体原料投入装置1401が副坩堝1201の上方まで移動させられ、固体原料投入装置1401の開口部を副坩堝1201の方向に回転させることによって、任意量の固体原料1402を副坩堝1201に投入することができる。 Further, although the solid material charging device 1401 has a handle shape in the present embodiment, it is needless to say that the shape is not limited to this shape. The solid raw material charging device 1401 is filled with the solid raw material 1402 outside the melting furnace 1000, and then the solid raw material charging device 1401 is moved to above the auxiliary crucible 1201, and the opening of the solid raw material charging device 1401 passes through the sub crucible 1201. By rotating in the direction, an arbitrary amount of the solid raw material 1402 can be put into the auxiliary crucible 1201.
 なお、溶融炉1000の外部において、固体原料1402を固体原料投入装置1401に充填する方法については特に限定されない。また、固体原料投入装置1401は、たとえば固体原料投入制御装置1506によって副坩堝1201への固体原料1402の投入量を制御されるように構成されていることが好ましい。また、固体原料投入装置1401は、任意のタイミングで固体原料1402を副坩堝1201に投入できるように構成されていることが好ましい。 It should be noted that there is no particular limitation on the method of filling the solid material 1402 into the solid material charging device 1401 outside the melting furnace 1000. Moreover, it is preferable that the solid raw material charging device 1401 is configured such that the amount of the solid raw material 1402 charged into the auxiliary crucible 1201 is controlled by, for example, the solid raw material charging control device 1506. Moreover, it is preferable that the solid raw material charging device 1401 is configured so that the solid raw material 1402 can be charged into the auxiliary crucible 1201 at an arbitrary timing.
 <結晶薄板の製造>
 以上のような構成の溶融炉1000を用いて結晶薄板1002を製造する場合には、まず主坩堝1101に融液1102を保持させるとともに副坩堝1201内に融液1202を保持させる。
<Manufacture of crystal thin plate>
When the crystal thin plate 1002 is manufactured using the melting furnace 1000 having the above-described configuration, first, the melt 1102 is held in the main crucible 1101 and the melt 1202 is held in the auxiliary crucible 1201.
 ここで、融液1102および融液1202はそれぞれ金属材料および半導体材料の少なくとも一方を含む物質の融液とすることができ、たとえばシリコン等の融液とすることができるが、シリコン以外の金属材料および半導体材料(特に高い融点の半導体材料)の少なくとも一方の融液を用いてもよい。 Here, the melt 1102 and the melt 1202 can each be a melt of a substance containing at least one of a metal material and a semiconductor material, for example, a melt such as silicon, but a metal material other than silicon. Alternatively, at least one melt of a semiconductor material (particularly a semiconductor material having a high melting point) may be used.
 そして、後述する下地基板浸漬装置に下地基板1001を設置し、下地基板1001を主坩堝1101に保持された融液1102に浸漬させることによって、下地基板1001の表面上に融液1102を付着させ、その付着した融液1102が凝固することによって下地基板1001の表面上に結晶薄板1002が形成される。 Then, the base substrate 1001 is installed in a base substrate immersion apparatus to be described later, and the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101 to attach the melt 1102 on the surface of the base substrate 1001. As the adhered melt 1102 solidifies, a crystal thin plate 1002 is formed on the surface of the base substrate 1001.
 図2に、本発明に用いられる下地基板浸漬装置の一例の模式的な構成を示す。ここで、下地基板浸漬装置2000は、水平動作モータ(図示せず)によって水平方向に動作する水平動作軸2101と、水平動作軸2101に固定されて水平動作軸2101の水平方向への移動に伴って水平方向に移動する水平軸台座2102と、水平軸台座2102に取り付けられている昇降動作モータ2103と、昇降動作モータ2103に取り付けられて鉛直方向に伸びる懸垂支柱2104と、懸垂支柱2104に取り付けられて懸垂支柱2104とは独立に回転運動を行なう回転機構2105と、回転機構2105に固定されて回転機構2105の回転運動に伴って回転運動を行なう回転支柱2106と、回転支柱2106の一端に取り付けられて鉛直方向に伸びる補助支柱2107と、回転支柱2106および補助支柱2107によって支持されて下地基板1001を装着するための固定台座2108とを備えている。 FIG. 2 shows a schematic configuration of an example of the base substrate immersion apparatus used in the present invention. Here, the base substrate immersion apparatus 2000 includes a horizontal operation shaft 2101 that operates in a horizontal direction by a horizontal operation motor (not shown), and a horizontal operation shaft 2101 that is fixed to the horizontal operation shaft 2101 and moves in the horizontal direction. A horizontal axis pedestal 2102 that moves in the horizontal direction, a lifting operation motor 2103 attached to the horizontal axis pedestal 2102, a suspension column 2104 attached to the elevation operation motor 2103 and extending in the vertical direction, and a suspension column 2104. Are attached to one end of the rotating column 2106, a rotating column 2106 that rotates independently of the suspension column 2104, a rotating column 2106 that is fixed to the rotating mechanism 2105 and rotates along with the rotating unit 2105. Auxiliary column 2107 extending in the vertical direction, rotating column 2106 and auxiliary column 2107 Thus it is supported and a fixed base 2108 for mounting the base substrate 1001.
 ここで、水平動作軸2101の水平方向への移動によって固定台座2108に装着された下地基板1001の水平方向の位置の制御が可能である。また、昇降動作モータ2103によって懸垂支柱2104が鉛直方向に昇降することによって下地基板1001の鉛直方向の位置を制御することが可能である。また、回転機構2105を回転させて回転支柱2106を水平方向に対して傾斜させることによって、固定台座2108に装着された下地基板1001の表面の水平方向に対する傾きを制御することが可能である。 Here, the horizontal position of the base substrate 1001 mounted on the fixed base 2108 can be controlled by moving the horizontal operation shaft 2101 in the horizontal direction. Further, the vertical position of the base substrate 1001 can be controlled by raising and lowering the suspension column 2104 in the vertical direction by the elevating operation motor 2103. In addition, by rotating the rotating mechanism 2105 and tilting the rotating support 2106 with respect to the horizontal direction, the tilt of the surface of the base substrate 1001 mounted on the fixed base 2108 with respect to the horizontal direction can be controlled.
 すなわち、下地基板浸漬装置2000は、昇降動作モータ2103、水平動作モータ(図示せず)および回転機構2105によって、固定台座2108に装着された下地基板1001の水平方向の位置、鉛直方向の位置および下地基板1001の表面の水平方向に対する傾きをそれぞれ独立に制御することができる構成となっている。 In other words, the base substrate immersion apparatus 2000 is configured such that the horizontal position, the vertical position, and the base position of the base substrate 1001 mounted on the fixed base 2108 by the lifting / lowering motor 2103, the horizontal operation motor (not shown), and the rotation mechanism 2105. The inclination of the surface of the substrate 1001 with respect to the horizontal direction can be controlled independently.
 以上のような構成の下地基板浸漬装置2000を用いて結晶薄板1002を製造する場合には、まず固定台座2108に下地基板1001を嵌め込んで装着した後、下地基板1001を水平方向への移動(水平移動)、鉛直方向への移動(鉛直移動)および回転移動させることによって、主坩堝1101に保持された融液1102の直上に移動させ、下地基板1001の表面が主坩堝1101内の融液1102に向かい合う位置まで搬送する。そして、下地基板1001の表面を主坩堝1101に保持された融液1102に浸漬させた後に、下地基板1001を融液1102から取り出される。 When the crystal thin plate 1002 is manufactured using the base substrate immersion apparatus 2000 having the above-described configuration, the base substrate 1001 is first fitted on the fixed base 2108, and then the base substrate 1001 is moved in the horizontal direction ( Horizontal movement), vertical movement (vertical movement), and rotational movement to move the liquid 1102 directly above the melt 1102 held in the main crucible 1101, and the surface of the base substrate 1001 is the melt 1102 in the main crucible 1101. Carry to the position facing. Then, after the surface of the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101, the base substrate 1001 is taken out from the melt 1102.
 上述した下地基板浸漬装置2000の下地基板1001の制御によって、たとえば矢印2120に示される軌道のように下地基板1001を移動させ、下地基板1001の表面上に融液1102が凝固して形成された結晶薄板1002を得ることができる。その後、結晶薄板1002が形成された下地基板1001を水平移動、鉛直移動および回転移動させることによって元の位置まで戻し、結晶薄板1002が形成された後の下地基板1001を固定台座2108から取り外す。そして、新たな下地基板1001を固定台座2108に嵌め込んで装着し、次の結晶薄板1002の製造工程に移ることができる。 Under the control of the base substrate 1001 of the base substrate immersion apparatus 2000 described above, the base substrate 1001 is moved, for example, as indicated by an arrow 2120, and the melt 1102 is solidified on the surface of the base substrate 1001. A thin plate 1002 can be obtained. Thereafter, the base substrate 1001 on which the crystal thin plate 1002 is formed is returned to the original position by horizontally moving, vertically moving, and rotating, and the base substrate 1001 on which the crystal thin plate 1002 is formed is removed from the fixed base 2108. Then, a new base substrate 1001 can be fitted and attached to the fixed base 2108, and the next crystal thin plate 1002 manufacturing process can be started.
 なお、下地基板1001の動作は、たとえば、通常のパソコン等により下地基板1001の水平移動指令、鉛直移動指令および回転動作指令をそれぞれプログラミングし、それをコントローラ(図示せず)に送信しておくことによって、下地基板1001がプログラム通りの軌道を描いて移動することになる。また、下地基板浸漬装置2000は、下地基板1001の高さ(すなわち、下地基板1001の鉛直方向の位置)を制御することによって、下地基板1001の融液1102への浸漬深さ(下地基板1001の浸漬側の表面の中心部が最下点に到達したときの、下地基板1001の融液1102への浸漬側の表面の中心部と融液1102の液面との間の鉛直方向の最短距離)が一定の範囲(たとえば、当該浸漬深さの最大値と最小値との差の絶対値が1mmの範囲内)となるように調整しながら、結晶薄板1002を製造することができるため、品質的にばらつきの少ない結晶薄板1002を得ることができる。 For the operation of the base substrate 1001, for example, a horizontal movement command, a vertical movement command, and a rotation operation command for the base substrate 1001 are programmed by a normal personal computer or the like and transmitted to a controller (not shown). As a result, the base substrate 1001 moves along a trajectory as programmed. In addition, the base substrate immersion apparatus 2000 controls the height of the base substrate 1001 (that is, the vertical position of the base substrate 1001), thereby immersing the base substrate 1001 in the melt 1102 (the base substrate 1001's immersion depth). (The shortest vertical distance between the center of the surface on the immersion side of the base substrate 1001 in the melt 1102 and the liquid surface of the melt 1102 when the center of the surface on the immersion side reaches the lowest point) The crystal thin plate 1002 can be manufactured while adjusting so that is within a certain range (for example, the absolute value of the difference between the maximum value and the minimum value of the immersion depth is within a range of 1 mm). Thus, a thin crystal plate 1002 with little variation can be obtained.
 <融液の液面高さの検知>
 図3を参照して、主坩堝1101に保持された融液1102の液面の高さの検知する方法の一例について説明する。
<Detection of melt level>
With reference to FIG. 3, an example of a method for detecting the height of the melt 1102 held in the main crucible 1101 will be described.
 ここで、下地基板浸漬装置2000には電気配線1051が接続されており、主坩堝1101には電気配線1052が接続されている。そして、電気配線1052は電源装置1508に接続されている。そして、電気配線1051および電気配線1052はリレー1509を介して融液高さ検知器1503に接続されている。これにより、下地基板浸漬装置2000、主坩堝1101、電源装置1508、リレー1509および融液高さ検知器1503が接続されている。 Here, the electrical wiring 1051 is connected to the base substrate immersion apparatus 2000, and the electrical wiring 1052 is connected to the main crucible 1101. The electrical wiring 1052 is connected to the power supply device 1508. The electrical wiring 1051 and the electrical wiring 1052 are connected to a melt height detector 1503 via a relay 1509. Thereby, the base substrate immersion device 2000, the main crucible 1101, the power supply device 1508, the relay 1509, and the melt height detector 1503 are connected.
 また、下地基板浸漬装置2000と主坩堝1101とは電気的に絶縁されており、下地基板1001と下地基板浸漬装置2000とは電気的に導通している。たとえば、下地基板1001および下地基板浸漬装置2000をともに黒鉛から形成することによってこれらを電気的に導通させることが可能である。 Also, the base substrate immersion device 2000 and the main crucible 1101 are electrically insulated, and the base substrate 1001 and the base substrate immersion device 2000 are electrically connected. For example, by forming both the base substrate 1001 and the base substrate immersion device 2000 from graphite, it is possible to electrically connect them.
 以上のような構成において、まず図2に示す下地基板浸漬装置2000の固定台座2108に下地基板1001を装着する。次に、図1に示す坩堝昇降装置1107を動作させて、主坩堝1101の高さを規定の高さに合わせる。 In the configuration as described above, the base substrate 1001 is first mounted on the fixed base 2108 of the base substrate immersion apparatus 2000 shown in FIG. Next, the crucible lifting / lowering device 1107 shown in FIG. 1 is operated to adjust the height of the main crucible 1101 to a specified height.
 そして、下地基板浸漬装置2000により、下地基板1001をたとえば図2に示す矢印2120の軌道のように移動させて、下地基板1001を主坩堝1101に保持された融液1102に浸漬させる。 Then, the base substrate 1001 is moved by the base substrate immersion device 2000, for example, as shown by an arrow 2120 in FIG. 2, and the base substrate 1001 is immersed in the melt 1102 held in the main crucible 1101.
 この下地基板1001と融液1102とが接触した瞬間に下地基板浸漬装置2000と主坩堝1101とが電気的に導通して開放状態から短絡状態となるため、図3に示す電気回路は閉回路となる。これは、下地基板浸漬装置2000と下地基板1001とが電気的に導通し、融液1102と主坩堝1101とが電気的に導通しているためである。 At the moment when the base substrate 1001 and the melt 1102 come into contact, the base substrate immersion device 2000 and the main crucible 1101 are electrically connected to each other so that the open circuit is switched to the short circuit state. Become. This is because the base substrate immersion apparatus 2000 and the base substrate 1001 are electrically connected, and the melt 1102 and the main crucible 1101 are electrically connected.
 図3に示す電気回路が閉回路となった場合には、直流の電源装置1508とリレー1509とが接続されているため、下地基板1001と融液1102とが接触した瞬間に電源装置1508によりリレー1509に電圧が印加され、リレー1509が動作する。これにより、融液高さ検知器1503が電気抵抗の変化を検知して、下地基板1001が融液1102の液面に接触した瞬間を把握することが可能となる。すなわち、主坩堝1101に保持された融液1102と下地基板1001とが接触したときの電気信号を用いて主坩堝1101の融液1102の液面の高さを検出することが可能となる。 When the electric circuit shown in FIG. 3 is a closed circuit, the DC power supply device 1508 and the relay 1509 are connected, and therefore the relay is performed by the power supply device 1508 at the moment when the base substrate 1001 and the melt 1102 come into contact with each other. A voltage is applied to 1509, and the relay 1509 operates. As a result, the melt height detector 1503 detects a change in electrical resistance, and can grasp the moment when the base substrate 1001 comes into contact with the liquid surface of the melt 1102. That is, it is possible to detect the height of the liquid level of the melt 1102 in the main crucible 1101 using an electric signal when the melt 1102 held in the main crucible 1101 comes into contact with the base substrate 1001.
 なお、電気抵抗測定用のリレー1509の代わりに、電圧、電流、および抵抗を測定し得るどのような機器を用いてもよいことは言うまでもない。 Needless to say, any device capable of measuring voltage, current, and resistance may be used instead of the relay 1509 for measuring electrical resistance.
 そして、下地基板1001が融液1102に接触した瞬間、すなわち、リレー1509が動作した瞬間における下地基板1001の座標を読み込む。たとえばサーボモータを使用して下地基板1001を動作させる場合には、動作中の下地基板1001の位置はサーボモータコントローラやそれの上位のパソコンによって随時把握することが可能であるため、下地基板1001が融液1102に接触した瞬間の下地基板1001の座標の認識が可能である。また、融液1102に接触した瞬間の下地基板1001の座標は、たとえば、水平軸台座2102の位置、懸垂支柱2104の位置および回転機構2105の回転角度等から幾何学計算することによっても認識することが可能である。 Then, the coordinates of the base substrate 1001 at the moment when the base substrate 1001 comes into contact with the melt 1102, that is, the moment when the relay 1509 operates are read. For example, when the base substrate 1001 is operated using a servo motor, the position of the base substrate 1001 in operation can be ascertained at any time by a servo motor controller or a higher-order personal computer. The coordinates of the base substrate 1001 at the moment of contact with the melt 1102 can be recognized. Further, the coordinates of the base substrate 1001 at the moment of contact with the melt 1102 can be recognized by geometric calculation based on the position of the horizontal axis base 2102, the position of the suspension column 2104, the rotation angle of the rotation mechanism 2105, and the like. Is possible.
 そこで、下地基板1001が融液1102に接触した瞬間の下地基板1001の座標に基づいて、下地基板1001が融液1102に接触した瞬間の下地基板1001の水平方向の位置および鉛直方向の位置を把握するとともに、下地基板1001の回転角度についても把握する。そして、下地基板1001が融液1102に接触した瞬間の下地基板1001の水平方向の位置、鉛直方向の位置および回転角度からたとえば以下のように算出することによって融液1102の液面の高さの検出が可能となる。 Thus, based on the coordinates of the base substrate 1001 at the moment when the base substrate 1001 contacts the melt 1102, the horizontal position and the vertical position of the base substrate 1001 at the moment when the base substrate 1001 contacts the melt 1102 are grasped. In addition, the rotation angle of the base substrate 1001 is also grasped. The height of the liquid surface of the melt 1102 is calculated by calculating, for example, as follows from the horizontal position, vertical position and rotation angle of the base substrate 1001 at the moment when the base substrate 1001 contacts the melt 1102. Detection is possible.
 図4に、本発明において下地基板1001を融液1102に浸漬させる瞬間の一例を模式的に図解する。以下、図4を用いて、融液1102の液面高さの算出方法の一例について説明する。図4において、H21は水平軸台座2102に対する融液1102の液面の相対的な高さを示しており、H22は水平軸台座2102に対する懸垂支柱2104の下端2104aの相対的な高さを示している。また、R2は下地基板1001が融液1102に接触した瞬間の接触点1001aと懸垂支柱2104の下端2104aとの最短距離を示しており、A2は接触点1001aと懸垂支柱2104の下端2104aとを結ぶ直線の水平方向に対する傾斜角度を示している。 FIG. 4 schematically illustrates an example of a moment when the base substrate 1001 is immersed in the melt 1102 in the present invention. Hereinafter, an example of a method for calculating the liquid level of the melt 1102 will be described with reference to FIG. In FIG. 4, H21 indicates the relative height of the liquid level of the melt 1102 with respect to the horizontal axis pedestal 2102, and H22 indicates the relative height of the lower end 2104a of the suspension column 2104 with respect to the horizontal axis pedestal 2102. Yes. R2 indicates the shortest distance between the contact point 1001a at the moment when the base substrate 1001 contacts the melt 1102 and the lower end 2104a of the suspension column 2104, and A2 connects the contact point 1001a and the lower end 2104a of the suspension column 2104. The inclination angle with respect to the horizontal direction of the straight line is shown.
 ここで、主坩堝1101に保持された融液1102の液面の高さH21は下記の式(1)によって算出することができる。 Here, the height H21 of the liquid level of the melt 1102 held in the main crucible 1101 can be calculated by the following equation (1).
 H21=R2×sin(A2)+H22 …(1)
 また、下地基板1001の表面が融液1102中で水平になったとき(下地基板1001の浸漬側の表面の中心部が最下点に到達したとき)の水平軸台座2102に対する懸垂支柱2104の下端2104aの相対的な高さをH23とし、懸垂支柱2104の下端2104aから下地基板1001の面中心までの距離をR23としたとき、下地基板1001の表面が融液1102の液面から浸漬している深さを浸漬深さDとすると、下記の式(2)によって浸漬深さDを算出することができる。
H21 = R2 × sin (A2) + H22 (1)
Further, when the surface of the base substrate 1001 becomes horizontal in the melt 1102 (when the center of the surface on the immersion side of the base substrate 1001 reaches the lowest point), the lower end of the suspension column 2104 with respect to the horizontal axis pedestal 2102 When the relative height of 2104a is H23 and the distance from the lower end 2104a of the suspension column 2104 to the surface center of the base substrate 1001 is R23, the surface of the base substrate 1001 is immersed from the liquid level of the melt 1102. If the depth is the immersion depth D, the immersion depth D can be calculated by the following equation (2).
 D=R23+H23-H21 …(2)
 この浸漬深さDが、目標の浸漬深さDとずれている場合は、たとえば、次回の結晶薄板1002の製造における下地基板1001の浸漬までにその差分だけ下地基板1001の鉛直方向における高さおよび/または主坩堝1101の鉛直方向における高さを調整する。これを続けることによって、下地基板1001の融液1102への浸漬深さDが規定の範囲内に収まるように制御することが可能となる。
D = R23 + H23−H21 (2)
When the immersion depth D is different from the target immersion depth D, for example, the height of the base substrate 1001 in the vertical direction by the difference until the base substrate 1001 is immersed in the next production of the crystal thin plate 1002 and // The height in the vertical direction of the main crucible 1101 is adjusted. By continuing this, it becomes possible to control the immersion depth D of the base substrate 1001 in the melt 1102 to be within a specified range.
 なお、浸漬深さDのずれを主坩堝1101の鉛直方向における高さによって調整する場合には、急激な下地基板1001の軌道の変動を抑制することが好ましい。また、融液1102の正しい液面の高さを検出できない場合等のために、適切な安全対策を施しておくことが好ましい。 It should be noted that when the deviation of the immersion depth D is adjusted by the height of the main crucible 1101 in the vertical direction, it is preferable to suppress a rapid change in the trajectory of the base substrate 1001. In addition, it is preferable to take appropriate safety measures in case the correct liquid level of the melt 1102 cannot be detected.
 <固体原料の投入>
 一般的に、結晶薄板1002の製造時において、主坩堝1101の温度は、結晶薄板1002の製造に適した融液1102の融点近傍に近い温度に設定されることが好適である。一方、副坩堝1201に保持されている融液1202の温度は固体原料投入装置1401から投入された固体原料1402を溶融させるために融液1102の融点よりも高い温度に調整するのが通常である。それゆえ、副坩堝1201から融液1202を主坩堝1101に供給する量が多い場合には主坩堝1101の温度が上昇してしまう。また、主坩堝1101の融液1102の量が大幅に減少してから大量の融液を供給した場合には、主坩堝1101中の融液1102の温度や温度分布が変化してしまう。
<Inputting solid raw materials>
In general, when manufacturing the crystal thin plate 1002, it is preferable that the temperature of the main crucible 1101 is set to a temperature close to the melting point of the melt 1102 suitable for manufacturing the crystal thin plate 1002. On the other hand, the temperature of the melt 1202 held in the auxiliary crucible 1201 is usually adjusted to a temperature higher than the melting point of the melt 1102 in order to melt the solid material 1402 charged from the solid material charging device 1401. . Therefore, when the amount of the melt 1202 supplied from the auxiliary crucible 1201 to the main crucible 1101 is large, the temperature of the main crucible 1101 increases. In addition, when a large amount of melt is supplied after the amount of the melt 1102 in the main crucible 1101 is significantly reduced, the temperature and temperature distribution of the melt 1102 in the main crucible 1101 change.
 したがって、副坩堝1201から主坩堝1101への融液の供給は、主坩堝1101の融液1102の液面の高さがなるべく変化しないようになるべく小分けにして行なわれることが好ましい。 Therefore, it is preferable to supply the melt from the sub crucible 1201 to the main crucible 1101 in small portions so that the liquid level of the melt 1102 in the main crucible 1101 does not change as much as possible.
 そのためには、副坩堝1201を傾けて一度に融液1202を主坩堝1101に供給するよりは、本発明のように、固体原料1402を副坩堝1201に供給した分だけ溢れ出た融液1202が融液搬送部1301を通って主坩堝1101に供給される方法を用いて小分けに主坩堝1101に融液を供給することが好ましい。 For this purpose, rather than inclining the auxiliary crucible 1201 and supplying the melt 1202 to the main crucible 1101 at a time, the melt 1202 overflowed by the amount of the solid raw material 1402 supplied to the auxiliary crucible 1201 as in the present invention. It is preferable to supply the melt to the main crucible 1101 in small portions by using a method of supplying the melt to the main crucible 1101 through the melt transfer unit 1301.
 しかしながら、副坩堝1201から供給される融液1202の量が結晶薄板1002の製造量よりも多い場合には、主坩堝1101内の融液1102が溢れてしまう。また、逆に副坩堝1201から供給される融液1202の量が結晶薄板1002の製造量よりも少ない場合には主坩堝1101内の融液1102の量が減少してしまう。 However, when the amount of the melt 1202 supplied from the sub crucible 1201 is larger than the production amount of the crystal thin plate 1002, the melt 1102 in the main crucible 1101 overflows. Conversely, when the amount of the melt 1202 supplied from the auxiliary crucible 1201 is smaller than the production amount of the crystal thin plate 1002, the amount of the melt 1102 in the main crucible 1101 decreases.
 したがって、結晶薄板1002の品質のばらつきを低減するためには、一定量の固体原料1402を一定のタイミングで投入するだけでは、いずれ供給不足もしくは供給過多となってしまうことがあるため、これを防止する必要がある。 Therefore, in order to reduce the variation in the quality of the crystal thin plate 1002, simply supplying a certain amount of the solid raw material 1402 at a certain timing may eventually lead to insufficient supply or excessive supply. There is a need to.
 以下に、本発明における固体原料1402の投入の有無と固体原料1402の投入量の決定方法の一例について説明する。 Hereinafter, an example of a method for determining whether or not the solid raw material 1402 is charged and how much solid raw material 1402 is charged in the present invention will be described.
 まずは、浸漬深さを坩堝昇降によって調整する場合について説明する。この場合、下地基板は一定の軌道を通過することを想定している。 First, the case where the immersion depth is adjusted by raising and lowering the crucible will be described. In this case, it is assumed that the base substrate passes through a certain trajectory.
 主坩堝1101内の融液1102の液面の高さ(主坩堝1101の底面から融液1102の液面までの距離)は次のように調整される。 The height of the liquid level of the melt 1102 in the main crucible 1101 (the distance from the bottom surface of the main crucible 1101 to the level of the melt 1102) is adjusted as follows.
 まず、下地基板1001の浸漬深さが規定値付近となるように、主坩堝1101の鉛直方向における高さ(以下、「坩堝高さ」という。)を調整することで適切な浸漬深さを維持することができる。 First, an appropriate immersion depth is maintained by adjusting the height of the main crucible 1101 in the vertical direction (hereinafter referred to as “crucible height”) so that the immersion depth of the base substrate 1001 is close to a specified value. can do.
 このとき、坩堝高さが規定値付近にある場合には、主坩堝1101の融液1102の高さが規定値に近いと判断することができる。また、坩堝高さが規定値よりも低い場合には主坩堝1101内の融液1102の量は規定値よりも多いと判断することができる。また、坩堝高さが規定値よりも高い場合には、主坩堝1101内の融液1102の量は規定値よりも少ないと判断することができる。これを利用して、主坩堝1101内の融液1102の液面の高さを判断し、固体原料1402の投入の有無と固体原料1402の投入量を決定することができる。 At this time, when the height of the crucible is in the vicinity of the specified value, it can be determined that the height of the melt 1102 of the main crucible 1101 is close to the specified value. If the crucible height is lower than the specified value, it can be determined that the amount of the melt 1102 in the main crucible 1101 is larger than the specified value. When the crucible height is higher than the specified value, it can be determined that the amount of the melt 1102 in the main crucible 1101 is smaller than the specified value. By utilizing this, the level of the melt 1102 in the main crucible 1101 can be determined, and whether or not the solid raw material 1402 is charged and the amount of the solid raw material 1402 charged can be determined.
 したがって、固体原料1402の投入の有無および固体原料1402の投入量を決定する方法としては、坩堝高さをもとに主坩堝1101内の融液1102の液面の高さを判断して決定する方法が有効である。 Accordingly, as a method for determining whether or not solid raw material 1402 is charged and how much solid raw material 1402 is charged, the liquid level of melt 1102 in main crucible 1101 is determined based on the crucible height. The method is effective.
 すなわち、坩堝高さが規定値以下となった場合には、主坩堝1101内の融液1102の量が多すぎると判断し、固定原料1402の投入を停止する。逆に、坩堝高さが規定値以上となった場合には、主坩堝1101内の融液1102の量が少なすぎると判断して固体原料1402の投入を継続する。 That is, when the crucible height becomes equal to or less than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too large, and the charging of the fixed raw material 1402 is stopped. On the other hand, when the crucible height is equal to or higher than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too small, and the charging of the solid raw material 1402 is continued.
 このような方法によれば、結晶薄板1002を製造しながら坩堝高さを調整しつつ、適切なタイミングで固体原料1402を投入することができる。また、結晶薄板1002の製造を中断して主坩堝1101内の融液1102の高さを調整する必要がないため、結晶薄板1002の製造の生産性を向上することができる。 According to such a method, the solid material 1402 can be introduced at an appropriate timing while adjusting the crucible height while manufacturing the crystal thin plate 1002. Further, since it is not necessary to adjust the height of the melt 1102 in the main crucible 1101 by interrupting the manufacture of the crystal thin plate 1002, the productivity of manufacturing the crystal thin plate 1002 can be improved.
 また、さらに望ましい方法としては、坩堝高さから主坩堝1101内の融液1102の液面の高さを判断して、主坩堝1101内の融液1102の不足量を計算し、不足している分だけ固体原料1402を追加する方法である。 Further, as a more desirable method, the height of the melt 1102 in the main crucible 1101 is determined from the height of the crucible, and the shortage of the melt 1102 in the main crucible 1101 is calculated to be insufficient. This is a method of adding the solid raw material 1402 by the amount.
 このように、固体原料1402の投入の有無、投入量またはこれらの双方を主坩堝1101に保持された融液1102の液面の高さをもとに決定することによって、結晶薄板1002の製造を中断せずに坩堝高さを調整し、適切な基板高さを維持しつつ適切なタイミングで固体原料1402を投入することができる。 In this manner, the crystal thin plate 1002 can be manufactured by determining whether or not the solid raw material 1402 has been charged, the amount to be charged, or both, based on the height of the liquid level of the melt 1102 held in the main crucible 1101. The crucible height can be adjusted without interruption, and the solid material 1402 can be charged at an appropriate timing while maintaining an appropriate substrate height.
 次に、浸漬深さを下地基板高さによって調整する場合について説明する。この場合、坩堝高さは常に一定の高さに固定することを想定している。 Next, the case where the immersion depth is adjusted according to the height of the base substrate will be described. In this case, it is assumed that the height of the crucible is always fixed at a constant height.
 主坩堝1101内の融液1102の液面の高さ(主坩堝1101の底面から融液1102の液面までの距離)は次のように調整される。 The height of the liquid level of the melt 1102 in the main crucible 1101 (the distance from the bottom surface of the main crucible 1101 to the level of the melt 1102) is adjusted as follows.
 まず、下地基板1001の浸漬深さが規定値付近となるように下地基板1001の鉛直方向における軌道の高さ(以下、「基板高さ」という。融液1102の液面の位置によって下地基板1001を深く移動させるか、浅く移動させるかを調整することができる)を調整することで適切な浸漬深さを維持することができる。 First, the height of the trajectory in the vertical direction of the base substrate 1001 (hereinafter referred to as “substrate height”) so that the immersion depth of the base substrate 1001 is close to a specified value. The base substrate 1001 depends on the position of the liquid surface of the melt 1102. It is possible to maintain an appropriate immersion depth by adjusting whether to move deeply or shallowly.
 このとき、基板高さが規定値付近にある場合には、主坩堝1101の融液1102の液面の高さが規定値に近いと判断することができる。また、基板高さが規定値よりも高い位置にある場合には、主坩堝1101内の融液1102の量は規定値よりも多いと判断することができる。また、基板高さが規定値よりも低い位置にある場合には、主坩堝1101に保持される融液1102の量は規定値より少ないと判断することができる。これを利用して、主坩堝1101内の融液1102の液面の高さを判断し、固体原料1402の投入の有無と固体原料1402の投入量を決定することができる。 At this time, if the substrate height is in the vicinity of the specified value, it can be determined that the liquid level of the melt 1102 of the main crucible 1101 is close to the specified value. Further, when the substrate height is higher than the specified value, it can be determined that the amount of the melt 1102 in the main crucible 1101 is larger than the specified value. When the substrate height is lower than the specified value, it can be determined that the amount of the melt 1102 held in the main crucible 1101 is less than the specified value. By utilizing this, the level of the melt 1102 in the main crucible 1101 can be determined, and whether or not the solid raw material 1402 is charged and the amount of the solid raw material 1402 charged can be determined.
 したがって、固体原料1402の投入の有無および固体原料1402の投入量を決定する方法としては、基板高さをもとに主坩堝1101内の融液1102の液面の高さを判断して決定する方法が有効である。 Therefore, as a method of determining whether or not solid raw material 1402 is charged and how much solid raw material 1402 is charged, the liquid level of melt 1102 in main crucible 1101 is determined based on the substrate height. The method is effective.
 すなわち、基板高さが規定値以上となった場合には、主坩堝1101内の融液1102の量が多すぎると判断し、固定原料1402の投入を停止する。逆に、基板高さが規定値以下となった場合には、主坩堝1101内の融液1102の量が少なすぎると判断して固体原料1402の投入を継続する。 That is, when the substrate height exceeds the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too large, and the charging of the fixed raw material 1402 is stopped. On the contrary, when the substrate height is equal to or less than the specified value, it is determined that the amount of the melt 1102 in the main crucible 1101 is too small, and the charging of the solid material 1402 is continued.
 このような方法によれば、結晶薄板1002を製造しながら基板高さを調整しつつ、適切なタイミングで固体原料1402を投入することができる。また、結晶薄板1002の製造を中断して主坩堝1101内の融液1102の高さを調整する必要がないため、結晶薄板1002の製造の生産性を向上することができる。 According to such a method, the solid material 1402 can be introduced at an appropriate timing while adjusting the substrate height while manufacturing the crystal thin plate 1002. Further, since it is not necessary to adjust the height of the melt 1102 in the main crucible 1101 by interrupting the manufacture of the crystal thin plate 1002, the productivity of manufacturing the crystal thin plate 1002 can be improved.
 また、さらに望ましい方法としては、基板高さから主坩堝1101内の融液1102の液面の高さを判断して、主坩堝1101内の融液1102の不足量を計算し、不足している分だけ固体原料1402を追加する方法である。 Further, as a more desirable method, the height of the melt 1102 in the main crucible 1101 is determined from the height of the substrate, and the shortage of the melt 1102 in the main crucible 1101 is calculated to be insufficient. This is a method of adding the solid raw material 1402 by the amount.
 このように、固体原料1402の投入の有無、投入量またはこれらの双方を主坩堝1101に保持された融液1102の液面の高さをもとに決定することによって、結晶薄板1002の製造を中断せずに坩堝高さおよび/または基板高さを調整し、適切な基板高さを維持しつつ適切なタイミングで固体原料1402を投入することができる。 In this manner, the crystal thin plate 1002 can be manufactured by determining whether or not the solid raw material 1402 has been charged, the amount to be charged, or both, based on the height of the liquid level of the melt 1102 held in the main crucible 1101. The crucible height and / or substrate height can be adjusted without interruption, and the solid material 1402 can be charged at an appropriate timing while maintaining the appropriate substrate height.
 本実施の形態では、主坩堝1101内の融液1102の液面の高さを下地基板1001が融液1102に接触する際の電気的接触による抵抗変化から判断する方法について説明したが、他の方法を用いてもよい。たとえば、主坩堝1101内の融液1102の液面に直接確認部材を接触させる方法、または融液1102の液面にレーザ光を当てることで高さを検知する方法等を用いることもできる。ただし、結晶薄板1002の製造を中断することなく、主坩堝1101内の融液1102の液面の高さを検知する方法を用いることが好ましい。 In this embodiment mode, the method of determining the height of the liquid level of the melt 1102 in the main crucible 1101 from the resistance change due to electrical contact when the base substrate 1001 contacts the melt 1102 has been described. A method may be used. For example, a method of directly contacting the confirmation member with the liquid level of the melt 1102 in the main crucible 1101 or a method of detecting the height by applying a laser beam to the liquid level of the melt 1102 can be used. However, it is preferable to use a method of detecting the height of the melt 1102 in the main crucible 1101 without interrupting the production of the crystal thin plate 1002.
 また、本実施の形態においては、下地基板1001の表面上に結晶薄板1002を製造する場合について説明したが、主坩堝1101の融液1102から固体を作製して取り出す方法のいずれにも適用することができる。たとえば、単結晶インゴットを鉛直方向に引き上げる方法や多結晶薄板を鉛直方向に引き上げる方法等のシリコン融液のような高融点融液から固体を製造する方法にも適用することができる。また、主坩堝1101の融液1102の液面の高さが一定となるように融液1102の液面の高さを制御しながら、副坩堝1201から融液1202を供給することで主坩堝1101の融液1102の温度を大きく変化させることなく連続した固体製造が可能となる。 In this embodiment mode, the case where the crystal thin plate 1002 is manufactured on the surface of the base substrate 1001 has been described. However, the present invention is applicable to any method for producing and taking out a solid from the melt 1102 of the main crucible 1101. Can do. For example, the present invention can also be applied to a method for producing a solid from a high melting point melt such as a silicon melt, such as a method of pulling up a single crystal ingot in the vertical direction or a method of pulling up a polycrystalline thin plate in the vertical direction. Further, the main crucible 1101 is supplied by supplying the melt 1202 from the auxiliary crucible 1201 while controlling the height of the melt 1102 so that the liquid level of the melt 1102 of the main crucible 1101 is constant. It is possible to produce a solid continuously without greatly changing the temperature of the melt 1102.
 図1に示す構成の溶融炉1000および図2に示す下地基板浸漬装置2000を用いて黒鉛からなる下地基板1001の表面上にシリコンの結晶薄板1002の製造を行なった。ここで、主坩堝1101の材質には黒鉛を用い、主坩堝1101内の融液1102の液面の高さを判断する方法としては、図3に示す電気回路を用いる方法を採用した。 A silicon crystal thin plate 1002 was manufactured on the surface of a base substrate 1001 made of graphite using a melting furnace 1000 having the configuration shown in FIG. 1 and a base substrate immersion device 2000 shown in FIG. Here, graphite was used as the material of the main crucible 1101, and a method of using an electric circuit shown in FIG. 3 was adopted as a method of determining the height of the melt 1102 in the main crucible 1101.
 本実施例においては、上記の実施の形態で説明した方法により、シリコンの結晶薄板1002を100回製造しながら、毎回の結晶薄板1002の製造ごとに下地基板1001と融液1102との接触タイミングから上記の式(2)により浸漬深さDを測定した。その浸漬深さDと規定値との差を計算し、坩堝昇降装置1107によって坩堝高さを常に調整し、浸漬深さDが規定値に近づくようにした。また、固体原料1402の追加量は1回に付き500gとし、坩堝高さが基準値(0mm)以上のときは追加しないこととした。 In this example, the silicon crystal thin plate 1002 is manufactured 100 times by the method described in the above embodiment, and the contact timing between the base substrate 1001 and the melt 1102 is manufactured every time the crystal thin plate 1002 is manufactured. The immersion depth D was measured by the above equation (2). The difference between the immersion depth D and the specified value was calculated, and the crucible height was always adjusted by the crucible lifting device 1107 so that the immersion depth D approached the specified value. Further, the additional amount of the solid raw material 1402 is 500 g per time, and when the crucible height is equal to or higher than the reference value (0 mm), it is not added.
 また、本実施例においては、融液高さ検知器1503と固体原料投入制御装置1506による自動判断とすることによって完全自動化でシリコンの結晶薄板1002の製造を行なった。図5に、本実施例におけるシリコンの結晶薄板1002の製造時の浸漬深さDの規定値からのずれ量と坩堝高さの基準値からのずれ量との関係を示す。 Further, in this embodiment, the silicon crystal thin plate 1002 was manufactured by full automation by making automatic determination by the melt height detector 1503 and the solid material input controller 1506. FIG. 5 shows the relationship between the amount of deviation from the prescribed value of the immersion depth D and the amount of deviation from the reference value of the crucible height when the silicon crystal thin plate 1002 is manufactured in this example.
 図5に示すように、浸漬深さDは概ね規定値±0.5mm程度に抑えることが可能であった。また坩堝高さも概ね基準値±0.5mm以内に収まっており、固体原料1402の供給過多や供給不足を生じることなく、シリコンの結晶薄板1002の連続製造を実施できることが確認された。 As shown in FIG. 5, the immersion depth D was able to be suppressed to approximately the specified value ± 0.5 mm. Also, the height of the crucible was generally within the standard value ± 0.5 mm, and it was confirmed that continuous production of the silicon crystal thin plate 1002 could be performed without causing excessive supply or insufficient supply of the solid raw material 1402.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明によれば、下地基板を融液に浸漬させることにより下地基板の表面上に形成される結晶薄板の生産を停止することなく安定した原料の追加供給を行なうことができ、また品質の劣化やばらつきを低減するとともに結晶薄板の製造歩留まりを向上することによって、結晶薄板の生産性を向上させることができる溶融炉を提供することができる。 According to the present invention, it is possible to perform additional supply of stable raw materials without suspending the production of a crystal thin plate formed on the surface of the base substrate by immersing the base substrate in the melt, and deterioration in quality. Further, it is possible to provide a melting furnace capable of improving the productivity of the crystal thin plate by reducing the variation and improving the production yield of the crystal thin plate.
 1000,3000,4000 溶融炉、1001 下地基板、1001a 接触点、1002 結晶薄板、1051,1052 電気配線、1101 主坩堝、1102,1202,4102,4202 融液、1103,1203,1303,4103,4203 断熱材、1104,4104 主坩堝加熱装置、1105,1205,4105 耐火煉瓦、1106 主坩堝受け、1107 坩堝昇降装置、1201,4201 副坩堝、1204,4204 副坩堝加熱装置、1206 副坩堝受け、1301 融液搬送部、1304 融液搬送部加熱装置、1401 固体原料投入装置、1402 固体原料、1503 融液高さ検知器、1504,1505,1507 経路、1506 固体原料投入制御装置、1508 電源装置、1509 リレー、2000 下地基板浸漬装置、2101 水平動作軸、2102 水平軸台座、2103 昇降動作モータ、2104 懸垂支柱、2104a 下端、2105 回転機構、2106 回転支柱、2107 補助支柱、2108 固定台座、2120 矢印、3001 主室、3002 第1の副室、3003 第2の副室、3004 下地基板把持装置、3100 第1の坩堝、3101 第1の坩堝準備室、3102 第1の固体原料供給装置、3103,3203,3303 固体原料、3200 第2の坩堝、3201 第2の坩堝準備室、3202 第2の固体原料供給装置、3300 第3の坩堝、3301 第3の坩堝準備室、3302 第3の固体原料供給装置、1101,4101 主坩堝、4205 耐火煉瓦、4206 坩堝受け、4207 隙間。 1000, 3000, 4000 melting furnace, 1001 base substrate, 1001a contact point, 1002 crystal thin plate, 1051, 1052 electrical wiring, 1101, main crucible, 1102, 1202, 4102, 4202 melt, 1103, 1203, 1303, 4103, 4203 heat insulation Material, 1104, 4104 main crucible heating device, 1105, 1205, 4105 refractory brick, 1106 main crucible receiver, 1107 crucible lifting device, 1201, 4201 sub crucible, 1204, 4204 sub crucible heating device, 1206 sub crucible receiver, 1301 melt Conveying unit, 1304, melt conveying unit heating device, 1401, solid raw material charging device, 1402, solid raw material, 1503, melt height detector, 1504, 1505, 1507 path, 1506, solid raw material charging control device, 1508 Equipment, 1509 Relay, 2000 Substrate Immersion Device, 2101 Horizontal Motion Axis, 2102 Horizontal Axis Base, 2103 Lifting Motor, 2104 Suspension Strut, 2104a Bottom, 2105 Rotation Mechanism, 2106 Rotation Strut, 2107 Auxiliary Strut, 2108 Fixed Base Arrow, 3001 main chamber, 3002 first subchamber, 3003 second subchamber, 3004 base substrate gripping device, 3100 first crucible, 3101 first crucible preparation chamber, 3102 first solid material supply device, 3103 , 3203, 3303, solid material, 3200, second crucible, 3201, second crucible preparation chamber, 3202, second solid material supply device, 3300, third crucible, 3301, third crucible preparation chamber, 3302 third solid material. Feeder, 1101, 4101 main crucible, 205 refractory bricks, 4206 crucible receives, 4207 gap.

Claims (13)

  1.  金属材料および半導体材料の少なくとも一方を含む物質の融液を保持するための主坩堝(1101)と、
     前記主坩堝(1101)に保持された前記融液(1102)を加熱するための主坩堝加熱装置(1104)と、
     前記主坩堝(1101)に供給される前記融液(1102)を保持するための副坩堝(1201)と、
     前記副坩堝(1201)に保持された前記融液(1102)を加熱するための副坩堝加熱装置(1204)と、
     前記副坩堝(1201)に前記融液(1102)の原料となる固体原料を投入するための固体原料投入装置(1401)と、
     前記副坩堝(1201)から前記主坩堝(1101)に前記融液(1102)を供給するための融液搬送部(1301)とを備え、
     前記融液搬送部(1301)は前記副坩堝(1201)に接合されており、
     前記固体原料投入装置(1401)から前記副坩堝(1201)に前記固体原料を投入することによって前記副坩堝(1201)から溢れ出した前記融液(1201)が前記融液搬送部(1301)を通って前記主坩堝(1101)に供給されることを特徴とする、溶融炉(1000)。
    A main crucible (1101) for holding a melt of a substance containing at least one of a metal material and a semiconductor material;
    A main crucible heating device (1104) for heating the melt (1102) held in the main crucible (1101);
    An auxiliary crucible (1201) for holding the melt (1102) supplied to the main crucible (1101);
    An auxiliary crucible heating device (1204) for heating the melt (1102) held in the auxiliary crucible (1201);
    A solid raw material charging device (1401) for charging a solid raw material as a raw material of the melt (1102) into the auxiliary crucible (1201);
    A melt transfer part (1301) for supplying the melt (1102) from the sub-crucible (1201) to the main crucible (1101),
    The melt transporting part (1301) is joined to the sub crucible (1201),
    The melt (1201) overflowing from the auxiliary crucible (1201) by charging the solid raw material into the auxiliary crucible (1201) from the solid raw material charging device (1401) passes through the melt transport unit (1301). A melting furnace (1000), characterized in that it is fed to the main crucible (1101).
  2.  前記融液搬送部(1301)を加熱するための融液搬送部加熱装置(1304)をさらに備え、
     前記融液搬送部(1301)は前記融液搬送部加熱装置(1304)によって加熱される中空部材からなることを特徴とする、請求の範囲第1項に記載の溶融炉(1000)。
    A melt transport unit heating device (1304) for heating the melt transport unit (1301);
    The melting furnace (1000) according to claim 1, characterized in that the melt transport section (1301) comprises a hollow member heated by the melt transport section heating device (1304).
  3.  前記主坩堝(1101)に保持された前記融液(1102)に浸漬させることにより下地基板(1001)の表面に前記融液(1102)が凝固してなる結晶薄板(1002)を形成するための下地基板浸漬装置(2000)をさらに備えていることを特徴とする、請求の範囲第1項に記載の溶融炉(1000)。 A crystal thin plate (1002) formed by solidifying the melt (1102) on the surface of the base substrate (1001) by immersing in the melt (1102) held in the main crucible (1101). The melting furnace (1000) according to claim 1, further comprising a base substrate dipping device (2000).
  4.  前記主坩堝(1101)に保持された前記融液(1102)の液面の高さを検知する融液高さ検知器(1503)と、
     前記固体原料投入装置(1401)から前記副坩堝(1201)への前記固体原料(1402)の投入の有無を決定する固体原料投入制御装置(1401)とをさらに備え、
     前記融液高さ検知器(1503)によって検知された前記主坩堝(1101)に保持された前記融液(1102)の液面の高さに基づいて前記固体原料投入制御装置(1506)が前記副坩堝(1201)に前記固体原料(1402)を投入するか否かを決定することを特徴とする、請求の範囲第1項に記載の溶融炉(1000)。
    A melt height detector (1503) for detecting the height of the liquid level of the melt (1102) held in the main crucible (1101);
    A solid raw material charging control device (1401) for determining whether or not the solid raw material (1402) is charged into the auxiliary crucible (1201) from the solid raw material charging device (1401),
    Based on the height of the liquid level of the melt (1102) held in the main crucible (1101) detected by the melt height detector (1503), the solid material input controller (1506) The melting furnace (1000) according to claim 1, characterized in that it is determined whether or not the solid raw material (1402) is charged into the auxiliary crucible (1201).
  5.  前記固体原料投入制御装置(1401)は、前記副坩堝(1201)に投入される前記固体原料(1402)の投入量も決定することを特徴とする、請求の範囲第4項に記載の溶融炉(1000)。 The melting furnace according to claim 4, wherein the solid raw material charging control device (1401) also determines the charging amount of the solid raw material (1402) charged into the auxiliary crucible (1201). (1000).
  6.  前記主坩堝(1101)に保持された前記融液(1102)に浸漬させることにより下地基板(1001)の表面に前記融液(1102)が凝固してなる結晶薄板(1002)を形成するための下地基板浸漬装置(2000)をさらに備えていることを特徴とする、請求の範囲第4項に記載の溶融炉(1000)。 A crystal thin plate (1002) formed by solidifying the melt (1102) on the surface of the base substrate (1001) by immersing in the melt (1102) held in the main crucible (1101). The melting furnace (1000) according to claim 4, further comprising a base substrate dipping device (2000).
  7.  前記融液高さ検知器(1503)によって検知された前記主坩堝(1101)に保持された前記融液(1102)の液面の高さに基づいて前記主坩堝(1101)を鉛直方向に移動させるための坩堝昇降装置(1107)をさらに備え、
     前記坩堝昇降装置(1107)による前記主坩堝(1101)の高さを制御することにより、前記下地基板(1001)の前記融液(1102)に対する浸漬深さを調整することを特徴とする、請求の範囲第6項に記載の溶融炉(1000)。
    The main crucible (1101) is moved in the vertical direction based on the level of the melt (1102) held in the main crucible (1101) detected by the melt height detector (1503). A crucible lifting and lowering device (1107) for
    The immersion depth of the base substrate (1001) in the melt (1102) is adjusted by controlling the height of the main crucible (1101) by the crucible lifting / lowering device (1107). The melting furnace (1000) according to claim 6,
  8.  前記融液高さ検知器(1503)によって検知された前記主坩堝(1101)に保持された前記融液(1102)の液面の高さに基づいて前記下地基板浸漬装置(2000)が前記下地基板(1001)の軌道の高さを制御することにより、前記下地基板(1001)の前記融液(1102)に対する浸漬深さを調整することを特徴とする、請求の範囲第6項に記載の溶融炉(1000)。 Based on the height of the liquid level of the melt (1102) held in the main crucible (1101) detected by the melt height detector (1503), the base substrate dipping device (2000) is used for the base. The immersion depth of the base substrate (1001) with respect to the melt (1102) is adjusted by controlling the height of the trajectory of the substrate (1001), according to claim 6. Melting furnace (1000).
  9.  前記主坩堝(1101)に保持された前記融液(1102)の液面の高さを検知する融液高さ検知器(1503)と、
     前記固体原料投入装置(1401)から前記副坩堝(1201)への前記固体原料(1402)の投入の有無を決定する固体原料投入制御装置(1401)と、
     前記主坩堝(1101)に保持された前記融液(1102)に浸漬させることにより下地基板(1001)の表面に前記融液(1102)が凝固してなる結晶薄板(1002)を形成するための下地基板浸漬装置(2000)と、
     前記融液高さ検知器(1503)によって検知された前記主坩堝(1101)に保持された前記融液(1102)の液面の高さに基づいて前記主坩堝(1101)を鉛直方向に移動させるための坩堝昇降装置(1107)とを備え、
     前記坩堝昇降装置(1107)によって制御された前記主坩堝(1101)の高さおよび前記下地基板浸漬装置(2000)によって制御された前記下地基板(1001)の軌道の高さの少なくとも一方に基づいて前記固体原料投入制御装置(1506)が前記副坩堝(1201)に前記固体原料(1402)を投入するか否かを決定することを特徴とする、請求の範囲第1項に記載の溶融炉(1000)。
    A melt height detector (1503) for detecting the height of the liquid level of the melt (1102) held in the main crucible (1101);
    A solid raw material charging control device (1401) for determining whether or not the solid raw material (1402) is charged into the auxiliary crucible (1201) from the solid raw material charging device (1401);
    A crystal thin plate (1002) formed by solidifying the melt (1102) on the surface of the base substrate (1001) by immersing in the melt (1102) held in the main crucible (1101). A base substrate immersion device (2000);
    The main crucible (1101) is moved in the vertical direction based on the level of the melt (1102) held in the main crucible (1101) detected by the melt height detector (1503). A crucible lifting and lowering device (1107) for
    Based on at least one of the height of the main crucible (1101) controlled by the crucible elevating device (1107) and the height of the trajectory of the base substrate (1001) controlled by the base substrate immersion device (2000). The melting furnace (1) according to claim 1, characterized in that the solid raw material charging control device (1506) determines whether or not the solid raw material (1402) is charged into the auxiliary crucible (1201). 1000).
  10.  前記主坩堝(1101)の高さおよび前記下地基板(1001)の軌道の高さの少なくとも一方に基づいて前記固体原料投入制御装置(1401)が前記副坩堝(1201)に投入される前記固体原料(1402)の投入量も決定することを特徴とする、請求の範囲第9項に記載の溶融炉(1000)。 The solid raw material that is fed into the sub crucible (1201) by the solid raw material charging control device (1401) based on at least one of the height of the main crucible (1101) and the height of the orbit of the base substrate (1001) The melting furnace (1000) according to claim 9, characterized in that an input amount of (1402) is also determined.
  11.  前記坩堝昇降装置(1107)による前記主坩堝(1101)の高さを制御することにより、前記下地基板(1001)の前記融液(1102)に対する浸漬深さを調整することを特徴とする、請求の範囲第9項に記載の溶融炉(1000)。 The immersion depth of the base substrate (1001) in the melt (1102) is adjusted by controlling the height of the main crucible (1101) by the crucible lifting / lowering device (1107). A melting furnace (1000) according to claim 9, wherein
  12.  前記下地基板浸漬装置(2000)が前記下地基板(1001)の軌道の高さを制御することにより、前記下地基板(1001)の前記融液(1102)に対する浸漬深さを調整することを特徴とする、請求の範囲第9項に記載の溶融炉(1000)。 The base substrate immersion apparatus (2000) adjusts the immersion depth of the base substrate (1001) in the melt (1102) by controlling the height of the orbit of the base substrate (1001). The melting furnace (1000) according to claim 9, wherein:
  13.  前記融液高さ検知器(1503)は、前記主坩堝(1101)に保持された前記融液(1102)と前記下地基板(1001)とが接触したときの電気信号を用いて前記融液(1102)の液面の高さを検出することを特徴とする、請求の範囲第4項に記載の溶融炉(1000)。 The melt height detector (1503) uses the electrical signal when the melt (1102) held in the main crucible (1101) and the base substrate (1001) come into contact with each other. The melting furnace (1000) according to claim 4, wherein the height of the liquid level of 1102) is detected.
PCT/JP2009/057118 2008-04-25 2009-04-07 Melting furnace WO2009130996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-115766 2008-04-25
JP2008115766A JP2009263174A (en) 2008-04-25 2008-04-25 Melting furnace

Publications (1)

Publication Number Publication Date
WO2009130996A1 true WO2009130996A1 (en) 2009-10-29

Family

ID=41216733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057118 WO2009130996A1 (en) 2008-04-25 2009-04-07 Melting furnace

Country Status (2)

Country Link
JP (1) JP2009263174A (en)
WO (1) WO2009130996A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182345A (en) * 2020-09-14 2022-03-15 韩华思路信 Continuous ingot growing apparatus and control method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709633A (en) * 2015-04-29 2018-02-16 1366科技公司 Method for volume contained by the melted material that maintains material to be depleted and supplement
KR102493638B1 (en) * 2021-06-18 2023-01-31 한화솔루션 주식회사 Silicon supply control method for pre-melting crucible of ingot grower
KR102493637B1 (en) * 2021-06-25 2023-01-31 한화솔루션 주식회사 Ingot growing apparatus and control method for perliminary crcible of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215383A (en) * 1990-01-17 1991-09-20 Osaka Titanium Co Ltd Raw material-supplying device
JPH09175883A (en) * 1995-12-26 1997-07-08 Shin Etsu Handotai Co Ltd Single crystal pull-up apparatus
JP2000264774A (en) * 1999-03-16 2000-09-26 Super Silicon Kenkyusho:Kk Device and method for charging single crystal raw material
JP2004331429A (en) * 2003-05-01 2004-11-25 Sharp Corp Apparatus and method for manufacturing thin sheet
JP2006342019A (en) * 2005-06-09 2006-12-21 Sharp Corp Thin plate manufacturing apparatus and thin plate manufacturing method
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215383A (en) * 1990-01-17 1991-09-20 Osaka Titanium Co Ltd Raw material-supplying device
JPH09175883A (en) * 1995-12-26 1997-07-08 Shin Etsu Handotai Co Ltd Single crystal pull-up apparatus
JP2000264774A (en) * 1999-03-16 2000-09-26 Super Silicon Kenkyusho:Kk Device and method for charging single crystal raw material
JP2004331429A (en) * 2003-05-01 2004-11-25 Sharp Corp Apparatus and method for manufacturing thin sheet
JP2006342019A (en) * 2005-06-09 2006-12-21 Sharp Corp Thin plate manufacturing apparatus and thin plate manufacturing method
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182345A (en) * 2020-09-14 2022-03-15 韩华思路信 Continuous ingot growing apparatus and control method thereof
CN114182345B (en) * 2020-09-14 2024-07-02 韩华思路信 Continuous ingot growth device and control method thereof

Also Published As

Publication number Publication date
JP2009263174A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US20190136407A1 (en) Single crystal ingots with reduced dislocation defects and methods for producing such ingots
EP0748884B1 (en) Process for producing polycrystalline semiconductors
EP1743385B1 (en) Method and device for producing metal foils
WO2009130996A1 (en) Melting furnace
JPH09183606A (en) Production of polycrystalline semiconductor and apparatus for production therefor
JP2013079800A (en) Melting furnace
CN114250504A (en) Pre-melting device for pre-melting silicon supplied to main crucible and control method thereof
JP2012001435A (en) System for continuous growth of single crystal silicon
US20230366122A1 (en) Apparatus for continuously growing ingot
WO2007013148A1 (en) Silicon single crystal pulling apparatus and method thereof
EP2395132B1 (en) Method and apparatus for manufacturing silicon substrate with excellent productivity and surface quality using continuous casting
KR20110088164A (en) Melt gap controlling system, single crystal grower and method of manufacturing single crystal including the melt gap controlling system
JP2005162507A (en) Polycrystal semiconductor ingot and its manufacturing device and method
JP4105163B2 (en) Thin plate manufacturing apparatus and thin plate manufacturing method
JP4815766B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
KR102493637B1 (en) Ingot growing apparatus and control method for perliminary crcible of the same
JP4712677B2 (en) Thin plate manufacturing method and thin plate manufacturing apparatus
JP5020119B2 (en) Precipitation plate manufacturing apparatus and precipitation plate manufacturing method
KR20110109601A (en) Ingot growing apparatus and method for controling melt gap
JP2006179805A (en) Device for manufacturing crystal sheet
JP2012041246A (en) Thin plate-manufacturing apparatus, thin plate-manufacturing method, and crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733750

Country of ref document: EP

Kind code of ref document: A1