WO2009130746A1 - 薄膜トランジスタ基板の製造方法 - Google Patents

薄膜トランジスタ基板の製造方法 Download PDF

Info

Publication number
WO2009130746A1
WO2009130746A1 PCT/JP2008/003415 JP2008003415W WO2009130746A1 WO 2009130746 A1 WO2009130746 A1 WO 2009130746A1 JP 2008003415 W JP2008003415 W JP 2008003415W WO 2009130746 A1 WO2009130746 A1 WO 2009130746A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist pattern
film
pair
standing wall
wall portions
Prior art date
Application number
PCT/JP2008/003415
Other languages
English (en)
French (fr)
Inventor
沖一郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2009130746A1 publication Critical patent/WO2009130746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process

Definitions

  • the present invention relates to a method for manufacturing a thin film transistor substrate, and more particularly to a method for manufacturing a thin film transistor substrate using four photomasks.
  • a thin film transistor (hereinafter referred to as “TFT”) substrate constituting an active matrix liquid crystal display panel is manufactured by repeatedly performing a photolithography process using different photomasks.
  • a manufacturing method for reducing the number of steps to reduce the manufacturing cost has been widely studied (for example, see Patent Documents 1 and 2). JP 2005-106881 A JP 2005-506683 A
  • FIG. 11 is a schematic cross-sectional view showing a manufacturing method of a TFT substrate by a five-mask process using five photomasks.
  • a first metal conductive film and a first photosensitive resin film are sequentially formed on the entire insulating substrate, and then the first photomask is used to form the first photosensitive film.
  • the first resist pattern 101 is formed by patterning the conductive resin film (see FIG. 11A). Then, as shown in FIG. 11A, the first metal conductive film is patterned by the first resist pattern 101 to form the gate electrode 111a and the gate line.
  • the laminated film of the intrinsic amorphous silicon film and the n + amorphous silicon film is patterned by the second resist pattern 102, and the intrinsic amorphous silicon layer 113a and the n + amorphous silicon layer 114a are patterned.
  • the third photomask is used. Then, the third photosensitive resin film is patterned to form a third resist pattern 103 (see FIG. 11C). Then, as shown in FIG. 11C, the laminated film of the second metal conductive film and the n + amorphous silicon layer 114a is patterned by the third resist pattern 103, and the n + amorphous silicon layer 114b, the channel portion is patterned. C, source electrode 115a, source line and drain electrode 115b are formed.
  • the fourth photosensitive resin film is patterned to form a fourth resist pattern 104 (see FIG. 11D). Then, as shown in FIG. 11 (d), a contact hole is formed in the protective film 116 a by the fourth resist pattern 104.
  • the fifth photosensitive resin film is formed using a fifth photomask. Is patterned to form a fifth resist pattern 105 (see FIG. 11E). Then, as shown in FIG. 11E, the transparent conductive film is patterned with the fifth resist pattern 105 to form the pixel electrode 117a.
  • a TFT substrate can be manufactured by a five-mask process.
  • FIG. 12 is a schematic cross-sectional view showing a method for manufacturing a TFT substrate by a four-mask process using four photomasks.
  • the gate electrode 111a and the gate line are formed using the first photomask (see FIG. 11A).
  • a gate insulating film 112 an intrinsic amorphous silicon film 113, an n + amorphous silicon film 114, a second metal conductive film 115, and a photosensitive resin film are sequentially formed on the entire substrate on which the gate electrode 111a and the gate line are formed.
  • the second photosensitive resin film is patterned using a second photomask to form a second resist pattern 102aa.
  • the second resist pattern 102aa is: A region where the channel portion C (see FIG.
  • the intrinsic amorphous silicon film 113, the n + amorphous silicon film 114, and the second metal conductive film 115 are patterned by the second resist pattern 102aa to form an intrinsic amorphous film.
  • a silicon layer 113b, an n + amorphous silicon film 114c, and a second metal conductive layer 115c are formed.
  • the second resist pattern 102aa is thinned by ashing and transformed into the second resist pattern 102ab (see FIG. 12C), thereby exposing the portion of the second metal conductive layer 115c that becomes the channel portion C. Then, by etching the laminated film of the second metal conductive layer 115c and the n + amorphous silicon layer 114c in the exposed portion, as shown in FIG. 12C, the n + amorphous silicon layer 114d, the channel portion C, source electrode 115d, source line and drain electrode 115e are formed.
  • a contact hole is formed in the protective film using the third photomask, and then a pixel electrode is formed using the fourth photomask, whereby the TFT A substrate can be manufactured.
  • the narrow and relatively thin portion of the second resist pattern 102aa is formed such that the cross section is not rectangular but recessed in an arc shape and the film thickness varies. Therefore, the length L of the channel portion C may vary as shown in FIG. 12D due to variations in the ashing process for thinning the second resist pattern 102aa and between the processes. In this case, the TFT characteristics deteriorate due to variations in the length L of the channel portion C. Therefore, a TFT substrate manufacturing method using another four-mask process has been proposed.
  • FIG. 13 is a schematic cross-sectional view showing a method for manufacturing a TFT substrate by another four-mask process using four photomasks.
  • the gate electrode 111a and the gate line are formed using the first photomask (see FIG. 11A).
  • a gate insulating film 112 an intrinsic amorphous silicon film 113, an n + amorphous silicon film 114, a second metal conductive film 115, and a photosensitive resin film are sequentially formed on the entire substrate on which the gate electrode 111a and the gate line are formed.
  • a second resist pattern 102ba is formed by patterning the positive second photosensitive resin film using a second halftone photomask.
  • the region where the channel portion C is formed is not completely exposed and does not exist.
  • the region is formed to be relatively thick without being exposed, and the region outside the relatively thick region is formed to be relatively thin.
  • the laminated film of the n + amorphous silicon film 114 and the second metal conductive film 115 is patterned by the second resist pattern 102ba, so that the n + amorphous silicon layer 114e, the channel is formed.
  • the part C, the source electrode 115f, the source line and drain electrode 115g are formed.
  • the second resist pattern 102ba is thinned by ashing and transformed into the second resist pattern 102bb (see FIG. 13C), thereby exposing the outer portions of the source electrode 115f and the drain electrode 115g.
  • the second resist pattern 102bb is reflowed and transformed into the second resist pattern 102bc by, for example, infiltrating the second resist pattern 102bb with an organic solvent (see FIG. 13D).
  • the intrinsic amorphous silicon film 113 is patterned by the second resist pattern 102bc to form an intrinsic amorphous silicon layer 113c.
  • a contact hole is formed in the protective film using the third photomask, and then a pixel electrode is formed using the fourth photomask, whereby the TFT A substrate can be manufactured.
  • the second resist pattern 102bb is reflowed by supplying an organic solvent or heat, so that the second resist pattern 102bc is intrinsic amorphous silicon as shown in FIG.
  • the n + amorphous silicon layer 114e the source electrode 115f and the drain electrode 115g
  • the intrinsic amorphous silicon layer 113c is formed so as to protrude from the n + amorphous silicon layer 114e, and thus the protruding protrusion B is a capacitance of the source electrode 115f and the drain electrode 115g.
  • the parasitic capacitance increases and a signal transmission delay occurs.
  • the present invention has been made in view of such points, and an object of the present invention is to reliably pattern a semiconductor film to form a thin film transistor having desired characteristics and to suppress an increase in parasitic capacitance. It is in.
  • the present invention is such that the resist pattern is transformed by reflowing a pair of standing wall portions of the resist pattern.
  • a method of manufacturing a thin film transistor substrate according to the present invention includes a gate electrode forming step of forming a gate electrode and a gate line on the substrate, and a gate insulating film, a first semiconductor film, so as to cover the gate electrode and the gate line, A second semiconductor film and a conductive film are sequentially formed, and the conductive film has a pair of standing wall portions rising on the conductive film on portions overlapping both side edge portions of the gate electrode, and a portion between the pair of standing wall portions After the resist pattern having an opening is formed, the pair of standing walls of the resist pattern is reflowed so that the pair of reflowed standing walls covers the conductive film and forms the bottom of the recess.
  • a resist pattern forming step for modifying the above, the conductive film exposed from the modified resist pattern, and the first semiconductor film disposed below the conductive film A first etching step for etching the second semiconductor film, and the conductive film exposed by removing the bottom of the concave portion of the resist pattern by thinning the resist pattern used in the first etching step by ashing And etching the second semiconductor film disposed under the conductive film to form a channel portion, a source electrode, a source line, and a drain electrode, and a resist pattern used in the second etching step.
  • a protective film forming step for forming a protective film for protecting the channel portion, the source electrode, the source line, and the drain electrode, and a pixel for forming a pixel electrode connected to the drain electrode on the protective film An electrode forming step.
  • the concave resist pattern having a bottom portion used when etching the laminated film of the first semiconductor film, the second semiconductor film, and the conductive film has a halftone pattern as in the prior art.
  • the film thickness of the bottom formed using a photomask is not easy to vary. Since the uneven portion spreads flatly on the conductive film, variation in the thickness of the bottom portion in which the bottom portion of the concave portion is configured is suppressed. Therefore, the bottom portion of the concave portion of the resist pattern is removed and exposed in the second etching step.
  • the conductive film and the second semiconductor film below the conductive film are surely etched to form a channel portion in which variation in length is suppressed.
  • the volume of the portion other than the pair of standing wall portions is considerably larger than the volume of the pair of standing wall portions, and the volume per unit volume in the portion other than the pair of standing wall portions. Since the surface area is considerably smaller than the surface area per unit volume in the pair of standing wall portions, almost all of the surface layer is reflowed only by reflowing the pair of standing wall portions and reflowing only the surface layer. It is possible to prevent reflow.
  • the semiconductor film can be surely patterned to form a thin film transistor having desired characteristics, and an increase in parasitic capacitance can be suppressed.
  • the resist pattern may be formed by exposing the photosensitive resin film with halftone.
  • the photosensitive resin film formed on the conductive film is exposed using a halftone photomask having a semi-transmissive film capable of intermediate exposure.
  • the exposure is performed at three exposure levels of a completely exposed portion, an unexposed portion, and an intermediate exposed portion.
  • the completely exposed portion becomes a portion forming a channel portion and a portion outside a portion forming a source electrode and a drain electrode, and the unexposed portion is formed.
  • the intermediate exposure portion is a portion for forming the source electrode and the drain electrode, the resist pattern having a pair of standing wall portions and an opening between them is formed. Specifically formed.
  • the resist pattern may be formed by exposing the photosensitive resin film with a gray tone.
  • the photosensitive resin film formed on the conductive film is exposed using a gray-tone photomask having a slit capable of intermediate exposure.
  • the exposure is performed at three exposure levels, that is, an unexposed portion and an intermediate exposed portion.
  • the completely exposed portion becomes a portion forming a channel portion and a portion outside a portion forming a source electrode and a drain electrode, and the unexposed portion is formed.
  • the intermediate exposure portion is a portion for forming the source electrode and the drain electrode, the resist pattern having a pair of standing wall portions and an opening between them is formed. Specifically formed.
  • the pair of standing wall portions may be reflowed with an organic solvent.
  • the organic solvent permeates into the pair of standing wall portions, so that the fluidity of the pair of standing wall portions increases, and thus the pair of standing wall portions specifically covers the conductive film uniformly.
  • a substrate having a pair of standing wall portions and having a resist pattern with an opening between them is exposed to the vapor of the organic solvent.
  • a smaller amount of an organic solvent can be permeated into the surface of the resist pattern than in the case where the resist pattern is immersed in the resist pattern.
  • the surface area per unit volume in parts other than a pair of standing wall part is considerably smaller than the surface area per unit volume in a pair of standing wall part, a pair of standing wall part is reflowed with a small amount of organic solvents. It becomes possible to hardly reflow portions other than the pair of standing wall portions.
  • the organic solvent is water-soluble, and in the resist pattern forming step, the substrate having the pair of standing walls and a resist pattern having an opening between the pair of standing walls is formed on the organic solvent. You may reflow a pair of said standing wall part by immersing in aqueous solution.
  • a substrate having a pair of standing walls and having a resist pattern with an opening between them is immersed in an organic solvent aqueous solution.
  • a smaller amount of an organic solvent can be permeated into the surface of the resist pattern than in the case where the resist pattern is immersed in the resist pattern.
  • the surface area per unit volume in parts other than a pair of standing wall part is considerably smaller than the surface area per unit volume in a pair of standing wall part, a pair of standing wall part is reflowed with a small amount of organic solvents. It becomes possible to hardly reflow portions other than the pair of standing wall portions.
  • the pair of standing wall portions may be reflowed by heat.
  • the fluidity of the pair of standing wall portions is increased, so that the pair of standing wall portions specifically cover the conductive film uniformly.
  • the pair of standing wall portions are reflowed by heating the substrate on which the resist pattern having the pair of standing wall portions and having the opening between the pair of standing wall portions is formed with a lamp. May be.
  • the substrate on which the resist pattern having the pair of standing wall portions and the portion between them is opened is heated by the lamp.
  • the lamp for example, in the furnace in which the substrate is held at a high temperature. It is possible to conduct a small amount of heat to the surface of the resist pattern, compared with the case of heating with. And, since the surface area per unit volume in the portion other than the pair of standing wall portions is considerably smaller than the surface area per unit volume in the pair of standing wall portions, the resist pattern is reflowed with a small amount of heat, It becomes possible to hardly reflow portions other than the pair of standing wall portions.
  • the semiconductor film is surely patterned to form a thin film transistor having desired characteristics and to suppress an increase in parasitic capacitance. can do.
  • FIG. 1 is a plan view showing a TFT substrate 20 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the TFT substrate 20 along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing a manufacturing method of the TFT substrate 20 corresponding to FIG.
  • FIG. 4 is a cross-sectional view showing a manufacturing method of the TFT substrate 20 following FIG.
  • FIG. 5 is a cross-sectional view showing a manufacturing method of the TFT substrate 20 following FIG.
  • FIG. 6 is a cross-sectional view showing a manufacturing method of the TFT substrate 20 following FIG.
  • FIG. 7 is a cross-sectional view showing a manufacturing method of the TFT substrate 20 following FIG. FIG.
  • FIG. 8 is a cross-sectional view showing a method of partially reflowing the resist pattern in the resist pattern forming step.
  • FIG. 9 is a cross-sectional view showing a method for partially reflowing a resist pattern in a resist pattern forming process for manufacturing a TFT substrate according to the second embodiment.
  • FIG. 10 is a cross-sectional view illustrating a method for partially reflowing a resist pattern in a resist pattern forming process for manufacturing a TFT substrate according to the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a method for manufacturing a TFT substrate by a five-mask process using five photomasks.
  • FIG. 12 is a schematic cross-sectional view showing a method for manufacturing a TFT substrate by a four-mask process using four photomasks.
  • FIG. 13 is a schematic cross-sectional view showing a method of manufacturing a TFT substrate by another four-mask process using four photomasks.
  • Embodiment 1 of the Invention 1 to 8 show Embodiment 1 of a method for manufacturing a thin film transistor substrate according to the present invention.
  • FIG. 1 is a plan view of the TFT substrate 20 of the present embodiment
  • FIG. 2 is a cross-sectional view of the TFT substrate 20 taken along line II-II in FIG.
  • the TFT substrate 20 includes an insulating substrate 10, a plurality of gate lines 6 provided on the insulating substrate 10 so as to extend in parallel to each other, and a direction orthogonal to the gate lines 6.
  • a plurality of source lines 7 provided so as to extend in parallel to each other, a plurality of TFTs 5 provided at intersections of the gate lines 6 and the source lines 7, and a protective film 16a provided so as to cover the TFTs 5
  • a plurality of pixel electrodes 17a provided in a matrix on the protective film 16a.
  • a gate input terminal 17b and a source input terminal 17c for connection to an external driving circuit or the like are provided at the end portions of the gate lines 6 and the source lines 7, respectively. It has been.
  • the TFT 5 includes a gate electrode 11a in which each gate line 6 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 11a, and a gate insulating film 12 on the gate insulating film 12.
  • a semiconductor layer 8 provided in an island shape at a position overlapping the gate electrode 11a, and a source electrode 15a and a drain electrode 15b provided so as to face each other on the semiconductor layer 8 are provided.
  • the source electrode 15 a is a portion protruding to the side of each source line 7.
  • the drain electrode 15b is connected to the pixel electrode 17a through a contact hole formed in the protective film 16a. Further, as shown in FIG.
  • the semiconductor layer 8 includes a lower intrinsic amorphous silicon layer 13a and an upper n + amorphous silicon layer 14a doped with phosphorus, and a source electrode 15a and a drain electrode 15b (n The intrinsic amorphous silicon layer 13a exposed from the + amorphous silicon layer 14a) constitutes the channel portion C.
  • the TFT substrate 20 having the above-described configuration includes a pixel which is a minimum unit of an image by each pixel electrode 17a, and a liquid crystal display together with a counter substrate disposed opposite to each other and a liquid crystal layer sealed between the two substrates. It constitutes the panel.
  • FIGS. 3 to 7 are cross-sectional views respectively showing a part of the process of manufacturing the TFT substrate 20 corresponding to the cross-sectional view of FIG.
  • FIG. 8 is a cross-sectional view showing a method for partially reflowing the resist pattern in the resist pattern forming step.
  • a metal conductive film 11 such as aluminum is formed on the entire substrate of the insulating substrate 10 such as a glass substrate having a thickness of about 0.7 mm by a sputtering method to a thickness of about 1500 mm.
  • a base coat film made of a silicon oxide film or the like may be formed on the entire substrate of the insulating substrate 10 before the metal conductive film 11 is formed.
  • the first photosensitive resin film 1 is applied and pre-baked to a thickness of about 2 ⁇ m by spin coating on the entire substrate on which the metal conductive film 11 is formed, and then the first photomask (not shown). After the exposure through, development and post-baking are performed to form a first resist pattern 1a as shown in FIG.
  • the metal conductive film 11 exposed from the first resist pattern 1a is etched by dry etching, thereby patterning the first metal conductive film 11, and as shown in FIG. A gate line 6 is formed.
  • an inorganic insulating film such as a silicon nitride film is formed to a thickness of about 4000 mm by CVD (Chemical Vapor Deposition) method on the entire substrate on which the gate electrode 11a and the gate line 6 are formed in the gate electrode forming step. Then, the gate insulating film 12 is formed (see FIG. 3D).
  • an intrinsic amorphous silicon film 13 having a thickness of 1500 mm is formed as a first semiconductor film by a CVD method on the entire substrate on which the gate insulating film 12 is formed, and then phosphorus is formed by a CVD method as a second semiconductor film.
  • a doped n + amorphous silicon film 14 is formed with a thickness of about 500 mm (see FIG. 3D).
  • a metal conductive film 15 such as titanium is formed on the entire substrate on which the gate insulating film 12, the intrinsic amorphous silicon film 13, and the n + amorphous silicon film 14 are laminated to a thickness of about 1500 mm.
  • a film is formed by sputtering.
  • the second photosensitive resin film 2 is formed on the entire substrate on which the gate insulating film 12, the intrinsic amorphous silicon film 13, the n + amorphous silicon film 14 and the metal conductive film 15 are laminated by spin coating.
  • the second photosensitive resin film 2 is formed on the entire substrate on which the gate insulating film 12, the intrinsic amorphous silicon film 13, the n + amorphous silicon film 14 and the metal conductive film 15 are laminated by spin coating.
  • FIG. 4A after coating and pre-baking at about 5 ⁇ m to 3.0 ⁇ m, exposure through a second halftone photomask (not shown), development, and post-baking. Then, a second resist pattern 2a having a pair of standing wall portions W is formed.
  • the halftone photomask has a transmissive part, a light-shielding part, and a semi-transmissive part by a semi-transmissive film capable of intermediate exposure, and the transmissive part, the light-shielding part and the semi-transmissive part are photosensitive.
  • the resin is exposed at three exposure levels, ie, a completely exposed portion, an unexposed portion, and an intermediate exposed portion.
  • the photosensitive resin film 2 is a positive type
  • the second resist pattern 2a has a channel portion C (see FIG. 5B) as shown in FIG. The portion to be formed, and the portion outside the portion where the source electrode 15a and the drain electrode 15b (see FIG.
  • the pair of standing wall portions W has, for example, a height of about 1.5 ⁇ m and a thickness of about 0.5 ⁇ m to 0.8 ⁇ m, and the distance between them, that is, the length of the channel portion is 3 It is about 0.0 ⁇ m to 5.0 ⁇ m.
  • a gray-tone photomask in which the semi-transmissive portion is configured by a plurality of slits may be used.
  • the substrate on which the second resist pattern 2a is formed is a shallow layer in which propylene glycol monomethyl ether (hereinafter referred to as “PGME”) 31 is stored as an organic solvent.
  • PGME propylene glycol monomethyl ether
  • the distance between the surface of the substrate to be processed (the surface of the second resist pattern 2a) and the liquid level of the PGME 31 is set to 100 mm to 200 mm, and the temperature of the substrate to be processed is The surface of the substrate to be processed is exposed to the vapor of the PGME 31 by leaving it at 20 ° C. to 25 ° C., leaving the temperature of the PGME 31 at 15 ° C.
  • the second resist pattern 2a is reflowed so that the pair of standing wall portions W cover the channel portion C, and is transformed into the second resist pattern 2b as shown in FIG. 4B.
  • the metal conductive film 15 exposed from the second resist pattern 2c and the n + amorphous silicon film 14 disposed below the metal conductive film 15, that is, the metal conductive layer 15c and the n + amorphous silicon layer 14b are etched, and FIG. As shown in b), the channel portion C, the source electrode 15a and the drain electrode 15b are formed.
  • the second resist pattern 2c used in the second etching step is completely removed by ashing or the like, and then the entire substrate is shown in FIG. Further, an inorganic insulating film 16 such as a silicon nitride film is formed with a thickness of about 4000 mm by a CVD method.
  • the third photosensitive resin film 3 is applied and pre-baked to a thickness of about 2 ⁇ m by spin coating on the entire substrate on which the inorganic insulating film 16 is formed, and then a third photomask (not shown). After the exposure through, development and post-baking are performed to form a third resist pattern 3a as shown in FIG. 6B.
  • the inorganic insulating film 16 exposed from the third resist pattern 3a is etched by dry etching to form a contact hole in the inorganic insulating film 16, and the protective film 16a is formed as shown in FIG. Form.
  • a transparent conductive film 17 such as an ITO (Indium Tin Oxide) film is sputtered to a thickness of about 1000 mm on the entire substrate on which the protective film 16a has been formed in the protective film forming step.
  • the film is formed by
  • the fourth photosensitive resin film 4 is applied and pre-baked to a thickness of about 2 ⁇ m by spin coating on the entire substrate on which the transparent conductive film 17 is formed, and then a fourth photomask (not shown). After the exposure through the film, development and post-baking are performed to form a fourth resist pattern 4a as shown in FIG. 7B.
  • the transparent conductive film 17 is patterned by dry etching the transparent conductive film 17 exposed from the fourth resist pattern 4a, and as shown in FIG. 2, the pixel electrode 17a, the gate input terminal 17b, and the source An input terminal 17c is formed.
  • the TFT substrate 20 can be manufactured.
  • the manufacturing method of the TFT substrate 20 of the present embodiment when the laminated film of the intrinsic amorphous silicon film 13, the n + amorphous silicon film 14, and the metal conductive film 15 is etched in the first etching step.
  • the concave second resist pattern 2b having the bottom G used for the above is not a variation in the thickness of the bottom formed by using a halftone photomask as in the prior art (see FIG. 12).
  • each standing wall W spreads flat on the metal conductive film 15 by reflow with high fluidity to reflow the pair of standing walls W of the second resist pattern 2a.
  • the exposed metal conductive layer 15c and the n + amorphous silicon layer 14b are surely etched, and a channel portion C in which variation in length is suppressed can be formed. In this way, variation in the length of the channel portion C can be suppressed, so that a TFT having desired characteristics can be formed.
  • the surface area per unit volume in the portion other than the pair of standing wall portions W is considerably larger than the surface area per unit volume in the pair of standing wall portions W.
  • the pair of standing wall portions W can be reflowed, and only the surface layer of the portions other than the pair of standing wall portions W can be reflowed so that almost no reflow is performed as a whole. Therefore, if the metal conductive film 15 exposed from the second resist pattern 2b and the underlying intrinsic amorphous silicon film 13 and n + amorphous silicon film 14 are etched in the first etching step, the metal conductive film 15, intrinsic amorphous Since the peripheral edges of the silicon film 13 and the n + amorphous silicon film 14 substantially coincide with each other, an increase in parasitic capacitance can be suppressed. Therefore, the semiconductor film can be surely patterned to form a TFT having desired characteristics, and an increase in parasitic capacitance can be suppressed.
  • the substrate on which the channel portion C, the source electrode 15a and the drain electrode 15b are formed is exposed to the vapor of the PGME 31, so that, for example, the substrate is treated with an organic solvent.
  • a smaller amount of organic solvent can be permeated into the surface of the second resist pattern 2a than in the case of being directly immersed in the second resist pattern 2a.
  • the surface area per unit volume in the portion other than the pair of standing wall portions W is considerably smaller than the surface area per unit volume in the pair of standing wall portions W.
  • the standing wall portion W can be reflowed so that portions other than the pair of standing wall portions W are hardly reflowed.
  • FIG. 9 is a cross-sectional view showing a method for partially reflowing a resist pattern in a resist pattern forming process for manufacturing the TFT substrate of this embodiment.
  • the same portions as those in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method of reflowing the pair of standing wall portions W by exposure to the vapor of the organic solvent is exemplified.
  • the present invention even if the pair of standing wall portions W is reflowed by immersion in the aqueous solution of the organic solvent. Good.
  • the substrate (see FIG. 4A) on which the second resist pattern 2a was formed in the resist pattern forming step of the first embodiment was stored in the processing tank E as shown in FIG.
  • the second resist pattern 2a is reflowed so that the pair of standing wall portions W cover the metal conductive film 15, and the second resist pattern 2a, as shown in FIG.
  • the resist pattern 2b is transformed.
  • the aqueous solution 32 is, for example, one obtained by diluting isopropyl alcohol in pure water to 1/200 to 1/500 by volume.
  • the temperature of the aqueous solution 32 is set to 20 ° C. to 25 ° C. and the immersion time is set to 1 minute to 2 minutes, so that the pair of standing wall portions W reflow so as to cover the metal conductive film 15.
  • the substrate on which the second resist pattern 2a is formed is immersed in the organic solvent aqueous solution 32.
  • the organic solvent aqueous solution 32 For example, compared with the case where the substrate is directly immersed in the organic solvent.
  • a small amount of an organic solvent can be infiltrated into the surface of the second resist pattern 2a.
  • the surface area per unit volume in the portion other than the pair of standing wall portions W is considerably smaller than the surface area per unit volume in the pair of standing wall portions W. Since the standing wall portion W can be reflowed so that portions other than the pair of standing wall portions W are hardly reflowed, the semiconductor film is surely patterned and has desired characteristics as in the first embodiment.
  • a TFT can be formed.
  • PGME and isopropyl alcohol were illustrated as an organic solvent, respectively, organic solvents, such as alcohol, ethers, ester, ketones, glycols, and mixtures thereof are used. It may be used.
  • FIG. 10 is a cross-sectional view showing a method for partially reflowing a resist pattern in a resist pattern forming process for manufacturing the TFT substrate of this embodiment.
  • the method of reflowing the pair of standing wall portions W with an organic solvent is exemplified, but the present invention may reflow the pair of standing wall portions W with heat.
  • the surface of the substrate (see FIG. 4A) on which the second resist pattern 2a is formed in the resist pattern forming step of the first embodiment in the air or in an inert gas is shown in FIG.
  • the second resist pattern 2a is reflowed so that the pair of standing wall portions W cover the metal conductive film 15 by heating with light emitted continuously or periodically from the lamp F.
  • the second resist pattern 2b is transformed.
  • the lamp F emits light in the far infrared region from the visible light region having a wavelength region of 0.4 ⁇ m to 10 ⁇ m, such as a halogen lamp or a xenon lamp.
  • the substrate surface is heated by the lamp F for 1 minute to 5 minutes so that the temperature of the substrate surface becomes 200 ° C. to 300 ° C., thereby reflowing the pair of standing wall portions W so as to cover the metal conductive film 15. It will be.
  • the substrate on which the second resist pattern 2a is formed is heated by the lamp F.
  • the lamp F For example, when the substrate is heated in a furnace maintained at a high temperature. Rather, a small amount of heat can be conducted to the surface of the second resist pattern 2a.
  • the second resist pattern 2a since the surface area per unit volume in the portion other than the pair of standing wall portions W is considerably smaller than the surface area per unit volume in the pair of standing wall portions W, the pair of standing walls is generated by a small amount of heat.
  • the semiconductor film is reliably patterned in the same manner as in the first and second embodiments, so that desired characteristics can be obtained.
  • a TFT having the same can be formed.
  • an element film can be surely patterned. This method is useful for a method of manufacturing an electronic device formed using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

 ゲート電極形成工程と、ゲート電極(11a)を覆うように、ゲート絶縁膜(12)、第1半導体膜(13)、第2半導体膜(14)及び導電膜(15)を順に成膜した後に、ゲート電極(11a)の両側端部に重なる部分に一対の立壁部(W)を有し、一対の立壁部(W)の間が開口したレジストパターン(2a)を形成した後に、一対の立壁部(W)をリフローしてレジストパターン(2b)に変成する工程と、レジストパターン(2b)から露出する導電膜(15)、第1半導体膜(13)及び第2半導体膜(14)をエッチングする工程と、レジストパターン(2b)を薄肉化して露出させた導電膜(15)及び第2半導体膜(14)をエッチングして、チャネル部、ソース電極及びドレイン電極を形成する工程と、保護膜形成工程と、画素電極形成工程とを備える。

Description

薄膜トランジスタ基板の製造方法
 本発明は、薄膜トランジスタ基板の製造方法に関し、特に、4枚のフォトマスクを用いて薄膜トランジスタ基板を製造する方法に関するものである。
 アクティブマトリクス駆動方式の液晶表示パネルを構成する薄膜トランジスタ(thin film transistor、以下、「TFT」と称する)基板は、互いに異なるフォトマスクを用いるフォトリソグラフィ工程を繰り返し行うことにより製造されるので、このフォトリソグラフィ工程の回数を減らして、製造コストの低減を図るための製造方法が広く研究されている(例えば、特許文献1及び2参照)。
特開2005-106881号公報 特表2005-506683号公報
 図11は、5枚のフォトマスクを用いる5枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。
 この5枚マスクプロセスでは、まず、絶縁基板の基板全体に、第1の金属導電膜、及び第1の感光性樹脂膜を順に成膜した後に、1枚目のフォトマスクにより、第1の感光性樹脂膜をパターニングして第1のレジストパターン101を形成する(図11(a)参照)。そして、図11(a)に示すように、第1のレジストパターン101により、第1の金属導電膜をパターニングして、ゲート電極111a及びゲート線を形成する。
 続いて、ゲート電極111a及びゲート線が形成された基板全体に、ゲート絶縁膜、第1の半導体膜として真性アモルファスシリコン膜、第2の半導体膜として不純物がドープされたnアモルファスシリコン膜、及び第2の感光性樹脂膜を順に成膜した後に、2枚目のフォトマスクにより、第2の感光性樹脂膜をパターニングして第2のレジストパターン102を形成する(図11(b)参照)。そして、図11(b)に示すように、第2のレジストパターン102により、真性アモルファスシリコン膜及びnアモルファスシリコン膜の積層膜をパターニングして、真性アモルファスシリコン層113a及びnアモルファスシリコン層114aを形成する。
 さらに、真性アモルファスシリコン層113a及びnアモルファスシリコン層114aが形成された基板全体に、第2の金属導電膜及び第3の感光性樹脂膜を順に成膜した後に、3枚目のフォトマスクにより、第3の感光性樹脂膜をパターニングして第3のレジストパターン103を形成する(図11(c)参照)。そして、図11(c)に示すように、第3のレジストパターン103により、第2の金属導電膜及びnアモルファスシリコン層114aの積層膜をパターニングして、nアモルファスシリコン層114b、チャネル部C、ソース電極115a、ソース線及びドレイン電極115bを形成する。
 引き続いて、nアモルファスシリコン層114b、チャネル部C、ソース電極115a、ソース線及びドレイン電極115bが形成された基板全体に、保護膜及び第4の感光性樹脂膜を順に成膜した後に、4枚目のフォトマスクにより、第4の感光性樹脂膜をパターニングして第4のレジストパターン104を形成する(図11(d)参照)。そして、図11(d)に示すように、第4のレジストパターン104により、保護膜116aにコンタクトホールを形成する。
 最後に、保護膜116aにコンタクトホールが形成された基板全体に、透明導電膜及び第5の感光性樹脂膜を順に成膜した後に、5枚目のフォトマスクにより、第5の感光性樹脂膜をパターニングして第5のレジストパターン105を形成する(図11(e)参照)。そして、図11(e)に示すように、第5のレジストパターン105により、透明導電膜をパターニングして、画素電極117aを形成する。
 以上のようにして、5枚マスクプロセスにより、TFT基板を製造することができる。
 近年、ハーフトーンのフォトマスクを用いて、上記5枚マスクプロセスにおける2枚目及び3枚目のフォトマスクを1枚にする製造方法が注目されている。
 図12は、4枚のフォトマスクを用いる4枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。
 この4枚マスクプロセスでは、まず、5枚マスクプロセスと同様に、1枚目のフォトマスクを用いて、ゲート電極111a及びゲート線を形成する(図11(a)参照)。
 続いて、ゲート電極111a及びゲート線が形成された基板全体に、ゲート絶縁膜112、真性アモルファスシリコン膜113、nアモルファスシリコン膜114、第2の金属導電膜115及び感光性樹脂膜を順に成膜した後に、図12(a)に示すように、2枚目のフォトマスクにより第2の感光性樹脂膜をパターニングして第2のレジストパターン102aaを形成する。ここで、2枚目のハーフトーンのフォトマスクは、ポシ型の第2の感光性樹脂膜を部分的にハーフトーンで露光させるように構成されているので、第2のレジストパターン102aaは、チャネル部C(図12(c)参照)が形成される領域がハーフトーンで露光されて相対的に薄く形成され、それ以外の非露光領域が相対的に厚く形成される。そして、図12(b)に示すように、第2のレジストパターン102aaにより、真性アモルファスシリコン膜113、nアモルファスシリコン膜114及び第2の金属導電膜115の積層膜をパターニングして、真性アモルファスシリコン層113b、nアモルファスシリコン膜114c及び第2の金属導電層115cを形成する。
 さらに、第2のレジストパターン102aaをアッシングにより薄肉化して第2のレジストパターン102ab(図12(c)参照)に変成することにより、チャネル部Cとなる部分の第2の金属導電層115cを露出させた後に、その露出部分の第2の金属導電層115c及びnアモルファスシリコン層114cの積層膜をエッチングすることにより、図12(c)に示すように、nアモルファスシリコン層114d、チャネル部C、ソース電極115d、ソース線及びドレイン電極115eを形成する。
 引き続いて、5枚マスクプロセスと同様に、3枚目のフォトマスクを用いて、保護膜にコンタクトホールを形成した後に、4枚目のフォトマスクを用いて、画素電極を形成することにより、TFT基板を製造することができる。
 ところで、上述した4枚マスクプロセスにおいて、第2のレジストパターン102aaの狭幅で相対的に薄く形成された部分は、その横断面が矩形状でなく円弧状に凹んで膜厚がばらついて形成され易いので、第2のレジストパターン102aaを薄肉化するアッシングの工程内及び工程間のばらつきなどにより、図12(d)に示すように、チャネル部Cの長さLがばらつくおそれがある。そうなると、チャネル部Cの長さLのばらつきに起因して、TFTの特性が低下してしまうので、他の4枚マスクプロセスによるTFT基板の製造方法も提案されている。
 図13は、4枚のフォトマスクを用いる他の4枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。
 この4枚マスクプロセスでは、まず、5枚マスクプロセスと同様に、1枚目のフォトマスクを用いて、ゲート電極111a及びゲート線を形成する(図11(a)参照)。
 続いて、ゲート電極111a及びゲート線が形成された基板全体に、ゲート絶縁膜112、真性アモルファスシリコン膜113、nアモルファスシリコン膜114、第2の金属導電膜115及び感光性樹脂膜を順に成膜した後に、図13(a)に示すように、2枚目のハーフトーンのフォトマスクによりポジ型の第2の感光性樹脂膜をパターニングして第2のレジストパターン102baを形成する。ここで、第2のレジストパターン102baは、図13(a)に示すように、チャネル部C(図13(b)参照)が形成される領域が完全に露光されて存在しなく、その外側の領域が露光されずに相対的に厚く形成され、さらにその相対的に厚く形成された領域の外側の領域が相対的に薄く形成される。そして、図13(b)に示すように、第2のレジストパターン102baにより、nアモルファスシリコン膜114及び第2の金属導電膜115の積層膜をパターニングして、nアモルファスシリコン層114e、チャネル部C、ソース電極115f、ソース線及びドレイン電極115gを形成する。
 さらに、第2のレジストパターン102baをアッシングにより薄肉化して第2のレジストパターン102bb(図13(c)参照)に変成することにより、ソース電極115f及びドレイン電極115gの外側の部分を露出させた後に、第2のレジストパターン102bbに、例えば、有機溶剤を浸透させることにより、第2のレジストパターン102bbをリフローして第2のレジストパターン102bcに変成する(図13(d)参照)。そして、図13(d)に示すように、第2のレジストパターン102bcにより、真性アモルファスシリコン膜113をパターニングして、真性アモルファスシリコン層113cを形成する。
 引き続いて、5枚マスクプロセスと同様に、3枚目のフォトマスクを用いて、保護膜にコンタクトホールを形成した後に、4枚目のフォトマスクを用いて、画素電極を形成することにより、TFT基板を製造することができる。
 しかしながら、上述した他の4枚マスクプロセスでは、第2のレジストパターン102bbを有機溶剤や熱の供給によりリフローさせるので、図13(d)に示すように、第2のレジストパターン102bcが真性アモルファスシリコン膜113のnアモルファスシリコン層114e(ソース電極115f及びドレイン電極115g)から露出する部分まで広がるおそれがある。そうなると、真性アモルファスシリコン層113cが、図13(e)に示すように、nアモルファスシリコン層114eよりも突出して形成されるので、その突出した突出部Bがソース電極115f及びドレイン電極115gの容量として作用することにより寄生容量が増加して、信号伝達の遅延が生じてしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、半導体膜を確実にパターニングして、所望の特性を有する薄膜トランジスタを形成すると共に、寄生容量の増加を抑制することにある。
 上記目的を達成するために、本発明は、レジストパターンの一対の立壁部をリフローしてレジストパターンを変成するようにしたものである。
 具体的に本発明に係る薄膜トランジスタ基板の製造方法は、基板にゲート電極及びゲート線を形成するゲート電極形成工程と、上記ゲート電極及びゲート線を覆うように、ゲート絶縁膜、第1半導体膜、第2半導体膜及び導電膜を順に成膜して、該導電膜上に上記ゲート電極の両側端部に重なる部分にそれぞれ立ち上がった一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンを形成した後に、該レジストパターンの一対の立壁部をリフローすることにより、該リフローされた一対の立壁部が上記導電膜を覆って凹部の底部を構成するように該レジストパターンを変成するレジストパターン形成工程と、上記変成されたレジストパターンから露出する上記導電膜、並びに該導電膜の下方に配置する上記第1半導体膜及び第2半導体膜をエッチングする第1エッチング工程と、上記第1エッチング工程で用いたレジストパターンをアッシングで薄肉化することにより、該レジストパターンの凹部の底部を除去して露出させた上記導電膜及び該導電膜の下方に配置する上記第2半導体膜をエッチングして、チャネル部、ソース電極、ソース線及びドレイン電極を形成する第2エッチング工程と、上記第2エッチング工程で用いたレジストパターンを除去した後に、上記チャネル部、ソース電極、ソース線及びドレイン電極を保護するための保護膜を形成する保護膜形成工程と、上記保護膜上に上記ドレイン電極に接続された画素電極を形成する画素電極形成工程とを備えることを特徴とする。
 上記の方法によれば、第1エッチング工程において、第1半導体膜、第2半導体膜及び導電膜の積層膜をエッチングする際に用いる底部を有する凹状のレジストパターンは、従来のようにハーフトーンのフォトマスクを用いて形成した底部の膜厚がばらつき易いものではなく、一対の立壁部を有するレジストパターンを形成した後に、そのレジストパターンの一対の立壁部をリフローする流動性の高いリフローで各立壁部が導電膜上に平坦に広がることにより凹部の底部が構成された底部の膜厚のばらつきが抑制されたものであるので、第2エッチング工程でそのレジストパターンの凹部の底部を除去して露出した導電膜、及びその下方の第2半導体膜が確実にエッチングされ、長さのばらつきが抑制されたチャネル部が形成される。このようにして、チャネル部の長さのばらつきが抑制されるので、所望の特性を有する薄膜トランジスタが形成される。また、レジストパターン形成工程で変成される前のレジストパターンにおいて、一対の立壁部以外の部分の体積は、一対の立壁部の体積よりもかなり大きく、一対の立壁部以外の部分における単位体積当たりの表面積は、一対の立壁部における単位体積当たりの表面積よりもかなり小さくなるので、一対の立壁部をリフローさせて、一対の立壁部以外の部分を、その表層のみがリフローするだけで、全体として殆どリフローさせないようにすることが可能になる。そのため、第1エッチング工程において、レジストパターンから露出する導電膜、並びにその下層の第1半導体膜及び第2半導体膜をエッチングすれば、導電膜、第1半導体膜及び第2半導体膜の各周端がほぼ一致するので、寄生容量の増加が抑制される。したがって、半導体膜を確実にパターニングして、所望の特性を有する薄膜トランジスタを形成すると共に、寄生容量の増加を抑制することが可能になる。
 上記レジストパターン形成工程では、上記導電膜上に感光性樹脂膜を成膜した後に、該感光性樹脂膜をハーフトーンで露光することにより、上記レジストパターンを形成してもよい。
 上記の方法によれば、例えば、中間露光が可能な半透過の膜を有するハーフトーンのフォトマスクを用いて、導電膜上に成膜した感光性樹脂膜を露光するので、感光性樹脂膜を完全露光部分、未露光部分及び中間露光部分の3つの露光レベルでそれぞれ露光することになる。ここで、ポジ型の感光性樹脂膜を用いる場合には、上記完全露光部分が、チャネル部を形成する部分、並びにソース電極及びドレイン電極を形成する部分の外側の部分になり、上記未露光部分が、ゲート電極の両側端部に重なる部分になり、上記中間露光部分が、ソース電極及びドレイン電極を形成する部分になるので、一対の立壁部を有し、その間の部分が開口したレジストパターンが具体的に形成される。
 上記レジストパターン形成工程では、上記導電膜上に感光性樹脂膜を成膜した後に、該感光性樹脂膜をグレイトーンで露光することにより、上記レジストパターンを形成してもよい。
 上記の方法によれば、例えば、中間露光が可能なスリットを有するグレイトーンのフォトマスクを用いて、導電膜上に成膜した感光性樹脂膜を露光するので、感光性樹脂膜を完全露光部分、未露光部分及び中間露光部分の3つの露光レベルでそれぞれ露光することになる。ここで、ポジ型の感光性樹脂膜を用いる場合には、上記完全露光部分が、チャネル部を形成する部分、並びにソース電極及びドレイン電極を形成する部分の外側の部分になり、上記未露光部分が、ゲート電極の両側端部に重なる部分になり、上記中間露光部分が、ソース電極及びドレイン電極を形成する部分になるので、一対の立壁部を有し、その間の部分が開口したレジストパターンが具体的に形成される。
 上記レジストパターン形成工程では、上記一対の立壁部を有機溶剤によりリフローしてもよい。
 上記の方法によれば、一対の立壁部に有機溶剤が浸透することにより、一対の立壁部の流動性が高くなるので、一対の立壁部が具体的に導電膜を均一に覆うことになる。
 上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板を上記有機溶剤の蒸気に曝露することにより、上記一対の立壁部をリフローしてもよい。
 上記の方法によれば、一対の立壁部を有し、それらの間の部分が開口したレジストパターンが形成された基板が有機溶剤の蒸気に曝露されるので、例えば、その基板を有機溶剤に直に浸漬する場合よりも、レジストパターンの表面に少量の有機溶剤を浸透させることが可能になる。そして、レジストパターンは、一対の立壁部以外の部分における単位体積当たりの表面積が一対の立壁部における単位体積当たりの表面積よりもかなり小さいので、少量の有機溶剤によって、一対の立壁部をリフローさせて、一対の立壁部以外の部分を殆どリフローさせないようにすることが可能になる。
 上記有機溶剤は、水溶性であり、上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板を上記有機溶剤の水溶液に浸漬することにより、上記一対の立壁部をリフローしてもよい。
 上記の方法によれば、一対の立壁部を有し、それらの間の部分が開口したレジストパターンが形成された基板が有機溶剤の水溶液に浸漬されるので、例えば、その基板を有機溶剤に直に浸漬する場合よりも、レジストパターンの表面に少量の有機溶剤を浸透させることが可能になる。そして、レジストパターンは、一対の立壁部以外の部分における単位体積当たりの表面積が一対の立壁部における単位体積当たりの表面積よりもかなり小さいので、少量の有機溶剤によって、一対の立壁部をリフローさせて、一対の立壁部以外の部分を殆どリフローさせないようにすることが可能になる。
 上記レジストパターン形成工程では、上記一対の立壁部を熱によりリフローしてもよい。
 上記の方法によれば、一対の立壁部に熱が伝導することにより、一対の立壁部の流動性が高くなるので、一対の立壁部が具体的に導電膜を均一に覆うことになる。
 上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板をランプで加熱することにより、上記一対の立壁部をリフローしてもよい。
 上記の方法によれば、一対の立壁部を有し、それらの間の部分が開口したレジストパターンが形成された基板がランプで加熱されるので、例えば、その基板を高温に保持された炉内で加熱する場合よりも、レジストパターンの表面に少量の熱を伝導させることが可能になる。そして、レジストパターンは、一対の立壁部以外の部分における単位体積当たりの表面積が一対の立壁部における単位体積当たりの表面積よりもかなり小さいので、少量の熱によって、一対の立壁部をリフローさせて、一対の立壁部以外の部分を殆どリフローさせないようにすることが可能になる。
 本発明によれば、レジストパターンの一対の立壁部をリフローしてレジストパターンを変成するので、半導体膜を確実にパターニングして、所望の特性を有する薄膜トランジスタを形成すると共に、寄生容量の増加を抑制することができる。
図1は、実施形態1に係るTFT基板20を示す平面図である。 図2は、図1中のII-II線に沿ったTFT基板20を示す断面図である。 図3は、図2に対応するTFT基板20の製造方法を示す断面図である。 図4は、図3に続くTFT基板20の製造方法を示す断面図である。 図5は、図4に続くTFT基板20の製造方法を示す断面図である。 図6は、図5に続くTFT基板20の製造方法を示す断面図である。 図7は、図6に続くTFT基板20の製造方法を示す断面図である。 図8は、レジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。 図9は、実施形態2に係るTFT基板を製造するためのレジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。 図10は、実施形態3に係るTFT基板を製造するためのレジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。 図11は、5枚のフォトマスクを用いる5枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。 図12は、4枚のフォトマスクを用いる4枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。 図13は、4枚のフォトマスクを用いる他の4枚マスクプロセスによるTFT基板の製造方法を示す断面模式図である。
符号の説明
C    チャネル部
F    ランプ
G    底部
H    凹部
W    立壁部
2    感光性樹脂膜
2a~2c  レジストパターン
6    ゲート線
7    ソース線
11a  ゲート電極
12   ゲート絶縁膜
13   真性アモルファスシリコン膜(第1半導体膜)
14   nアモルファスシリコン膜(第2半導体膜)
15   金属導電膜
15a  ソース電極
15b  ドレイン電極
16a  保護膜
17a  画素電極
20   TFT基板(薄膜トランジスタ基板)
31   PGME(有機溶剤)
32   水溶液
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《発明の実施形態1》
 図1~図8は、本発明に係る薄膜トランジスタ基板の製造方法の実施形態1を示している。具体的に図1は、本実施形態のTFT基板20の平面図であり、図2は、図1中のII-II線に沿ったTFT基板20の断面図である。
 TFT基板20は、図1及び図2に示すように、絶縁基板10と、絶縁基板10上に互いに平行に延びるように設けられた複数のゲート線6と、各ゲート線6と直交する方向に互いに平行に延びるように設けられた複数のソース線7と、各ゲート線6及び各ソース線7の交差部分にそれぞれ設けられた複数のTFT5と、各TFT5を覆うように設けられた保護膜16aと、保護膜16a上にマトリクス状に設けられた複数の画素電極17aとを備えている。ここで、各ゲート線6及び各ソース線7の端部には、図1及び図2に示すように、外部の駆動回路などに接続するためのゲート入力端子17b及びソース入力端子17cがそれぞれ設けられている。
 TFT5は、図1及び図2に示すように、各ゲート線6が側方に突出したゲート電極11aと、ゲート電極11aを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極11aに重なる位置に島状に設けられた半導体層8と、半導体層8上で互いに対峙するように設けられたソース電極15a及びドレイン電極15bとを備えている。ここで、ソース電極15aは、各ソース線7の側方に突出した部分である。また、ドレイン電極15bは、保護膜16aに形成されたコンタクトホールを介して画素電極17aに接続されている。さらに、半導体層8は、図2に示すように、下層の真性アモルファスシリコン層13aと、その上層のリンがドープされたnアモルファスシリコン層14aとを備え、ソース電極15a及びドレイン電極15b(nアモルファスシリコン層14a)から露出する真性アモルファスシリコン層13aがチャネル部Cを構成している。
 上記構成のTFT基板20は、各画素電極17aによって画像の最小単位である画素が構成され、対向して配置される対向基板と、それらの両基板の間に封入される液晶層と共に、液晶表示パネルを構成するものである。
 次に、TFT基板20の製造方法について説明する。なお、本実施形態の製造方法は、ゲート電極形成工程、レジストパターン形成工程、第1エッチング工程、第2エッチング工程、保護膜形成工程及び画素電極形成工程を備えている。ここで、図3~図7は、図2の断面図に対応するTFT基板20を製造する工程の一部をそれぞれ示す断面図である。そして、図8は、レジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。
 <ゲート電極形成工程>
 まず、例えば、厚さ0.7mm程度のガラス基板などの絶縁基板10の基板全体に、図3(a)に示すように、アルミニウムなどの金属導電膜11を厚さ1500Å程度でスパッタリング法により成膜する。なお、金属導電膜11を成膜する前に、絶縁基板10の基板全体に酸化シリコン膜などからなるベースコート膜を成膜してもよい。
 続いて、金属導電膜11が成膜された基板全体にスピンコーティング法により、第1の感光性樹脂膜1を厚さ2μm程度で塗布、プリベークした後に、1枚目のフォトマスク(不図示)を介して露光した後に、現像、ポストベークすることにより、図3(b)に示すように、第1のレジストパターン1aを形成する。
 さらに、第1のレジストパターン1aから露出する金属導電膜11をドライエッチングによりエッチングすることにより、第1の金属導電膜11をパターニングして、図3(c)に示すように、ゲート電極11a及びゲート線6を形成する。
 <レジストパターン形成工程>
 まず、上記ゲート電極形成工程でゲート電極11a及びゲート線6が形成された基板全体に、CVD(Chemical Vapor Deposition)法により窒化シリコン膜などの無機絶縁膜を厚さ4000Å程度で成膜することにより、ゲート絶縁膜12を形成する(図3(d)参照)。
 続いて、ゲート絶縁膜12が形成された基板全体に、第1半導体膜として、CVD法により真性アモルファスシリコン膜13を厚さ1500Åで成膜した後に、第2半導体膜として、CVD法によりリンがドープされたnアモルファスシリコン膜14を厚さ500Å程度で成膜する(図3(d)参照)。
 さらに、ゲート絶縁膜12、真性アモルファスシリコン膜13及びnアモルファスシリコン膜14が積層された基板全体に、図3(d)に示すように、チタンなどの金属導電膜15を厚さ1500Å程度でスパッタリング法により成膜する。
 その後、ゲート絶縁膜12、真性アモルファスシリコン膜13、nアモルファスシリコン膜14及び金属導電膜15が積層された基板全体に、スピンコーティング法により、第2の感光性樹脂膜2を厚さ2.5μm~3.0μm程度で塗布、プリベークした後に、2枚目のハーフトーンのフォトマスク(不図示)を介して露光した後に、現像、ポストベークすることにより、図4(a)に示すように、一対の立壁部Wを有する第2のレジストパターン2aを形成する。
 ここで、上記ハーフトーンのフォトマスクは、透過部、遮光部、及び中間露光が可能な半透過の膜による半透過部を有し、それらの透過部、遮光部及び半透過部により、感光性樹脂を完全露光部分、未露光部分及び中間露光部分の3つの露光レベルでそれぞれ露光するように構成されている。具体的に本実施形態では、感光性樹脂膜2がポジ型であるので、第2のレジストパターン2aは、図4(a)に示すように、チャネル部C(図5(b)参照)が形成される部分、並びにソース電極15a及びドレイン電極15b(図5(b)参照)が形成される部分の外側の部分が完全に露光されて存在しなく、ゲート電極11aの両側端部に重なる部分が露光されずに相対的に厚く形成されて一対の立壁部Wを構成し、ソース電極15a及びドレイン電極15bが形成される部分が中位に露光されて相対的に薄く形成されている。なお、一対の立壁部Wは、例えば、その高さが1.5μm程度であり、その厚さが0.5μm~0.8μm程度であり、それらの間隔、すなわち、チャネル部の長さが3.0μm~5.0μm程度である。また、上記ハーフトーンのフォトマスクの代わりに、上記半透過部が、複数のスリットにより構成されたグレイトーンのフォトマスクを用いてもよい。
 引き続いて、第2のレジストパターン2aが形成された基板(被処理基板)を、図8に示すように、有機溶剤としてプロピレングリコールモノメチルエーテル(以下、「PGME」と称する)31が貯留された浅皿を備えた密閉容器D内に収容した後に、上記被処理基板の表面(第2のレジストパターン2aの表面)とPGME31の液面との距離を100mm~200mmとし、上記被処理基板の温度を20℃~25℃とし、PGME31の温度を15℃~20℃とし、そのまま、1分間~2分間、静置することにより、上記被処理基板の表面をPGME31の蒸気に曝露する。これにより、第2のレジストパターン2aは、一対の立壁部Wがチャネル部Cを覆うようにリフローして、図4(b)に示すように、第2のレジストパターン2bに変成される。
 <第1エッチング工程>
 上記レジストパターン形成工程で形成された第2のレジストパターン2bから露出する金属導電膜15、及びその下方に配置する真性アモルファスシリコン膜13及びnアモルファスシリコン膜14をエッチングして、図4(c)に示すように、金属導電層15c及びnアモルファスシリコン層14bを形成する。
 <第2エッチング工程>
 まず、上記第1エッチング工程で用いた第2のレジストパターン2bをアッシングで薄肉化することにより、第2のレジストパターン2bの凹部Hの底部Gを除去して、図5(a)に示すように、金属導電膜15、すなわち、金属導電層15cが露出する第2のレジストパターン2cを形成する。
 続いて、第2のレジストパターン2cから露出する金属導電膜15及びその下方に配置するnアモルファスシリコン膜14、すなわち、金属導電層15c及びnアモルファスシリコン層14bをエッチングして、図5(b)に示すように、チャネル部C、ソース電極15a及びドレイン電極15bを形成する。
 <保護膜形成工程>
 まず、上記第2エッチング工程で用いた第2のレジストパターン2cを、図5(c)に示すように、アッシングなどにより完全に除去した後に、その基板全体に、図6(a)に示すように、CVD法により窒化シリコン膜などの無機絶縁膜16を厚さ4000Å程度で成膜する。
 続いて、無機絶縁膜16が成膜された基板全体にスピンコーティング法により、第3の感光性樹脂膜3を厚さ2μm程度で塗布、プリベークした後に、3枚目のフォトマスク(不図示)を介して露光した後に、現像、ポストベークすることにより、図6(b)に示すように、第3のレジストパターン3aを形成する。
 さらに、第3のレジストパターン3aから露出する無機絶縁膜16をドライエッチングによりエッチングすることにより、無機絶縁膜16にコンタクトホールを形成して、図6(c)に示すように、保護膜16aを形成する。
 <画素電極形成工程>
 まず、上記保護膜形成工程で保護膜16aが形成された基板全体に、図7(a)に示すように、ITO(Indium Tin Oxide)膜などの透明導電膜17を厚さ1000Å程度でスパッタリング法により成膜する。
 続いて、透明導電膜17が成膜された基板全体にスピンコーティング法により、第4の感光性樹脂膜4を厚さ2μm程度で塗布、プリベークした後に、4枚目のフォトマスク(不図示)を介して露光した後に、現像、ポストベークすることにより、図7(b)に示すように、第4のレジストパターン4aを形成する。
 さらに、第4のレジストパターン4aから露出する透明導電膜17をドライエッチングによりエッチングすることにより、透明導電膜17をパターニングして、図2に示すように、画素電極17a、ゲート入力端子17b及びソース入力端子17cを形成する。
 以上のようにして、TFT基板20を製造することができる。
 以上説明したように、本実施形態のTFT基板20の製造方法によれば、第1エッチング工程において、真性アモルファスシリコン膜13、nアモルファスシリコン膜14及び金属導電膜15の積層膜をエッチングする際に用いる底部Gを有する凹状の第2のレジストパターン2bは、従来(図12参照)のようにハーフトーンのフォトマスクを用いて形成した底部の膜厚がばらつき易いものではなく、一対の立壁部Wを有する第2のレジストパターン2aを形成した後に、その第2のレジストパターン2aの一対の立壁部Wをリフローする流動性の高いリフローで各立壁部Wが金属導電膜15上に平坦に広がることにより凹部Hの底部Gが構成された底部Gの膜厚のばらつきが抑制されたものであるので、第2エッチング工程で第2のレジストパターン2bの凹部Hの底部Gを除去して露出した金蔵導電層15c及びnアモルファスシリコン層14bが確実にエッチングされ、長さのばらつきが抑制されたチャネル部Cを形成することができる。このようにして、チャネル部Cの長さのばらつきを抑制できるので、所望の特性を有するTFTを形成することができる。また、レジストパターン形成工程で変成される前の第2のレジストパターン2aにおいて、一対の立壁部W以外の部分における単位体積当たりの表面積は、一対の立壁部Wにおける単位体積当たりの表面積よりもかなり小さくなるので、一対の立壁部Wをリフローさせて、一対の立壁部W以外の部分を、その表層のみがリフローするだけで、全体として殆どリフローさせないようにすることができる。そのため、第1エッチング工程において、第2のレジストパターン2bから露出する金属導電膜15、並びにその下層の真性アモルファスシリコン膜13及びnアモルファスシリコン膜14をエッチングすれば、金属導電膜15、真性アモルファスシリコン膜13及びnアモルファスシリコン膜14の各周端がほぼ一致するので、寄生容量の増加を抑制することができる。したがって、半導体膜を確実にパターニングして、所望の特性を有するTFTを形成すると共に、寄生容量の増加を抑制することができる。
 ここで、本実施形態のTFT基板20の製造方法によれば、チャネル部C、ソース電極15a及びドレイン電極15bが形成された基板がPGME31の蒸気に曝露されるので、例えば、その基板を有機溶剤に直に浸漬する場合よりも、第2のレジストパターン2aの表面に少量の有機溶剤を浸透させることができる。そして、第2のレジストパターン2aは、一対の立壁部W以外の部分における単位体積当たりの表面積が一対の立壁部Wにおける単位体積当たりの表面積よりもかなり小さいので、少量の有機溶剤によって、一対の立壁部Wをリフローさせて、一対の立壁部W以外の部分を殆どリフローさせないようにすることができる。
 《発明の実施形態2》
 図9は、本実施形態のTFT基板を製造するためのレジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。なお、以下の実施形態において、図1~図8と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記実施形態1では、一対の立壁部Wを有機溶剤の蒸気への曝露によりリフローする方法を例示したが、本発明は、一対の立壁部Wを有機溶剤の水溶液への浸漬によりリフローしてもよい。
 具体的には、上記実施形態1のレジストパターン形成工程で第2のレジストパターン2aが形成された基板(図4(a)参照)を、図9に示すように、処理槽Eに貯留された有機溶剤の水溶液32に浸漬することにより、第2のレジストパターン2aは、一対の立壁部Wが金属導電膜15を覆うようにリフローして、図4(b)に示すように、第2のレジストパターン2bに変成される。ここで、水溶液32は、例えば、イソプロピルアルコールを純水に体積比で1/200~1/500に希釈したものである。この場合、水溶液32の温度を20℃~25℃とし、浸漬時間を1分間~2分間とすることにより、一対の立壁部Wが金属導電膜15を覆うようにリフローすることになる。
 本実施形態のTFT基板の製造方法によれば、第2のレジストパターン2aが形成された基板が有機溶剤の水溶液32に浸漬されるので、例えば、その基板を有機溶剤に直に浸漬する場合よりも、第2のレジストパターン2aの表面に少量の有機溶剤を浸透させることができる。そして、第2のレジストパターン2aは、一対の立壁部W以外の部分における単位体積当たりの表面積が一対の立壁部Wにおける単位体積当たりの表面積よりもかなり小さいので、少量の有機溶剤によって、一対の立壁部Wをリフローさせて、一対の立壁部W以外の部分を殆どリフローさせないようにすることができるので、上記実施形態1と同様に、半導体膜を確実にパターニングして、所望の特性を有するTFTを形成することができる。
 また、上記実施形態1及び本実施形態では、有機溶剤として、PGME及びイソプロピルアルコールをそれぞれ例示したが、アルコール類、エーテル類、エステル類、ケトン類、グリコール類などの有機溶剤、及びそれらの混合物を用いてもよい。
 《発明の実施形態3》
 図10は、本実施形態のTFT基板を製造するためのレジストパターン形成工程において、レジストパターンを部分的にリフローする方法を示す断面図である。
 上記各実施形態では、一対の立壁部Wを有機溶剤によりリフローする方法を例示したが、本発明は、一対の立壁部Wを熱によりリフローしてもよい。
 具体的には、大気中又は不活性ガス中で、上記実施形態1のレジストパターン形成工程で第2のレジストパターン2aが形成された基板(図4(a)参照)の表面を、図10に示すように、ランプFから連続的又は周期的に放射される光で加熱することにより、第2のレジストパターン2aは、一対の立壁部Wが金属導電膜15を覆うようにリフローして、図4(b)に示すように、第2のレジストパターン2bに変成される。ここで、ランプFは、ハロゲンランプやキセノンランプなどの波長領域0.4μm~10μmの可視光領域から遠赤外線領域の光を放射するものである。そして、基板表面の温度が200℃~300℃になるように、基板表面をランプFで1分間~5分間、加熱することにより、一対の立壁部Wが金属導電膜15を覆うようにリフローすることになる。
 本実施形態のTFT基板20の製造方法によれば、第2のレジストパターン2aが形成された基板がランプFで加熱されるので、例えば、その基板を高温に保持された炉内で加熱する場合よりも、第2のレジストパターン2aの表面に少量の熱を伝導させることができる。そして、第2のレジストパターン2aは、一対の立壁部W以外の部分における単位体積当たりの表面積が一対の立壁部Wにおける単位体積当たりの表面積よりもかなり小さいので、少量の熱によって、一対の立壁部Wをリフローさせて、一対の立壁部W以外の部分を殆どリフローさせないようにすることができるので、上記実施形態1及び2と同様に、半導体膜を確実にパターニングして、所望の特性を有するTFTを形成することができる。
 以上説明したように、本発明は、ハーフトーン又はグレイトーンのフォトマスクを用いてTFT基板を製造する方法において、素子膜を確実にパターニングすることができるので、ハーフトーン又はグレイトーンのフォトマスクを用いて形成される電子素子の製造方法について有用である。

Claims (8)

  1.  基板にゲート電極及びゲート線を形成するゲート電極形成工程と、
     上記ゲート電極及びゲート線を覆うように、ゲート絶縁膜、第1半導体膜、第2半導体膜及び導電膜を順に成膜して、該導電膜上に上記ゲート電極の両側端部に重なる部分にそれぞれ立ち上がった一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンを形成した後に、該レジストパターンの一対の立壁部をリフローすることにより、該リフローされた一対の立壁部が上記導電膜を覆って凹部の底部を構成するように該レジストパターンを変成するレジストパターン形成工程と、
     上記変成されたレジストパターンから露出する上記導電膜、並びに該導電膜の下方に配置する上記第1半導体膜及び第2半導体膜をエッチングする第1エッチング工程と、
     上記第1エッチング工程で用いたレジストパターンをアッシングで薄肉化することにより、該レジストパターンの凹部の底部を除去して露出させた上記導電膜及び該導電膜の下方に配置する上記第2半導体膜をエッチングして、チャネル部、ソース電極、ソース線及びドレイン電極を形成する第2エッチング工程と、
     上記第2エッチング工程で用いたレジストパターンを除去した後に、上記チャネル部、ソース電極、ソース線及びドレイン電極を保護するための保護膜を形成する保護膜形成工程と、
     上記保護膜上に上記ドレイン電極に接続された画素電極を形成する画素電極形成工程とを備えることを特徴とする薄膜トランジスタ基板の製造方法。
  2.  請求項1に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記導電膜上に感光性樹脂膜を成膜した後に、該感光性樹脂膜をハーフトーンで露光することにより、上記レジストパターンを形成することを特徴とする薄膜トランジスタ基板の製造方法。
  3.  請求項1に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記導電膜上に感光性樹脂膜を成膜した後に、該感光性樹脂膜をグレイトーンで露光することにより、上記レジストパターンを形成することを特徴とする薄膜トランジスタ基板の製造方法。
  4.  請求項1に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記一対の立壁部を有機溶剤によりリフローすることを特徴とする薄膜トランジスタ基板の製造方法。
  5.  請求項4に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板を上記有機溶剤の蒸気に曝露することにより、上記一対の立壁部をリフローすることを特徴とする薄膜トランジスタ基板の製造方法。
  6.  請求項4に記載された薄膜トランジスタ基板の製造方法において、
     上記有機溶剤は、水溶性であり、
     上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板を上記有機溶剤の水溶液に浸漬することにより、上記一対の立壁部をリフローすることを特徴とする薄膜トランジスタ基板の製造方法。
  7.  請求項1に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記一対の立壁部を熱によりリフローすることを特徴とする薄膜トランジスタ基板の製造方法。
  8.  請求項7に記載された薄膜トランジスタ基板の製造方法において、
     上記レジストパターン形成工程では、上記一対の立壁部を有し、該一対の立壁部の間の部分が開口したレジストパターンが形成された基板をランプで加熱することにより、上記一対の立壁部をリフローすることを特徴とする薄膜トランジスタ基板の製造方法。
PCT/JP2008/003415 2008-04-22 2008-11-20 薄膜トランジスタ基板の製造方法 WO2009130746A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008111297 2008-04-22
JP2008-111297 2008-04-22

Publications (1)

Publication Number Publication Date
WO2009130746A1 true WO2009130746A1 (ja) 2009-10-29

Family

ID=41216496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003415 WO2009130746A1 (ja) 2008-04-22 2008-11-20 薄膜トランジスタ基板の製造方法

Country Status (1)

Country Link
WO (1) WO2009130746A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005038A (ja) * 1999-04-26 2001-01-12 Samsung Electronics Co Ltd 表示装置用薄膜トランジスタ基板及びその製造方法
JP2002261078A (ja) * 2001-02-27 2002-09-13 Nec Kagoshima Ltd パターン形成方法および液晶表示装置の製造方法
JP2006030320A (ja) * 2004-07-12 2006-02-02 Hoya Corp グレートーンマスク及びグレートーンマスクの製造方法
JP2006154127A (ja) * 2004-11-26 2006-06-15 Nec Lcd Technologies Ltd 表示装置の製造方法及びパターン形成方法
JP2006154122A (ja) * 2004-11-26 2006-06-15 Nec Lcd Technologies Ltd アクテイブマトリクス型表示装置用フォトマスク及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005038A (ja) * 1999-04-26 2001-01-12 Samsung Electronics Co Ltd 表示装置用薄膜トランジスタ基板及びその製造方法
JP2002261078A (ja) * 2001-02-27 2002-09-13 Nec Kagoshima Ltd パターン形成方法および液晶表示装置の製造方法
JP2006030320A (ja) * 2004-07-12 2006-02-02 Hoya Corp グレートーンマスク及びグレートーンマスクの製造方法
JP2006154127A (ja) * 2004-11-26 2006-06-15 Nec Lcd Technologies Ltd 表示装置の製造方法及びパターン形成方法
JP2006154122A (ja) * 2004-11-26 2006-06-15 Nec Lcd Technologies Ltd アクテイブマトリクス型表示装置用フォトマスク及びその製造方法

Similar Documents

Publication Publication Date Title
US8502229B2 (en) Array substrate for display device and method of fabricating the same
US8563980B2 (en) Array substrate and manufacturing method
US8735888B2 (en) TFT-LCD array substrate and manufacturing method thereof
US7785940B2 (en) TFT array substrate and method for fabricating the same
US8842231B2 (en) Array substrate and manufacturing method thereof
US20170271370A1 (en) Array substrate and method of manufacturing the same, and display panel
US7294518B2 (en) Composition for stripping photoresist and method for manufacturing thin film transistor array panel using the same
US20130001579A1 (en) Array Substrate for Fringe Field Switching Mode Liquid Crystal Display and Method of Manufacturing the Same
EP2804207A1 (en) Method for manufacturing tft array substrate
US8193534B2 (en) Array substrate of thin film transistor liquid crystal display and method of manufacturing the same
KR101900170B1 (ko) 어레이 기판의 제조 방법, 어레이 기판 및 디스플레이 디바이스
WO2015081652A1 (zh) 阵列基板及其制作方法、显示装置
US20140273362A1 (en) Method for manufacturing thin film transistor and array substrate
US8441592B2 (en) TFT-LCD array substrate and manufacturing method thereof
KR100910445B1 (ko) 어레이 기판의 제조방법
CN106684038B (zh) 用于4m制程制备tft的光罩及4m制程tft阵列制备方法
US20180108756A1 (en) Thin film transistor and fabrication method thereof, array substrate and fabrication method thereof, display apparatus
US7700483B2 (en) Method for fabricating pixel structure
US7811867B2 (en) Method for manufacturing pixel structure
WO2014117444A1 (zh) 阵列基板及其制作方法、显示装置
WO2013131390A1 (zh) Tft阵列基板及其制造方法和显示装置
WO2009130746A1 (ja) 薄膜トランジスタ基板の製造方法
US20070145436A1 (en) Thin film transistor substrate of liquid crystal display and method for fabricating same
KR20050002231A (ko) 박막 트랜지스터 표시판 및 그의 제조 방법
KR20050105422A (ko) 액정표시패널 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08874017

Country of ref document: EP

Kind code of ref document: A1