WO2009129737A1 - 农业生产系统 - Google Patents
农业生产系统 Download PDFInfo
- Publication number
- WO2009129737A1 WO2009129737A1 PCT/CN2009/071390 CN2009071390W WO2009129737A1 WO 2009129737 A1 WO2009129737 A1 WO 2009129737A1 CN 2009071390 W CN2009071390 W CN 2009071390W WO 2009129737 A1 WO2009129737 A1 WO 2009129737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- culture
- planting
- zone
- agricultural production
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F17/00—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
- A23K10/37—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Definitions
- the invention relates to a modern system agricultural production method, in particular to an agricultural production system and method for utilizing the fermentation function of microorganisms, decomposing and reducing animal and plant wastes, forming new food and feed sources, and designing an ecological energy-saving system according to the material and energy cycle.
- the indirect pollution caused by conventional agricultural modernization is mainly due to the "three wastes” caused by the massive burning of energy in the production of production materials.
- High-input and intensive direct pollution to the environment mainly refers to the large-scale application of pesticides, fertilizers and manure discharged into farmland by large intensive farms. Because the crops cannot be fully absorbed and cannot be decomposed, residual pesticides and nitrates enter the soil and groundwater.
- developed countries experienced large intensive livestock farms in the suburbs of cities. As a result, a large amount of excrement and sewage are generated, which leads to environmental pollution.
- the survey shows that the labor force is mainly based on the young and middle-aged labor force with higher cultural quality.
- China is likely to have a fault of a farmer.
- the agricultural ecological environment is increasingly damaged, and agricultural natural disasters are increasingly frequent.
- China is a big country, and it is also a big country for feed production and consumption.
- the target for 2010 is:
- the national double-shift production capacity of feedstuffs reached 140 million tons, the combined feed output was 100 million tons, the concentrated material was 5 million tons, and the additive premix was 2 million tons.
- the feed additives were basically localized.
- the future of China's feed production, the overall situation is the combination of concentrate, green feed and straw feed, of which, concentrate will always be in a serious shortage. Due to the high price of imported high-quality fishmeal, the production cost of the feed industry is difficult to reduce. At present, it is necessary to actively look for alternative raw materials for fishmeal and reduce production costs.
- China is a large agricultural country, producing a variety of crop straws and vines of 1.09 billion tons per year.
- the consumption of large livestock is less than 20%, and it is used as less than 10% of wood burning.
- the rest are burned on the spot or long-term accumulation of natural decay. It not only causes waste of resources, but also hinders traffic, blocks rivers, and pollutes the environment.
- the use and transformation of these organic wastes and the production of certain economic benefits are one of the priorities of the governments at all levels, and they are also the eager hope of the majority of farmers.
- the object of the present invention is to establish an advanced agricultural circular economy production mode based on ecological principles, so that non-economic products supplemented by each link of providing economic products in the agricultural resource system are the next step of utilizing "raw materials". ", to form a recycling path with different sizes and different levels, to maximize the acquisition of economic products that meet the needs of human interests.
- Another object of the present invention is to eliminate "environmental pollution” caused by "waste” in agricultural production to reach agriculture.
- the benefits of production are maximized and the goal of harmful minimization is achieved.
- Another object of the present invention is to provide a three-dimensional intensive agricultural planting and breeding base and method for water source and energy recycling, so as to achieve comprehensive water saving, energy saving, high efficiency, and sustainable industrial development.
- a system agricultural production system for material and energy cycle design which comprises a three-dimensional culture zone, a three-dimensional planting zone and a biological control zone, and the whole planting and aquaculture production adopts a three-dimensional industrial modular production mode.
- the energy required for the temperature of the planting area and the culture area and the supplement of the stereo light source is provided by an energy supplement system consisting of a biomass energy production system and solar wind energy; the waste material of the planting area is processed and converted into feed for use in the culture area; The waste material of the area is microbially made into a biological medium and supplied to the planting area; the carbon dioxide and oxygen generated between the culture area and the planting area are recycled to each other; the temperature and humidity conditions of the culture area and the planting area are mutually converted.
- the recycling of carbon dioxide and oxygen between the culture area and the planting area is achieved by an oxygen and carbon dioxide control system; the temperature and humidity conditions between the culture area and the planting area are converted into each other by utilizing the above-mentioned oxygen and carbon dioxide control system and adoption.
- the heat pump technology realizes the temperature and humidity exchange system of the breeding area.
- the energy supplementing system of the planting area and the breeding area comprises a power part, a control part and an electric appliance application part, wherein the power part adopts a solar panel, a combination of wind power generation, geothermal resources, biogas power generation, and grid power supply as an emergency
- the power supply is used;
- the control part is composed of a wind power generation device, a wind power generation controller, a battery, an inverter, a smart total controller and a servo part, and converts various energy sources into voltages required for the electric appliances and various processes in use.
- electrical applications include fill light systems, LED lighting control systems, and various household appliances; surplus electrical energy is stored in energy storage for use in output or air conditioning systems.
- the light-filling system includes a power conversion portion, a control portion and a light-emitting device, wherein the power conversion portion outputs a voltage of 36V; the light-emitting device has a plurality of rows of LED light-emitting tubes; and the control portion is manually controlled by a single-chip microcomputer and a microcomputer
- the keyboard is composed of a microcomputer control power input, an information display, and a multi-channel output control.
- the multi-output circuit is switched on and off with a single-board machine to form a pulsed light source of adjustable voltage or adjustable pulse width, and automatically controls the light-emitting device.
- the total light intensity changes and the photoperiod, the hand-controlled keyboard controls the light intensity ratios of the multiple rows of LED tubes, simulating daylight changes.
- the light-emitting device in the fill light system comprises a planar light source structure and a tubular light source structure, respectively, as a light source structure for marine microalgae cultivation, greenhouse seedling, tissue culture and vegetable greenhouse fill light applied to the culture area and the planting area.
- the tubular light source structure adopts a red orange green blue purple LED light-emitting tube with a ⁇ 5 ⁇ , an illumination angle of about 90-120 degrees, is fixed on the cubic soft belt, and is sealed by a high transparent PVC material to form a fixed length unit section. It can be used in parallel in multiple sections for close-range irradiation of greenhouse seedlings.
- the tubular light source structure adopts a cylindrical shape, and the LED light-emitting tubes are arranged in a plurality of directions on the cylindrical surface, wherein the intensity ratio of the red, green, blue and purple light colors: 2: 1: 5: 3, the tubular light source is inserted into the marine microalgae culture container As a supplemental light source.
- the tubular light source structure adopts a cylindrical soft-belt light source, and the intensity ratio of red and blue in the large-angle red-blue LED array is 10:1, the light intensity is controlled to be close to the saturation point, and the vertical distance of the light source from the crop is about 10 cm,
- the cycle adopts a nighttime break-up light for the fill light of vegetable greenhouses.
- the planar light source structure adopts a ⁇ 5 ⁇ , red, orange, green, blue, and purple LED light-emitting tube with an illumination angle of 60-100 degrees to form a panel light source, and on the panel light source, each of the five color LEDs is composed of one.
- a light pixel point, a plurality of pixels are arranged in a matrix, and LEDs of each color are respectively connected, and a DC voltage of 36V is connected for use in a tissue culture light source structure.
- the intensity ratio of the red orange, green, blue and purple light for tissue culture and seedling is 10:5:1:3:2; the intensity ratio of the red, orange and blue light for the vegetable greenhouse is 6:3:10; Select the color range of each color LED is red light 630-660nm; orange light 590-630nm; green light 500_530nm; blue light 430_470nm; purple light 380_430nm.
- the seed zone temperature and humidity exchange system and the oxygen and carbon dioxide control system comprise an intake pipe disposed at a bottom of the culture zone and the planting zone, and an exhaust pipe at the top; and an exhaust pipe of the culture zone and an exhaust zone of the planting zone
- the intake pipe of the planting area and the exhaust pipe of the culture area are respectively connected by the fan air pump, so that the C02 of the breeding area enters the planting area, and the 02 of the planting area enters the breeding area, and exchanges of temperature and humidity is generated while gas exchange is performed.
- the culture area includes a three-in-one complementary system of three-dimensional culture, solar energy and biomass energy; wherein, the chicken house, the pig house and the insect workshop in the three-dimensional culture area are arranged from top to bottom, and the chicken house and the pig house are above the ground, and the layer thereof
- the height should be no less than 3.5 m; the sewage treatment device, the insect workshop, and the biogas tank should be set below the ground, with a height of not less than 2 m; the roof is provided with a ventilation window, and a solar collector plate is installed facing the sun.
- the planting area adopts a multi-layered support structure, and each layer of the frame is mounted with a lamp holder of the LED light-emitting tube of the light-filling device, an exhaust pipe of the gas exchange system, and a water supply pipe; the plant growth tray is inserted into the layer by layer.
- the layer supports form a relatively dense aquaculture area, which is convenient for controlling the growth conditions and achieving intensive production.
- the waste in the planting of the two growing areas is converted into feed, and the waste of the animal culture is converted into a medium, and the microorganism used is a target microorganism preparation made of a high-purity strain.
- the target microbial preparation prepared by the high-purity strain comprises a water agent and a powder for chicken pigs, a water agent and a powder for cattle and sheep, a water agent and a powder for fish and shrimp aquatic products; Aqueous agent used, a manure fermenting agent for manure fermentation.
- the raw material and ratio used for converting the waste in the plant breeding into feed are straw powder: starter: brown sugar: water is 500:1:1:35-40; the raw materials are mixed and mixed, preferably sprayed with a sprayer Uniform, then sealed anaerobic fermentation, 7-10 days in the summer, 2 weeks in the winter, used for fermented feed of Tenebrio molitor.
- the raw material formula used for converting the waste material in the plant culture into feed is 100 kg of straw powder, 100 kg of dried corn straw, 2 two target microbial liquid, 2 two brown sugar and 35-40 kg of water; :
- the raw materials with the sprayed spray are packed into a container, compacted while being installed, sealed with plastic cloth after filling, anaerobic fermentation, fermented for 3 days in summer, and fermented for 1 week in winter for fermented feed for livestock and poultry farming.
- the target microbial production technology in the straw resource treatment system uses a mixed target microorganism, which is expanded by liquid culture, and after liquid fermentation, it is adsorbed to a solid, and after solid fermentation, it is dried and packaged by hot air of 50-60 degrees.
- the process for producing the culture medium comprises the conventional pretreatment of organic waste, and then adding the bacteria agent and the corresponding auxiliary materials to mix and stir, and performing aerobic fermentation, and the generated tail gas is collected and passed into the filter tank for stirring of the raw materials; after fermentation After the raw materials are pulverized and sieved, a part of them are returned to the pretreatment apparatus and the raw materials are mixed to facilitate the fermentation.
- a specific microbial strain is established to remove toxic and harmful organic pollutants in the process of stacking; for the current high content of organic pollutants in the composting material, screening for selection of highly toxic and refractory organic pollutants , domesticating specific microbial strains, and constructing specific microbial strains.
- the three-dimensional planting area biomass energy production system comprises a positive pressure snorkel and a negative pressure snorkel inserted in the stock fermentation reactor, and the positive pressure vent tube is supplied with fresh air from the outside through the air supply system, and the negative pressure is passed.
- the trachea uses a tail gas exhaust system to discharge the gas generated by the reaction into the filter. Heat is generated during the reaction, and heat is transferred to the growing area using heat pipe superconducting technology to provide heat to the heating system.
- the system agricultural production system of the invention utilizes the powerful fermentation function of microorganisms to convert wastes such as crop straw, weeds, human and animal waste, domestic garbage into feeds and culture mediums of various beneficial insects represented by yellow mealworms into the decay food chain. .
- insects to eat a large amount of high-protein and scrap products, the natural law of turning waste into treasure, that is, plants (agriculture) are producers, animals (livestock and poultry) and humans are consumers, and microorganisms are abandoned by animals and plants.
- the material decomposer, effective design and development of this food chain, will open up a new cheap food and feed source for human beings, which will basically solve the problem of human and animal competition for food and land, and basically solve environmental pollution and food safety. problem.
- FIG. 1 is a schematic diagram of a system of a three-dimensional breeding cycle industrial chain of the present invention
- Figure 2a is a wind energy and photoelectric intelligent control system of the present invention
- Figure 2b is a light intensity and photoperiod adjustment system in the fill light system of the present invention.
- 2c-2f are schematic diagrams showing the structure of a light source in the fill light system of the present invention.
- Figure 3 is a schematic view of the three-dimensional breeding zone temperature & humidity exchange and oxygen / carbon dioxide control system of the present invention
- Figure 4 is a schematic structural view of an embodiment of the three-dimensional culture system of the present invention.
- Figure 5 is a target microorganism production process in the straw resource processing system of the present invention.
- Figure 6 is a production process of the biological medium of the present invention.
- Fig. 7 is a three-dimensional breeding area material energy production system of the present invention. Detailed ways
- FIG. 1 is a schematic diagram of the system of the three-dimensional breeding cycle industrial chain of the present invention; as shown in the figure, the whole system mainly includes a seawater microalgae cultivation zone, a three-dimensional culture zone and a three-dimensional cultivation zone. .
- the energy required to supplement the three system temperatures and light sources is provided by the biomass energy production system and the solar wind energy utilization system.
- the seawater microalgae cultivation area produces special feed for breeding; the scrap of the three-dimensional culture area and the scrap of the three-dimensional planting area can be used for each other, for example, using the powerful fermentation function of microorganisms, the crop straw, weeds, human and animal waste, and life Wastes such as garbage are converted into feeds and culture media of various beneficial insects represented by Tenebrio molitor into the decay food chain.
- the fresh insects of Tenebrio molitor can be processed into fresh protein feed and emerging energy feed for the development of aquaculture;
- the scraps of the area can also pass through the micro Biological action, plant medium is provided to the planting area, and insects eat the high-protein and eat the high-protein protein and make the waste products become waste.
- the plants (agriculture) are producers, animals (animals).
- human beings are consumers, and microbes are the natural law of the decomposition of plant and animal wastes.
- the carbon dioxide and oxygen generated between the culture area and the planting area can be recycled to each other to achieve zero emissions and optimize the atmospheric environment.
- heat pump technology and gas exchange devices are used to control the temperature and humidity conditions of the three culture areas and reduce the consumption. Energy and moisture, reducing exhaust emissions, environmentally friendly and reducing costs.
- the whole planting and aquaculture production adopts a three-dimensional industrial production mode, making full use of space and providing possibilities for the development of urban agriculture.
- the above production mode involves an integrated application technology system such as an organic waste resource treatment system, a straw resource utilization system, a target microbial production system, a biological medium production system, a microalgae production system, a biomass energy production system, and a solar wind energy utilization system.
- an integrated application technology system such as an organic waste resource treatment system, a straw resource utilization system, a target microbial production system, a biological medium production system, a microalgae production system, a biomass energy production system, and a solar wind energy utilization system.
- the above-mentioned technologies are organically integrated to form a recycling industrial chain of the system agricultural three-dimensional breeding base production and management mode of the present invention.
- the ecological energy system of the present invention provides the energy needed for the growth and development of animals and plants in three culture areas, especially the need for light supplementation.
- the light elements required for general culture are: light intensity, spectral composition and photoperiod.
- the spectrum in the natural state is often fixed and cannot meet the specific needs of different organisms at different times. For example, some seaweeds need to be configured with blue and red light at specific wavelengths at night.
- the creature does not need the same light 24 hours a day. For example, a creature needs sleep light during sleep.
- the artificial light sources used in the growth of animals and plants include fluorescent lamps, high-pressure uranium lamps, metal halide lamps, etc. These light source applications have defects in plant growth: first, the spectrum is basically a linear line, and is absorbed by plants. Spectral matching is not ideal. Light that can be absorbed by plants is only a single band of light, and other bands of light are wasted and not energy efficient. Second, due to the large power consumption of incandescent bulbs, fluorescent tubes, uranium lamps, etc., and the generation of a lot of thermal radiation, it is impossible to irradiate animals and plants at close range, and the efficiency of excitation of plants and animals is not high, which greatly increases the cost of artificial illumination. Therefore, it has not been widely used in agricultural production except for some high value-added flower planting soil and woodworking climate chamber tests.
- the intelligent ecological light source system of the present invention can most effectively satisfy the needs of the organism for the light intensity, spectral composition and photoperiod during the growth process.
- the system can customize the best light source according to the needs of different organisms at different times of the day and the needs of different growth stages. According to the different needs of light intensity, spectral composition and photoperiod within 24 hours a day, the light intensity and spectrum are adjusted to an appropriate state. This minimizes the effects of changes in the shade on the growth of the organism.
- the intelligent ecological light source system of the invention adopts a plurality of specific monochromatic LED integrated light sources, and has the following advantages: 1
- the spectrum of the LED light source can be optimally matched with the plant photosynthesis absorption spectrum; 2
- the light intensity and photoperiod of the LED light source can be automatically controlled; 3 LED light source, with energy saving, environmental protection and anti-vibration advantages.
- the LED light source and the power consumption are about tenths of incandescent lamps. 1.
- One-half of the fluorescent lamps can be used for large-scale factory plant farming.
- the emission spectrum of LED is a band spectrum with a certain bandwidth, and the spectrum is rich, which can be controlled by artificial intelligence.
- LED light source is water and moisture proof, suitable for plant growth environment; low heat, suitable for close range illumination; DC low voltage is safer: energy efficient, light and environmentally friendly.
- the red orange, blue, blue and purple LEDs are used to synthesize the light source, which can be used to adjust the wavelength and intensity of the spectrum to make it more suitable for the growth of crops and microalgae. It can increase its output and improve quality and save energy.
- the scientific ratio of spectral wavelength and light intensity of different types of plants is determined by intelligent dimming spectroscopy technology that matches the chlorophyll, carotenoid and phycobiliprotein absorption spectra of LED emission spectra.
- the fixed length is one unit section, use Multiple sections can be used in parallel.
- Figure 2a is a wind energy, optoelectronic intelligent control system of the present invention; as shown, the entire system includes a power supply portion, a control portion, and an electrical application portion.
- the power supply part uses a variety of energy sources, including solar panels, wind power generation, etc. It can also be used in combination with geothermal resources, biogas and other cheap clean energy, and grid-connected power supplies are used as emergency power sources.
- the control section consisting of the wind power controller, battery, inverter and intelligent master controller converts the various energy sources into the voltages required for the appliances and the various special requirements of the individual consumers during use.
- the electrical application part is mainly supplied to the fill light system, followed by the LED lighting control system, various household appliances, and the surplus electric energy is stored through the energy storage for use in the output or air conditioning system.
- Figure 2b is the fill light system of the present invention; including light intensity and photoperiod adjustment, the electric energy can be from the commercial power or the solar battery, after being converted into a 12V power supply, the control part adopts the single chip technology, the single chip control control power input, information display, etc.
- the single-chip microcomputer controls the 5-channel to enjoy the on/off of the multi-output circuit, forms the pulse light source with adjustable pulse width, and automatically controls the total light intensity change and photoperiod, and controls the daylight changes by manually controlling the light intensity ratio of each color through the keyboard.
- Figure 2c - Figure 2f shows a schematic diagram of the light source structure in the fill light system 4, including a planar light source structure and a tubular structure, which are respectively applied to marine microalgae culture, greenhouse seedling, tissue culture, and light source structure of vegetable greenhouse fill light.
- the marine microalgae culture adopts a cylindrical tubular light source, and the LED light-emitting tubes are arranged in a plurality of directions on the cylindrical surface, wherein the intensity ratio of the red, green, blue and purple light colors is 2: 1: 5: 3,
- the tubular light source is inserted into a marine microalgae culture vessel as a supplemental source.
- the intensity ratio of red orange, green, blue and purple light of tissue culture and seedling is 10:5:1:3:2, and the intensity ratio of red, orange and blue light in vegetable greenhouse is 6:3:10.
- the optional LED wavelength range is red light 630-660nm; orange light 590_630nm ; green light 500-530nm; blue light 430_470nm; violet light 380_430nm.
- the seedlings need to be irradiated at a close distance.
- a special ⁇ 5 ⁇ is used, and the illuminating angle is 90-120.
- the red orange green blue-violet LED around the degree is composed of a square soft-belt light source, and then sealed by a high-transparent PVC material to form a fixed length unit section. When used, multiple sections can be used in parallel according to needs.
- the tissue culture light source structure shown in Fig. 2e adopts a special ⁇ 5mm, the illuminating angle is 60-90 degrees, and the red, orange, green, blue and purple LEDs form a panel light source, and each of the five color LEDs constitutes one light pixel point,
- the pixels are arranged in a matrix to form a panel light source, and the LEDs of each color are connected in series and in parallel, and a DC voltage of 12V or 36V is connected.
- Figure 2f shows a cylindrical soft-belt light source system with a large angle red and blue LED array in a vegetable greenhouse.
- the intensity ratio of red and blue is 10: 1, the light intensity is controlled to be close to the saturation point, and the vertical distance of the light source crop is about 10 cm.
- the photoperiod uses nighttime intermittent fill light.
- the present invention introduces artificial intelligence in the ecological relationship between biological and atmospheric environments.
- the artificial environment and the automatic optimization of the temperature and humidity environment optimization system will keep the biological growth and development environment in the best condition and move towards the artificially controllable agricultural environment.
- Oxygen and carbon dioxide control systems use the aquaculture industry to absorb oxygen to release carbon dioxide, while the crop industry absorbs carbon dioxide to release oxygen to achieve circulation;
- the heat pump technology controls the temperature and humidity conditions, constructs a symbiosis system of planting and aquaculture engineering, optimizes the biological atmosphere, and at the same time solves the problem of ambient temperature and humidity caused by air convection due to the circulation of material energy in the system. Adjusting the energy and moisture consumed greatly reduces energy and agricultural water use and reduces production costs.
- FIG. 3 is a schematic diagram of a three-dimensional planting zone temperature/humidity exchange system and an oxygen and carbon dioxide control system.
- An intake pipe is provided at the bottom of the culture area and the planting area, and an exhaust pipe is provided at the top.
- the intake pipes of the breeding area and the planting area are respectively connected with the exhaust pipe of the planting area and the breeding area by the air pump, so that the C02 of the breeding area enters the planting area, the 02 of the planting area and the entering the breeding area, while the gas exchange is also carried out. Produces an exchange of temperature and humidity.
- the heat pipes are buried between the two culture zones, and the purpose of temperature exchange is also achieved.
- the waste materials in the culture area and the planting area are transformed by microbial technology, respectively, as the biological medium of the planting area or the organic fertilizer and the fresh feed of the culture area. Achieve material circulation, basically reaching zero emissions.
- FIG. 4 is an embodiment of the three-dimensional culture system structure of the present invention; the system is a three-in-one complementary system of three-dimensional culture, solar energy and biogas energy.
- the chicken house pig house insect workshop is arranged from top to bottom. 5 ⁇
- the upper part of the ground is the chicken house and the pig house, the height of the floor should not be less than 3. 5m.
- the area below the ground is not less than 2m, and equipment such as sewage treatment equipment, insect workshop, and biogas tank are installed.
- the roof is provided with a ventilation window, and a solar collector plate is installed facing the sun. Ventilation windows are installed on the front of the house, solar air conditioning. 1.
- Circulating line Chicken manure is fed to pigs and warmed by microbial fermentation, pig manure is fed into biogas digester to produce biogas for heating and heating, urine and brushed sewage are sent to sewage treatment processor to produce biogas, water can be recycled, flushing pig house .
- solar collector panels and solar air conditioners are used as supplements for insufficient biogas heating.
- solar air conditioners are cooled, and the roof and heat insulation panels are installed.
- the underground breeding workshop ensures 50 square meters of biogas digesters and sewage treatment plants.
- the occupied area is the actual area of the breeding workshop.
- the temperature of the underground insect breeding workshop is guaranteed to be around 25 ° C, plus or minus 2 ° C.
- the three-dimensional planting area adopts a multi-layered support structure, the lamp holder of the LED light-emitting tube of the light-filling device, the exhaust pipe and the water supply pipe of the gas exchange system are fixed on each layer frame, and the plant growth tray is inserted into the support layer by layer, forming a relatively dense structure.
- the breeding area is convenient for controlling the conditions of growth, achieving intensive production and saving land use.
- the structure is compact, the space utilization factor is high, and the space utilization develops from a layer space to a multi-layer space.
- Eco-agriculture is inseparable from biotechnology and cannot be separated from micro-organisms.
- Beneficial microorganisms such as lactic acid bacteria, yeast, photosynthetic bacteria, buds, actinomycetes, filamentous fungi, etc., can only achieve ecological balance by using microbes. Only when the ecology can achieve safety and greenness can a virtuous cycle be achieved and benefits can be maximized.
- the beneficial microorganisms to be used in the present invention are microbial preparations made of high-purity patented strains.
- the products developed and produced by Dr. Ding Zhi hammer, a microbiologist of the Academy of Agricultural Sciences have Tian Tianle (water agent, powder) for chickens and pigs; Anti-fish spirit (water agent, powder) for cattle and sheep; aquatic treasure (powder) for fish and shrimp aquatic production; micro-storage (water agent) for straw fermentation; manure fermenting agent for manure fermentation and ice) Plants for plants, etc.
- the waste materials in the planting of the two planting systems, such as straw, rapeseed, etc. are converted into feed; the animal waste, such as feces, is converted into a medium by microbial action.
- the method for converting the waste in the plant breeding into the feed of the present invention comprises the following production scheme:
- the raw materials and ratio used are straw Xuan powder: starter (micro-storage): brown sugar: water is 500 : 1 : 1 : 35 - 40 (depending on dryness and humidity)
- the raw materials are mixed and mixed well (preferably sprayed with a sprayer) to seal the anaerobic fermentation.
- the straw Xuan powder has a wine flavor and feels soft. For example, if you feed green leaf or grass peel, you can spray it directly with 1000 times of bacteria solution, but it is better to hold the water without hand. If you find that there is too much water, you can feed it with the dry material and not drip. Feeding Tenebrio molitor with microbial fermented feed, insects grow fast, have large individuals, have low mortality, and can increase yield by more than 30%.
- Container Cylinders, containers with plastic inner membranes (to be cleaned).
- the production of biological microbial agents and culture media is an important part of the conversion of the production of the culture zone.
- the microbial culture media products have unique functions, can manufacture and assist crops to absorb nutrients, enhance soil fertility, and enhance plant disease resistance and drought resistance.
- Reduce and reduce plant diseases (insects) produce a variety of physiologically active substances to stimulate and regulate crop growth, improve fertilizer utilization, reduce fertilizer use, promote the maturity and development of crop waste and municipal waste, and play a soil environment Purification and repair, improve the quality of crop products and food safety.
- the types of raw materials for the production of microbial culture media can be divided into main materials and auxiliary materials:
- Ingredients usually such materials account for 3% ( ⁇ 80%) of the material, which consists of one or several raw materials.
- Commonly used main materials are organic waste such as livestock manure.
- Excipients It is mainly used to regulate the moisture, C/N, C/P, pH and permeability of materials. It is composed of one or several raw materials. Usually, the proportion of such materials in the whole material does not exceed 40%. The proportion does not exceed 20%. Commonly used auxiliary materials are straw powder, rice husk powder, rice bran, wheat bran, cake, grass charcoal, mushroom residue, fly ash, quicklime, superphosphate, phosphate rock powder and the like.
- raw materials According to the nature of raw materials, it can be divided into carbon raw materials, nitrogen raw materials and conditioning materials:
- Carbon raw materials which refer to raw materials with high organic carbon content, which can be used as the main raw material for composting, such as straw in straw compost, but most of them are used as excipients to regulate moisture, C/N and reinforcing materials. Breathability, such as straw powder, rice husk powder, rice bran, peat, mushroom residue, fly ash, etc.
- Nitrogen raw materials It usually refers to raw materials with C/N below 30, and is mostly used as the main material of compost, such as livestock manure, municipal sludge, sugar cane sludge, etc. There are also some high-nitrogen raw materials used as auxiliary materials to regulate C/N, such as Biscuits, fishmeal, meat and bone meal, urea, etc.
- Conditioner raw materials It mainly refers to the raw materials used to adjust the pH, such as quicklime, gypsum and dilute acid. Sometimes the raw materials for regulating C/P are classified as conditioning agents.
- microorganisms preparations such as rhizobium, nitrogen-fixing bacteria, bacillus, silicate bacteria, photosynthetic bacteria, cellulolytic bacteria, lactic acid bacteria, yeast, actinomycetes and fungi.
- the mechanism of action it can be divided into biological medium products such as nitrogen fixation, phosphorus dissolving, and organic material decomposing.
- the strains used are usually EM bacteria developed by Ryukyu University of Japan, and are compounded by more than 80 kinds of microorganisms from 10 genera such as photosynthetic bacteria, actinomycetes, yeasts, and lactic acid bacteria. Used as an inoculant, feed additive, water purifier, deodorant.
- Enzyme-derived bacteria BYM Japan's Shimamoto Industrial Co., Ltd. is a group of aerobic beneficial microorganisms that can produce a large amount of various hydrolyzing enzymes. It mainly consists of more than 20 strains such as yeast and filamentous bacteria.
- the target microbial production technology in the straw resource treatment system is shown in Fig. 5.
- the above mixed strain is used, and the liquid is cultured and expanded, and after liquid fermentation, it is adsorbed to the solid, and after solid fermentation, 50-60 is used. Degree of hot air drying package.
- the process of producing the culture medium is shown in Fig. 6.
- the organic waste is pretreated conventionally, the above-mentioned microbial agent and corresponding auxiliary materials are added.
- the mixture is stirred and aerobic fermentation is carried out, and the generated tail gas is collected and passed into a filter tank for stirring the raw materials.
- the fermented compost is pulverized and sieved, and a part of the counter-feed is returned to the pretreatment unit and the raw materials are mixed to facilitate the fermentation.
- the perfection of the biological media materialization system depends on the organic connection between the systems.
- the systems are usually integrated into one organic whole through building connections, equipment connections and process connections. For example, different functional areas are divided in the same building or workshop, or material transfer is realized by transmission equipment between adjacent buildings, or material displacement is realized by turning over the equipment.
- Fig. 7 is a three-dimensional breeding area material energy production system of the present invention.
- a positive pressure snorkel and a negative pressure snorkel are inserted in the stock fermentation reactor, and the positive pressure vent tube is supplied with fresh air from the outside through the air supply system, and the negative pressure vent tube uses the exhaust air exhaust system.
- the gas produced by the reaction is discharged into the filter. Heat is generated during the reaction to increase the temperature in the stock.
- the present invention uses hot rod superconducting technology to transfer heat to the planting area to provide a heat source to the temperature compensation system.
- the invention converts the cultured excrement and the plant straw produced by the planting and various organic waste into the organic fertilizer and the feed by the above method, and is used for the cultivation of the yellow mealworm, the aphid, the silkworm cocoon, and the processing, for solving the rural ecological environment and the transformation of the organic waste.
- Chain construction of other industries has played an important role. Insect foods are simple, fast-growing, and large in quantity, and are sustainable resources. Scientific research and nutritional analysis show that most insects account for more than 40% of the dry weight of protein, some even close to or exceed the content of high-quality fishmeal, and the various nutrients and trace elements and vitamins necessary for biological growth and development are also compared.
- the crude protein content of the yellow meal was 55.68%, and the fat content was 28.20%-34.47%; the crude protein content after degreasing and oiling reached ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . ⁇ .
- It not only replaces imported high-quality fishmeal, but is also completely edible. It is important to also have a unique chitin component that contains a special antibiotic substance. It has a wide range of uses, and it plays an irreplaceable role in the fields of paper making, printing and dyeing, food, and medicine.
- Tenebrio molitor is a low-cholesterol animal fat resource and a good edible oil resource. It has been used abroad to prepare distant drugs for lowering blood cholesterol, margarine, lubricating oil, cutting oil, washing oil, dry oil, black oil. Paste, alginate and surfactant intermediates have also been used in soaps, Taikoo oils and plasticizers in China.
- Tenebrio molitor can feed the animals with high economic value, such as rare birds, ornamentals and snakes, turtles, frogs, chickens, ducks, geese, etc., and feed the chicken feed with yellow mealworm as a feed additive to replace imported fish meal. Meat and bone meal, alleviating the shortage of animal protein feed in China.
- the worm's excretion of the worms, the application of the worms, is also very promising.
- the worm sand contains 24.86%, nitrogen 3.37%, phosphorus 1. 04%, He 1. 4%, and the words, shed Seven kinds of trace elements, hammer, iron, Hou, calcium, copper, is a high quality bio-organic fertilizer.
- the three-dimensional breeding cycle industrial chain of the invention combines the benign circular chain projects of the ecological agriculture industrial cluster according to specific production purposes to conform to the benign circulation concept of the ecological agricultural industrial cluster, and displays and industrializes the application in the experimental park. Establish an efficient ecological planting and processing system to improve production levels.
- the technology integration of the present invention first determines the amount of environmental resources produced by the benign circular chain project of the eco-agricultural industrial cluster and the amount of change in the prior art system, and then establishes a stable balance to make the elements more coordinated. And this work will be eternal, and the local technical improvement will inevitably break the original balance.
- the key technology integration of the eco-agricultural industrial cluster benign circular chain project production is to re-establish a new balance when the production technology elements are not coordinated. .
- the introduction of the project system implemented by the present invention will change the environmental background of the original production as a whole, and the ecological structure and relationship will be changed accordingly.
- the ecosystem Under the key technical conditions of the project production, the ecosystem will be balanced to ensure that the project production can adapt to the resources.
- the harmony between the environment enables the matching and effective connection between the different types of facilities displayed by modern agricultural technology, so as to achieve the balance between biological effects and production costs and benefits.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Physiology (AREA)
- Mycology (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- Animal Husbandry (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Environmental Sciences (AREA)
- Greenhouses (AREA)
- Cultivation Of Plants (AREA)
Description
农业生产系统 技术领域
本发明涉及现代系统农业生产方法,尤其是涉及利用微生物的发酵功能,将动植物废弃 物分解还原,形成新的食品和饲料来源,按照物质和能量循环设计的生态节能系统农业生产 体系及方法。
说
背景技术
目前, 我国农业发展呈现新的形势, 在加入 WT0后, 农业生产的国际环境变化, 使农业 产业结构调整的力度不断加大,农业产业化进程越来书越快。 由于农业生产增长方式发生巨大 改变以及农业经营方式向适应市场经济条件的方向转化,如何使循环经济与区域经济、特色 经济的协调发展成为经济可持续发展的关键,而农业生产和加工所导致的环境污染和食品安 全地位的提高使农业生产环境条件的优化更是当务之急。
由于人口的不断增加,工农业生产的日益发展,我国农业的可持续发展正面临着前所未 有的困难局面, 存在许多制约因素, 如何正确地分析和认识制约我国农业生产发展的因素, 是我国农业可持续发展的前提。
一、 在我国继续推行常规农业现代化战略的客观制约因素
新中国是在资源"家底"薄、生态环境极为恶劣的基础上发展起来的。中国不可能得到发 达国家农业在完成常规现代化进程中所具有的极廉价石油进口资源条件。 由于人口众多,人 均资源 (包括商品能源)量远远低于世界平均水平, 更无法同发达国家相比, 中国承受不起 发达国家那种 "先污染、 破坏、 后治理"的现代化模式造成的后果。 因此, 明确包括环境污染 在内的诸多对中国走常规农业现代化途径形成硬约束的因子,对于探索具有中国特色的农业 现代化途径, 无疑具有重要的意义。
二、 农业大量使用商品能源的不可获得性
1988年农业五项主要生产资源 (化 肥、 农用电、 农机、 燃油及农药)所耗的商品能已高 达 1196. 2 X 1012kJ,相比之下, 美国农业在 1970年耗能水平达历史最高纪录时不过 2209. 2 X 10121^ (食物加工运销耗能3535. 98 x 1012kJ不计在内)。 况且美国耕地面积比中国还要 高出 30%左右。然而从我国能源生产的现状和中长期前景看,实现上述要求是缺乏可能性的。
农用燃油的供应长期严重不足, 而且国家财政还要大量补贴。
三、 水资源贫乏是中国农业发展的一大缺陷
我国总水量居世界第 6位, 年均水资源总量为 28124亿 m\降水为 62076亿 m\人均拥有 水资源 2637m, 为世界平均量的 1/4, 居世界的第 104位。 在全国 407个大中城市中, 缺水 城市为 200个,有 400万公顷的耕地和 1/3的草地受到缺水的威胁,有 5000万农民和 4000 万头牧畜缺乏足够的饮用水。 农业一直是我国使用水资源的"第 一大户", 约占总用水量的 50%左右。 但是随着工业的迅速发展以及城市化趋势的加速,农业在用水上已受到工业和人 民生活用水越来越激烈的竞争, 用水"第一大户"的地位不可能长期保持下去。
四、 高投入和集约化经营引起的污染问题
常规农业现代化间接引发的污染主要应归咎于在制造投入生产资料时大量燃烧能源而 造成的"三废"问题。而对于主要依靠煤作为燃料的中国来说,这类问题要比依靠"清洁能源" 一天然气和燃油的发达的国家严重得多。 高投入和集约化对环境的直接污染 主要指大量施 用农药、化肥及大型集约化养殖场排放入农田的粪便, 由于作物不能全部吸收及未能分解而 残留的农药和硝酸盐进入土壤及地下水。 50 年代, 发达国家在城市郊区出现大批集约化畜 牧场。 因此产生大量粪尿和污水, 导致环境受污染, 这类问题已形成对土体和饮用水源安全 的严重威胁和引起全社会的不安。 上海郊区畜禽粪便已突破 1200万吨, 远远超过工业废渣 排放量 663. 11万吨或全市居民生活废物排放量 663. 44万吨。同样,北京现有 1500个猪场, 排污量按 B0D推算就相当于增加一个北京市人口的排污量。目前对畜禽粪尿污染生态环境治 理方法很多。 例如, 发酵生产沼气、 快速烘干、 塑料大棚好氧发酵等。 这些治理费用很大。 有些治理方法, 还需消耗大量能源。 另一些方法又可引起环境二次污染。
五、 土地在多方面的制约作用
1950年,我国耕地总面积为 1. 21亿公顷,人均 0. 22公顷, 1990年仅有 0. 96亿公顷, 人均降至 0. 08公 顷,远低于世界人均 0. 27公顷的水平,是加拿大的 1/47,原苏联的 1/ 9, 美国的 1/4。 1978 - 1988年其损失耕地 366. 7万公顷, 平均每年以 36. 7万公顷的速度在 减少。 1991年搞建设占地达 58万公顷。 1992年"开发区'热, 年损失耕地 153. 3万公项。 人 口与耕地的反向发展 (剪刀差),使我国耕地的承载力陷入严重的危机状态
六、 过剩劳力的负面约束与农村从事农业劳动力素质的下降
调查表明,外出劳动力均以文化素质较高的青壮年劳动力为主, 随着大批农村青壮年离 开土地进入城市, 中国很有可能出现-个务农人员的断层。 即使以后随着政策的引导, 许多 进城农民重新回归农村,但由于他们长期离开士地,生疏了农业生产,其结果将是身为农民,
却不会种田。 我们完全应该担心, 青壮年农民进城打工了, 谁来发展中国的高科技农业。 七、 农业生态环境破坏日益严重, 农业自然灾害日益频繁
由于我国对自然资源的超前消耗, 致使环境污染日益严重。 全国年废水排放量为 370 亿吨, 其中工业废水占 3/ 4, 已有 80%的江河湖泊受到不同程度的污染, 已污染的河道达 4700km。 历年来沉积的工业废渣 66亿吨, 比 10年前增加了 1 倍, 因废渣堆积占地 6. 7 万 公顷, 受污染的耕地 0. 067亿公 顷。
通过以上七个方面的分析可看 出, 我国农业长期以来采取传统的粗放外延扩大再生产 方式, 投入高但有效利用率低和成本高, 并对资源和环境产生的副作用大。在农业进入市场 经济和即将融入国际大市场的今天, 这种传统的增长方式(即沿用常规性农业现代化的模 式) , 已经不可能也不应该再维持下去了。
我国是饲养大国, 也是饲料生产与消耗大国。 2010 年的目标为: 全国配合饲料年双班 生产能力达 1. 4亿吨, 配合饲料产量 1亿吨, 浓缩料 500万吨, 添加剂预混料 200万吨, 饲 料添加剂基本实现国产化。我国未来饲料生产的出路, 总的形势是将精饲料、绿色饲料和秸 杆饲料三者有机结合, 其中, 精饲料将一直处于严重短缺状态。 由于进口优质鱼粉价格居高 不下,使得饲料行业的生产成本难以降低, 目前应积极寻找鱼粉的替代原料,降低生产成本。
我国是农业大国, 每年生产各种农作物秸杆、 秧蔓达 10. 9亿吨, 大牲畜饲养消耗不足 20%, 用作柴烧的不足 10%, 其余均被当场焚烧或长期堆积自然腐烂, 既造成了资源浪费, 又阻碍了交通、 阻挡河道、 污染环境。 利用和转化这些有机废弃物, 并使之产生一定的经济 效益, 是各级政府的工作重点之一, 也是广大农民的热切盼望。
以良性循环经济为指导, 以推动现代农业为发展目标, 实现农业经济的良性发展, 来解 决农村的剩余劳动力, 提高农业产品的附加值, 改良农村的环境结构。把农作物的废弃物转 化为有用产品, 弥补传统饲料生产带来的负面作用。 同时用新产品还原土壤, 从根本上改变 土壤结构, 使农作物成为绿色环保食品, 带动关联产业建设成为目前农业生产的当务之急。 发明内容
本发明的目的在于建立一种以生态学原理为基础的先进农业循环经济生产模式,使农业 资源体系中提供经济产品的每一环节所辅产的非经济产品均成为下一环节的利用 "原料", 形成范围大小不同、层次高低不同的循环利用途径,最大限度地获取符合人类利益要求的经 济产品。
本发明的另一个目的在于排除农业生产中的 "废弃物"所导致的 "环境污染"达到农业
生产的效益最大化与有害最小化的目标。
本发明的另一个目的在于提出一种水源、能源循环利用的立体化集约化的农业的种植养 殖基地和方法, 以达到综合节水, 节能, 高效, 使产业可持续发展。
为了实现本发明的目的, 提出一种物质和能量循环设计的系统农业生产体系, 该系统包 括立体养殖区和立体种植区及生物防治区, 整个种植和养殖生产采用立体化的工业模块化生 产模式; 种植区和养殖区的温度和立体光源的补充所需的能源由生物质能生产体系和太阳能 风能组成的能源补充系统提供; 种植区的下脚料经过处理, 转化为养殖区使用的饲料; 养殖 区的下脚料经过微生物作用, 制成生物培养基提供给种植区; 养殖区和种植区之间产生的二 氧化碳和氧气相互循环利用; 养殖区和种植区的温度和湿度条件相互转换。
所述养殖区和种植区之间二氧化碳和氧气的循环利用是通过氧气和二氧化碳调控系统实 现; 所述养殖区和种植区之间温度和湿度条件相互转换是利用上述的氧气和二氧化碳调控系 统和采用热泵技术的种养区温、 湿度交换系统实现。
所述的种植区和养殖区的能源补充系统包括电源部分、控制部分和电器应用部分, 其中, 所述的电源部分采用太阳能板, 风力发电、 地热资源, 沼气发电的结合, 并网电源作为应急 电源使用; 所述的控制部分由风力发电装置、 风力发电控制器、 蓄电池、 逆变器和智能总控 制器和伺服部分组成, 将各种能源转变为用电器所需要的电压以及使用过程中各个用电器的 各种特殊要求; 电器应用部分包括补光系统、 LED 照明控制系统, 各种家用电器使用; 富余 的电能通过能量存储器储存, 供输出或空调系统使用。
所述的补光系统包括电源转换部分, 控制部分和发光装置, 其中, 所述电源转换部分输 出 36V电压; 所述发光装置有多排 LED发光管; 所述控制部分, 由单片机和微机手控键盘构 成, 微机控制电源的输入、 信息显示和多通道输出控制多路输出电路的通断与单板机配合, 形成可调电压或可调脉宽的脉冲光源, 并且自动控制所述发光装置的总光强变化和光周期, 手控键盘控制多排 LED发光管的各色光强比, 模拟日光变化。
所述的补光系统中的发光装置包括平面光源结构和管状光源结构, 分别作为应用于养殖 区和种植区的海洋微藻养殖、 温室育苗、 组织培养和蔬菜大棚补光的光源结构。
所述管状光源结构采用 Φ 5πιπι, 发光角在 90-120度左右的红橙绿蓝紫 LED发光管, 固定 在立方体软带上, 再由高透明 PVC材料密封, 组成一固定长度的单元节, 使用时可多节并联 使用, 用于温室育苗的近距离照射。
所述管状光源结构采用圆柱形, LED 发光管在圆柱面沿多个方向上排列, 其中红绿蓝紫 各色光的强度比: 2 : 1: 5: 3, 该管状光源插入海洋微藻养殖容器作为补充光源。
所述管状光源结构采用圆柱形的软带光源, 大角度红蓝 LED 阵列中的红蓝的强度比 10 : 1, 光强控制在接近饱和点, 光源距作物的垂直距离约为 10 cm, 光周期采取昼夜间断补光, 用于蔬菜大棚的补光。
所述平面光源结构采用 Φ 5πιπι, 发光角在 60-100度的红、 橙、 绿、 蓝、 紫 LED发光管组 成面板光源, 在所述的面板光源上, 五种颜色的 LED各一颗组成一个光像素点, 多个像素点 按矩阵排列, 每一种颜色的 LED各自联接, 并接入 36V的直流电压, 用于组织培养光源结构 使用。
所述用于组织培养与育苗的红橙绿蓝紫各色光的强度比为 10 : 5 : 1 : 3 : 2 ; 用于蔬菜大棚红 橙蓝各色光的强度比为 6 : 3 : 10; 其中, 选择各色 LED 波长范围是红光 630-660nm; 橙光 590-630nm; 绿光 500_530nm; 蓝光 430_470nm ; 紫光 380_430nm。
所述的种养区温、 湿度交换系统和氧气和二氧化碳调控系统包括在养殖区和种植区的底 部设置的进气管、 顶部设置排气管; 所述养殖区的进气管与种植区的排气管, 种植区的进气 管与养殖区的排气管分别通过风机气泵交叉相连, 使养殖区的 C02进入种植区, 种植区的 02 进入养殖区, 在进行气体交换的同时产生温度湿度的交换。
所述的养殖区包括立体养殖、 太阳能、 生物质能三位一体互补系统; 其中, 立体养殖区 的鸡舍、猪舍和昆虫车间自上而下排列,鸡舍和猪舍在地面以上部分,其层高应当不低于 3. 5m; 地面以下部分设置污水处理装置、 昆虫车间、 沼气池, 层高不低于 2m; 屋顶设有通气窗, 正 面向阳部分安装有太阳能集热板。 房屋正面安装通风窗, 太阳能空调; 循环线路: 鸡粪经微 生物发酵后喂猪和取暖, 猪粪进沼气池干发酵产沼气取暖照明, 尿液与刷地污水进污水处理 器产生沼气后可循环利用, 冲洗猪舍; 冬季启动太阳能集热板、 太阳能空调作为沼气取暖不 足的补充, 夏季启动太阳能空调降温、 房盖加隔热板, 确保地下昆虫养殖车间温度 23 °C, 正 负不超过 2 °C。
所述种植区采用多层支架结构,每一层框架上安装有所述补光装置的 LED发光管的灯架、 气体交换系统的排气管和补水管; 植物生长托盘逐层插入所述多层支架, 形成相对密集的养 殖区, 便于控制生长的条件, 达到集约化生产。
所述两个种养区的植物养殖中的下脚料转化为饲料, 动物养殖的下脚料转化为培养基, 使用的微生物为高纯度菌种制成的目标微生物制剂。
所述高纯度菌种制成的目标微生物制剂包括用于鸡猪的水剂和粉剂, 用于牛羊的水剂和 粉剂, 用于鱼虾水产用的水剂和粉剂; 用于秸轩发酵用的水剂, 用于粪肥发酵用的粪肥发酵 剂水剂。
所述将植物养殖中的下脚料转化为饲料采用的原料及配比为秸杆粉: 发酵剂: 红糖: 水 为 500 : 1 : 1 : 35 - 40 ; 原料混和拌匀, 最好用喷雾器喷匀, 然后密封厌氧发酵, 夏天 7-10天, 冬天 2周, 用于黄粉虫发酵饲料。
所述将植物养殖中的下脚料转化为饲料采用的原料配方为 100斤秸轩粉, 100斤干玉米秸 杆, 2两目标微生物菌液、 2两红糖和 35-40斤水; 其制作工艺:
1)先将 40°C左右, 不要超过 50°C的红糖溶化, 加入菌液混匀, 再加入 35斤左右水再混匀;
2)用喷壶均匀的喷到 100斤秸杆粉混合料中;
3)如抓取喷好的料拧扭若滴水, 则含水量多, 应加干料调制, 若手握成团, 一碰就散即 水分为适量;
4)将伴好喷匀的原料装到容器中, 边装边压实, 装满后用塑料布 密封, 厌氧发酵, 夏天 发酵 3天, 冬天发酵 1周用于畜禽养殖的发酵饲料。
秸杆资源化处理系统中的目标微生物生产技术工艺中使用混合目标微生物, 经液体培养 扩种, 液体发酵后, 将其吸附于固体, 在经过固体发酵, 使用 50-60度的热风干燥包装。
所述的生产培养基的流程包括有机废物常规预处理, 之后加入菌剂和相应的辅料混合搅 拌, 进行好氧发酵, 产生的尾气经收集后通入滤池, 用于原料的搅拌; 发酵后的原料经过粉 碎筛分后, 将其中一部分回流至预处理装置和原料混合, 有助于发酵。
所述的在生产培养基的流程中, 建立特异性微生物菌株系去除堆制过程中有毒有害有机 污染物; 针对目前堆肥材料中有机污染物含量高, 选择毒性强、难降解有机污染物种类筛选、 驯化特异性微生物菌株, 构建特异性微生物菌株系。
所述立体种养区生物质能生产体系包括在堆料发酵反应器中插有的正压通气管和负压通 气管, 正压通气管通过供风系统从外部通入新鲜空气, 负压通气管利用尾气排风系统将反应 产生的气体排出进入滤池。 反应过程中产生热量, 采用热管超导技术, 将热量传送到种养区, 向补温系统提供热源。
本发明的系统农业生产体系利用微生物强大的发酵功能, 将农作物秸秆、杂草、人畜粪 便、生活垃圾等废弃物转化为以黄粉虫为代表的各种有益昆虫的饲料和培养基进入腐屑食物 链。 利用昆虫喜食腐屑而生产大量高蛋白和下脚料产品, 变废为宝的自然规律, 即植物(农 业)是生产者, 动物 (畜禽)及人类是消费者, 微生物是动、 植物废弃物分解还原者, 对这 一食物链的进行有效设计和开发,它将为人类开辟了一条新的廉价的食品和饲料来源,将基 本解决人畜争粮、争地问题, 基本解决环境污染和食品安全问题。这一模式如在全国成功实 践, 其经济、 社会、 生态效益将不可估量。
利用光能控制系统可以达到很好的经济指标, 如对于果类、 瓜类、 叶菜类:与普通种植相 (未使用 LED植物生态光源 统),蔬菜产量提高 20-50% . 溶性总糖量和维生素 C增加 一 20%, 粗蛋白增加 20-30% ;
先进农业循环经济理论对传统农业技术的超越,一方面表现在对原有技术的系统集成土, 运用大系统工程, 使原有农业生产技术都被组装到 一个集成模块化的系统组织上, 从节能、 经济、 生态、 循环、 系统安全、 市场、 产业、 资源高效利用等多角度全方位的价值理念出发 进行综合创新。 先进农业创新工程是按照生态学规律和原理, 并运用生物工程技术、 信息空 间模式以及创意产业手段, 对传统农业、海洋农业以及微生物和 低等生物进行有效组合和产 业链再造, 它是创新理论、 创新技术、 创新 模式、 创新结构、 创新产业在先进农业生态循环 经济体系中的全面应用。 附图说明
图 1 是本发明的立体种养循环产业链的系统示意图;
图 2a 是本发明的风能和光电智能控制系统;
图 2b是本发明的补光系统中的光强和光周期调节系统;
图 2c-2f是本发明的补光系统中的光源结构示意图
图 3是本发明的立体种养区温 \湿度交换和氧气\二氧化碳调控系统的示意图;
图 4 是本发明的立体养殖体系一个实施例的结构示意图;
图 5是本发明的秸秆资源化处理系统中的目标微生物生产流程;
图 6是本发明的生物培养基生产流程;
图 7是本发明的立体种养区物质能生产体系。 具体实施方式
下面结合附图对本发明的技术方案详细说明,图 1 是本发明的立体种养循环产业链的系 统示意图; 如图所示, 整个系统主要包括海水微藻培养区、 立体养殖区和立体种植区。 3 个 系统温度和光源的补充所需的能源由生物质能生产体系和太阳能风能利用系统提供。 海水微 藻培养区生产特种饲料, 供养殖用; 立体养殖区的下脚料和立体种植区的下脚料可以相互利 用, 例如, 利用微生物强大的发酵功能, 将农作物秸秆、 杂草、 人畜粪便、 生活垃圾等废弃 物转化为以黄粉虫为代表的各种有益昆虫的饲料和培养基进入腐屑食物链, 黄粉虫的鲜虫体 可以加工成新鲜蛋白饲料和新兴能量饲料, 用以发展养殖业; 养殖区的下脚料还可以经过微
生物作用,制成植物培养基提供给种植区,而昆虫喜食腐屑而生产大量高蛋白和使下脚料产品 变废为宝的特点, 符合植物 (农业) 是生产者, 动物 (畜禽) 及人类是消费者, 微生物是动 植物废弃物分解还原者的自然规律。
养殖区和种植区之间产生的二氧化碳和氧气可以相互循环利用, 做到零排放, 优化大气 环境; 同时, 利用热泵技术和气体交换装置, 控制 3个养殖区的温度和湿度条件, 减少所消 耗的能量和水分, 减少废气排放,有利环保,降低成本。
整个种植和养殖生产采用立体化的工业生产模式, 充分利用空间, 为都市化农业的发展 提供可能。
上述生产模式涉及到有机废物资源化处理系统、秸秆资源化系统、 目标微生物生产系统、 生物培养基生产系统、 微藻的生产系统、 生物质能生产体系和太阳能风能利用系统等配套应 用技术体系, 并且将上述技术有机的综合, 形成本发明的系统农业立体种养基地生产经营模 式的循环产业链。
本发明的生态能源系统,提供 3个养殖区的动、植物生长发育需要的能源, 特别是补光的 需要, 一般养殖所需要的光要素为: 光强、 光谱构成和光周期。 自然状态下的光谱往往是固 定不变的, 不能满足不同生物在不同时期对光谱的特定需要。 例如, 一些海藻在夜间需要按 照专门的波长配置蓝光、 红光。 生物并非一天 24小时都需要同样的光。 比如, 生物在睡眠时 间需要的是睡眠光。
目前在动植物生长中应用的人工光源有荧光灯、 高压铀灯、 金属卤灯等, 这些光源应用 在植物生长中存在着缺欠:其一, 光谱基本为线状谱线, 并与植物动光合吸收光谱匹配不理 想。 能够被植物吸收的只是个别波段的光, 其他波段的光都被浪费、 不节能。 其二, 由于白 炽灯泡、 日光灯管、 铀灯等耗电量较大, 同时产生很多的热辐射, 不能对动植物近距离照射, 对动植物生长光激励效率不高, 大大增加了人工光照成本, 因而除在一些高附加值的花卉种 植土和木工气候室试验中有所应用外, 并没有在农业生产上得到广泛应用。
本发明的智能生态光源系统, 能够最有效地满足生物在生长过程中对于光强、 光谱构成 和光周期的需要。 该系统可以根据不同生物在一天内不同时段的需要, 以及不同生长阶段的 需要, 按需定制最佳的光源。 按照一天 24小时内生物对于光强、 光谱构成和光周期的不同需 求将光强、 光谱调整到合适的状态。 这就最大程度地避免了阴晴变化对于生物生长的影响。
本发明的智能生态光源系统采用多种特定单色 LED集成光源,具有如下优势:① LED光源的 光谱能够与植物光合作用吸收谱最佳匹配; ② LED光源的光强、 光周期可以自动控制; ③ LED 光源、 具有节能、 环保和抗震动等优势。 在同样亮度下, LED光源、 耗电约是白炽灯的十分之
一、 日光灯的二分之一, 可用于大规模工厂化植物养殖。
LED的发射谱是具有一定带宽的带状谱, 且波谱丰富, 可接受人工智能调控。 LED光源防 水防潮, 适宜植物生长环境;发热小, 适宜近距离照射;直流低压更安全:高效节能、轻便环保。 用红橙绿蓝紫 LED 组合成光源, 可进行光谱的波长和光强的调配. 使之更加满足农作物和微 藻的生长需求。 可提高其产量, 改善品质节约能源。
LED发射谱与叶绿素、类胡萝卜素、藻胆色素吸收谱相匹配的智能调光光谱技术对不同类 的植物光谱波长及光强的科学配比。
近距离照射幼苗, 采用特制 Φ 5mm LED, 发光角在 90-120度左右的红橙绿蓝紫 LED, 组 成方体软带光源, 再由高透明 PVC材料密封, 固定长度为一单元节, 使用时可多节并联使用。
本发明的生态能源系统的具体结构如图 2a至图 2f所示。
图 2a是本发明的风能、 光电智能控制系统; 如图所示, 整个系统包括电源部分、 控制部 分和电器应用部分。 其中, 电源部分采用多种能源, 包括有太阳能板, 风力发电等, 还可以 因地制宜采用地热资源, 沼气等廉价清洁能源结合, 并网电源作为应急电源使用。 由风力发 电控制器、 蓄电池、 逆变器和智能总控制器组成的控制部分将各种能源变为用电器所需要的 电压以及使用过程中各个用电器的各种特殊要求。 电器应用部分主要提供给补光系统, 其次 还包括 LED照明控制系统, 各种家用电器, 富余的电能通过能量存储器储存, 供输出或空调 系统使用。
图 2b是本发明的补光系统; 包括光强和光周期调节, 电能可来自市电或太阳能电池, 经 过转换为 12V的电源, 控制部分采用单片机技术, 单片机控制控制电源的输入, 信息显示等, 单片机控制 5通道 享多路输出电路的通断, 形成可调脉宽的脉冲光源, 并且自动控制总光 强变化和光周期, 通过键盘手控各色光强比, 模拟日光变化。
图 2c-图 2f 所示的是补光系统 4中光源结构的示意图, 包括平面光源结构和管状结构, 分别应用于海洋微藻养殖、 温室育苗、 组织培养和蔬菜大棚补光的光源结构。
如图 2c所示, 海洋微藻养殖采用圆柱形的管状光源, LED发光管在圆柱面沿多个方向上 排列, 其中红绿蓝紫各色光的强度比: 2 : 1: 5: 3, 该管状光源插入海洋微藻养殖容器, 作 为补充光源。
组织培养与育苗的红橙绿蓝紫各色光的强度比为 10 : 5 : 1 : 3 : 2, 蔬菜大棚红橙蓝各色光的 强度比为 6 : 3 : 10。 其中, 可选各色 LED波长范围是红光 630-660nm; 橙光 590_630nm; 绿 光 500-530nm; 蓝光 430_470nm ; 紫光 380_430nm。
幼苗补光需要近距离照射, 在图 2d所示的光源结构中采用特制 Φ 5πιπι, 发光角在 90-120
度左右的红橙绿蓝紫 LED, 组成方体软带光源, 再由高透明 PVC材料密封, 组成固定长度的 单元节, 使用时可以根据需要多节并联使用。
图 2e所示的组织培养光源结构采用特制的 Φ 5mm,发光角在 60-90度, 红、 橙、 绿、 蓝、 紫 LED组成面板光源, 由五色 LED各一颗组成一个光像素点, 多个像素点按矩阵排列组成面 板光源, 每一种颜色的 LED各自串并联, 并接入 12V或 36V 的直流电压。
图 2f 所示的蔬菜大棚大角度红蓝 LED 阵列的圆柱形的软带光源系统, 其红蓝的强度比 10: 1, 光强控制在接近饱和点, 光源局作物的垂直距离约为 10 cm, 光周期采取夜间间断补 光。
本发明在生物与大气环境的生态关系引入人工智能。 构建人工智能和自动控制温湿度的 环境最优化系统, 使生物生长发育环境始终保持最佳状况, 走向人工可控的农业环境。
氧气和二氧化碳调控系统利用养殖业吸收氧气放出二氧化碳, 而种植业吸收二氧化碳放 出氧气的循环来实现;
热泵技术控制温、湿条件, 构建种植业与养殖业工程共生系统, 优化了生物的大气环境, 同时由于物质能量交流在系统内循环来解决, 可最大限度减少空气对流造成环境温、 湿条件 的调节所消耗的能量和水分, 极大地降低了能源和农业用水, 降低生产成本。
图 3是立体种养区温\湿度交换系统和氧气和二氧化碳调控系统的示意图。养殖区和种植 区的底部设置进气管,顶部设置排气管。养殖区和种植区的进气管分别通过气泵与种植区和养 殖区的排气管交叉相连, 使养殖区的 C02进入种植区, 种植区的 02 和进入养殖区, 在进行 气体交换的同时, 也产生温度湿度的交换。 两个养殖区之间埋设热管, 同样也达到温度交换 的目的。
养殖区和种植区的下脚料分别通过微生物技术转化, 分别作为种植区的生物培养基或有 机肥以及养殖区的鲜饲料。 达到物质的循环, 基本达到零排放。
本发明的养殖区和种植区采用立体排列的方式, 图 4 是本发明的立体养殖体系结构的一 个实施例; 该系统为立体养殖、 太阳能、 沼气能三位一体互补系统。 鸡舍猪 舍昆虫车间自 上而下排列。 地面以上部分是鸡舍和猪舍, 其层高应当不低于 3. 5m。 地面以下部分不低于 2m, 设置污水处理装置、 昆虫车间、 沼气池等设备。 屋顶设有通气窗, 正面向阳部分安装有 太阳能集热板。 房屋正面安装通风窗, 太阳能空调。 1 . 循环线路: 鸡粪经微生物发酵后喂猪 和取暖, 猪粪进沼气池干发酵产沼气取暖照明, 尿液与刷地污水进污水处理器产生沼气后, 水可循环利用, 冲洗猪舍。 冬季启动太阳能集热板、 太阳能空调作为沼气取暖不足的补充, 夏季启动太阳能空调降温、 房盖加隔热板。 地下养殖车间确保 50平米沼气池和污水处理器,
占用面积为养殖车间实际面积。 地下昆虫养殖车间温度确保 25 ° C左右, 正负不超过 2 ° C 。 立体种植区采用多层支架结构, 补光装置的 LED发光管的灯架、 气体交换系统的排气管和补 水管固定在每一层框架上, 植物生长托盘逐层插入支架, 形成相对密集的养殖区, 便于控制 生长的条件, 达到集约化生产, 节省用地的目的。 该结构紧凑, 空间利用系数高, 空间利用 上从一层空间发展到多层空间。
生态农业离不开生物技术, 离不开微生物的参与, 有益微生物如乳酸菌、 酵母菌、 光合 菌、 芽抱菌、 放线菌、 丝状真菌等 , 只有用好微生物, 农业才能达到生态平衡, 生态才能达 到安全、 绿色, 才会达到良性循环、 效益才能达到最大化。
本发明应用的有益微生物有高纯度专利菌种制成的微生物制剂, 例如, 由农科院微生物 专家丁之锤博士研制和生产的产品有鸡猪用的添添乐 (水剂、 粉剂); 牛羊用的反鱼灵 (水剂、 粉剂);鱼虾水产用的水产宝 (粉);秸轩发酵用的微贮灵 (水剂);粪肥发酵用的粪肥发 酵剂冰 齐 U)和植物用的植物一号等。将两个种养体系中的植物养殖中的下脚料, 如秸秆, 菜叶等转化 为饲料; 动物养殖的下脚料, 如粪便等通过微生物作用转化为培养基。
本发明在植物养殖中的下脚料转化为饲料的方法包括以下制作方案:
1 . 黄粉虫发酵饲料的制作
采用的原料及配比为秸轩粉: 发酵剂 (微贮灵): 红糖: 水为 500 : 1 : 1 : 35 - 40 (视干湿 度)
原料混和拌匀(最好用喷雾器喷匀)密封厌氧发酵, 夏天 7-10天, 冬天 2周左右 (温度在 30 ° C以上)发酵好后的秸轩粉有酒香味,并且手感松软,如喂青菜叶或青草果皮等,可用 1000 倍的菌液直接喷洒均匀, 但用手握不滴水为好, 如发现水多时可用干料伴到握成团不滴水即 可饲喂。 用微生物发酵饲料喂黄粉虫, 昆虫长的快、 个体大、 死亡率少、 产量可提高 30 %以 上。
2. 生态畜禽养殖 500倍发酵饲料制作方法
原料:清洁的玉米秸轩粉 (没有霉变发黑)、 绿达源菌液、 红糖、 水。
容器:缸、 有塑料内膜的容器均可 (要清洗干净)。
制作原料: 以 100斤秸轩粉为例, 干玉米秸轩 100斤 绿达源菌液 2两 红糖 2两 水 35-40斤 制作工艺:
1)先将 40 ° C左右(千万不要超过 50 ° C)红糖溶化:加入菌液混匀, 再加 入 35斤左右水再 混匀:
2)用喷壶均匀的喷到 100斤秸轩粉混合料中:
3)水分多少检测方法:抓取喷好的料拧扭若滴水, 则含水量多, 应加干料调 制, 若手握 成团, 一碰就散即水分为适量。
4)将伴好喷匀的原料装到容器中, 边装边压实, 越实越好。 装满后用塑料布 密封, 厌氧 发酵。 夏天发酵 3天:冬天发酵 1周。 发好的饲料酸甜浓郁并 有酒香味。
生物菌剂与培养基的生产是转化养殖区产生的下脚料的重要环节, 微生物培养基产品具 有独特的功能, 能够制造和协助作物吸收营养, 增进土壤肥力, 增强植物抗病和抗干旱能力, 降低和减轻植物病(虫)害, 产生多种生理活性物质剌激和调控作物生长, 提高化肥利用率, 减少化肥使用, 促进农作物废弃物和城市垃圾的腐熟及开发利用, 起到土壤环境的净化和修 复作用, 提高农作物产品品质和食品安全。
制造微生物培养基的原料类型如按使用量划分, 可以分为主料和辅料:
1 . 主料, 通常这类原料占到物料比例的 3(Γ80%, 由一种或几种原料构成, 常用的主料有 畜禽粪便等有机废弃物。
2. 辅料。 主要是用来调节物料水分、 C/N、 C/P、 pH、 通透性的一些原料, 由一种或几种 原料组成, 通常这类原料占整个物料的比例不超过 40%, 单一物料所占比例不超过 20%。 常用 的辅料有秸杆粉、 稻壳粉、 稻糠、 麦麸、 饼粕、 草炭、 蘑菇渣、 粉煤灰、 生石灰、 过磷酸钙、 磷矿粉等。
如按原料性质划分, 可以分为碳素原料、 氮素原料和调理剂类原料:
1 . 碳素原料, 指有机碳含量高的原料, 这类原料可作为堆肥的主料, 如秸杆堆肥中的秸 杆, 但多数是作为辅料, 用来调节水分、 C/N和增强物料的透气性, 如秸杆粉、稻壳粉、稻糠、 草炭、 蘑菇渣、 粉煤灰等。
2. 氮素原料。 通常是指 C/N在 30以下的原料, 并多作为堆肥的主料, 如畜禽粪便、 市政 污泥、 甘蔗滤泥等, 也有一些做辅料用来调节 C/N的高氮原料, 如饼粕、 鱼粉、 肉骨粉、 尿素 等。
3. 调理剂类原料。 主要指用来调节 pH值的原料, 如生石灰、 石膏以及稀酸等, 有时也将 调节 C/P的原料归为调理剂。
常见微生物的种类:有根瘤菌、 固氮菌、 芽孢杆菌、 硅酸盐细菌、 光合细菌、 纤维素分解 菌、 乳酸菌、 酵母菌、 放线菌和真菌等制剂。
按作用机理可划分为固氮类、 溶磷类、 有机物料腐熟类等生物培养基产品。
使用的菌种通常有 EM菌 日本琉球大学比嘉照夫研制, 由光合细菌、 放线菌、 酵母菌、 乳酸菌等 10个属 80余种微生物复合而成。 用作接种剂、 饲料添加剂、 净水剂、 除臭剂。
酵素菌 BYM 日本岛本工业株式会社研制,是一些能大量产生各种加水分解酶的好氧性有 益微生物组成的菌群, 主要有酵母菌、 丝状菌等 20多个菌株组成。
秸秆资源化处理系统中的目标微生物生产技术工艺如图 5所示, 使用上述的混合菌种, 经 液体培养扩种, 液体发酵后, 将其吸附于固体, 在经过固体发酵, 使用 50-60度的热风干燥包 装。
生产培养基的流程如图 6所示,有机废物按常规预处理以后,加入上述菌剂和相应的辅料。 混合搅拌, 进行好氧发酵, 产生的尾气金收集后通入滤池, 用于原料的搅拌。 发酵后的堆肥 经过粉碎筛分后, 将一部分反料回流至预处理装置和原料混合, 有助于发酵。
在整个工艺过程中, 建立特异性微生物菌株系, 去除堆制过程中有毒有害有机污染物。 针对目前堆肥材料 (包括秸秆和畜禽粪便) 中有机污染物 (如农药) 含量高, 选择毒性 强、 难降解有机污染物种类筛选、 驯化特异性微生物菌株, 构建特异性微生物菌株系。
由于各系统在时间和空间上都有相对的独立性, 生物培养基物化体系是否完善依赖于系 统间的有机衔接。 布局设计中, 通常通过建筑物连接、 设备连接和工艺连接将各系统整合成 一个有机整体。 如在同一建筑物或车间内划分不同的功能区域, 或者比邻的建筑物间通过传 输设备实现物料转移, 或者通过翻堆设备实现物料位移等。
图 7是本发明的立体种养区物质能生产体系。 如图 7所示, 在堆料发酵反应器中插有正 压通气管和负压通气管, 正压通气管通过供风系统从外部通入新鲜空气, 负压通气管利用尾 气排风系统将反应产生的气体排出进入滤池。 反应过程中产生热量, 使堆料中的温度提高, 本发明采用热棒超导技术, 将热量传送到种养区, 向补温系统提供热源。
本发明将养殖的排泄物和种植产生的植物秸秆及各种有机废物通过上述方法转化为有机 肥和饲料, 用于黄粉虫、 蝗虫、 蚕蛹养殖、 加工, 对于解决农村生态环境和有机废弃物转化 等产业的链构建发挥了重要作用。 昆虫食物简单, 繁殖快, 数量大, 属于可持续利用资源。 科学研究和营养分析表明, 大部分昆虫的蛋白质含量占干重的 40%以上, 有的甚至接近或超 过优质鱼粉的含量, 并且各种营养成份及生物生长发育所必需的微量元素和维生素也比较全 面, 开发潜力大, 是用其他方法生产动物性蛋白所无法比拟的, 因此有计划地开发昆虫蛋白 资源是解决动物性蛋白饲料的有效途径。 像蝇蛆、 黄粉虫、 蝗虫、 蚕蛹、 蝼蛄、 蝉等昆虫作 为优质蛋白饲料饲养畜禽已被世人公认, 许多科学工作者都把人工饲养昆虫作为解决动物性 蛋白来源的主攻方向。 其中, 尤其是黄粉虫, 作为本发明循环链的重要一环, 素有动物蛋白 饲料之美誉, 通过工厂化生产, 可以提供大量优质动物性蛋白质, 促进养殖业的发展。 黄粉 虫虫体粗蛋白含量达到 56. 58%, 脂肪含量达 28. 20%-34. 47%; 脱脂提油后粗蛋白含量达到
69. 39%-70. 66%, 每 100克黄粉虫含维生素 B2 0. 52mg,维生素 Ε0· 44mg,铁 6. 5mg,锌 12. 2mg, 硒 46. 2mg。 不但能够替代进口优质鱼粉, 而且完全可以食用。 重要的是还含有独特的甲壳素 成份, 含一种特殊的抗生素物质。 用途广泛, 造纸、 印染、 食品、 医学等领 域起到不可替代 的作用。
黄粉虫是低胆固醇含量的动物油脂资源, 也是优质的食用油资源. 在国外己被用来制备 降低血液胆固醇的遥药物, 人造奶油、 润滑油、 切削油、 洗涤油、 干性油、 黑 油膏、 王二酸 及表面活性剂中间体等, 国内也己将其用于制皂、 太古油及增塑剂。
黄粉虫活体可用黄粉虫喂养经济价值高的动物.如珍禽、观赏类及蛇、 甲鱼、蛙类,鸡鸭、 鹅等等, 用黄粉虫作饲料添加剂的喂鸡饲料用以替代进口的鱼粉、 肉骨粉, 缓解我国动物蛋 白饲料的短缺矛盾。
黄粉虫排泄的虫粪沙, 其应用前景也相当可观, 虫粪沙含粗蛋白 24. 86%, 含氮 3. 37%, 磷 1. 04%, 何 1. 4%, 并含辞、 棚、 锤、 铁、 侯、 钙、 铜七种微量 元素, 是优质的生物有机肥。
本发明的立体种养循环产业链在实施过程中将生态农业产业集群良性循环链项目按照特 定的生产目的进行组合以符合生态农业产业集群良性循环理念, 并在试验园区进行展示和产 业化应用, 建立高效生态种养加工体系, 提高生产水平。
本发明的技术集成首先确定生态农业产业集群良性循环链项目生产的环境资源量和现有 技术体系对此的改变量, 然后使之建立其稳定的平衡, 使各要素间变得更为协调。 而这一工 作将是永恒的, 固为局部的技术改进必然会打破原有平衡, 而生态农业产业集群良性循环链 项目生产关键技术集成则是在生产技术要素不相协调时, 重建新的平衡。
本发明实施的项目体系的导入将整体改变原来生产的环境背景, 使其生态结构与关系发 生了相应的变化,在项目生产关键技术条件下使其生态系统达到平衡,保证项目生产能够适应 于资源一环境间的和谐, 使现代农业技术展示的不同设施种类间其比例的配套与有效衔接, 以便达到在生物效应与生产成本及效益三方面达到兼顾。
Claims
1 . 一种物质和能量循环设计的系统农业生产体系, 其特征在于,该系统包括立体养殖区 和立体种植区及生物防治区, 整个种植和养殖生产采用立体化的工业模块化生产模式; 种植 区和养殖区的温度和立体光源的补充所需的能源由生物质能生产体系和太阳能风能组成的能 源补充系统提供; 种植区的下脚料经过处理, 转化为养殖区使用的饲料; 养殖区的下脚料经 过微生物作用, 制成生物培养基提供给种植区; 养殖区和种植区之间产生的二氧化碳和氧气 相互循环利用; 养殖区和种植区的温度和湿度条件相互转换。
2. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述养殖区和种植区之间二 氧化碳和氧气的循环利用是通过氧气和二氧化碳调控系统实现; 所述养殖区和种植区之间温 度和湿度条件相互转换是利用上述的氧气和二氧化碳调控系统和采用热泵技术的种养区温、 湿度交换系统实现。
3. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述的种植区和养殖区的能 源补充系统包括电源部分、控制部分和电器应用部分, 其中, 所述的电源部分采用太阳能板, 风力发电、 地热资源, 沼气发电的结合, 并网电源作为应急电源使用; 所述的控制部分由风 力发电装置、 风力发电控制器、 蓄电池、 逆变器和智能总控制器和伺服部分组成, 将各种能 源转变为用电器所需要的电压以及使用过程中各个用电器的各种特殊要求; 电器应用部分包 括补光系统、 LED 照明控制系统, 各种家用电器使用; 富余的电能通过能量存储器储存, 供 输出或空调系统使用。
4. 根据权利要求 3所述的系统农业生产体系, 其特征在于, 所述的补光系统包括电源转 换部分, 控制部分和发光装置, 其中, 所述电源转换部分输出 36V电压; 所述发光装置有多 排 LED发光管; 所述控制部分, 由单片机和微机手控键盘构成, 微机控制电源的输入、 信息 显示和多通道输出控制多路输出电路的通断与单板机配合, 形成可调电压或可调脉宽的脉冲 光源, 并且自动控制所述发光装置的总光强变化和光周期, 手控键盘控制多排 LED发光管的 各色光强比, 模拟日光变化。
5. 根据权利要求 4所述的系统农业生产体系, 其特征在于, 所述的补光系统中的发光 装置包括平面光源结构和管状光源结构, 分别作为应用于养殖区和种植区的海洋微藻养殖、 温室育苗、 组织培养和蔬菜大棚补光的光源结构。
6.根据权利要求 5所述的系统农业生产体系,其特征在于,所述管状光源结构采用 Φ 5mm, 发光角在 90-120度左右的红橙绿蓝紫 LED发光管, 固定在立方体软带上, 再由高透明 PVC材
料密封, 组成一固定长度的单元节, 使用时可多节并联使用, 用于温室育苗的近距离照射。
7. 根据权利要求 5所述的系统农业生产体系, 其特征在于, 所述管状光源结构采用圆柱 形, LED 发光管在圆柱面沿多个方向上排列, 其中红绿蓝紫各色光的强度比: 2: 1: 5: 3, 该管状光源插入海洋微藻养殖容器作为补充光源。
8. 根据权利要求 7所述的系统农业生产体系, 其特征在于, 所述管状光源结构采用圆柱 形的软带光源, 大角度红蓝 LED 阵列中的红蓝的强度比 10: 1, 光强控制在接近饱和点, 光 源距作物的垂直距离约为 10 cm, 光周期采取昼夜间断补光, 用于蔬菜大棚的补光。
9.根据权利要求 5所述的系统农业生产体系,其特征在于,所述平面光源结构采用 Φ 5mm, 发光角在 60-100度的红、 橙、 绿、 蓝、 紫 LED发光管组成面板光源, 在所述的面板光源上, 五种颜色的 LED各一颗组成一个光像素点, 多个像素点按矩阵排列, 每一种颜色的 LED各自 联接, 并接入 36V的直流电压, 用于组织培养光源结构使用。
10. 根据权利要求 6-9所述的系统农业生产体系, 其特征在于, 所述用于组织培养与育 苗的红橙绿蓝紫各色光的强度比为 10 : 5 : 1 : 3 : 2 ; 用于蔬菜大棚红橙蓝各色光的强度比为 6 : 3 : 10;其中,选择各色 LED波长范围是红光 630-660nm;橙光 590_630nm;绿光 500_530nm; 蓝光 430-470nm ; 紫光 380_430nm。
11. 根据权利要求 2所述的系统农业生产体系, 其特征在于, 所述的种养区温、 湿度交 换系统和氧气和二氧化碳调控系统包括在养殖区和种植区的底部设置的进气管、 顶部设置排 气管; 所述养殖区的进气管与种植区的排气管, 种植区的进气管与养殖区的排气管分别通过 风机气泵交叉相连, 使养殖区的 C02进入种植区, 种植区的 02进入养殖区, 在进行气体交换 的同时产生温度湿度的交换。
12. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述的养殖区包括立体养 殖、 太阳能、 生物质能三位一体互补系统; 其中, 立体养殖区的鸡舍、 猪舍和昆虫车间自上 而下排列, 鸡舍和猪舍在地面以上部分, 其层高应当不低于 3. 5m; 地面以下部分设置污水处 理装置、 昆虫车间、 沼气池, 层高不低于 2m; 屋顶设有通气窗, 正面向阳部分安装有太阳能 集热板。 房屋正面安装通风窗, 太阳能空调; 循环线路: 鸡粪经微生物发酵后喂猪和取暖, 猪粪进沼气池干发酵产沼气取暖照明,尿液与刷地污水进污水处理器产生沼气后可循环利用, 冲洗猪舍; 冬季启动太阳能集热板、 太阳能空调作为沼气取暖不足的补充, 夏季启动太阳能 空调降温、 房盖加隔热板, 确保地下昆虫养殖车间温度 23°C, 正负不超过 2°C。
13. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述种植区采用多层支架 结构, 每一层框架上安装有所述补光装置的 LED发光管的灯架、 气体交换系统的排气管和补
水管; 植物生长托盘逐层插入所述多层支架, 形成相对密集的养殖区, 便于控制生长的条件, 达到集约化生产。
14. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述两个种养区的植物养 殖中的下脚料转化为饲料,动物养殖的下脚料转化为培养基,使用的微生物为高纯度菌种制成 的目标微生物制剂。
15. 根据权利要求 14所述的系统农业生产体系, 其特征在于, 所述高纯度菌种制成的目 标微生物制剂包括用于鸡猪的水剂和粉剂, 用于牛羊的水剂和粉剂, 用于鱼虾水产用的水剂 和粉剂; 用于秸轩发酵用的水剂, 用于粪肥发酵用的粪肥发酵剂水剂。
16. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述将植物养殖中的下脚料 转化为饲料采用的原料及配比为秸杆粉: 发酵剂: 红糖: 水为 500 : 1 : 1 : 35 - 40 ; 原料混和 拌匀, 最好用喷雾器喷匀, 然后密封厌氧发酵, 夏天 7-10天, 冬天 2周, 用于黄粉虫发酵饲料。
17. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述将植物养殖中的下脚料 转化为饲料采用的原料配方为 100斤秸轩粉, 100斤干玉米秸杆, 2两目标微生物菌液、 2两红 糖和 35-40斤水; 其制作工艺:
1)先将 40°C左右, 不要超过 50°C的红糖溶化, 加入菌液混匀, 再加入 35斤左右水再混匀;
2)用喷壶均匀的喷到 100斤秸杆粉混合料中;
3)如抓取喷好的料拧扭若滴水, 则含水量多, 应加干料调制, 若手握成团, 一碰就散即 水分为适量;
4)将伴好喷匀的原料装到容器中, 边装边压实, 装满后用塑料布 密封, 厌氧发酵, 夏天 发酵 3天, 冬天发酵 1周用于畜禽养殖的发酵饲料。
18. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 秸杆资源化处理系统中的目 标微生物生产技术工艺中使用混合目标微生物, 经液体培养扩种, 液体发酵后, 将其吸附于 固体, 在经过固体发酵, 使用 50-60度的热风干燥包装。
19. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述的生产培养基的流程包 括有机废物常规预处理, 之后加入菌剂和相应的辅料混合搅拌, 进行好氧发酵, 产生的尾气 经收集后通入滤池, 用于原料的搅拌; 发酵后的原料经过粉碎筛分后, 将其中一部分回流至 预处理装置和原料混合, 有助于发酵。
20. 根据权利要求 19所述的系统农业生产体系, 其特征在于, 所述的在生产培养基的流 程中, 建立特异性微生物菌株系去除堆制过程中有毒有害有机污染物; 针对目前堆肥材料中 有机污染物含量高, 选择毒性强、 难降解有机污染物种类筛选、 驯化特异性微生物菌株, 构
建特异性微生物菌株系。
21. 根据权利要求 1所述的系统农业生产体系, 其特征在于, 所述立体种养区生物质能 生产体系包括在堆料发酵反应器中插有的正压通气管和负压通气管, 正压通气管通过供风系 统从外部通入新鲜空气, 负压通气管利用尾气排风系统将反应产生的气体排出进入滤池。 反 应过程中产生热量, 采用热管超导技术, 将热量传送到种养区, 向补温系统提供热源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100939245A CN101310591A (zh) | 2008-04-23 | 2008-04-23 | 按照物质和能量循环设计的现代系统农业生产体系 |
CN200810093924.5 | 2008-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009129737A1 true WO2009129737A1 (zh) | 2009-10-29 |
Family
ID=40099589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/071390 WO2009129737A1 (zh) | 2008-04-23 | 2009-04-21 | 农业生产系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101310591A (zh) |
WO (1) | WO2009129737A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102293133A (zh) * | 2010-06-24 | 2011-12-28 | 北京智慧剑科技发展有限责任公司 | 工厂化农业自动生产线 |
CN108812301A (zh) * | 2018-07-30 | 2018-11-16 | 开平市华声生物科技有限公司 | 一种生态循环养殖系统 |
CN109006493A (zh) * | 2018-09-11 | 2018-12-18 | 宝鸡神农农业科技有限公司 | 基于干湿分离型养殖场的农业生态循环系统 |
CN109168792A (zh) * | 2018-07-23 | 2019-01-11 | 南京信息工程大学 | 一种蔬菜大棚分布式能源综合利用系统 |
CN109430097A (zh) * | 2018-12-14 | 2019-03-08 | 莱西市产业技术研究院 | 一种规模化养鸡场用多能协同供应系统 |
CN109892232A (zh) * | 2019-03-29 | 2019-06-18 | 上海海洋大学 | 复合种养殖系统及其在规模化畜禽养殖粪污处理中的应用 |
CN110655422A (zh) * | 2019-11-15 | 2020-01-07 | 湖南省畜牧兽医研究所 | 一种促腐熟保氮素的堆肥方法及有机肥料的应用 |
CN112568180A (zh) * | 2020-11-25 | 2021-03-30 | 罗德勇 | 一种眼镜蛇养殖棚 |
CN112703929A (zh) * | 2020-12-09 | 2021-04-27 | 海南广军实业有限公司 | 一种生物循环标准产业链装置 |
CN113508781A (zh) * | 2021-04-30 | 2021-10-19 | 广西壮族自治区畜牧研究所 | 一种基于利用农产品下脚料生态无抗养殖黑山羊的方法 |
CN113575472A (zh) * | 2021-08-18 | 2021-11-02 | 湖州师范学院 | 一种池塘零排污循环水养殖法 |
CN113632699A (zh) * | 2021-05-28 | 2021-11-12 | 安徽农业大学 | 一种稻-羊-草生态循环农业模式 |
CN113951210A (zh) * | 2021-09-27 | 2022-01-21 | 毛根群 | 一种生态循环系统 |
CN114315069A (zh) * | 2022-01-04 | 2022-04-12 | 山西农业大学资源环境学院 | 一种智能好氧厌氧一体发酵装置 |
CN117680467A (zh) * | 2023-11-21 | 2024-03-12 | 北京朝阳环境集团有限公司 | 一种厨余垃圾高温厌氧发酵工艺 |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101877557A (zh) * | 2009-04-30 | 2010-11-03 | 北京智慧剑科技发展有限责任公司 | 一种可再生能源设施农业光伏电站 |
CN101876481A (zh) * | 2009-04-30 | 2010-11-03 | 北京智慧剑科技发展有限责任公司 | 一种可再生能源设施农业 |
CN102415300A (zh) * | 2011-08-02 | 2012-04-18 | 北京林业大学 | Led在植物栽培中的应用 |
CN102870559A (zh) * | 2011-08-25 | 2013-01-16 | 北京林业大学 | 大熊猫栖息地周边社区的内生性循环系统 |
CN103070062A (zh) * | 2013-01-16 | 2013-05-01 | 中国计量学院 | 智能led补光室内循环生态种养系统 |
CN103362322A (zh) * | 2013-07-17 | 2013-10-23 | 徐丰 | 一种种、养和居住庭院经济一体化住宅 |
CN103478007B (zh) * | 2013-09-12 | 2015-01-28 | 金华市广明生态农业综合开发有限公司 | 一种共生养殖通风结构 |
CN103526962B (zh) * | 2013-10-15 | 2016-02-03 | 陈开明 | 水稻种植循环经济生态连锁式经营系统 |
CN103672710A (zh) * | 2013-12-12 | 2014-03-26 | 苏州市职业大学 | 植物用的太阳能光伏供电的led补光和加热装置 |
CN103636560B (zh) * | 2013-12-13 | 2015-10-28 | 电白县星火水生野生动物繁育场 | 一种龟鳖孵化饲养房 |
CN104336320A (zh) * | 2014-05-10 | 2015-02-11 | 栗成旺 | 生物饲养法现代科学技术 |
CN105145314A (zh) * | 2014-06-03 | 2015-12-16 | 深圳市黄谷生态绿化有限公司 | 立体式水培雾培养殖相结合的生态一体化系统 |
CN104719113B (zh) * | 2015-03-23 | 2017-05-24 | 上海交通大学 | 一种促进抗氧化物质积累的生菜栽培系统及栽培方法 |
CN104798576A (zh) * | 2015-04-15 | 2015-07-29 | 云南省农业科学院热区生态农业研究所 | 一种山地种养的立体循环农业模式 |
CN104756935A (zh) * | 2015-04-17 | 2015-07-08 | 乔巍 | 一种有机基质鱼菜分离共生的混合种植养殖系统 |
CN104956951A (zh) * | 2015-05-25 | 2015-10-07 | 王克山 | 一种全天候全地域循环生态农业系统 |
CN106106146B (zh) * | 2015-06-04 | 2018-05-08 | 浙江海兴生物科技有限公司 | 组培系统及其平面发光装置、led灯光培养箱 |
CN105016908A (zh) * | 2015-08-19 | 2015-11-04 | 山东普金肥料有限公司 | 一种复合微生物肥料及其制备方法 |
CN105605521A (zh) * | 2016-03-08 | 2016-05-25 | 杭州信控科技有限公司 | 一种基于路灯杆的太阳能(风能)并网发电系统 |
CN105660446A (zh) * | 2016-03-15 | 2016-06-15 | 成都心连心农业有限公司 | 基于生态改良技术的养鸡场生态循环利用喂养系统 |
CN105766791A (zh) * | 2016-03-15 | 2016-07-20 | 成都心连心农业有限公司 | 基于生态改良技术的养鸡场生态循环利用喂养方法 |
CN105746380A (zh) * | 2016-03-15 | 2016-07-13 | 成都心连心农业有限公司 | 一种用于生态鸡改良的喂养系统 |
CN105724317A (zh) * | 2016-03-15 | 2016-07-06 | 成都心连心农业有限公司 | 基于生态鸡改良技术的养殖场系统 |
CN106035100B (zh) * | 2016-06-16 | 2018-10-09 | 汕尾市鑫源华现代农业有限公司 | 一种节能型猪舍 |
CN106088705A (zh) * | 2016-07-13 | 2016-11-09 | 北京大成豪第货运代理有限公司 | 一种节能减排的智慧农业循环系统 |
CN106211472A (zh) * | 2016-08-26 | 2016-12-07 | 中山市格林曼光电科技有限公司 | 一种智控型笼舍光照系统与笼舍结构 |
CN106489778A (zh) * | 2016-09-27 | 2017-03-15 | 四川森迪科技发展股份有限公司 | 一种基于跟随电路的禽舍自动排气系统 |
CN106538397A (zh) * | 2016-10-30 | 2017-03-29 | 成都奥能普科技有限公司 | 一种具有金字塔能的农业养殖设施 |
CN108021057A (zh) * | 2016-11-04 | 2018-05-11 | 中国计量大学 | 一种可调节光强的露天大棚 |
CN106489815B (zh) * | 2016-11-08 | 2022-07-05 | 深圳市蓝汀鼎执生物科技有限公司 | 一种汽雾养殖系统 |
CN106472135A (zh) * | 2016-12-12 | 2017-03-08 | 互联智控科技(天津)有限公司 | 基于低压恒压供电的植物补光智能控制系统及补光方法 |
CN108271557A (zh) * | 2017-01-04 | 2018-07-13 | 飞升电器工程兴业有限公司 | 农业改良系统 |
CN106900569A (zh) * | 2017-03-15 | 2017-06-30 | 黄科钧 | 一种农畜业的智能管理系统 |
CN106900651A (zh) * | 2017-03-16 | 2017-06-30 | 中山星火光电材料有限公司 | 利用光照调节家猪生长及提高成活率的方法 |
CN107616100A (zh) * | 2017-11-17 | 2018-01-23 | 福建省农业科学院畜牧兽医研究所 | 供温羊舍及其使用方法 |
CN108513819A (zh) * | 2018-03-30 | 2018-09-11 | 深圳春沐源控股有限公司 | 生态循环方法、装置及存储介质 |
CN108811808A (zh) * | 2018-05-23 | 2018-11-16 | 绥江县裕农农业开发有限责任公司 | 一种种养结合的方法 |
CN108849123A (zh) * | 2018-06-12 | 2018-11-23 | 合肥汇英科技有限公司 | 一种生物质能源蔬菜大棚用的升温热风系统 |
CN109942077A (zh) * | 2019-02-25 | 2019-06-28 | 杨帆 | 一种高寒高海拨旅游景区污染治理系统 |
CN110301373A (zh) * | 2019-06-06 | 2019-10-08 | 贵阳牧人农业科技发展有限公司 | 一种生态高产循环种鸭养殖系统 |
CN110495331A (zh) * | 2019-09-24 | 2019-11-26 | 山东农业大学 | 一种设施种养结合生态循环方法 |
CN112042456A (zh) * | 2020-09-16 | 2020-12-08 | 中安生物技术南京有限公司 | 一种一体化无抗生态农业养殖种植方法 |
CN113207491A (zh) * | 2021-04-27 | 2021-08-06 | 华春新能源股份有限公司 | 节能型环保生态农业大棚系统 |
CN113892368B (zh) * | 2021-10-08 | 2022-11-25 | 胡泽锋 | 低碳农业生态系统及使用方法 |
CN114091761B (zh) * | 2021-11-24 | 2022-08-12 | 中国科学院地理科学与资源研究所 | 种养空间优化方法及装置 |
CN114532233A (zh) * | 2022-03-29 | 2022-05-27 | 四川省鑫牧汇科技有限公司 | 一种减少温室气体排放的种养一体家庭农场 |
CN115024131A (zh) * | 2022-07-06 | 2022-09-09 | 今蜂智慧农业科技(泰安)有限公司 | 一种节能减排种养一体自循环农场及运行方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048906A (zh) * | 1989-04-11 | 1991-01-30 | 阎永生 | 立体农场 |
CN1023757C (zh) * | 1991-10-26 | 1994-02-16 | 于连生 | 一种制备高蛋白饲料的方法 |
CN2273110Y (zh) * | 1996-10-17 | 1998-01-28 | 陈自军 | 一种阳光模拟装置 |
CN1337146A (zh) * | 2000-07-25 | 2002-02-27 | 刘炳强 | 一种生态效益多级升值的系列化设施农业工厂 |
CN2542043Y (zh) * | 2002-01-13 | 2003-04-02 | 陈绍希 | 生物能太阳能生态温室 |
CN2585556Y (zh) * | 2002-12-10 | 2003-11-12 | 温会昌 | 立体种植养殖一体化装置 |
CN1515143A (zh) * | 2003-01-07 | 2004-07-28 | 深圳市丰河环境工程技术有限公司上海 | 一种洁净养殖和无公害种植农业装备 |
CN1172604C (zh) * | 1999-10-22 | 2004-10-27 | 柏绿山 | 植物秸秆全营养生物饲料及其制造方法 |
CN101019493A (zh) * | 2007-03-16 | 2007-08-22 | 陆阳 | 一种高性能日光温室 |
-
2008
- 2008-04-23 CN CNA2008100939245A patent/CN101310591A/zh active Pending
-
2009
- 2009-04-21 WO PCT/CN2009/071390 patent/WO2009129737A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048906A (zh) * | 1989-04-11 | 1991-01-30 | 阎永生 | 立体农场 |
CN1023757C (zh) * | 1991-10-26 | 1994-02-16 | 于连生 | 一种制备高蛋白饲料的方法 |
CN2273110Y (zh) * | 1996-10-17 | 1998-01-28 | 陈自军 | 一种阳光模拟装置 |
CN1172604C (zh) * | 1999-10-22 | 2004-10-27 | 柏绿山 | 植物秸秆全营养生物饲料及其制造方法 |
CN1337146A (zh) * | 2000-07-25 | 2002-02-27 | 刘炳强 | 一种生态效益多级升值的系列化设施农业工厂 |
CN2542043Y (zh) * | 2002-01-13 | 2003-04-02 | 陈绍希 | 生物能太阳能生态温室 |
CN2585556Y (zh) * | 2002-12-10 | 2003-11-12 | 温会昌 | 立体种植养殖一体化装置 |
CN1515143A (zh) * | 2003-01-07 | 2004-07-28 | 深圳市丰河环境工程技术有限公司上海 | 一种洁净养殖和无公害种植农业装备 |
CN101019493A (zh) * | 2007-03-16 | 2007-08-22 | 陆阳 | 一种高性能日光温室 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102293133B (zh) * | 2010-06-24 | 2016-02-17 | 成都奥能普科技有限公司 | 工厂化农业自动生产线 |
CN102293133A (zh) * | 2010-06-24 | 2011-12-28 | 北京智慧剑科技发展有限责任公司 | 工厂化农业自动生产线 |
CN109168792A (zh) * | 2018-07-23 | 2019-01-11 | 南京信息工程大学 | 一种蔬菜大棚分布式能源综合利用系统 |
CN108812301B (zh) * | 2018-07-30 | 2023-04-28 | 开平市华声生物科技有限公司 | 一种生态循环养殖系统 |
CN108812301A (zh) * | 2018-07-30 | 2018-11-16 | 开平市华声生物科技有限公司 | 一种生态循环养殖系统 |
CN109006493A (zh) * | 2018-09-11 | 2018-12-18 | 宝鸡神农农业科技有限公司 | 基于干湿分离型养殖场的农业生态循环系统 |
CN109430097A (zh) * | 2018-12-14 | 2019-03-08 | 莱西市产业技术研究院 | 一种规模化养鸡场用多能协同供应系统 |
CN109430097B (zh) * | 2018-12-14 | 2024-01-23 | 莱西市产业技术研究院 | 一种规模化养鸡场用多能协同供应系统 |
CN109892232A (zh) * | 2019-03-29 | 2019-06-18 | 上海海洋大学 | 复合种养殖系统及其在规模化畜禽养殖粪污处理中的应用 |
CN110655422A (zh) * | 2019-11-15 | 2020-01-07 | 湖南省畜牧兽医研究所 | 一种促腐熟保氮素的堆肥方法及有机肥料的应用 |
CN112568180A (zh) * | 2020-11-25 | 2021-03-30 | 罗德勇 | 一种眼镜蛇养殖棚 |
CN112703929A (zh) * | 2020-12-09 | 2021-04-27 | 海南广军实业有限公司 | 一种生物循环标准产业链装置 |
CN113508781B (zh) * | 2021-04-30 | 2022-08-19 | 广西壮族自治区畜牧研究所 | 一种基于利用农产品下脚料生态无抗养殖黑山羊的方法 |
CN113508781A (zh) * | 2021-04-30 | 2021-10-19 | 广西壮族自治区畜牧研究所 | 一种基于利用农产品下脚料生态无抗养殖黑山羊的方法 |
CN113632699A (zh) * | 2021-05-28 | 2021-11-12 | 安徽农业大学 | 一种稻-羊-草生态循环农业模式 |
CN113575472A (zh) * | 2021-08-18 | 2021-11-02 | 湖州师范学院 | 一种池塘零排污循环水养殖法 |
CN113951210A (zh) * | 2021-09-27 | 2022-01-21 | 毛根群 | 一种生态循环系统 |
CN114315069A (zh) * | 2022-01-04 | 2022-04-12 | 山西农业大学资源环境学院 | 一种智能好氧厌氧一体发酵装置 |
CN117680467A (zh) * | 2023-11-21 | 2024-03-12 | 北京朝阳环境集团有限公司 | 一种厨余垃圾高温厌氧发酵工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN101310591A (zh) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009129737A1 (zh) | 农业生产系统 | |
CN107986830A (zh) | 餐厨垃圾的处理方法及其制备的有机肥 | |
CN101502222B (zh) | 家庭生态种养殖箱 | |
CN104817399B (zh) | 一种利用秸秆微生物发酵合成速效缓释一体高效生态复合肥的智能制备系统及制备方法 | |
CN103073343B (zh) | 一种低碳环保高效有机蔬菜栽培基质及其制备方法 | |
CN109534636A (zh) | 一种废弃秸秆与畜禽粪污综合处理利用的生产系统 | |
CN105994165B (zh) | 一种基于高密度蚯蚓下的牛粪高效处理方法 | |
CN106155019A (zh) | 八位一体多功能新能源智能温室 | |
CN202151064U (zh) | 屋顶生物质循环种植系统 | |
CN108374577A (zh) | 一种农业种养生态资源循环生产系统 | |
CN103250668A (zh) | 一种结合水产养殖及无土农业种植的系统 | |
CN102630515A (zh) | 屋顶生物质循环种植系统 | |
CN101189958A (zh) | 一种利用微生态发酵床养猪的方法 | |
CN204702674U (zh) | 利用秸秆微生物发酵生态复合肥的智能制备系统 | |
CN102578010A (zh) | 一种利用发酵鸽粪培育观赏虾饵料生物的肥水方法 | |
CN101032237A (zh) | 以沼气为纽带的生态有机循环农业生产经营模式与方法 | |
CN107083322A (zh) | 一种多层微藻生长繁殖装置 | |
CN103477909A (zh) | 基于三沼综合利用的北方棚室蔬菜生产系统 | |
CN103461284A (zh) | 一种利用蚯蚓生物分解畜禽粪便的方法 | |
CN102388770A (zh) | 可控自温生态大棚 | |
CN106577528A (zh) | 一种发酵床养猪方法 | |
CN208995404U (zh) | 一种农业废弃物再利用生产有机肥料的设备 | |
CN105754903A (zh) | 规模化培育红假单胞菌属光合细菌的方法 | |
CN202829867U (zh) | 温室后墙堆肥系统 | |
CN103396176A (zh) | 畜禽粪便转化商品有机肥生产工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09734973 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/02/2011) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09734973 Country of ref document: EP Kind code of ref document: A1 |