WO2009128693A1 - Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos - Google Patents

Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos Download PDF

Info

Publication number
WO2009128693A1
WO2009128693A1 PCT/MX2008/000053 MX2008000053W WO2009128693A1 WO 2009128693 A1 WO2009128693 A1 WO 2009128693A1 MX 2008000053 W MX2008000053 W MX 2008000053W WO 2009128693 A1 WO2009128693 A1 WO 2009128693A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
microsensor
plate
microsensor according
torsional
Prior art date
Application number
PCT/MX2008/000053
Other languages
English (en)
French (fr)
Inventor
Jaime MARTÍNEZ CASTILLO
Agustin Leobardo Herrera May
Pedro Javier GARCÍA RAMÍREZ
Leandro GARCÍA GONZÁLEZ
Angel Sauceda Carvajal
Original Assignee
Tubos De Acero De Mexico, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tubos De Acero De Mexico, S.A. filed Critical Tubos De Acero De Mexico, S.A.
Priority to PCT/MX2008/000053 priority Critical patent/WO2009128693A1/es
Priority to ARP090101348A priority patent/AR071205A1/es
Publication of WO2009128693A1 publication Critical patent/WO2009128693A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0283Electrodynamic magnetometers in which a current or voltage is generated due to relative movement of conductor and magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices

Definitions

  • the present invention relates to a piezoresistive resonant sensor type p, manufactured in the technology of microelectromechanical systems (MEMS), which can detect magnetic fields in a wide range (1 to 40OG) by means of the Lorentz force principle.
  • MEMS microelectromechanical systems
  • a solution to the above is to operate the system in a low temperature environment (77 K), involving the use of a cooling system or using materials other than silicon that show an increase in mobility (Garc ⁇ a RPJ and Sandoval IF ( 2003), "Measuring magnetic fields at low temperature”, 4th Electronics Circuits and Systems Conference, Bratislava, Slovakia, p.143).
  • 77 K low temperature environment
  • materials other than silicon that show an increase in mobility
  • Microelectromechanical systems (MEMS) technology allows magnetic devices with features such as: small size, low power consumption and mass production (Ciudad D., Aroca C 1 Sánchez M., López E. and Sánchez P. (2004). Modeling and fabrication of a MEMS magnetostatic magnetic sensor Sensors Actuators A 1 15, pp. 408-416). Kadár Z., Bossche A., Sarro PM and Mollinger JR (1998) ("Magnetic-field Measurements Using an Integrated Resonant Magnetic-Field Sensor, Sensors Actuators A 70, pp.
  • the microsensor that is intended to be protected in the present application does not present fracture problems for high values of magnetic fields (close to 400 G) that considerably improve the electrical mechanical operation of current resonant microsensors.
  • MEMS microelectromechanical systems
  • This sensor uses semiconductor materials and has a structural configuration formed by a torsional microplate, four flexing and two torsional microbeams, which together with a Wheatstone Ie bridge provide a peculiar and proper appearance compared to conventional ones.
  • Figure 1 shows a top isometric view of an embodiment of the microsensor object of the present invention.
  • Figure 2 shows a lower isometric view of an embodiment of the microsensor object of the present invention.
  • Figure 3 shows an enlarged top view of a plate-beam structure and Wheatstone bridge of an embodiment of the microsensor object of the present invention.
  • Figure 4 shows a schematic representation of the operation of an embodiment of the microsensor object of the present invention.
  • Figure 5 shows dimensions in ⁇ m of a plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 6 illustrates a first mode of torsional vibration of the plate-beam structure obtained by means of the element software ANSYS finite of an embodiment of the microsensor object of the present invention.
  • Figure 7 illustrates a second mode of vibration of the plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 8 illustrates a third mode of vibration of the plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 9 illustrates a fourth modal configuration of the plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 10 illustrates the different stages of a micromachining process of volume in silicon wafers on insulator of an embodiment of the microsensor object of the present invention.
  • Figure 1 1 shows a response in Volts as a function of the frequency of the applied alternating current of an embodiment of the microsensor object of the present invention.
  • Figure 12 shows a response in Volts of an embodiment of the microsensor object of the present invention as a function of a magnetic field B x applied.
  • Figure 13 shows a response in Volts of an embodiment of the microsensor object of the present invention for magnetic fields less than 80 G
  • Figure 14 illustrates a maximum response of Von Mises effort in the plate-beam structure of an embodiment of the microsensor object of the present invention obtained by means of a finite element model in the ANSYS software.
  • Figure 15 shows a top isometric view of the distribution of von Mises stresses in the plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 16 shows a lower isometric view of the distribution of von Mises stresses in the plate-beam structure of an embodiment of the microsensor object of the present invention.
  • Figure 17 shows a graph of the maximum vertical displacements located at the end of the plate of an embodiment of the microsensor object of the present invention.
  • Figure 18 shows a distribution of vertical displacement in a plate-beam structure of an embodiment of the microsensor object of the present invention obtained with ANSYS.
  • Figure 1 is a top isometric view of a piezoresistive resonant microsensor type p with the Wheatstone bridge object of the present invention.
  • the microsensor design consists of a silicon torsional plate 1 with dimensions of 400x150x15 ⁇ m suspended over a cavity in the substrate and connected by four flexing beams 2 with dimensions of 130x12x15 ⁇ m and two torsional beams 3 with dimensions of 60x40x15 ⁇ m.
  • An aluminum loop 4, where an alternating current flows which has a symmetrical configuration around the torsional plate 1 with the purpose of uniformly distributing the stresses, which reduces the initial buckling of the structure and growth of cracks during the stage of release of this one.
  • a pair of flexing beams 2 include two active piezoresistors 5 with boron doping, type p, which form a branch of the Wheatstone bridge 6.
  • the second branch is formed by two passive piezoresistors 7, type p, located on the silicon substrate with deformation-free volume 8.
  • the supply of the alternating current is by means of the two electrodes 9.
  • the Wheatstone bridge obtains an imbalance at the moment that the bending beams undergo deformation.
  • Figure 2 shows a lower isometric view of the resonant microsensor.
  • the inclined cavity is observed below the torsional plate 1 that is 435 ⁇ m deep. This cavity was designed to decrease air damping when the torsional plate 1 operates in resonance.
  • FIG. 3 is an enlarged top view of the plate-beam structure and Wheatstone bridge of the resonant microsensor.
  • This Figure shows the torsional plate 1, the flexing beams 2, the torsional beam 3, the connection of the passive piezoresistors 5 and the passive 7 in the Wheatstone bridge 6.
  • Figure 4 is a schematic representation of the operation of the proposed resonant microsensor. It contains an aluminum loop 4 through which a sinusoidal alternating current (I L ) flows. The frequency of the alternating current must be very close to the torsional resonance frequency of the plate-beam structure to reach the maximum magnetic sensitivity.
  • a torsional movement in the structure caused by the Lorentz force originates, deforming the two active piezoresistors 5 located in the flexing beams 2.
  • the resistance of the Deformed piezoresistors causes a change in the output voltage of the Wheatstone bridge.
  • the magnetic torque (T) acting on the beam structure is given by equation (3). This torque is caused by the Lorentz force and its value depends on the half-length of the plate L x .
  • the numerator of equation (4) considers the magnetic torque and the distance c from the neutral plane of the plate to the location of the active piezoresistors.
  • the denominator of equation (4) considers the flexural stiffness of the four beams The b .
  • the magnetic torque will produce a ⁇ x deformation in the bending beams, and therefore a change in the resistance of the active piezoresistors. This variation is directly proportional to the gauge factor G of the active piezoresitor and to the deformation ⁇ x as expressed in equation (5).
  • the change in the output voltage of the Wheatstone bridge can be used as the input signal of signal processing circuits.
  • Figure 5 shows the dimensions in ⁇ m of the plate-beam structure of the proposed resonant microsensor. The smallest dimensions correspond to the flexing beams 2 and the larger ones to the torsional plate 1.
  • Figure 6 illustrates the first torsional vibration mode of the plate-beam structure obtained by means of the ANSYS finite element software. This vibration mode has a symmetrical torsional configuration with respect to the torsional axis. The operation of the plate-beam structure in this vibration mode will cause an increase in the magnetic sensitivity of the microsensor because the active piezoresistors 5 would have an appreciable deformation.
  • the second mode of vibration of the plate-beam structure is illustrated in Figure 7.
  • Figure 8 shows the third mode of vibration of the plate-beam structure. This mode is of translation in the direction of the axis and, which is not convenient for a torsional oscillating movement of the structure.
  • Figure 9 illustrates the fourth modal configuration of the plate-beam structure. This configuration indicates that the plate undergoes an irregular torsion with respect to the x axis, which does not favor the torsional oscillating movement of the plate.
  • the microsensor object of the present invention is manufactured in a micromachining process of volume in silicon wafers on insulator (SOI) of 10.16 cm in diameter.
  • the manufacturing process begins with the growth of 18 nm of thermal oxide and with the growth of a layer of 1 18 nm of nitride of silicon (Si 3 N 4 ) on a substrate of SOI type n.
  • the nitride layer is removed from the upper side of the wafer and placed in a pattern on the lower side as shown in part (a) of Figure 10.
  • boron is implanted to form four piezoresistors type p with 0.83 ⁇ m of depth, as indicated in part (b) of Figure 10.
  • part (c) of Figure 10 the growth of a silicon oxide (with 1 ⁇ m thickness) is shown, which subsequently forms a fixed pattern and the 120x120 ⁇ m contacts are open.
  • a 1 ⁇ m aluminum layer is deposited and a pattern of this is formed, which is shown in part (d) of Figure 10.
  • Aluminum defines the metal lines and contacts.
  • the silicon substrate is etched from the lower part using potassium hydroxide (KOH) as shown in part (e) Figure 10.
  • KOH potassium hydroxide
  • the SOI layer is etched by reactive ions to define the final structure of the proposed microsensor, as shown in part (f) of Figure 10.
  • the microsensor is glued and wired to an 8-terminal commercial packaging.
  • the wire used is 60 ⁇ m aluminum.
  • the packaging is placed on a printed circuit board (PCB) designed for electrical characterization.
  • the resistance of active piezoresistors is 18.8 k ⁇ and the liabilities of 21.7 k ⁇ .
  • the resistance of the aluminum loop through which the alternating current flows is 18.4 ⁇ .
  • a commercial low noise amplifier SRS560 from Stanford Research Systems a TDS 2024 Tetronix oscilloscope, a 33220A Agilent waveform generator, a field power supply is used magnetic, a 475 gapmeter DSP Lakeshore and a laptop where the response of the microsensor is plotted.
  • a variable magnetic field parallel to the microsensor plate-beam structure and four rms (I) values of alternating current (6.2 mA, 11.4 mA, 16.7 mA and 22.0 mA) are also used.
  • the applied magnetic field is 299 G with an orientation parallel to the plate-beam structure.
  • the real torsional resonance frequency of the structure with a value of 136.52 kHz can be found.
  • the microsensor of Eyre et al. (1998, 1997) presents considerable fracture and crack growth problems in the presence of large magnetic fields and therefore only recorded field magnitudes less than 350 G.
  • the resonant microsensor object of the present invention has a higher quality factor without using a vacuum packing and registers magnetic fields in a wide range (1 to 400 G) without fracture problems or cracking.
  • Figure 12 shows the response in volts of the resonant microsensor as a function of the magnetic field B x applied.
  • a direct current voltage of 3 V is used at the input contacts of the Wheatstone bridge and alternating current with effective value (rms) I of 6.2 mA, 11.4 mA, 16.7 mA and 22 mA at the frequency of resonance of the plate-beam structure (136.52 kHz).
  • He Applied magnetic field range is 1 to 400 G.
  • For large magnetic fields (greater than 70 G) and an effective alternating current value of 1 22.0 mA, a magnetic sensitivity of 22.0 ⁇ V / G is obtained.
  • the resonant microsensor detects small and large magnetic fields (range 1 to 400 G) without presenting fracture problems and crack growth.
  • Table 1 shows the main results of the microsensor object of the present invention in comparison with those presented by Eyre et al. (1998, 1997) and Kadár et al. (1998).
  • the plate-beam configuration of the microsensor object of Ia The present invention records the best results, being that only the plate-beam structure of Kádar et al. (1998) can obtain a higher magnetic sensitivity (50 ⁇ V / G), but the microsensor of Kádar et al. (1998) needs a special packing to operate at very low pressures (5 Pa) and only records magnetic fields less than 30 G.
  • FIG 14 the maximum response of the von Mises effort in the plate-beam structure of the microsensor object of Ia is illustrated present invention obtained by means of a finite element model in the ANSYS software.
  • Four effective values of alternating current I (6.2 mA, 1 1.4 mA, 16.7 mA and 22 mA) and a magnetic field range B x of 1 to 400 G are used.
  • This response shows a linear behavior with a significant increase in its magnitude for magnetic fields greater than 70 G.
  • Figures 15 and 16 an upper and lower isometric view of the distribution of the Von Mises forces in the plate-beam structure of the microsensor object of the present invention are shown.
  • the maximum stresses are located in the connection of the bending beams and the torsional beam.
  • the torsional beam concentrates an effort close to 36 MPa.
  • the maximum efforts are close to 24 MPa.
  • Figure 18 shows the distribution of vertical displacement in the plate-beam structure obtained with ANSYS. This distribution expresses a symmetrical torsional movement of the structure. This movement guarantees efficient operation of the microsensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

La presente invención se refiere a un microsensor resonante piezoresistivo tipo p que utiliza el principio de la fuerza de Lorentz para medir un amplio rango de campos magnéticos (1 -400G) con un alto factor de calidad (Q=842) y sensibilidad magnética (40.3 μV/G) operando a presión atmosférica. El objeto de la presente invención es proporcionar una mejora de los microsensores resonantes actuales mediante Ia utilización de una configuración estructural placa-viga optimizada de silicio de 15 μm de espesor, con un puente de Wheatstone mejorado con piezoresistores dopados de boro (tipo p) y una configuración de lazo de aluminio alrededor de la estructura placa-viga que Ie permiten un mejor funcionamiento global con un mínimo de componentes estructurales.

Description

MICROSENSOR RESONANTE PIEZORESISTIVO TIPO P PARA LA MEDICIÓN DE CAMPOS MAGNÉTICOS
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un sensor resonante piezoresistivo tipo p, fabricado en Ia tecnología de los sistemas microelectromecánicos (MEMS), que puede detectar campos magnéticos en un amplio rango (1 a 40OG) mediante el principio de Ia fuerza de Lorentz.
ANTECEDENTES DE LA INVENCIÓN
En algunas aplicaciones de laboratorio e industriales, se requiere Ia medición precisa de pequeños campos magnéticos remanentes producidos por diversas fuentes. En ambientes hostiles como, por ejemplo, de alta temperatura, ruido electromagnético, impurezas y vibraciones, se requiere de instrumentos de medición de alta precisión y sensibilidad, bajo consumo de potencia, respuesta lineal, mínimo mantenimiento y calibración.
Una opción para medir el campo magnético Io son los sensores que explotan el efecto Hall (García R. P. J., Martínez C. J. y Herrera M. A. L. (2005), "A Semi Analytical Model of a SpMt Magfet Sensitivity at Room Temperatura", XIX Eurosensor, Barcelona, España), sin embargo, la movilidad superficial de los portadores de carga es baja, teniendo un umbral de detección en el orden de los cientos de mT. Una solución a Io anterior consiste en operar el sistema en una ambiente de baja temperatura (77 K), implicando Ia utilización de un sistema de refrigeración o bien utilizar materiales diferentes al silicio que presenten un aumento en Ia movilidad (García R. P. J. y Sandoval I. F. (2003), "Measuring magnetic fields at low temperatura", 4th Electronics Circuits and Systems Conference, Bratislava, Slovakia, p.143). Existen otros sensores magnéticos que tienen aplicaciones en
Ia detección de objetos, rastreo, sistemas antirrobo, detección de anomalías magnéticas, campos magnéticos espaciales y el mapeo cerebral humano ((Ripka P. (2001 ), "Magnetic Sensors and Magnetometers", Boston, MA., Artech House Inc), (Yee J. K., Yang H. H. y Judy J. W. (2003), "Shock Resistance of Ferromagnetic Micromechanical Magnetometers", Sensors Actuators A 103, p.242- 252) y (Tucker J., Wesoleck D. y Wickenden D. (2002), "An integrated CMOS MEMS Xylophone Magnetometer with Capacitive Sense Electronics", NanoTech 2002 (Houston, Texas), p.1 -5). Sin embargo, éstos han mostrado algunas desventajas tales como: significante desequilibrio en Ia expansión térmica de Ia estructura movible y el material magnético electrodepositado (micro- magnetómetros ferromagnéticos) (Lenz J. (1990), "Review of Magnetic Sensors", Proc. IEEE vol 78, pp. 973-989), alto consumo de potencia (magneto-resistivo) (id.) y extensivos sistemas de soporte (SQUID) (id).
La tecnología de sistemas microelectromecánicos (MEMS) permite dispositivos magnéticos con características tales como: pequeño tamaño, bajo consumo de potencia y producción de masa (Ciudad D., Aroca C1 Sánchez M., López E. y Sánchez P. (2004). Modeling and fabrication of a MEMS magnetostatic magnetic sensor. Sensors Actuators A 1 15, pp. 408-416). Kadár Z., Bossche A., Sarro P. M. y Mollinger J. R. (1998) ("Magnetic-field Measurements Using an Integrated Resonant Magnetic-Field Sensor, Sensors Actuators A 70, pp. 225-232) presentó un microsensor magnético resonante viga- placa de silicio basado sobre Ia fuerza de Lorentz Ia cual funciona bien sólo en ambientes de muy baja presión, por Io que requiere empaquetamiento especial para alcanzar el vacío. Además, necesita un sistema de fabricación y control electrónico muy complejo. Este sensor registro un factor de calidad Q=700 en presiones muy bajas de 5 Pa y solamente detectó campos magnéticos menores de 30 G. Eyre B., Pister K. S. J. y Kaiser W. (1998) ("Resonant Mechanical Magnetic Sensor in Standard CMOS", IEEE Electron Device Letters 19 (2), pp. 496-498) y Eyre B y Pister K. (1997) ("Micromechanical Resonant Magnetic Sensor in Standard CMOS", The Ninth International Conference on Solid State Sensors and Actuators-Transducers'97, Chicago, USA, 16-19 June, pp. 405-8) desarrollaron otro microsensor magnético resonante placa-viga basado en dióxido de silicio (SÍO2) en un proceso comercial CMOS con un deficiente factor de calidad
(Q=10) a presión atmosférica. Además, su microsensor presentó problemas de fractura y crecimiento de grietas para campos magnéticos altos, y por ende sólo registro campos menores de 350 G.
Con Ia finalidad de suprimir estos inconvenientes, se pensó en el desarrollo de un microsensor que se pretende proteger por medio de Ia presente solicitud, que se trata de un microdispositivo resonante piezoresistivo tipo p optimizado que se utiliza para medir campos magnéticos a presión atmosférica con un incremento significativo en el factor de calidad (Q=842) y Ia sensibilidad magnética (40.3 μV/G). Además, el microsensor que se pretende proteger en Ia presente solicitud no presenta problemas de fractura para altos valores de campos magnéticos (cercanos a 400 G) que mejoran considerablemente el funcionamiento mecánico eléctrico de los microsensores resonantes actuales.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Es un objeto de Ia presente invención proporcionar un sensor resonante piezoresistivo tipo p, fabricado en Ia tecnología de los sistemas microelectromecánicos (MEMS), que puede detectar campos magnéticos en un amplio rango (1 a 400G) mediante el principio de Ia fuerza de Lorentz. Este sensor utiliza materiales semiconductores y tiene una configuración estructural formada por una microplaca torsional, cuatro microvigas flexionantes y dos torsionales, que junto con un puente de Wheatstone Ie proporcionan un aspecto peculiar y propio en comparación con los convencionales.
DESCRIPCIÓN DETALLADA DE LOS DIBUJOS
La Figura 1 muestra una vista isométrica superior de una modalidad del microsensor objeto de Ia presente invención.
La Figura 2 muestra una vista isométrica inferior de una modalidad del microsensor objeto de Ia presente invención.
La Figura 3 muestra una vista superior amplificada de una estructura placa-viga y puente de Wheatstone de una modalidad del microsensor objeto de Ia presente invención.
La Figura 4 muestra una representación esquemática del funcionamiento de una modalidad del microsensor objeto de Ia presente invención. La Figura 5 muestra dimensiones en μm de una estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 6 ilustra un primer modo de vibración torsional de Ia estructura placa-viga obtenida por medio del software de elemento finito ANSYS de una modalidad del microsensor objeto de Ia presente invención.
La Figura 7 ilustra un segundo modo de vibración de Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 8 ilustra un tercer modo de vibración de Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 9 ilustra una cuarta configuración modal de Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 10 ilustran las diferentes etapas de un proceso de micromaquinado de volumen en obleas de silicio sobre aislante de una modalidad del microsensor objeto de Ia presente invención. La Figura 1 1 muestra una respuesta en Volts en función de Ia frecuencia de Ia corriente alterna aplicada de una modalidad del microsensor objeto de Ia presente invención.
La Figura 12 muestra una respuesta en Volts de una modalidad del microsensor objeto de Ia presente invención en función de un campo magnético Bx aplicado.
La Figura 13 muestra una respuesta en Volts de una modalidad del microsensor objeto de Ia presente invención para campos magnéticos menores de 80 G La Figura 14 ilustra una respuesta máxima del esfuerzo de Von Mises en Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención obtenido mediante un modelo de elemento finito en el software ANSYS. La Figura 15 muestra una vista isométrica superior de Ia distribución de los esfuerzos de Von Mises en Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 16 muestra una vista isométrica inferior de Ia distribución de los esfuerzos de Von Mises en Ia estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención.
La Figura 17 muestra una gráfica de los desplazamientos máximos verticales localizados en el extremo de Ia placa de una modalidad del microsensor objeto de Ia presente invención.
La Figura 18 muestra una distribución del desplazamiento vertical en una estructura placa-viga de una modalidad del microsensor objeto de Ia presente invención obtenida con ANSYS.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La Figura 1 es una vista isométrica superior de un microsensor resonante piezoresistivo tipo p con el puente de Wheatstone objeto de Ia presente invención. El diseño del microsensor consiste de una placa torsional de silicio 1 con dimensiones de 400x150x15 μm suspendida sobre una cavidad en el sustrato y conectada por cuatro vigas flexionantes 2 con dimensiones de 130x12x15 μm y dos vigas torsionales 3 con dimensiones de 60x40x15 μm. Un lazo de aluminio 4, por donde fluye una corriente alterna, que presenta una configuración simétrica alrededor de Ia placa torsional 1 con Ia finalidad de distribuir uniformemente los esfuerzos, Io cual reduce el pandeo inicial de Ia estructura y crecimiento de grietas durante Ia etapa de liberación de ésta. Un par de vigas flexionantes 2 incluyen dos piezoresistores activos 5 con dopamiento de boro, tipo p, que conforman una rama del puente del Wheatstone 6. La segunda rama esta formada por dos piezoresistores pasivos 7, tipo p, localizados sobre el sustrato de silicio con volumen libre de deformación 8. La alimentación de Ia corriente alterna es por medio de los dos electrodos 9. El puente de Wheatstone obtiene un desequilibrio en el instante que las vigas flexionantes sufren una deformación.
La Figura 2 muestra una vista isométrica inferior del microsensor resonante. En Ia Figura 2, se observa Ia cavidad inclinada debajo de Ia placa torsional 1 que tiene 435 μm de profundidad. Esta cavidad fue diseñada para disminuir el amortiguamiento del aire cuando Ia placa torsional 1 opere en resonancia.
La Figura 3 es una vista superior amplificada de Ia estructura placa-viga y puente de Wheatstone del microsensor resonante. Esta Figura muestra Ia placa torsional 1 , las vigas flexionantes 2, Ia viga torsional 3, Ia conexión de los piezoresistores pasivos 5 y los pasivos 7 en el puente de Wheatstone 6.
La Figura 4 es una representación esquemática del funcionamiento del microsensor resonante propuesto. Éste contiene un lazo de aluminio 4 por donde fluye una corriente alterna senoidal (IL). La frecuencia de Ia corriente alterna debe estar muy próxima a Ia frecuencia de resonancia torsional de Ia estructura placa-viga para alcanzar Ia máxima sensibilidad magnética. Una vez que Ia estructura esta sujeta a un campo magnético con una orientación paralela Bx, se origina un movimiento torsional en Ia estructura provocada por Ia fuerza de Lorentz, deformando los dos piezoresistores activos 5 ubicados en las vigas flexionantes 2. La resistencia de los piezoresistores deformados provoca un cambio en el voltaje de salida del puente de Wheatstone.
La ecuación (1 ) define Ia magnitud de Ia fuerza de Lorentz presente en Ia microestructura placa-viga cuando una corriente alterna L y un campo magnético paralelo Bx son aplicados. Ésta ecuación considera Ia longitud del lazo de aluminio en el extremo de Ia placa Ly. La ecuación (2) indica Ia forma senoidal de Ia corriente alterna con un corriente máxima Im. y y (1 ) h = ImSen((i>t) (2)
El torque magnético (T) que actúa sobre Ia estructura placa- viga esta dado por Ia ecuación (3). Este torque es provocado por Ia fuerza de Lorentz y su valor depende de Ia semilongitud de Ia placa Lx.
T = 2ImLyLxBysen(ωt) ( 3 )
La deformación εx en Ia dirección de las vigas flexionantes esta dado por Ia ecuación (4).
_ Tc tιb (4)
El numerador de Ia ecuación (4) considera el torque magnético y Ia distancia c del plano neutro de Ia placa a Ia ubicación de los piezoresistores activos. El denominador de Ia ecuación (4) considera Ia rigidez flexionante de las cuatro vigas Elb. El torque magnético producirá una deformación εx en las vigas flexioanantes, y por ende un cambio en Ia resistencia de los piezoresistores activos. Esta variación es directamente proporcional al factor de galga G del piezoresitor activo y a Ia deformación εx como Io expresa Ia ecuación (5).
R (5) El cambio en Ia resistencia de los piezoresistores activos provoca una variación en el voltaje de salida ΔV del puente de Wheatstone como Io expresa Ia ecuación (6). De esta forma, Ia señal del campo magnético aplicado a Ia estructura placa-viga es transformado en una señal eléctrica por medio del puente del Wheatstone.
Figure imgf000013_0001
El cambio en el voltaje de salida del puente de Wheatstone puede ser utilizado como Ia señal de entrada de circuitos de procesamiento de señales.
La Figura 5 muestra las dimensiones en μm de Ia estructura placa-viga del microsensor resonante propuesto. Las dimensiones más pequeñas corresponden a las vigas flexionantes 2 y las mayores a Ia placa torsional 1. La Figura 6 ilustra el primer modo de vibración torsional de Ia estructura placa-viga obtenida por medio del software de elemento finito ANSYS. Éste modo de vibración presenta una configuración torsional simétrica con respecto al eje torsional. La operación de Ia estructura placa-viga en este modo de vibración causará un incrementó en Ia sensibilidad magnética del microsensor debido a que los piezoresistores 5 activos tendría una deformación apreciable. El segundo modo de vibración de Ia estructura placa-viga es ilustrado en Ia Figura 7. En ésta configuración modal, se observa una flexión simétrica de los extremos de Ia placa hacia arriba, Io cual no favorece al movimiento torsional de Ia placa. La Figura 8 muestra el tercer modo de vibración de Ia estructura placa-viga. Este modo es de traslación en Ia dirección del eje y, Io cual no es conveniente para un movimiento oscilante torsional de Ia estructura.
La Figura 9 ilustra Ia cuarta configuración modal de Ia estructura placa-viga. Está configuración indica que Ia placa sufre una torsión irregular con respecto al eje x, Io cual no favorece al movimiento oscilante torsional de Ia placa.
En base a las configuraciones modales anteriores de Ia estructura placa-viga del microsensor resonante objeto de Ia presente invención, se concluye que debe operar en el modo de vibración tipo torsional, mostrada en Ia Figura 5, para satisfacer un funcionamiento oscilante óptimo cuando un campo magnético paralelo a su estructura esté presente.
El microsensor objeto de Ia presente invención es fabricado en un proceso de micromaquinado de volumen en obleas de silicio sobre aislante (SOI, por sus siglas en inglés) de 10.16 cm de diámetro. El proceso de fabricación empieza con el crecimiento de de 18 nm de óxido térmico y con el crecimiento de una capa de 1 18 nm de nitruro de silicio (Si3N4) sobre un sustrato de SOI tipo n. La capa de nitruro es removida desde el lado superior de Ia oblea y colocado en un patrón en el lado inferior como se muestra en Ia parte (a) de Ia Figura 10. Después es implantado boro para formar cuatro piezoresistores tipo p con 0.83 μm de profundidad, tal como se indica en Ia parte (b) de Ia Figura 10. En Ia parte (c) de Ia Figura 10 es mostrada el crecimiento de un óxido de silicio (con 1 μm de espesor), que posteriormente forma un patrón fijo y los contactos de 120x120 μm son abiertos. A continuación, una capa de aluminio de 1 μm es depositada y se forma un patrón de ésta, Ia cual es mostrada en Ia parte (d) de Ia Figura 10. El aluminio define las líneas de metal y los contactos. Con Ia capa de nitruro actuando como una máscara, el sustrato de silicio es grabada desde Ia parte inferior utilizando hidróxido de potasio (KOH) como se muestra en Ia parte (e) Figura 10. Finalmente, Ia capa de SOI es grabada por iones reactivos para definir Ia estructura final del microsensor propuesto, como se muestra en Ia parte (f) de Ia Figura 10.
El microsensor es pegado y alambrado a un empaquetado comercial de 8 terminales. El alambre utilizado es de aluminio de 60 μm. El empaquetado es colocado en una tarjeta de circuito impreso (PCB, por sus siglas en inglés) diseñado para Ia caracterización eléctrica. La resistencia de los piezoresistores activos es de 18.8 kΩ y los pasivos de 21.7 kΩ. La resistencia del lazo de aluminio por donde fluye Ia corriente alterna es de 18.4 Ω.
En el proceso de caracterización eléctrica del microsensor resonante objeto de Ia presente invención, se utiliza un amplificador comercial de bajo ruido SRS560 de Stanford Research Systems, un osciloscopio TDS 2024 Tetronix, un generador de forma de onda 33220A Agilent, una fuente de alimentación de campo magnético, un gausímetro 475 DSP Lakeshore y una computadora portátil en donde se gráfica Ia respuesta del microsensor. También se utilizan un campo magnético variable paralelo a Ia estructura placa-viga del microsensor y cuatro valores rms (I) de corriente alterna (6.2 mA, 11.4 mA, 16.7 mA y 22.0 mA).
La Figura 11 muestra Ia respuesta en volts en función de Ia frecuencia de Ia corriente alterna aplicada (1 = 6.22 mA) del microsensor resonante. El campo magnético aplicado es de 299 G con una orientación paralela a Ia estructura placa-viga. Con esta prueba, se puede encontrar Ia frecuencia de resonancia torsional real de Ia estructura con un valor de 136.52 kHz. En base a esta gráfica, se puede encontrar un factor de calidad Q=842 a presión atmosférica para Ia estructura placa-viga. Este valor se obtiene utilizando Ia ecuación (7), en donde fr es Ia frecuencia de resonancia y Af es el cambio de frecuencia cuando Ia respuesta del sensor disminuye en 3 decibeles. (J
15
Q = - (7)
Δ/
El factor de calidad de Ia estructura del microsensor es muy superior al obtenido por Ia estructura del microsensor de Eyre et al. (1998, 1997), donde su valor fue Q=10 a presión atmosférica. Además, el microsensor de Eyre et al. (1998, 1997) presenta considerable problemas de fractura y crecimiento de grietas en Ia presencia de campos magnéticos grandes y por ende sólo registró magnitudes de campo menores de 350 G. También, Kadár et al. (1998) presenta un microsensor con un factor de calidad Q=700, pero Io obtiene con un empaquetamiento en vacío (presión de 5 Pa), un complejo proceso de fabricación y solamente el sensor de Kadár et al. (1998) detecta campos inferiores a 30 G. En cambio, el microsensor resonante objeto de Ia presente invención posee un factor de calidad mayor sin necesidad de utilizar un empaquetamiento en vacío y registra campos magnéticos en un amplio rango (1 a 400 G) sin problemas de fractura o formación de grietas.
La Figura 12 muestra Ia respuesta en volts del microsensor resonante en función del campo magnético Bx aplicado. Para obtener esta gráfica, se utiliza un voltaje de corriente directa de 3 V en los contactos de entrada del puente de Wheatstone y corriente alterna con valor eficaz (rms) I de 6.2 mA, 11.4 mA, 16.7 mA y 22 mA a Ia frecuencia de resonancia de Ia estructura placa-viga (136.52 kHz). El rango de campo magnético aplicado es de 1 a 400 G. Para campos magnéticos grandes (mayores de 70 G) y un valor eficaz de corriente alterna de 1=22.0 mA, se obtiene una sensibilidad magnética de 22.0 μV/G. En cambio, para campos pequeños (menores de 70 G) se puede encontrar una sensibilidad magnética máxima de 40.3 μV/G, como se puede observar en Ia Figura 13, Ia cual muestra Ia respuesta en volts del microsensor para campos magnéticos menores de 80 G. El voltaje inicial de Ia respuesta del microsensor es causada por el desbalance inicial del puente de Wheatstone, debido a que los piezoresistores activos y pasivos tienen diferentes valores de resistencia. Además, de ruido electrónico que se genera Ia tarjeta de circuito electrónico donde se monta el microsensor y al incremento de temperatura en las vigas flexionantes, en donde se ubican los piezoresistores activos, provocado por el incremento de Ia corriente alterna aplicada. Estos eventos causan que el voltaje inicial sea diferente de cero y que se incremente conforme se eleva el valor eficaz de Ia corriente alterna.
El microsensor resonante detecta campos magnéticos pequeños y grandes (rango de 1 a 400 G) sin presentar problemas de fractura y crecimiento de grietas. En Ia Tabla 1 , se muestran los principales resultados del microsensor objeto de Ia presente invención en comparación con los presentados por Eyre et al. (1998, 1997) y Kadár et al. (1998). La configuración placa-viga el microsensor objeto de Ia presente invención registra los mejores resultados, siendo que solamente Ia estructura placa-viga de Kádar et al. (1998) puede obtener una mayor sensibilidad magnética (50 μV/G), pero el microsensor de Kádar et al. (1998) necesita un empaquetamiento especial para operar a muy bajas presiones (5 Pa) y sólo registra campos magnéticos menores de 30 G.
Tabla 1. Comparación de los resultados entre el microsensor resonante propuesto en esta solicitud y los presentados por Eyre et al. (1998, 1997)) y Kadár et al. (1998).
Parámetros Microsensor Microsensor Microsensor medidos Eyre et al. Kadár et al. propuesto
Factor Q 10 700 842
Máxima sensibilidad (μV/G) 20 50 40.2
Máximo campo
Magnético detectado (G) 350 30 400
Frecuencia de resonancia (kHz) 2.5 2.5 136.52
Presión de operación Atmosférica 5 Pa Atmosférica
Tipo de detección Piezoresistivo Capacitivo Piezoresistivo
(tipo-n) (tipo-p)
Material de placa-viga SiO2 Si Si
En Ia Figura 14, se ilustra Ia respuesta máxima del esfuerzo de Von Mises en Ia estructura placa-viga del microsensor objeto de Ia presente invención obtenido mediante un modelo de elemento finito en el software ANSYS. Se utilizan cuatro valores eficaces de corriente alterna I (6.2 mA, 1 1.4 mA, 16.7 mA y 22 mA) y un rango de campo magnético Bx de 1 a 400 G. Esta respuesta muestra un comportamiento lineal con un significativo incremento en su magnitud para campos magnéticos mayores de 70 G. El máximo esfuerzo de 53.8 MPa se puede obtener con 1=22.0 mA. En Ia Figuras 15 y 16, se muestran una vista isométrica superior e inferior de Ia distribución de los esfuerzos de Von Mises en Ia estructura placa-viga del microsensor objeto de Ia presente invención. Los esfuerzos máximos se localizan en Ia conexión de las vigas flexioanantes y Ia viga torsional. Además, Ia viga torsional concentra un esfuerzo cercano a 36 MPa. Para el lazo de aluminio, los máximos esfuerzos se encuentran cercanos a 24 MPa. Estos valores son inferiores al esfuerzo de fractura del silicio cercano a 1 GPa y al de aluminio de 0.15 GPa, Io cual garantiza una operación segura de Ia estructura del microsensor resonante para campos magnéticos grandes (cercanos a 400 G).
La Figura 17 es una gráfica de los desplazamientos máximos verticales localizados en el extremo de Ia placa del microsensor. Las magnitudes de estos desplazamientos tienen un comportamiento lineal y existe un incremento significativo para Ia corriente alterna 1=22.0 mA. Para este valor, se obtuvo un desplazamiento máximo de 372.5 nm con un campo magnético Bx=400G. Este valor representa un incremento de 354.4 % con respecto al valor eficaz de Ia corriente alterna 1=6.2 mA.
La Figura 18 muestra Ia distribución del desplazamiento vertical en Ia estructura placa-viga obtenida con ANSYS. Esta distribución expresa un movimiento torsional simétrico de Ia estructura. Este movimiento garantiza una operación eficiente del microsensor.

Claims

REIVINDICACIONES
1 .- Un microsensor resonante optimizado de silicio para Ia medición de campos magnéticos, que comprende: un sustrato de silicio de 450 μm de espesor; una placa torsional con dimensiones de 400x1 50x1 5 μm; dos placas torsionales de soporte con dimensiones de 60x40x1 5μm; cuatro vigas flexionantes con dimensiones de 120x12x1 5 μm; un puente de Wheatstone con cuatro piezoresistores de silicio con 0.83 μm de profundidad y dopado de boro tipo p; una configuración de lazo de aluminio propia de 1 μm de espesor y 6 μm de ancho alrededor de Ia estructura placa-viga por donde fluye una corriente alterna; y una capa aislante de oxido de silicio de 1 μm que separa Ia estructura del microsensor con el lazo de aluminio.
2.- El microsensor resonante de acuerdo con Ia reivindicación 1 , que se opera a una presión atmosférica con un alto factor de calidad (Q=842) y una sensibilidad magnética (40.3 μV/G).
3.- El microsensor resonante de acuerdo con Ia reivindicación
1 , que se opera con un voltaje constante de 3V y un valor eficaz de corriente alterna de 22.0 mA a 1 36.52 kHz.
4.- El microsensor resonante de acuerdo con Ia reivindicación 1 , que se puede utilizar en Ia detección de velocidad de vehículos de transporte, o en aplicaciones médicas, o en Ia detección de corrosión o grietas en tuberías que contengan hierro, o en el monitoreo de campo magnético terrestre, o en inspección de velocidad de piezas metálicas industriales que contengan hierro, o en lecturas de firmas magnéticas o en inspección de piezas metálicas que contengan hierro en productos de consumo e industriales.
5.- El microsensor resonante de acuerdo con Ia reivindicación 1 , que comprende además agujeros en Ia placa torsional .
6.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde el espesor de Ia placa torsional es de 5 μm hasta 20 μm.
7.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde Ia longitud de Ia placa torsional es de 300 μm hasta 1000 μm .
8.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde el ancho de Ia placa torsional es de 1 00 μm hasta 500 μm.
9.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde Ia placa torsional tiene bordes semicirculares.
1 0.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde Ia longitud de las vigas flexionantes oscilan desde 80 μm hasta 400 μm .
1 1 .- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde el ancho de las vigas flexionantes es de 1 0 μm hasta 20 μm.
1 2.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde las vigas flexionantes contienen refuerzos de material de silico alrededor de sus extremos;
1 3.- El microsensor resonante de acuerdo con Ia reivindicación 1 , en donde el lazo de aluminio incrementa su ancho hasta 20 μm.
PCT/MX2008/000053 2008-04-16 2008-04-16 Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos WO2009128693A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/MX2008/000053 WO2009128693A1 (es) 2008-04-16 2008-04-16 Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos
ARP090101348A AR071205A1 (es) 2008-04-16 2009-04-16 Microsensor resonante piezoresistivo tipo p para aplicaciones industriales en la medicion de campos magneticos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000053 WO2009128693A1 (es) 2008-04-16 2008-04-16 Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos

Publications (1)

Publication Number Publication Date
WO2009128693A1 true WO2009128693A1 (es) 2009-10-22

Family

ID=40210677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000053 WO2009128693A1 (es) 2008-04-16 2008-04-16 Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos

Country Status (2)

Country Link
AR (1) AR071205A1 (es)
WO (1) WO2009128693A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590767A (zh) * 2018-11-27 2019-04-09 西北工业大学 带测力功能的夹具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798641A (en) * 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US5923166A (en) * 1996-04-30 1999-07-13 Tau Sensors Llc Electrically insulating cantilever magnetometer with mutually isolated and integrated thermometry, background elimination and null detection
DE19827056A1 (de) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Mikromechanischer Magnetfeldsensor
US20020017138A1 (en) * 1997-04-24 2002-02-14 Katsumichi Ueyanagi Semiconductor sensor chip and method for producing the chip, and semiconductor sensor and package for assembling the sensor
WO2002077613A2 (en) * 2001-03-23 2002-10-03 Services Petroliers Schlumberger Fluid property sensors
WO2006021858A2 (en) * 2004-08-24 2006-03-02 Eidgenössische Technische Hochschule Zürich Resonator-based magnetic field sensor
US20060076947A1 (en) * 2004-06-07 2006-04-13 General Electric Company Micro-electromechanical system (MEMS) based current & magnetic field sensor having improved sensitivities

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923166A (en) * 1996-04-30 1999-07-13 Tau Sensors Llc Electrically insulating cantilever magnetometer with mutually isolated and integrated thermometry, background elimination and null detection
US5798641A (en) * 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US20020017138A1 (en) * 1997-04-24 2002-02-14 Katsumichi Ueyanagi Semiconductor sensor chip and method for producing the chip, and semiconductor sensor and package for assembling the sensor
DE19827056A1 (de) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Mikromechanischer Magnetfeldsensor
WO2002077613A2 (en) * 2001-03-23 2002-10-03 Services Petroliers Schlumberger Fluid property sensors
US20060076947A1 (en) * 2004-06-07 2006-04-13 General Electric Company Micro-electromechanical system (MEMS) based current & magnetic field sensor having improved sensitivities
WO2006021858A2 (en) * 2004-08-24 2006-03-02 Eidgenössische Technische Hochschule Zürich Resonator-based magnetic field sensor

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BEROULLE V ET AL: "Monolithic piezoresistive CMOS magnetic field sensors", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 103, no. 1-2, 15 January 2003 (2003-01-15), pages 23 - 32, XP004400376, ISSN: 0924-4247 *
BEVERLEY EYRE ET AL: "Resonant Mechanical Magnetic Sensor in Standard CMOS", 19981201, vol. 19, no. 12, 1 December 1998 (1998-12-01), XP011018502 *
BRUGGER J ET AL: "Microfabricated ultrasensitive piezoresistive cantilevers for torque magnetometry", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 73, no. 3, 30 March 1999 (1999-03-30), pages 235 - 242, XP004167986, ISSN: 0924-4247 *
CIUDAD D ET AL: "Modeling and fabrication of a MEMS magnetostatic magnetic sensor", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 115, no. 2-3, 21 September 2004 (2004-09-21), pages 408 - 416, XP004562099, ISSN: 0924-4247 *
HAVILAND J S: "Silicon Micro-mechanics For Solid State Sensors", 19920928; 19920928 - 19920930, 28 September 1992 (1992-09-28), pages 138 - 144, XP010259398 *
JUDY J W ET AL: "A lecture and hands-on laboratory course: introduction to micromachining and MEMS", PROCEEDINGS OF THE 15TH. BIENNIAL UNIVERSITY/GOVERNMENT/INDUSTRY MICROELECTRONICS. UGIM 2003. BOISE, ID, JUNE 30 - JULY 2, 2003; [UNIVERSITY/GOVERNMENT/INDUSTRY MICROELECTRONICS SYMPOSIUM. (UGIM)], NEW YORK, NY : IEEE, US, 30 June 2003 (2003-06-30), pages 151 - 156, XP010655032, ISBN: 978-0-7803-7972-5 *
KADAR Z ET AL: "Magnetic-field measurements using an integrated resonant magnetic-field sensor", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 70, no. 3, 30 October 1998 (1998-10-30), pages 225 - 232, XP004140054, ISSN: 0924-4247 *
NAKANE H ET AL: "Micromechanical resonant magnetic sensor in standard CMOS", 1997 INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS AND ACTUATORS. DIGEST OF TECHNICAL PAPERS. TRANSDUCERS 97. CHICAGO, IL, JUNE 16 - 19, 1997. SESSIONS 3A1 - 4D3. PAPERS NO. 3A1.01 - 4D3.14P; [INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS AND ACT, vol. 1, 16 June 1997 (1997-06-16), pages 405 - 408, XP010240496, ISBN: 978-0-7803-3829-6 *
VANCURA ET AL: "Analysis of resonating microcantilevers operating in a viscous liquid environment", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 141, no. 1, 26 November 2007 (2007-11-26), pages 43 - 51, XP022361415, ISSN: 0924-4247 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590767A (zh) * 2018-11-27 2019-04-09 西北工业大学 带测力功能的夹具

Also Published As

Publication number Publication date
AR071205A1 (es) 2010-06-02

Similar Documents

Publication Publication Date Title
Kumar et al. Design principles and considerations for the ‘ideal’silicon piezoresistive pressure sensor: a focused review
CN103250057A (zh) 微机电类型的谐振双轴加速度计结构
Herrera-May et al. A resonant magnetic field microsensor with high quality factor at atmospheric pressure
WO2014169540A1 (zh) 非等截面悬臂梁压电式加速度传感器
Herrera-May et al. Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution
Santosh Kumar et al. Development of a MEMS-based barometric pressure sensor for micro air vehicle (MAV) altitude measurement
WO2019109638A1 (zh) 一种三分量重力仪探头及井中重力仪系统
Han et al. Micro-cantilever capacitive sensor for high-resolution measurement of electric fields
Wickenden et al. Micromachined polysilicon resonating xylophone bar magnetometer
Zhang et al. Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer
Zou et al. Micro-electro-mechanical resonant tilt sensor with 250 nano-radian resolution
WO2009128693A1 (es) Microsensor resonante piezoresistivo tipo p para la medición de campos magnéticos
Kumar et al. Sensitivity enhancement of a Lorentz force MEMS magnetometer with frequency modulated output
Zhao et al. A high pressure sensor with circular diaphragm based on MEMS technology
Goj et al. Semi-contact measurements of three-dimensional surfaces utilizing a resonant uniaxial microprobe
Li et al. Ultra-small high‐temperature pressure sensor chips fabricated in single‐layer (111) SOI wafers
Chang et al. Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces
Deimerly et al. Ultra-compact absolute pressure sensor based on mechanical amplification coupled to a suspended piezoresistive nanogauge
Yu et al. A MEMS pressure sensor based on Hall effect
Long et al. A torsion MEMS magnetic sensor with permanent magnet and fiber-optic detection
Zhou et al. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions
Liu et al. A piezoresistive microcantilever magnetic-field sensor with on-chip self-calibration function integrated
Ettelt et al. A novel microfabricated high precision vector magnetometer
Mehdizadeh et al. Nano-precision force and displacement measurements using MEMS resonant structures
Wattanasarn et al. 3D Lorentz force magnetic sensor using ultra-thin piezoresistive cantilevers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08753715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08753715

Country of ref document: EP

Kind code of ref document: A1