WO2009128178A1 - 照明装置および液晶表示装置 - Google Patents

照明装置および液晶表示装置 Download PDF

Info

Publication number
WO2009128178A1
WO2009128178A1 PCT/JP2008/071073 JP2008071073W WO2009128178A1 WO 2009128178 A1 WO2009128178 A1 WO 2009128178A1 JP 2008071073 W JP2008071073 W JP 2008071073W WO 2009128178 A1 WO2009128178 A1 WO 2009128178A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light guide
liquid crystal
crystal display
Prior art date
Application number
PCT/JP2008/071073
Other languages
English (en)
French (fr)
Inventor
悠作 味地
賢治 西田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2008801265248A priority Critical patent/CN101939586B/zh
Priority to US12/865,739 priority patent/US8345188B2/en
Publication of WO2009128178A1 publication Critical patent/WO2009128178A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • G02B6/008Side-by-side arrangements, e.g. for large area displays of the partially overlapping type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to an illumination device used as a backlight of a liquid crystal display device, and a liquid crystal display device including the illumination device.
  • liquid crystal display devices that are rapidly spreading in place of cathode ray tubes (CRT) have been widely used for liquid crystal televisions, monitors, mobile phones, etc., taking advantage of energy saving, thinness and light weight.
  • CTR cathode ray tubes
  • an illuminating device so-called backlight
  • Lighting devices are mainly classified into side light type (also called edge light type) and direct type.
  • the side light type has a configuration in which a light guide is provided behind the liquid crystal display panel, and a light source is provided at the lateral end of the light guide. The light emitted from the light source is reflected by the light guide and indirectly irradiates the liquid crystal display panel indirectly.
  • sidelight type lighting devices are mainly used in small and medium liquid crystal displays such as mobile phones and notebook computers.
  • Patent Document 1 describes a surface light emitting device in which a plurality of dots are formed on a reflective surface of a light guide plate so that uniform light emission from a light emitting surface is possible.
  • the corner portion of the reflecting surface becomes dark because light is not transmitted due to the directivity of the light source, so the density of dots at the corner portion is higher than that of the other portions.
  • the direct type lighting device arranges a plurality of light sources behind the liquid crystal display panel and directly irradiates the liquid crystal display panel. Therefore, it is easy to obtain high brightness even on a large screen, and it is mainly used in large liquid crystal displays of 20 inches or more.
  • the current direct type illumination device has a thickness of about 20 mm to 40 mm, which is an obstacle to further thinning the display.
  • Aiming for further thinning with large liquid crystal displays can be solved by reducing the distance between the light source and the liquid crystal display panel, but in that case, if the number of light sources is not increased, the luminance uniformity in the lighting device will be obtained. I can't do that. On the other hand, increasing the number of light sources increases the cost. Therefore, it is desired to develop a lighting device that is thin and excellent in luminance uniformity without increasing the number of light sources.
  • Patent Document 2 proposes a surface light source device that can be suitably used for a large liquid crystal display because a wide light-emitting area can be secured with a compact structure.
  • This surface light source device has a tandem structure including primary light sources in which plate-like light guide blocks are arranged in tandem and primary light is supplied to each light guide block.
  • an illuminating device including a plurality of light emitting units configured by combining a light source and a light guide is called a tandem type illuminating device.
  • the illumination device configured by combining the light guide and the light source as described above, when a plurality of light guides are arranged in a plane, the bright lines appear in the region corresponding to the joint portion of the light guide. There is a problem that uneven brightness occurs and the brightness is still non-uniform.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a light guide that constitutes a tandem backlight.
  • 6 and 7 are diagrams schematically showing the traveling direction of light propagating through the light guide.
  • one light guide (the left side in the figure) and the other light guide adjacent to the light guide (the right side in the figure) are overlapped with no gap.
  • most of the light emitted from the light source propagates while repeating total reflection in the light guide, and is emitted from the light emitting surface to the outside.
  • a part of the light emitted from the light source reaches the end face (7e) far from the light source without being totally reflected in the light guide.
  • Such light has high intensity because the amount of light is not attenuated by total reflection. Therefore, the light emitted from the end face (7e) appears as a bright line.
  • the light emitted from the end surface (7e) far from the light source in the other light guide enters one light guide (left side in the figure).
  • total reflection is repeated in the one light guide, and the light is emitted from the light emitting surface of the one light guide.
  • the light emitting surface is formed without interruption by the plurality of light guides, so that uniform brightness can be obtained without generating bright lines.
  • the light guide is generally manufactured with a minus tolerance in consideration of damage between the light guides, thinning of the lighting device, manufacturing errors, and the like. Therefore, as shown in FIG. 5, a tolerance gap is generated at the joint portion between one light guide and the other light guide. Therefore, the light emitted from the end surface (7e) far from the light source in the other light guide is incident on one of the light guides and light that is not incident on one of the light guides and passes upward (see FIG. It is divided into a thick arrow). Since the light emitted from the end face (7e) which is not the light emitting surface has a larger amount of light than the light emitted from the light emitting surface as described above, the luminance is increased. Therefore, light that passes upward from the end face (7e) appears as a bright line.
  • Patent Document 3 discloses a configuration in which a dot pattern for diffusing light emitted from a light guide plate is disposed over the entire surface between the light guide and the diffusion plate. Is described. According to this configuration, since light that becomes a bright line can be diffused, nonuniformity in luminance can be reduced.
  • the problem of uneven brightness due to bright lines can be reduced, but a new problem of uneven brightness due to the dot pattern of the dot pattern occurs.
  • the dot pattern has the function of diffusing light to make the brightness uniform, but it is difficult to make the brightness completely uniform. Therefore, the dot pattern of the dot pattern arranged so that the distribution density differs according to the distance from the light source affects the luminance unevenness.
  • Patent Document 3 describes a configuration in which a light shielding layer is provided on the end face from which light that causes bright lines is emitted. According to this configuration, it is possible to block high-luminance light emitted from the end face, so that bright lines can be suppressed. However, in this configuration, since no light is emitted from the end face, a region corresponding to this portion appears as a dark line, and it is still difficult to obtain uniform luminance.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an illuminating device that can further improve luminance uniformity in an illuminating device including a plurality of light guides. To do.
  • an illumination device includes a plurality of light source units each including a light source and a light guide that emits surface light from light incident from the light source.
  • a thickness of the other end of the light guide disposed at one end and facing the one end of the light guide on which the light source is disposed is 0.05 to 0.15 mm.
  • the thickness of the light guide means the width of the light guide in the direction perpendicular to the light exit surface of the illumination device.
  • emitted from this edge part is fully weakened by making the thickness of the edge part of the light guide opposite to the edge part in which the light source is arrange
  • the brightness of the bright line can be suppressed to such an extent that it does not cause a practical problem.
  • the bright line means a bright spot compared to other light emitting surfaces formed by strong light emitted from the end face of each light guide at the boundary between adjacent light guides. According to the above configuration, the difference between the brightness of the bright line and the brightness on the other light emitting surface can be reduced.
  • the thickness of the end portion of the light guide is less than 0.05 mm, the end portion of the light guide is likely to be cracked.
  • the strength of the light guide can be maintained at a level causing no practical problem.
  • an illumination device includes a plurality of light source units each having a light source and a light guide that emits surface light from light incident from the light source, and bright lines are generated by the light from the light source.
  • the thickness of the end portion of the light guide corresponding to the generated region is 0.05 to 0.15 mm.
  • the thickness of the light guide means the width of the light guide in the direction perpendicular to the light exit surface of the illumination device.
  • the thickness of the end portion of the light guide corresponding to the region where the bright line is generated is 0.15 mm or less, the intensity of light emitted from the end portion is sufficiently weakened, The brightness of the bright line can be suppressed to such an extent that it does not cause a problem in practice.
  • the bright line means a bright spot compared to other light emitting surfaces formed by strong light emitted from the end face of each light guide at the boundary between adjacent light guides. According to the above configuration, the difference between the brightness of the bright line and the brightness on the other light emitting surface can be reduced.
  • the thickness of the end portion of the light guide is less than 0.05 mm, the end portion of the light guide is likely to be cracked.
  • the strength of the light guide can be maintained at a level causing no practical problem.
  • the light guide includes a light emitting unit having a light emitting surface, and a light guide unit that guides light incident from the light source to the light emitting unit, and the light guide unit includes a light guide unit.
  • the light source of the light guide of the second light source unit adjacent to the first light source unit may be disposed on the light guide of the light guide of the one light source unit.
  • a tandem illumination device can be realized. And, by defining the thickness of the end portion of the light guide as described above, the amount of light emitted from the end surface far from the light source, which is different from the light emitting surface, is reduced, and the luminance uniformity is improved. Can be improved.
  • the first light source unit among the plurality of light source units and the second light source unit adjacent to the first light source unit may be arranged so as not to overlap each other. .
  • a tile-type lighting device can be realized. And since the thickness of the edge part of a light guide is prescribed
  • At least a pair of the light sources may be provided in each light source unit, and the light sources forming the pair may be arranged to face each other.
  • the light sources can irradiate light so as to compensate for a region (dead area) where the other light source disposed facing each other cannot irradiate.
  • the light guide may have a shape in which the thickness increases as the distance from the end where the light sources forming the pair are arranged is increased.
  • the light guide provided in the lighting device has a mountain shape whose light emitting surface has two slopes.
  • the liquid crystal display device includes any one of the above illumination devices as a backlight in order to solve the above problems.
  • the generation of bright lines can be suppressed by devising the shape of the light guide itself. Therefore, as described in paragraph [0077] of Patent Document 3, there is no need to make the brightness uniform by sufficiently separating the distance between the light guide plate and the diffusion plate, and the liquid crystal display device can be thinned. . Therefore, the present invention is particularly preferably applied as a backlight of a liquid crystal display device having a thickness of 20 mm or less as a whole device.
  • FIG. 2 is an enlarged cross-sectional view of a part of the liquid crystal display device shown in FIG. 1.
  • FIG. 1 It is sectional drawing which shows schematic structure of the light guide which comprises a tandem-type backlight. It is sectional drawing which shows schematic structure of the light guide which comprises the tandem-type backlight in actual use. It is the figure which showed typically the advancing direction of the light which propagates the inside of a light guide. It is the figure which showed typically the advancing direction of the light which propagates the inside of a light guide.
  • FIG. 8 It is sectional drawing which shows schematic structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. It is a top view which shows schematic structure of the backlight with which the liquid crystal display device shown in FIG. 8 was equipped. It is a perspective view which shows the structure of the light source unit in the backlight shown in FIG. (A) is a top view at the time of seeing the light source unit with which the liquid crystal display device shown in FIG. 8 was provided from the liquid crystal display panel side. (B) is a top view at the time of seeing the light source unit with which the liquid crystal display device shown in FIG. 8 was equipped from the backlight side. (C) is an AA cross-sectional view of the light source unit shown in (a).
  • (A) is the figure which showed typically the advancing direction of the light from the light source provided in the one side (left side) of the light source unit.
  • (B) is the figure which showed typically the advancing direction of the light from the light source provided in the other side (right side) of a light source unit.
  • an illumination device used as a backlight of a liquid crystal display device will be described.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 includes a backlight 2 (illumination device) and a liquid crystal display panel 3 disposed to face the backlight 2.
  • the liquid crystal display panel 3 is the same as a general liquid crystal display panel used in a conventional liquid crystal display device, and although not shown, for example, an active matrix substrate on which a plurality of TFTs (thin film transistors) are formed, and an opposite surface And a liquid crystal layer sealed between the substrates by a sealing material.
  • TFTs thin film transistors
  • the configuration of the backlight 2 provided in the liquid crystal display device 1 will be described in detail below.
  • the backlight 2 is disposed behind the liquid crystal display panel 3 (on the side opposite to the display surface).
  • the backlight 2 includes a substrate 4, a light source 5, a reflection sheet 6, a light guide 7, a diffusion plate 8, an optical sheet 9, and a transparent plate 10.
  • the light guide which comprises the backlight 2 is comprised by at least 2 or more.
  • one light guide 7 and the other light guide 17 are described as examples. Unless otherwise specified, one light guide 7 will be described as an example as a representative of both light guides 7 and 17.
  • the light source 5 is, for example, a side light emitting type light emitting diode (LED), a cold cathode tube (CCFL), or the like.
  • LED light emitting type light emitting diode
  • CCFL cold cathode tube
  • the light source 5 will be described using an LED as an example.
  • R, G, and B chips are molded in one package as the light source 5, it is possible to obtain an illumination device with a wide color reproduction range.
  • the light source 5 is disposed on the substrate 4.
  • the light guide 7 causes the light emitted from the light source 5 to emit light from the light emitting surface 7a.
  • the light emitting surface 7a is a surface for irradiating the irradiation target with light.
  • the light guide 7 has a tandem structure as shown in FIG. That is, the light guide 7 has a light emitting part 7b having a light emitting surface 7a and a light guiding part 7c that guides light from the light source 5 to the light emitting part 7b, and at least the light emitting part 7b and the light guiding part 7c.
  • the connecting portions have different thicknesses, and the other light guide 17 (light guide of the second light source unit) is connected to the light guide 7c of the light guide 7 (light guide of the first light source unit).
  • the light emitting portion 17b of the body is arranged to ride on.
  • the light emitting surface 7a (light emitting surface of the light source unit) of each of the light guides 7, 17,... Forms a flush light emitting surface (light emitting surface of the entire backlight 2: light emitting region).
  • Reference numeral 7 e denotes an end face far from the light source 5.
  • FIG. 2 is a perspective view showing a schematic configuration of the light source unit 12 provided in the liquid crystal display device 1 shown in FIG.
  • the light source unit 12 diffuses the light emitted from the light source 5 to emit surface light, and includes the light source 5, the substrate 4 (FIG. 1), the reflection sheet 6, and the light guide 7. As shown in FIG. 2, the light emitted from the light source 5 enters the light guide portion 7c of the light guide 7, propagates through the light guide portion 7c, and reaches the light emitting portion 7b.
  • the surface (light emitting surface 7a) or the back surface of the light emitting portion 7b of the light guide body 7 is processed or processed to emit light guided to the front surface.
  • Specific processing methods and processing methods applied to the light-emitting portion 7b of the light guide 7 include, for example, prism processing, embossing processing, printing processing, and the like, but are not particularly limited, and known methods are used as appropriate. .
  • the light guide 7 is mainly composed of a transparent resin such as polycarbonate (PC) or polymethyl methacrylate (PMMA), but is not particularly limited and is preferably made of a material having high light transmittance. .
  • the light guide 7 can be formed by, for example, injection molding, extrusion molding, hot press molding, cutting, or the like. However, it is not limited to these shaping
  • the reflection sheet 6 is provided so as to be in contact with the back surface of the light guide 7 (the surface facing the light emitting surface 7a).
  • the reflection sheet 6 reflects light and emits more light from the light emitting surface 7a.
  • the reflection sheet 6 is provided for each of the light guides 7, 17,.
  • the diffusion plate 8 is disposed to face the light emitting surface 7a so as to cover the entire flush light emitting surface formed by the light emitting surfaces 7a of the light guides 7, 17,.
  • the diffusion plate 8 diffuses the light emitted from the light emitting surface 7 a of the light guide 7 and irradiates the optical sheet 9 described later.
  • a “Sumipex E RMA10” manufactured by Sumitomo Chemical Co., Ltd. having a thickness of 2.0 mm was used as the diffusion plate 8.
  • the diffusion plate 8 may be disposed at a predetermined distance from the light emitting surface 7a, and the predetermined distance is set to 3.0 mm, for example.
  • the optical sheet 9 is composed of a plurality of sheets arranged on the front surface side of the light guide 7, uniformizes and collects light emitted from the light emitting surface 7 a of the light guide 7, and displays a liquid crystal display.
  • the panel 3 is irradiated. That is, the optical sheet 9 reflects a diffusion sheet that collects and scatters light, a lens sheet that collects light and improves luminance in the front direction (the direction of the liquid crystal display panel), and reflects one polarization component of light. Then, a polarization reflection sheet or the like that improves the luminance of the liquid crystal display device 1 by transmitting the other polarization component can be applied. These are preferably used in appropriate combination depending on the price and performance of the liquid crystal display device 1.
  • the transparent plate 10 is used when the distance between the light guide 7 and the diffusion plate 8 is kept constant, and forms a light diffusion region.
  • the transparent plate 10 is formed of a light transmissive material such as a polyethylene film.
  • the transparent plate 10 may be omitted, and the light guide 7 and the diffusion plate 8 may be arranged to face each other.
  • the light emitted from the light source 5 propagates through the light guide 7 while being scattered and reflected, and is emitted from the light emitting surface 7a. Then, the light passes through the diffusion plate 8 and the optical sheet 9 and reaches the liquid crystal display panel 3.
  • the light incident from the light source 5 into the light guide 7c of the light guide 7 at a certain critical angle reaches the light emitting part 7b while repeating total reflection in the light guide 7c.
  • the light is emitted from the light emitting surface 7a by being reflected by the reflection sheet 6 provided on the back surface of 7b. In this way, most of the light emitted from the light source 5 repeats total reflection in the light guide 7, so that the amount of light decreases as the distance from the light source 5 increases.
  • the tandem light guide As shown in FIG. 5, there is a gap at the boundary between the light emitting part of one light guide and the light emitting part of the other light guide adjacent to the light guide. Therefore, the light emitted from the light source is directly emitted to the outside from the end surface 7e of the light guide. Therefore, this strong light appears as a bright line, and the overall luminance becomes non-uniform.
  • the thickness d1 of the light guide at the end face 7e of the light guide is set to 0.05 mm or more and 0.15 mm or less.
  • the thickness d1 of the light guide is 0.15 mm or less, the brightness of the bright line can be suppressed to such an extent that it does not cause a practical problem. Moreover, if the thickness d1 of a light guide is 0.05 mm or more, the edge part of a light guide will become difficult to break and the intensity
  • FIG. 3 is an enlarged cross-sectional view of a part of the liquid crystal display device 1 shown in FIG.
  • the thickness of the light guides 7 and 17 on the end surface 7e is smaller than that of the conventional one. Therefore, since the amount of strong light emitted from the end surface 7e of the light guide 17 can be reduced, it is possible to suppress the luminance of the light that reaches the end surface 7e directly from the light source 5 and is emitted from the end surface 7e. it can.
  • the uniformity of luminance can be further improved as compared with the conventional configuration.
  • the regulation of the thickness of the light guide as described above reduces the amount of bright lines formed by the strong light emitted from the end surface 7e of each light guide at the boundary between adjacent light guides. Is for. Therefore, it can be said that the thickness of the end portion of the light guide corresponding to the region where the bright line is generated by the light from the light source is 0.05 to 0.15 mm.
  • the liquid crystal display device 1 since the liquid crystal display device 1 according to the present embodiment includes the backlight 2 as described above, the liquid crystal display panel 3 can be irradiated with more uniform light. The quality can be improved.
  • the lighting device of the present invention can have a thinner structure while maintaining luminance uniformity. Therefore, it is particularly preferable to use it as a backlight of a liquid crystal display device having a thickness of 20 mm or less as a whole device.
  • the illumination device of the present invention is excellent in luminance uniformity even when the light emitting area is increased, it is preferably used as a backlight of a liquid crystal display device having a large screen.
  • the present invention is not necessarily limited to this, and can be used as a backlight of any liquid crystal display device.
  • the tandem backlight is described, but in this embodiment, a tile-type backlight having a configuration in which a plurality of light guides are arranged on the same plane without overlapping is described. .
  • FIG. 8 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 21 according to the present embodiment.
  • the liquid crystal display device 21 includes a backlight 22 (illumination device) and a liquid crystal display panel 23 disposed to face the backlight 22.
  • the liquid crystal display panel 23 has the same configuration as the liquid crystal display panel 3 of the first embodiment.
  • the backlight 22 is disposed behind the liquid crystal display panel 23 (on the side opposite to the display surface). As shown in FIG. 8, the backlight 22 includes a substrate 24, a light source 25, a reflection sheet 26, a light guide 27, a diffusion plate 28, an optical sheet 29, and a transparent plate 30.
  • the light source 25 is a point light source such as a side light emitting type light emitting diode (LED).
  • LED light emitting diode
  • the light source 25 will be described using an LED as an example.
  • R, G, and B chips are molded in one package as the light source 25, it is possible to obtain an illumination device with a wide color reproduction range.
  • the light source 25 is disposed on the substrate 24.
  • the light guide 27 emits light emitted from the light source 25 from the light emitting surface 27a.
  • the light emitting surface 27a is a surface for irradiating the irradiation target with light.
  • the light guides constituting the backlight 22 are composed of at least two. That is, the backlight 22 is configured by arranging a plurality of light source units 32 formed by combining the light guide 27 and the light source 25 on the same plane.
  • FIG. 9 schematically shows a planar configuration of the backlight 22.
  • the backlight 22 includes a plurality of light source units 32 having two light sources 25L and 25R (a pair of light sources) arranged in a row and a row.
  • the backlight 22 of the present embodiment is called a tile-type backlight because a plurality of light source units 32 are arranged side by side so as to spread tiles.
  • FIG. 10 is a perspective view when the light source unit 32 is arranged as shown in FIG.
  • the light guide 27 constituting each light source unit 32 has a shape in which the thickness increases as the distance from the end face (end) where the light sources 25R and 25L are arranged is increased. That is, each light guide 27 has a mountain shape with its light emitting surface 27a having two inclined surfaces, and the mountain-shaped ridges 27g are arranged in a straight line.
  • FIG. 11 shows a configuration of one light source unit 32 included in the backlight 22.
  • FIG. 11A is a plan view (top view) when the light source unit 32 is viewed from the liquid crystal display panel 23 side (this is the top surface side).
  • FIG.11 (b) is a top view (bottom view) at the time of seeing the light source unit 32 from the opposite side to Fig.11 (a).
  • FIG. 11C is a cross-sectional view taken along line AA of the light source unit 32 shown in FIG. As shown in FIG. 11C, the light emitting surface 27a of the light guide 27 has a mountain shape with the ridge 27g as a vertex.
  • the light source unit 32 shown in FIG. 11 has two light sources 25L and 25R (a pair of light sources) and a light guide 27 that emits surface light from the light sources.
  • Each of the light sources 25L and 25R is housed in a hollow recess 27f provided inside the light guide 27, and is disposed so as to face each other.
  • the light sources 25L and 25R are mounted on the substrate 24. Then, as shown in FIG. 11, the light emission directions (solid arrow and broken arrow) from each of the light sources 25L and 25R are such that the light from one light source is emitted toward the other light source.
  • the light emission direction from each of the light sources 25L and 25R is set.
  • the two point light sources facing each other are arranged so as to compensate for an area where they cannot irradiate each other.
  • FIG. 12 schematically shows the traveling direction of light from each of the light sources 25L and 25R provided in the light source unit 32.
  • FIG. 12A shows the light traveling direction of the light source 25L provided on the left side of the light source unit when viewed from above
  • FIG. 12B shows the light source 25R provided on the right side of the light source unit when viewed from above. Indicates the direction of light travel.
  • the light source 25L and the light source 25R are arranged so as to face each other so that light from the respective light sources enters the light guide 27, thereby superimposing the light emitting areas of the light sources and guiding the light. Light emission can be obtained from the entire light emitting surface 27 a of the body 27.
  • a large-sized backlight without a dark part can be obtained by arranging a plurality of such light source units 32 side by side. Further, as shown in FIG. 8, in the backlight 22 of the present embodiment, adjacent light source units 32 (first light source unit and second light source unit) are on the same plane so as not to overlap each other.
  • the light emitting surfaces (light emitting regions) of the entire backlight 22 are formed by the light emitting surfaces 27a of the plurality of light guides 27, 27,.
  • the light emitted from the light source 25 propagates through the light guide 27 while receiving the scattering action and the reflection action, and is emitted from the light emitting surface 27a. It passes through the sheet 29 and reaches the liquid crystal display panel 23.
  • the light emitted from the light source 25 is emitted from the light emitting surface 27a while repeating total reflection in the light guide 27 as described with reference to FIG. However, a part of the light emitted from the light source 25 is not totally reflected in the light guide 27 as in the case shown in FIG. 7, but directly on the end face 27e far from the light source 25 (FIG. 11C). To see)). Since such light does not attenuate the amount of light due to total reflection, it has a higher intensity than the light emitted from the light emitting surface 27a.
  • the thickness d2 of the light guide on the end surface 27e of the light guide (FIG. 11 ( c) is set to 0.05 mm or more and 0.15 mm or less.
  • the thickness of a light guide becomes large as it distances from the end surface 27e of the light guide 27.
  • the light emitting surface 27a of the light guide 27 is formed by two inclined surfaces inclined toward the ridge 27g.
  • the brightness of the bright line can be suppressed to a level that does not cause a problem in practice. That is, light from the light source 25R can be sufficiently weakened and emitted at the other end surface 27e1 (the other end) facing the light source 25R disposed at one end of the light guide 27. On the other hand, light from the light source 25L can be sufficiently weakened and emitted at the other end surface 27e2 (the other end) facing the light source 25L disposed at one end of the light guide 27.
  • the thickness d2 of the light guide is 0.05 mm or more, the end of the light guide becomes difficult to break, and the strength of the apparatus can be maintained.
  • the uniformity of luminance can be further improved as compared with the conventional configuration.
  • the regulation of the thickness of the light guide as described above reduces the light amount of the bright line formed by the strong light emitted from the end face 27e of each light guide at the boundary between the adjacent light guides. Is for. Therefore, it can be said that the thickness of the end portion of the light guide corresponding to the region where the bright line is generated by the light from the light source is 0.05 to 0.15 mm.
  • the liquid crystal display device 21 of the present embodiment includes the backlight 22 as described above, the liquid crystal display panel 23 can be irradiated with more uniform light. The quality can be improved.
  • An illuminating device includes a plurality of light source units each having a light source and a light guide that emits surface light of light incident from the light source.
  • the light source is disposed at one end of the light guide, and the light source is disposed.
  • the thickness of the other end of the light guide opposite to one end of the light guide is 0.05 to 0.15 mm.
  • the illuminating device includes a plurality of light source units each having a light source and a light guide for surface emitting light incident from the light source, and corresponds to a region where a bright line is generated by the light from the light source.
  • the thickness of the end portion of the light guide is 0.05 to 0.15 mm.
  • brightness uniformity can be further improved in an illuminating device including a plurality of light guides.
  • the lighting device of the present invention can be used as a backlight of a liquid crystal display device.
  • the illuminating device of the present invention can be suitably used particularly as a backlight of a large or thin liquid crystal display device.

Abstract

 本発明のバックライト(照明装置)は、光源(5)と、該光源から入射した光を面発光させる導光体(7)とを有する光源ユニット(12)を複数個備えている。この光源ユニット(12)において、光源(5)は導光体(7)の一端に配置されており、光源(7)が配置された導光体(7)の一端に対向する導光体(7)の他端(端部(7e))の厚み(d1)が、0.05~0.15mmとなっている。これにより、複数の導光体で構成される照明装置において、輝度の均一性をより向上させる。

Description

照明装置および液晶表示装置
 本発明は、液晶表示装置のバックライトなどとして利用される照明装置、および、この照明装置を備える液晶表示装置に関するものである。
 近年、ブラウン管(CRT)に代わり急速に普及している液晶表示装置は、省エネルギー、薄型、軽量等の特長を活かし、液晶テレビ、モニター、携帯電話等に幅広く利用されている。これらの特長をさらに活かす方法として、液晶表示装置の背後に配置される照明装置(いわゆるバックライト)の改良が挙げられる。
 照明装置は、主にサイドライト型(エッジライト型ともいう)と直下型とに大別される。サイドライト型は、液晶表示パネルの背後に導光体が設けられ、導光体の横端部に光源が設けられた構成を有している。光源から出射した光は、導光体で反射して間接的に液晶表示パネルを均一照射する。この構造により、輝度は低いが、薄型化することができるとともに、輝度均一性に優れた照明装置が実現できる。そのため、サイドライト型の照明装置は、携帯電話、ノートパソコン等のような中小型液晶ディスプレイに主に採用されている。
 サイドライト型の照明装置の一例としては、特許文献1に記載のものが挙げられる。特許文献1には、発光面からの均一な発光が可能なように、導光板の反射面に複数のドットを形成した面発光装置について記載されている。この面発光装置では、反射面の隅部が光源の指向性によって光が伝達されず暗くなるため、当該隅部のドットの密度を他の部分と比較して高くしている。
 また、直下型の照明装置は、液晶表示パネルの背後に光源を複数個配列し、液晶表示パネルを直接照射する。したがって、大画面でも高輝度が得やすく、20インチ以上の大型液晶ディスプレイで主に採用されている。しかし、現在の直下型の照明装置は、厚みが約20mm~40mm程度もあり、ディスプレイの更なる薄型化には障害となる。
 大型液晶ディスプレイで更なる薄型化を目指すには、光源と液晶表示パネルとの距離を近づけることで解決可能だが、その場合、光源の数を多くしなければ、照明装置における輝度の均一性を得る事はできない。その一方で、光源の数を増やすとコストが高くなる。そのため、光源の数を増やすことなく、薄型で輝度の均一性に優れた照明装置の開発が望まれている。
 従来、これらの問題を解決するため、サイドライト型の照明装置を複数個並べることで、大型液晶ディスプレイを薄型化する試みがなされてきた。
 例えば、特許文献2には、コンパクトな構造で広発光エリアを確保できるため、大型の液晶ディスプレイに好適に利用できる面光源装置が提案されている。この面光源装置は、板状の導光ブロックをタンデム配列し、各導光ブロックに一次光をそれぞれ供給する一次光源を備えたタンデム型の構造を有している。
 上記のように、光源と導光体とを組み合わせて構成される発光ユニットを複数個並べて構成された照明装置は、タンデム型の照明装置と呼ばれる。
日本国公開特許公報「特開2003-43266号公報(公開日:2003年2月13日)」 日本国公開特許公報「特開平11-288611号公報(公開日:1999年10月19日)」 日本国公開特許公報「特開2001-312916号公報(公開日:2001年11月9日)」
 ところが、上記のように導光体と光源とを組み合わせて構成されている照明装置において、複数の導光体を平面的に配列した場合、導光体の継ぎ目部分に相当する領域に現れる輝線により輝度ムラが生じ、依然として輝度が不均一になってしまうという問題がある。
 ここで、輝線が生じる原理について説明する。図4は、タンデム型のバックライトを構成する導光体の概略構成を示す断面図である。また、図6および図7は、上記導光体内を伝播する光の進行方向を模式的に示した図である。
 図4に示すように、一方の導光体(図中左側)と、その導光体に隣り合う他方の導光体(図中右側)とが、隙間なく重なり合って構成されている。ここで、光源から出射される光は、図6に示すように、大半が導光体内で全反射を繰り返しながら伝播し、発光面から外部へ出射される。ところが、光源から出射される光の一部は、図7に示すように、導光体内で全反射せずに、直接、光源から遠い方の端面(7e)に達する。このような光は、全反射による光量の減衰が生じないため、強度が強い。そのため、上記端面(7e)から出射された光は、輝線となって現れる。
 この点、図4の構成によれば、他方の導光体(図中右側)における光源から遠い側の端面(7e)から出射した光は、一方の導光体(図中左側)に入射し、その内部を伝播する(図中の太矢印)。そして、この一方の導光体内で全反射を繰り返し、一方の導光体の発光面から出射される。このように、図4の構成では、複数の導光体により発光面が途切れることなく形成されるため、輝線は生じることなく均一な輝度が得られる。
 しかしながら、実使用においては、一般に、導光体は、導光体同士の損傷、照明装置の薄型化、製造上の誤差等を考慮して、マイナス公差で製造される。そのため、図5に示すように、一方の導光体と他方の導光体との継ぎ目部分に公差分の隙間が生じる。そのため、他方の導光体における光源から遠い側の端面(7e)から出射した光は、一方の導光体に入射する光と、一方の導光体に入射せずに上方へ抜ける光(図中の太矢印)とに分かれる。このような、発光面ではない端面(7e)から出射される光は、上述のように、発光面から出射される光よりも光量が多いため輝度が高くなる。そのため、この端面(7e)から上方へ抜ける光が輝線となって現れる。
 このような輝線の問題は、タンデム型のバックライトだけではなく、図14に示すような複数の導光体を重なり合うことなく同一平面上に並べて配置した構成のバックライト(このようなバックライトをタイル式のバックライトと呼ぶ)においても発生する。
 上述の輝線の問題を解決するために、例えば、特許文献3には、導光板から出射される光を拡散するドットパターンを、導光体と拡散板との間に全面に亘って配置する構成が記載されている。この構成によれば、輝線となる光を拡散させることができるため、輝度の不均一性を低減することができる。
 しかしながら、上記の構成では、輝線による輝度ムラの問題を低減することはできるが、ドットパターンのドット模様に起因する新たな輝度ムラの問題が生じる。ドットパターンは、光を拡散させて輝度を均一にする機能を有しているが、輝度を完全に均一化することは困難である。そのため、光源からの距離に応じて、その分布密度が異なるように配置されるドットパターンのドット模様が、輝度ムラに影響を与える。
 また、上記特許文献3には、輝線の原因となる光が出射される上記端面に遮光層を設ける構成が記載されている。この構成によれば、端面から出射される輝度の高い光を遮ることができるため、輝線を抑えることができる。しかしながら、この構成では、上記端面から光が出射されないため、この部分に相当する領域が暗線となって現れ、依然として均一な輝度を得ることが困難となる。
 このような照明装置をバックライトとして使用した表示装置では、表示品位の低下につながってしまう。
 本発明は、上記の問題点に鑑みてなされたものであり、複数の導光体で構成される照明装置において、輝度の均一性をより向上させることのできる照明装置を提供することを目的とする。
 本発明にかかる照明装置は、上記の課題を解決するために、光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、上記光源は上記導光体の一端に配置され、上記光源が配置された導光体の一端に対向する上記導光体の他端の厚みが、0.05~0.15mmとなっていることを特徴としている。
 ここで、導光体の厚みとは、照明装置における光出射面に垂直な方向の導光体の幅のことをいう。
 上記の構成によれば、光源が配置された端部に対向する導光体の端部の厚さを0.15mm以下にすることによって、該端部から出射される光の強度を十分に弱め、実用上問題とならない程度にまで輝線の明るさを抑えることができる。
 つまり、輝線とは、隣り合う導光体同士の境界にある各導光体の端面から出射された強度の強い光によって形成される他の発光面と比較して明るい箇所のことを意味するが、上記の構成によれば、この輝線の明るさと、他の発光面における明るさとの差を小さくすることができる。
 これにより、より輝度均一性の向上した照明装置を得ることができる。
 また、導光体の端部の厚さが0.05mmよりも薄いと、導光体の端部が割れやすくなってしまうが、上記のように導光体の端部の厚さを0.05mm以上とすることで、導光体の強度を実用上問題のない程度に維持することができる。
 また、本発明の照明装置では、導光体自体の形状を工夫する(すなわち、導光体の端部の厚さを0.05mm以上0.15mm以下にする)ことによって、特許文献3に記載されている遮光層などのような別の部材を設けることなく、輝線および暗線の発生を抑えることができる。
 本発明にかかる照明装置は、上記の課題を解決するために、光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、上記光源からの光によって輝線が発生する領域に対応する上記導光体の端部の厚みが、0.05~0.15mmとなっていることを特徴としている。
 ここで、導光体の厚みとは、照明装置における光出射面に垂直な方向の導光体の幅のことをいう。
 上記の構成によれば、輝線が発生する領域に対応する導光体の端部の厚さを、0.15mm以下にすることによって、該端部から出射される光の強度を十分に弱め、実用上問題とならない程度にまで輝線の明るさを抑えることができる。
 つまり、輝線とは、隣り合う導光体同士の境界にある各導光体の端面から出射された強度の強い光によって形成される他の発光面と比較して明るい箇所のことを意味するが、上記の構成によれば、この輝線の明るさと、他の発光面における明るさとの差を小さくすることができる。
 これにより、より輝度均一性の向上した照明装置を得ることができる。
 また、導光体の端部の厚さが0.05mmよりも薄いと、導光体の端部が割れやすくなってしまうが、上記のように導光体の端部の厚さを0.05mm以上とすることで、導光体の強度を実用上問題のない程度に維持することができる。
 また、本発明の照明装置では、導光体自体の形状を工夫する(すなわち、導光体の端部の厚さを0.05mm以上0.15mm以下にする)ことによって、特許文献3に記載されている遮光層などのような別の部材を設けることなく、輝線および暗線の発生を抑えることができる。
 本発明の照明装置において、上記導光体は、発光面を有する発光部と、該発光部へ上記光源から入射した光を導く導光部とを有し、複数の上記光源ユニットのうちの第1の光源ユニットの導光体の導光部に、第1の光源ユニットに隣り合う第2の光源ユニットの導光体の発光部が乗り上げるように配置されていてもよい。
 上記の構成によれば、タンデム型の照明装置を実現できる。そして、導光体の端部の厚みが上記のように規定されていることによって、上記発光面とは異なる上記光源から遠い方の端面から出射された光の量を減少させ、輝度均一性を向上させることができる。
 本発明の照明装置において、複数の上記光源ユニットのうちの第1の光源ユニットと、該第1の光源ユニットに隣り合う第2の光源ユニットとは、互いに重ならないように配置されていてもよい。
 上記の構成によれば、タイル式の照明装置を実現できる。そして、導光体の端部の厚みが上記のように規定されていることによって、隣り合う導光体同士の境界にある各導光体の端面から出射された強度の強い光によって形成される輝線の発生を抑え、輝度均一性を向上させることができる。
 上記の照明装置において、上記光源は、各光源ユニットに少なくとも一対設けられており、上記の対をなす各光源は、互いに対向して配置されていてもよい。
 上記の構成によれば、互いの光源が、対向して配置された他方の光源が照射できない領域(デッドエリア)を補うように光を照射することができる。これにより、各光源から出射した光は、お互いの光源のデッドエリアを補間するように発光面全体から出射されるので、照明装置の輝度均一性を向上させることができる。
 上記の照明装置において、上記導光体は、上記の対をなす各光源が配置されている端部から遠ざかるにしたがってその厚みが増す形状となっていてもよい。
 つまり、上記の構成では、照明装置に設けられた導光体は、その発光面が2つの斜面を有する山型の形状を有している。
 本発明にかかる液晶表示装置は、上記の課題を解決するために、上記のいずれかの照明装置をバックライトとして備えている。
 上記の構成によれば、本発明の照明装置を備えていることによって、輝度の均一性に優れた液晶表示装置を実現することができる。
 本発明の照明装置では、上記のように、導光体自体の形状を工夫することによって輝線の発生を抑えることができる。そのため、特許文献3の段落〔0077〕に記載されているように、導光板と拡散板との距離を十分に離して輝度を均一化する必要がなくなり、液晶表示装置の薄型化が可能となる。そのため、本発明は、特に、装置全体としての厚さが20mm以下の液晶表示装置のバックライトとして適用することが好ましい。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本発明の第1の実施の形態に係る液晶表示装置の概略構成を示す断面図である。 液晶表示装置に備えられる光源ユニットの概略構成を示す斜視図である。 図1に示す液晶表示装置の一部分を拡大した断面図である。 タンデム型のバックライトを構成する導光体の概略構成を示す断面図である。 実使用におけるタンデム型のバックライトを構成する導光体の概略構成を示す断面図である。 導光体内を伝播する光の進行方向を模式的に示した図である。 導光体内を伝播する光の進行方向を模式的に示した図である。 本発明の第2の実施の形態に係る液晶表示装置の概略構成を示す断面図である。 図8に示す液晶表示装置に備えられたバックライトの概略構成を示す平面図である。 図9に示すバックライトにおける光源ユニットの構成を示す斜視図である。 (a)は、図8に示す液晶表示装置に備えられた光源ユニットを液晶表示パネル側から見た場合の平面図である。(b)は、図8に示す液晶表示装置に備えられた光源ユニットをバックライト側から見た場合の平面図である。(c)は、(a)に示す光源ユニットのA-A断面図である。 (a)は、光源ユニットの一方の側(左側)に設けられた光源からの光の進行方向を模式的に示した図である。(b)は、光源ユニットの他方の側(右側)に設けられた光源からの光の進行方向を模式的に示した図である。 隣合う2つの光源ユニットが、隙間なく並んで配置されているタイル式のバックライトの概略構成を示す断面図である。 実使用におけるタイル式のバックライトの概略構成を示す断面図である。
符号の説明
  1・21  液晶表示装置
  2・22  バックライト(照明装置)
  3・23  液晶表示パネル
  4・24  基板
  5  光源(LED、冷陰極管)
  25(25L・25R)  光源(LED)
  6・26  反射シート
  7・17・27  導光体
  7a・27a (導光体の)発光面
  7b・17b 発光部
  7c 導光部
  7e・27e 端面
  8・28  拡散板
  9・29  光学シート
 10・30  透明板
 12・32  光源ユニット
 〔実施の形態1〕
 本発明の第1の実施形態について図1~図7に基づいて説明すると以下の通りである。なお、本発明はこれに限定されるものではない。
 本実施の形態では、液晶表示装置のバックライトとして使用される照明装置について説明する。
 図1は、本実施の形態にかかる液晶表示装置1の概略構成を示す断面図である。液晶表示装置1は、バックライト2(照明装置)と、バックライト2に対向配置される液晶表示パネル3とを備えている。
 液晶表示パネル3は、従来の液晶表示装置に使用される一般的な液晶表示パネルと同様であり、図示はしないが、例えば、複数のTFT(薄膜トランジスタ)が形成されたアクティブマトリクス基板と、それに対向するCF基板とを備え、これらの基板の間に液晶層がシール材により封入された構成を有している。
 液晶表示装置1に備えられたバックライト2の構成について以下に詳しく説明する。
 バックライト2は、液晶表示パネル3の背後(表示面とは反対の側)に配置されている。図1に示すように、バックライト2は、基板4、光源5、反射シート6、導光体7、拡散板8、光学シート9、透明板10を備えている。なお、バックライト2を構成する導光体は、少なくとも2つ以上で構成される。本実施の形態では、説明の便宜上、一方の導光体7と他方の導光体17とを例に挙げて説明する。また、特に断わらない限り、両導光体7,17の代表として、一方の導光体7を例に挙げて説明する。
 光源5は、例えば、サイド発光タイプの発光ダイオード(LED)、または冷陰極管(CCFL)等である。以下では、光源5として、LEDを例に挙げて説明する。光源5として、R、G、Bのチップが1つのパッケージにモールドされているサイド発光タイプのLEDを用いることによって、色再現範囲の広い照明装置を得る事が可能となる。なお、光源5は、基板4上に配置されている。
 導光体7は、光源5から出射された光を発光面7aから面発光させるものである。発光面7aは、照射対象に対して光を照射するための面である。本実施の形態では、導光体7は、図1に示すように、タンデム構造になっている。すなわち、導光体7は、発光面7aを有する発光部7bと、該発光部7bへ光源5からの光を導く導光部7cとを有し、少なくとも発光部7bと導光部7cとの接続部分において、互いの厚さが異なっているとともに、導光体7(第1の光源ユニットの導光体)の導光部7cに他方の導光体17(第2の光源ユニットの導光体)の発光部17bが乗り上げるように配置されている。これにより、複数の導光体7,17,…の各発光面7a(光源ユニットでの発光面)で面一状の発光面(バックライト2全体の発光面:発光領域)が形成される。なお、符号7eは、光源5から遠い方の端面である。
 図2は、図1に示す液晶表示装置1に備えられた光源ユニット12の概略構成を示す斜視図である。光源ユニット12は、光源5から出射された光を拡散させて面発光させるものであり、光源5、基板4(図1)、反射シート6、導光体7により構成される。図2に示すように、光源5から出射された光は、導光体7の導光部7cに入射し、導光部7c内を伝播して発光部7bに到達する。図示はしていないが、導光体7の発光部7bの表面(発光面7a)、若しくは裏面には、導光してきた光を前面に出射させるための加工や処理が施されており、光は、導光体7の発光面7aから液晶表示パネル3側へ出射される。導光体7の発光部7bに施される具体的な加工方法や処理方法は、例えば、プリズム加工、シボ加工、印刷処理などが挙げられるが、特に限定されず、適宜公知の方法が用いられる。
 また、導光体7は、主に、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等の透明樹脂によって構成されているが、特に限定されず、光の透過率が高い材質であることが好ましい。また、導光体7は、例えば射出成型や押出成型、熱プレス成型、切削加工等によって成形することができる。ただし、これら成形方法には限定されず、同様の特性が発揮される加工方法であればよい。
 反射シート6は、導光体7の裏面(発光面7aとの対向面)と接するように設けられている。反射シート6は、光を反射し、発光面7aからより多くの光を出射させるものである。本実施の形態では、導光体が複数個設けられているため、各導光体7,17,…毎に反射シート6が設けられている。
 拡散板8は、各導光体7,17,…の発光面7aにより形成される面一状の発光面の全体を覆うように、発光面7aに対向配置される。拡散板8は、導光体7の発光面7aから出射した光を拡散させて、後述の光学シート9に照射する。本実施の形態では、拡散板8として、厚さ2.0mmの住友化学(株)製「スミペックスE RMA10」を使用した。また、拡散板8は発光面7aから所定の距離をもって配置されてもよく、上記所定の距離は、例えば3.0mmに設定される。
 光学シート9は、導光体7の前面側に重ねて配置された複数のシートによって構成され、導光体7の発光面7aから出射された光を均一化するとともに集光して、液晶表示パネル3へ照射するものである。すなわち、光学シート9は、光を集光しつつ散乱させる拡散シートや、光を集光して正面方向(液晶表示パネル方向)の輝度を向上させるレンズシートや、光の一方の偏光成分を反射して他方の偏光成分を透過することによって液晶表示装置1の輝度を向上させる偏光反射シートなどを適用することができる。これらは、液晶表示装置1の価格や性能によって適宜組み合わせて使用することが好ましい。なお、本実施の形態では、一例として、拡散シートに、きもと(株)製の「ライトアップ250GM2」を、プリズムシートに、住友スリーエム(株)製の「ThickRBEF」を、偏光シートに、住友スリーエム(株)製の「DBEF-D400」等を使用した。
 透明板10は、導光体7と拡散板8との距離を一定に保持する場合に使用され、光の拡散領域を形成する。なお、透明板10は、ポリエチレンフィルム等の透光性材料で形成される。なお、透明板10を省略して、導光体7と拡散板8とが対向配置される構成であってもよい。
 上述の各部材の構成により、光源5から出射された光は、図2および図6に示すように、散乱作用と反射作用を受けながら導光体7内を伝播し、発光面7aから出射し、拡散板8および光学シート9を通り液晶表示パネル3に到達する。
 ここで、従来のバックライトにおいて輝度が不均一となる原理について以下に説明する。
 図6に示すように、光源5からある臨界角で導光体7の導光部7c内に入射した光は、導光部7c内で全反射を繰り返しながら発光部7bに到達し、発光部7bの裏面に設けられた反射シート6によって反射されることにより、発光面7aから出射される。このように、光源5から出射された光の大半は、導光体7内で全反射を繰り返すため、光源5から遠くなるほど光量が減少することになる。
 しかしながら、光源5から出射された光の一部は、図7に示すように、導光体7内で全反射せずに、直接、光源5から遠い方の端面7eに達する。このような光は、全反射による光量の減衰が生じないため、発光面7aから出射された光よりも強度が強い。
 そして、タンデム構造の導光体では、図5に示すように、一方の導光体の発光部と、その導光体に隣り合う他方の導光体の発光部との境界には隙間が生じるため、光源から出射された光が、導光体の端面7eから直接外部に出射される。そのため、この強度の強い光が輝線となって現れ、全体としての輝度が不均一となる。
 なお、特許文献3の〔0076〕段落には、導光体の後端の最も厚みが薄くなった箇所の厚みを0.2mmとするとの記載がある。しかしながら、この程度の厚さでは、依然として導光体の端面からの光量を減少させるには不充分であり、輝線を改善することは困難である。
 そこで、本実施の形態では、光源5が配置された導光体7の一端に対向する導光体の端面7e(他端)から出射される光量を減少させ、輝線の光量を抑えるために、導光体の端面7eにおける導光体の厚みd1を0.05mm以上0.15mm以下としている。
 導光体の厚みd1が0.15mm以下であれば、実用上問題とならない程度にまで輝線の明るさを抑えることができる。また、導光体の厚みd1が0.05mm以上であれば、導光体の端部が割れにくくなり、装置の強度を維持することができる。
 図3は、図1に示す液晶表示装置1の一部分を拡大した断面図である。図3に示すように、端面7eにおける導光体7・17の厚みが従来と比較して薄くなっている。これにより、導光体17の端面7eから出射された強度の強い光の量を減らすことができるため、光源5から直接端面7eに到達し、端面7eから出射される光の輝度を抑えることができる。
 したがって、本実施の形態の構成によれば、従来の構成と比較して、輝度の均一性をより向上させることができる。
 なお、上記のような導光体の厚みの規定は、隣り合う導光体同士の境界にある各導光体の端面7eから出射された強度の強い光によって形成される輝線の光量を減少させるためのものである。そのため、光源からの光によって輝線が発生する領域に対応する上記導光体の端部の厚みが、0.05~0.15mmとなっていると言い換えることもできる。
 以上のように、本実施の形態の液晶表示装置1は、上述したようなバックライト2を備えていることで、液晶表示パネル3に対してより均一な光を照射することができるため、表示品位を向上させることができる。
 また、本発明の照明装置は、輝度均一性を維持しつつ、その構造をより薄型にすることも可能である。そのため、特に、装置全体としての厚さが20mm以下の液晶表示装置のバックライトとして使用することが好ましい。
 また、本発明の照明装置は、発光面積が大きくなった場合にも輝度均一性に優れているため、特に大画面を有する液晶表示装置のバックライトとして使用することが好ましい。
 しかしながら、本発明は必ずしもこれに限定はされず、あらゆる液晶表示装置のバックライトとして使用することができる。
 〔実施の形態2〕
 次に、本発明の第2の実施形態について図8~図14に基づいて説明する。
 上述の実施の形態1では、タンデム型のバックライトについて説明したが、本実施の形態では、複数の導光体を重なり合うことなく同一平面上に並べて配置した構成のタイル式のバックライトについて説明する。
 図8は、本実施の形態にかかる液晶表示装置21の概略構成を示す断面図である。液晶表示装置21は、バックライト22(照明装置)と、バックライト22に対向配置される液晶表示パネル23とを備えている。液晶表示パネル23は、実施の形態1の液晶表示パネル3と同様の構成である。
 次に、液晶表示装置21に備えられたバックライト22の構成について以下に説明する。
 バックライト22は、液晶表示パネル23の背後(表示面とは反対の側)に配置されている。図8に示すように、バックライト22は、基板24、光源25、反射シート26、導光体27、拡散板28、光学シート29、透明板30を備えている。
 光源25は、例えば、サイド発光タイプの発光ダイオード(LED)等の点状の光源である。以下では、光源25として、LEDを例に挙げて説明する。光源25として、R、G、Bのチップが1つのパッケージにモールドされているサイド発光タイプのLEDを用いることによって、色再現範囲の広い照明装置を得る事が可能となる。なお、光源25は、基板24上に配置されている。
 導光体27は、光源25から出射された光を発光面27aから面発光させるものである。発光面27aは、照射対象に対して光を照射するための面である。
 他の構成部材については、実施の形態1におけるバックライト2と略同様の構成であるため、その説明を省略する。
 本実施の形態において、バックライト22を構成する導光体は、少なくとも2つ以上で構成される。つまり、バックライト22は、導光体27と光源25とを組み合わせて形成された光源ユニット32を同一平面上に複数個並べて構成されている。
 また、図9には、バックライト22の平面構成を模式的に示す。図9に示すように、バックライト22は、2個の光源25L・25R(対をなす光源)を有する光源ユニット32が、縦横に複数個整列して配置されている。このように、本実施の形態のバックライト22は、複数個の光源ユニット32がタイルを敷き詰めるように並んで配置されているため、タイル式のバックライトと呼ばれる。
 そして、図10は、図9に示すように光源ユニット32を配置した場合の斜視図である。図10に示すように、各光源ユニット32を構成する導光体27は、光源25R・25Lが配置されている端面(端部)から遠ざかるにしたがってその厚みが増す形状となっている。つまり、各導光体27は、その発光面27aが2つの斜面を有する山型の形状を有しており、その山型の形状の尾根27gが一直線上に揃うように配置されている。
 さらに、図11には、バックライト22に含まれる一つの光源ユニット32の構成を示す。図11(a)は、光源ユニット32を液晶表示パネル23側から見た場合(これを上面側とする)の平面図(上面図)である。図11(b)は、光源ユニット32を図11(a)とは反対の側から見た場合の平面図(下面図)である。図11(c)は、図11(a)に示す光源ユニット32のA-A断面図である。図11(c)に示すように、導光体27の発光面27aは、尾根27gを頂点とした山型の形状となっている。
 図11に示す光源ユニット32は、2個の光源25L・25R(対をなす光源)と、光源からの光を面発光させる導光体27とを有している。各光源25L・25Rは、それぞれ導光体27の内部に設けられた空洞状の凹部27f内に収められ、互いに対向するように配置されている。なお、各光源25L・25Rは基板24の上に載せられている。そして、図11に示すように、各光源25L・25Rからの光の出射方向(実線の矢印と破線の矢印)が、一方の光源からの光が他方の光源に向かって照射されるように、各光源25L・25Rからの光の出射方向が設定されている。
 このように、光源ユニット32においては、対向する2個の点状光源がお互いの照射できない領域を補うように配置されている。
 図12には、光源ユニット32に設けられた各光源25L・25Rからの光の進行方向を模式的に示す。図12(a)に、上面から見て光源ユニットの左側に設けられた光源25Lの光の進行方向を示し、図12(b)に、上面から見て光源ユニットの右側に設けられた光源25Rの光の進行方向を示す。
 図12に示すように、光源25Lおよび光源25Rを、それぞれの光源からの光が導光体27の内部に入射するように向かい合って配置することで、各光源による発光領域を重ね合わせて導光体27の発光面27a全域から発光を得ることができる。
 本実施の形態では、このような光源ユニット32を複数個並べて配置することにより、暗部のない大型のバックライトを得ることができる。また、図8に示すように、本実施の形態のバックライト22では、隣り合う各光源ユニット32(第1の光源ユニットおよび第2の光源ユニット)同士が、互いに重ならないように同一平面上に並んで配置されていることで、複数の導光体27,27,…の各発光面27aでバックライト22全体の発光面(発光領域)が形成される。
 以上のように、光源25から出射された光は、図8に示すように、散乱作用と反射作用を受けながら導光体27内を伝播し、発光面27aから出射し、拡散板28および光学シート29を通り液晶表示パネル23に到達する。
 ここで、タンデム型のバックライトの場合と同様に、タイル式のバックライトにおいても、隣り合う2つの導体同士の間に隙間が生じることが原因で輝線が発生し、輝度の均一性が損なわれるという問題が発生する。このように、輝度が不均一となる原理について以下に説明する。
 光源25から出射された光は、図6を用いて説明したのと同様に、導光体27内で全反射を繰り返しながら、発光面27aから出射される。しかしながら、光源25から出射された光の一部は、図7に示す場合と同様に、導光体27内で全反射せずに、直接、光源25から遠い方の端面27e(図11(c)参照)に達する。このような光は、全反射による光量の減衰が生じないため、発光面27aから出射された光よりも強度が強い。
 仮に、図13に示すように、一方の導光体(図中左側)と、その導光体に隣り合う他方の導光体(図中右側)とが、隙間なく並べられていた場合には、一方の導光体の端面27eからもれ出た光は、他方の導光体の端面27eへ入射し、この他方の導光体の内部を全反射して発光面27aから出射するため、輝線は発生しない。
 しかしながら、実使用においては、図14に示すように、一方の導光体と、その導光体に隣り合う他方の導光体との境界には隙間が生じるため、光源から出射された光が、導光体の端面27eから直接外部に出射される。そのため、この強度が強い光が輝線となって現れ、全体としての輝度が不均一となる。
 そこで、本実施の形態では、導光体の端面27eから出射された光の量を減少させ、輝線の光量を抑えるために、導光体の端面27eにおける導光体の厚みd2(図11(c)参照)を0.05mm以上0.15mm以下としている。
 そして、本実施の形態では、図11(c)に示すように、導光体27の端面27eから遠ざかるにしたがって、導光体の厚みは大きくなっている。つまり、導光体27の発光面27aが、尾根27gへ向かって傾斜した2つの斜面によって形成されている。
 上記のように、導光体の厚みd2が0.15mm以下であれば、実用上問題とならない程度にまで輝線の明るさを抑えることができる。つまり、導光体27の一端に配置された光源25Rに対向する他方の端面27e1(他端)において、光源25Rからの光を十分に弱めて出射することができる。一方、導光体27の一端に配置された光源25Lに対向する他方の端面27e2(他端)において、光源25Lからの光を十分に弱めて出射することができる。
 また、導光体の厚みd2が0.05mm以上であれば、導光体の端部が割れにくくなり、装置の強度を維持することができる。
 したがって、本実施の形態の構成によれば、従来の構成と比較して、輝度の均一性をより向上させることができる。
 なお、上記のような導光体の厚みの規定は、隣り合う導光体同士の境界にある各導光体の端面27eから出射された強度の強い光によって形成される輝線の光量を減少させるためのものである。そのため、光源からの光によって輝線が発生する領域に対応する上記導光体の端部の厚みが、0.05~0.15mmとなっていると言い換えることもできる。
 以上のように、本実施の形態の液晶表示装置21は、上述したようなバックライト22を備えていることで、液晶表示パネル23に対してより均一な光を照射することができるため、表示品位を向上させることができる。
 本発明にかかる照明装置は、光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、上記光源は上記導光体の一端に配置され、上記光源が配置された導光体の一端に対向する上記導光体の他端の厚みが、0.05~0.15mmとなっている。
 また、本発明にかかる照明装置は、光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、上記光源からの光によって輝線が発生する領域に対応する上記導光体の端部の厚みが、0.05~0.15mmとなっている。
 本発明によれば、複数の導光体で構成される照明装置において、輝度の均一性をより向上させることができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明の照明装置は、液晶表示装置のバックライトとして利用できる。本発明の照明装置は、特に、大型あるいは薄型の液晶表示装置のバックライトとして好適に利用できる。

Claims (8)

  1.  光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、
     上記光源は上記導光体の一端に配置され、上記光源が配置された導光体の一端に対向する上記導光体の他端の厚みが、0.05~0.15mmとなっていることを特徴とする照明装置。
  2.  光源と、該光源から入射した光を面発光させる導光体とを有する光源ユニットを複数備え、
     上記光源からの光によって輝線が発生する領域に対応する上記導光体の端部の厚みが、0.05~0.15mmとなっていることを特徴とする照明装置。
  3.  上記導光体は、発光面を有する発光部と、該発光部へ上記光源から入射した光を導く導光部とを有し、複数の上記光源ユニットのうちの第1の光源ユニットの導光体の導光部に、第1の光源ユニットに隣り合う第2の光源ユニットの導光体の発光部が乗り上げるように配置されていることを特徴とする請求項1または2に記載の照明装置。
  4.  複数の上記光源ユニットのうちの第1の光源ユニットと、該第1の光源ユニットに隣り合う第2の光源ユニットとは、互いに重ならないように配置されていることを特徴とする請求項1または2に記載の照明装置。
  5.  上記光源は、各光源ユニットに少なくとも一対設けられており、
     上記の対をなす各光源は、互いに対向して配置されていることを特徴とする請求項4に記載の照明装置。
  6.  上記導光体は、上記の対をなす各光源が配置されている端部から遠ざかるにしたがってその厚みが増す形状となっていることを特徴とする請求項5に記載の照明装置。
  7.  請求項1~6の何れか1項に記載の照明装置をバックライトとして備えている液晶表示装置。
  8.  装置全体の厚さが20mm以下であることを特徴とする請求項7に記載の液晶表示装置。
PCT/JP2008/071073 2008-04-18 2008-11-20 照明装置および液晶表示装置 WO2009128178A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801265248A CN101939586B (zh) 2008-04-18 2008-11-20 照明装置和液晶显示装置
US12/865,739 US8345188B2 (en) 2008-04-18 2008-11-20 Illumination device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008108916 2008-04-18
JP2008-108916 2008-04-18

Publications (1)

Publication Number Publication Date
WO2009128178A1 true WO2009128178A1 (ja) 2009-10-22

Family

ID=41198890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071073 WO2009128178A1 (ja) 2008-04-18 2008-11-20 照明装置および液晶表示装置

Country Status (3)

Country Link
US (1) US8345188B2 (ja)
CN (1) CN101939586B (ja)
WO (1) WO2009128178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051871A1 (en) * 2009-10-27 2011-05-05 Koninklijke Philips Electronics N.V. Light-guide for an illumination system and for a scanning backlight system
CN102954403A (zh) * 2011-08-11 2013-03-06 三星显示有限公司 背光组件和具有该背光组件的显示设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322892B2 (ja) * 2009-11-06 2013-10-23 シャープ株式会社 照明装置、それを備えた表示装置およびテレビ受信装置
TW201305668A (zh) * 2011-04-15 2013-02-01 Semiconductor Energy Lab 導光元件,背光單元,及顯示裝置
CN102207578A (zh) * 2011-06-14 2011-10-05 周玉龙 一种导光板
KR101767973B1 (ko) * 2011-08-16 2017-08-16 삼성디스플레이 주식회사 백라이트 어셈블리
CN102331598B (zh) * 2011-09-19 2013-05-08 苏州向隆塑胶有限公司 导光板及其制作方法以及光源装置
US10321039B2 (en) * 2015-11-12 2019-06-11 Taser International, Inc. Dispatch-based responder camera activation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171641A (ja) * 1998-12-10 2000-06-23 Hitachi Ltd バックライト装置および液晶表示装置並びに導光板の製造方法
JP2004206916A (ja) * 2002-12-24 2004-07-22 Yoshihiro Sakai 面状光源
JP2005018993A (ja) * 2003-06-23 2005-01-20 Teijin Chem Ltd 高屈折性導光板
JP2007335323A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 導光板組立体およびこれを用いる面状照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373427B2 (ja) 1998-03-31 2003-02-04 日東樹脂工業株式会社 タンデム型面光源装置
JP2001312916A (ja) 2000-02-24 2001-11-09 Sony Corp 面光源装置
JP3896895B2 (ja) 2001-05-22 2007-03-22 日亜化学工業株式会社 面発光装置の導光板
TWI254815B (en) 2001-05-22 2006-05-11 Nichia Corp Guide-plate for a plane-luminous device
DE10159093C1 (de) * 2001-12-01 2003-08-14 Schott Glas Verfahren zum hermetischen Einglasen einer Lichtleitfaser in eine metallische Durchführungs-Hülse und danach hergestellte hermetische Einglasung
JP4945107B2 (ja) * 2005-09-15 2012-06-06 ゲットナー・ファンデーション・エルエルシー 光源装置及びその製造方法、表示装置及びその製造方法、並びに表示装置の駆動方法
WO2007145248A1 (ja) 2006-06-16 2007-12-21 Fujifilm Corporation 導光板、導光板組立体、およびこれらを用いる面状照明装置、ならびに液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171641A (ja) * 1998-12-10 2000-06-23 Hitachi Ltd バックライト装置および液晶表示装置並びに導光板の製造方法
JP2004206916A (ja) * 2002-12-24 2004-07-22 Yoshihiro Sakai 面状光源
JP2005018993A (ja) * 2003-06-23 2005-01-20 Teijin Chem Ltd 高屈折性導光板
JP2007335323A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 導光板組立体およびこれを用いる面状照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051871A1 (en) * 2009-10-27 2011-05-05 Koninklijke Philips Electronics N.V. Light-guide for an illumination system and for a scanning backlight system
CN102954403A (zh) * 2011-08-11 2013-03-06 三星显示有限公司 背光组件和具有该背光组件的显示设备

Also Published As

Publication number Publication date
US8345188B2 (en) 2013-01-01
CN101939586B (zh) 2013-11-13
CN101939586A (zh) 2011-01-05
US20110001899A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2009098809A1 (ja) 照明装置および液晶表示装置
JP5275441B2 (ja) 導光体、面光源装置および液晶表示装置
US8684588B2 (en) Light guide elements for display device
US8339539B2 (en) Illumination device and liquid crystal display device
JP5198570B2 (ja) 照明装置、面光源装置、および液晶表示装置
US8436962B2 (en) Illumination device and liquid crystal display device
WO2009128178A1 (ja) 照明装置および液晶表示装置
WO2009110145A1 (ja) 発光素子、照明装置および液晶表示装置
JP2009093808A (ja) 照明装置および液晶表示装置
KR20100092757A (ko) 백라이트 어셈블리 및 도광판의 제조 방법
WO2010004801A1 (ja) 照明装置および液晶表示装置
JP5107438B2 (ja) 面光源装置および液晶表示装置
US9046630B2 (en) Optical sheet and backlight assembly having the same
JP2009289701A (ja) 照明装置、面光源装置、および液晶表示装置
JP4838355B2 (ja) 照明装置および液晶表示装置
WO2010038523A1 (ja) 照明装置および液晶表示装置
WO2010001653A1 (ja) 導光体ユニット、面光源装置、および液晶表示装置
JP2009176512A (ja) 面光源装置及び画像表示装置
US20110292684A1 (en) Illumination device, surface illuminant device, and liquid crystal display device
WO2010016315A1 (ja) 照明装置および液晶表示装置
WO2010038508A1 (ja) 照明装置および液晶表示装置
CN106932957B (zh) 液晶显示装置
JP4662212B2 (ja) 直下型バックライト装置
JP2013041787A (ja) 照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126524.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12865739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08873959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP