WO2009128126A1 - Electric power-steering device - Google Patents
Electric power-steering device Download PDFInfo
- Publication number
- WO2009128126A1 WO2009128126A1 PCT/JP2008/057250 JP2008057250W WO2009128126A1 WO 2009128126 A1 WO2009128126 A1 WO 2009128126A1 JP 2008057250 W JP2008057250 W JP 2008057250W WO 2009128126 A1 WO2009128126 A1 WO 2009128126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- motor current
- electric power
- current
- target current
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
- B62D5/0487—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
Definitions
- the present invention relates to a power steering control device for an automobile that assists a steering torque generated by steering by a driver with an electric motor.
- FIG. 6 is a configuration diagram of a conventional electric power steering control device.
- This electric power steering control device includes steering torque detection means 1, steering wheel angle information detection means 2, vehicle speed detection means 3, target current setting means 4, motor 5, motor current control means 6, motor current detection means 7, and failure detection. Consists of means 8.
- Steering torque detection means 1 detects the driver's steering force as steering torque.
- the steering wheel angle information detection means 2 detects the steering wheel angle, and the vehicle speed detection means 3 detects the vehicle speed.
- the target current setting means 4 assists the driver's steering force based on detection signals from the steering torque detection means 1, the steering wheel angle information detection means 2, the vehicle speed detection means 3, and the motor current detection means 7 described later.
- the target current 10 to be supplied to the motor 5 is calculated.
- the motor current detection means 7 detects the current 11 of the motor 5 for assisting the driver's steering force.
- the motor current control means 6 calculates a motor drive signal so that the deviation between the target current 10 output from the target current setting means 4 and the motor current 11 detected by the motor current detection means 7 becomes zero, The motor current 11 is controlled.
- the motor current control means 6 is realized by a proportional / integral control means (PI control) or a proportional / integral / derivative control means (PID control).
- PI control proportional / integral control means
- PID control proportional / integral / derivative control means
- the failure detection means 8 performs failure detection based on the target current 10 and the motor current 11.
- a device provided with an attenuating means for reducing high-frequency components due to (PWM) or the like is known as the prior art. By providing such a configuration, an effect of reducing noise mixed in from each route is obtained.
- the prior art has the following problems.
- the frequency response characteristic of the motor current 11 with respect to the target current 10 is set so as to be the first-order lag characteristic represented by the transfer function of the following equation (1).
- the frequency band of the driver's steering input operation is 10 Hz or less.
- the resonance frequency of the steering system that requires vibration suppression control is usually several tens of Hz or less. Therefore, in order to remove unnecessary signal components such as noise having a frequency higher than those from the target current 10, it is desirable to set the cutoff frequency f mtr [Hz] within the range of the following expression (2).
- the conventional failure detection means 8 is configured such that the state where the absolute value of the difference between the target current 10 and the motor current 11 is greater than a predetermined threshold (Ierr) continues for a predetermined time (Terr) or more. Fault detection was performed. As a result, a short of the motor wire, a failure of the motor drive circuit, or the like is detected.
- FIG. 7 is a current response waveform of the conventional electric power steering apparatus. More specifically, in FIG. 7, the response of the motor current 11 when the target current 10 changes stepwise is shown as a response waveform 14.
- FIG. 7 shows that it takes time for the motor current 11 to converge to the target current 10. For this reason, the deviation 15 between the target current 10 and the motor current 11 becomes longer in a state exceeding the threshold value (Ierr1) of the failure detection function as shown in the lower part of FIG. As a result, when the state exceeding the threshold value (Ierr1) continues for a predetermined time (Terr1) or longer, the failure detection means 8 erroneously detects as a failure.
- the threshold value (Ierr1) of the failure detection function as shown in the lower part of FIG.
- the cutoff frequency f mtr [Hz] in the above equation (1) must be set to a value (usually 500 [Hz] or more) larger than the range of the above equation (2).
- the cutoff frequency f mtr [Hz] in the above equation (1) needs to consider the following two cases.
- Case 1) In order to remove a frequency component higher than the frequency band of the steering input included in the target current 10, the cut-off frequency f mtr [Hz] needs to satisfy the following expression (3).
- Another object of the attenuation means disclosed in Patent Document 1 is to reduce high-frequency noise caused by a pulse width modulation control signal (PWM) output from the motor current control means 6. For this reason, the cut-off frequency is several tens [KHz], which acts only in a frequency band higher than the cut-off frequency (f mtr ) of the above formulas (3) and (4). Must not.
- PWM pulse width modulation control signal
- the present invention has been made to solve the above-described problems, and suppresses abnormal noise and vibration without impairing response characteristics of a desired motor current with respect to a steering input, and detects a failure in a motor current control function.
- An object of the present invention is to obtain an electric power steering device having a motor current follow-up property necessary for this purpose.
- An electric power steering control device includes a steering torque sensor that detects steering torque of a steering system, a motor that applies a steering assist force to the steering system, and a motor based on the steering torque detected by the steering torque sensor.
- Target current setting means for setting the target current
- motor current detection means for detecting the motor current flowing in the motor
- deviation calculation means for calculating the deviation between the target current and the motor current, and driving the motor based on the deviation.
- a frequency characteristic adjusting means for adjusting the responsiveness of the low frequency component of the motor current to the target current is further provided between the target current setting means and the deviation calculating means. It is to be prepared.
- the frequency characteristic adjusting means capable of adjusting the responsiveness of the low frequency component of the motor current to the target current
- the abnormal noise can be obtained without impairing the desired motor current response characteristic to the steering input.
- an electric power steering device having a motor current follow-up property required to suppress motor vibration and detect a failure in the motor current control function can be obtained.
- FIG. 1 is a configuration diagram of an electric power steering device according to Embodiment 1 of the present invention.
- FIG. 3 is a current response waveform of the electric power steering apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows the correlation of the transfer function of the electric power steering apparatus which concerns on Embodiment 1 of this invention. It is a Bode diagram of various transfer functions of the electric power steering device concerning Embodiment 1 of the present invention. It is a block diagram of the electric power steering apparatus which concerns on Embodiment 2 of this invention. It is a block diagram of the conventional electric power steering control apparatus. It is a current response waveform of the conventional electric power steering apparatus.
- FIG. 1 is a configuration diagram of an electric power steering apparatus according to Embodiment 1 of the present invention. Compared with FIG. 6, which is a conventional diagram, FIG. 1 according to the first embodiment is different in that frequency characteristic adjusting means 9 is further provided after target current setting means 4.
- the frequency characteristic adjusting means 9 in the first embodiment is a phase lag filter.
- the frequency characteristic adjusting unit 9 adjusts the frequency characteristic of the target current 10 set by the target current setting unit 4. Details of the function of the frequency characteristic adjusting means 9 will be described later.
- the frequency response characteristic of the motor current 11 with respect to the target current 12 after the frequency characteristic adjustment is set so as to be a first order lag represented by the transfer function of the following equation (5) Has been.
- the failure detection means 8 has continued for a predetermined time (Terr) or more in which the absolute value of the difference between the target current 12 after the frequency characteristic adjustment and the motor current 11 is larger than a predetermined threshold (Ierr). In this case, failure detection is performed. Thereby, a short circuit of the motor line, a failure of the motor drive circuit, and the like are detected, and the steering assist is stopped when the failure is confirmed.
- both the predetermined threshold value (Ierr) and the predetermined time period (Terr) are determined from the viewpoint of appropriately performing the vehicle behavior at the time of occurrence of the failure.
- the failure detection unit 8 may erroneously detect a state that only takes time to converge as a failure.
- FIG. 2 is a current response waveform of the electric power steering apparatus according to Embodiment 1 of the present invention. More specifically, in FIG. 7, the response of the motor current 11 when the target current 12 after the frequency characteristic adjustment changes stepwise is shown as response waveforms 17 and 18.
- the response waveform 17 is a case where the value of the cutoff frequency f mtr is 600 Hz
- the response waveform 18 is a case where the value of the cutoff frequency f mtr is 150 Hz.
- the cutoff frequency f mtr is set to 600 Hz
- the motor current 11 quickly converges to the target current 12 after the frequency characteristic adjustment.
- the deviation 19 between the target current 12 and the motor current 11 after the frequency characteristic adjustment has a short state exceeding the threshold value (Ierr1) of the failure detection function as shown in the lower part of FIG.
- the state exceeding the threshold value (Ierr1) does not continue for a predetermined time (Terr1) or more, and the failure detection means 8 has no possibility of erroneous detection.
- the value of the following equation (6) is set in the motor current control means 6 as the cutoff frequency in the above equation (5).
- the frequency characteristics of the motor current 11 with respect to the target current 10 are preferably expressed by the following equations (7) and (8) in order to remove frequency components higher than the frequency band of the steering input included in the target current 10. .
- FIG. 3 is a configuration diagram showing the correlation of the transfer function of the electric power steering apparatus according to Embodiment 1 of the present invention. As shown in FIG. 3, in order to make the above equations (7) and (9) coincide with each other, it is necessary to satisfy the relationships of the following equations (10) and (11).
- the frequency characteristic adjusting means 9 may be a phase delay filter having a coefficient as shown in the following equation (12). With this setting, the frequency characteristic adjusting unit 9 can adjust the response of the low frequency component of the motor current.
- Desired characteristic 1 The frequency characteristic from the target current 10 to the motor current 11 is expressed by the above equation (7). Thus, a signal component in a frequency band higher than the frequency of the driver's steering operation included in the target current 10 can be removed, and a good steering feeling can be obtained.
- Desired characteristic 2 The frequency characteristics from the target current 12 to the motor current 11 after adjusting the frequency characteristics are expressed by the above equations (5) and (6). Accordingly, since the current follow-up performance is sufficient, there is no possibility of erroneous detection of a failure by the failure detection means 8. Furthermore, when a failure actually occurs, it is possible to quickly detect the failure and stop the steering assist.
- the motor current control means 6 considers the suppression of vibration and abnormal noise and the failure detection by the failure detection means 8, and the motor current is compared with the target current after the frequency characteristic adjustment.
- the characteristic is set so that it follows sufficiently quickly.
- the frequency characteristic adjusting means 9 is provided at the subsequent stage of the target current setting means 4.
- the characteristic of the frequency characteristic adjusting means 9 is such that signal components in a frequency band higher than the frequency of the steering operation of the driver included in the target current 10 are removed while taking into consideration the characteristics of the motor current control means 6 determined in advance.
- the response characteristic of the motor current 11 with respect to the target current 10 is set to be optimized.
- the failure detection means 8 compares the target current 12 after the frequency characteristic adjustment and the motor current 11 to detect a failure.
- the characteristics of the motor current control means 6 are set so that the motor current 11 follows the target current 12 after adjusting the frequency characteristics sufficiently quickly. For this reason, when a failure occurs, it is possible to quickly detect the failure, stop the steering assist, and ensure an appropriate driving state.
- the frequency characteristic adjusting means by providing the frequency characteristic adjusting means, the noise and vibration are suppressed without impairing the response characteristic of the desired motor current with respect to the steering input, and the motor current control function is improved. It is possible to obtain an electric power steering device having a motor current followability necessary for detecting a failure.
- the frequency characteristic adjusting means 9 can also change the frequency defining the characteristic of the above equation (12) according to the vehicle speed detected by the vehicle speed detecting means 9. Thereby, an appropriate response characteristic according to the vehicle speed can be obtained.
- FIG. FIG. 5 is a configuration diagram of an electric power steering apparatus according to Embodiment 2 of the present invention.
- the configuration of FIG. 5 is different from the configuration of FIG. 1 in the first embodiment in that a frequency characteristic adjustment presence / absence changeover switch 27 is newly provided.
- the function of the frequency characteristic adjusting means 9 When driving at high speed, the function of the frequency characteristic adjusting means 9 is bypassed to improve the follow-up performance of the motor current 11 and improve the response to the steering wheel operation.
- the function of the frequency characteristic adjusting means 9 By utilizing the function of the frequency characteristic adjusting means 9, both good steering feeling and sufficient current following performance can be realized.
- the frequency characteristic adjustment presence / absence changeover switch 26 performs the following operation.
- the switch is switched to the a side (that is, the function of the frequency characteristic adjusting means 9 is utilized)
- vehicle speed ⁇ Vth [Km / h] the switch is switched to the b side (that is, the function of the frequency characteristic adjusting means 9 is bypassed).
- the vehicle speed threshold (Vth) used for the switching determination described above may have hysteresis.
- the frequency characteristic adjustment presence / absence changeover switch 26 is shown as an independent function in the configuration of FIG. However, the frequency characteristic adjustment means 9 can also have a switching function by the frequency characteristic adjustment presence / absence changeover switch 26.
- the optimal steering feeling corresponding to the vehicle speed can be realized by switching the function of the frequency characteristic adjusting means according to the vehicle speed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
An electric power-steering device reduces abnormal noises and vibrations without degrading desirable response characteristics of a motor current to a steering input, and has a motor current tracking performance required for detection of fault in a motor current control function. The electric power-steering device comprises a steering torque sensor to detect a steering torque of a steering system, a motor (5) to exert a steering auxiliary force to the steering system, a target current setting means (4) to set up a target current of the motor in accordance with a steering torque detected by the steering torque sensor, a motor current detection means (7) to detect a motor current flowing through the motor, a deviation computation means to compute a deviation between the target current and the motor current, and a motor current control means (6) to control drive of the motor in accordance with the computed deviation. Further, between the target current setting means (4) and the deviation computation means, the device includes a frequency characteristics adjustment means (9) to adjust a response of low-frequency components of the motor current versus the target current.
Description
本発明は、運転者のステアリング操舵により生じた操舵トルクを、電動モータにより補助する自動車用のパワーステアリング制御装置に関する。
The present invention relates to a power steering control device for an automobile that assists a steering torque generated by steering by a driver with an electric motor.
図6は、従来の電動パワーステアリング制御装置の構成図である。この電動パワーステアリング制御装置は、操舵トルク検出手段1、ハンドル角度情報検出手段2、車速検出手段3、目標電流設定手段4、モータ5、モータ電流制御手段6、モータ電流検出手段7、および故障検出手段8で構成される。
FIG. 6 is a configuration diagram of a conventional electric power steering control device. This electric power steering control device includes steering torque detection means 1, steering wheel angle information detection means 2, vehicle speed detection means 3, target current setting means 4, motor 5, motor current control means 6, motor current detection means 7, and failure detection. Consists of means 8.
操舵トルク検出手段1は、運転者のステアリング操舵力を操舵トルクとして検出する。ハンドル角度情報検出手段2は、ハンドル角度を検出し、車速検出手段3は、車速を検出する。目標電流設定手段4は、操舵トルク検出手段1、ハンドル角度情報検出手段2、車速検出手段3、および後述するモータ電流検出手段7からの検出信号に基づいて、運転者の操舵力を補助するためにモータ5に流す目標電流10を演算する。
Steering torque detection means 1 detects the driver's steering force as steering torque. The steering wheel angle information detection means 2 detects the steering wheel angle, and the vehicle speed detection means 3 detects the vehicle speed. The target current setting means 4 assists the driver's steering force based on detection signals from the steering torque detection means 1, the steering wheel angle information detection means 2, the vehicle speed detection means 3, and the motor current detection means 7 described later. The target current 10 to be supplied to the motor 5 is calculated.
モータ電流検出手段7は、運転者の操舵力を補助するためのモータ5の電流11を検出する。モータ電流制御手段6は、目標電流設定手段4から出力される目標電流10と、モータ電流検出手段7で検出されるモータ電流11との偏差が零となるように、モータ駆動信号を演算し、モータ電流11を制御している。一例として、モータ電流制御手段6は、比例・積分制御手段(PI制御)、または比例・積分・微分制御手段(PID制御)で実現される。故障検出手段8は、目標電流10およびモータ電流11に基づいて、故障検出を行う。
The motor current detection means 7 detects the current 11 of the motor 5 for assisting the driver's steering force. The motor current control means 6 calculates a motor drive signal so that the deviation between the target current 10 output from the target current setting means 4 and the motor current 11 detected by the motor current detection means 7 becomes zero, The motor current 11 is controlled. As an example, the motor current control means 6 is realized by a proportional / integral control means (PI control) or a proportional / integral / derivative control means (PID control). The failure detection means 8 performs failure detection based on the target current 10 and the motor current 11.
また、モータ電流制御手段6とモータ電流検出手段7とを結ぶ経路、およびモータ電流制御手段6と目標電流設定手段4とを結ぶ経路に、モータ電流制御手段6より出力されるパルス幅変調制御信号(PWM)等による高周波成分を低減させる減衰手段を設けたものが、従来技術として知られている。このような構成を備えることにより、それぞれの経路から混入するノイズを低減させる効果を得ている。
In addition, a pulse width modulation control signal output from the motor current control means 6 on a path connecting the motor current control means 6 and the motor current detection means 7 and a path connecting the motor current control means 6 and the target current setting means 4. A device provided with an attenuating means for reducing high-frequency components due to (PWM) or the like is known as the prior art. By providing such a configuration, an effect of reducing noise mixed in from each route is obtained.
しかしながら、従来技術には次のような課題がある。
先の図6におけるモータ電流制御手段6では、目標電流10に対するモータ電流11の周波数応答特性が、下式(1)の伝達関数で表される1次遅れ特性となるように設定されている。 However, the prior art has the following problems.
In the motor current control means 6 in FIG. 6, the frequency response characteristic of the motor current 11 with respect to thetarget current 10 is set so as to be the first-order lag characteristic represented by the transfer function of the following equation (1).
先の図6におけるモータ電流制御手段6では、目標電流10に対するモータ電流11の周波数応答特性が、下式(1)の伝達関数で表される1次遅れ特性となるように設定されている。 However, the prior art has the following problems.
In the motor current control means 6 in FIG. 6, the frequency response characteristic of the motor current 11 with respect to the
運転者の操舵入力操作の周波数帯域は、10Hz以下である。また、制振制御が必要となるステアリング系の共振周波数は、通常、数十Hz以下である。従って、それらよりも高い周波数のノイズ等の不要な信号成分を目標電流10から除去するために、カットオフ周波数fmtr[Hz]は、下式(2)の範囲に設定することが望ましい。
The frequency band of the driver's steering input operation is 10 Hz or less. In addition, the resonance frequency of the steering system that requires vibration suppression control is usually several tens of Hz or less. Therefore, in order to remove unnecessary signal components such as noise having a frequency higher than those from the target current 10, it is desirable to set the cutoff frequency f mtr [Hz] within the range of the following expression (2).
また、従来の故障検出手段8は、目標電流10とモータ電流11との差分の絶対値が、所定のしきい値(Ierr)よりも大きい状態が、所定時間(Terr)以上継続した場合に、故障検出を行っていた。これにより、モータ線のショートやモータ駆動回路の故障などを検出している。
Further, the conventional failure detection means 8 is configured such that the state where the absolute value of the difference between the target current 10 and the motor current 11 is greater than a predetermined threshold (Ierr) continues for a predetermined time (Terr) or more. Fault detection was performed. As a result, a short of the motor wire, a failure of the motor drive circuit, or the like is detected.
しかしながら、例えば、モータ電流応答特性を上式(1)とし、カットオフ周波数をfmtr=150[Hz]のように設定した場合には、以下のような問題が生じる。図7は、従来の電動パワーステアリング装置の電流応答波形である。より具体的には、この図7では、目標電流10がステップ変化した場合のモータ電流11の応答が、応答波形14として示されている。
However, for example, when the motor current response characteristic is set to the above formula (1) and the cut-off frequency is set as f mtr = 150 [Hz], the following problem occurs. FIG. 7 is a current response waveform of the conventional electric power steering apparatus. More specifically, in FIG. 7, the response of the motor current 11 when the target current 10 changes stepwise is shown as a response waveform 14.
図7をみると、モータ電流11が目標電流10に収束するまでに時間がかかっていることがわかる。このため、目標電流10とモータ電流11との偏差15は、図7の下段に示すとおり、故障検出機能のしきい値(Ierr1)を超える状態が長くなる。この結果、しきい値(Ierr1)を超える状態が所定時間(Terr1)以上継続した場合には、故障検出手段8は、故障として誤検出してしまう。
FIG. 7 shows that it takes time for the motor current 11 to converge to the target current 10. For this reason, the deviation 15 between the target current 10 and the motor current 11 becomes longer in a state exceeding the threshold value (Ierr1) of the failure detection function as shown in the lower part of FIG. As a result, when the state exceeding the threshold value (Ierr1) continues for a predetermined time (Terr1) or longer, the failure detection means 8 erroneously detects as a failure.
このような故障の誤検出を防ぐためには、故障検出のしきい値(Ierr1)を大きくするか、あるいは、故障確定までの時間(Terr1)を長くする方法が考えられる。しかしながら、これらの方法をとった場合には、実際に故障が発生してから故障を確定し、操舵アシストを停止させるまでの車両の挙動が大きくなってしまい、好ましくない。
In order to prevent such erroneous detection of a failure, a method of increasing the failure detection threshold (Ierr1) or increasing the time until failure determination (Terr1) can be considered. However, using these methods is not preferable because the behavior of the vehicle from when the failure actually occurs until the failure is confirmed and the steering assist is stopped increases.
また、外乱などによりモータ電流11が変動した場合にも、モータ電流11が目標電流10に収束するまでに、同様に、長い時間を要することとなる。この場合にも、故障として誤検出する可能性がある。さらには、異音や振動、操舵フィーリングへの悪影響が起こる場合も考えられる。
Also, when the motor current 11 fluctuates due to disturbance or the like, it similarly takes a long time for the motor current 11 to converge to the target current 10. Even in this case, there is a possibility of erroneous detection as a failure. Furthermore, there may be cases where there is an adverse effect on noise, vibration, or steering feeling.
従って、上述の問題を解決するためには、目標電流10に対するモータ電流11の追従性を十分に高める必要がある。すなわち、上式(1)のカットオフ周波数fmtr[Hz]を、上式(2)の範囲よりも大きな値(通常、500[Hz]以上)に設定しなければならない。
Therefore, in order to solve the above-described problem, it is necessary to sufficiently improve the followability of the motor current 11 with respect to the target current 10. That is, the cutoff frequency f mtr [Hz] in the above equation (1) must be set to a value (usually 500 [Hz] or more) larger than the range of the above equation (2).
以上をまとめると、上式(1)のカットオフ周波数fmtr[Hz]は、次の2つのケースを考慮する必要がある。
ケース1)目標電流10に含まれる操舵入力の周波数帯域よりも高い周波数成分を除去するためには、カットオフ周波数fmtr[Hz]は、下式(3)を満たす必要がある。 In summary, the cutoff frequency f mtr [Hz] in the above equation (1) needs to consider the following two cases.
Case 1) In order to remove a frequency component higher than the frequency band of the steering input included in thetarget current 10, the cut-off frequency f mtr [Hz] needs to satisfy the following expression (3).
ケース1)目標電流10に含まれる操舵入力の周波数帯域よりも高い周波数成分を除去するためには、カットオフ周波数fmtr[Hz]は、下式(3)を満たす必要がある。 In summary, the cutoff frequency f mtr [Hz] in the above equation (1) needs to consider the following two cases.
Case 1) In order to remove a frequency component higher than the frequency band of the steering input included in the
ケース2)目標電流10に対するモータ電流11の追従性の要求を満たすためには、カットオフ周波数fmtr[Hz]は、下式(4)を満たす必要がある。
Case 2) In order to satisfy the requirement of the followability of the motor current 11 with respect to the target current 10, the cutoff frequency f mtr [Hz] needs to satisfy the following expression (4).
しかしながら、上式(3)(4)の条件をともに満たすことはできない。このため、従来技術では、より優先度の高いケース2の要求に従い、カットオフ周波数fmtrを設定している。この結果、ケース1の要求は満たされないため、操舵フィーリング劣化等の要因となる場合があった。
However, the conditions of the above formulas (3) and (4) cannot be satisfied. For this reason, in the prior art, the cut-off frequency f mtr is set in accordance with the request of Case 2 with higher priority. As a result, the requirement of case 1 is not satisfied, which may cause a deterioration of steering feeling and the like.
また、特許文献1にある減衰手段は、モータ電流制御手段6から出力されるパルス幅変調制御信号(PWM)等による高周波ノイズを低減することが目的である。このため、そのカットオフ周波数は、数十[KHz]となり、上式(3)や(4)のカットオフ周波数(fmtr)よりも高い周波数帯域でのみ作用することとなり、本課題の対策とはならない。
Another object of the attenuation means disclosed in Patent Document 1 is to reduce high-frequency noise caused by a pulse width modulation control signal (PWM) output from the motor current control means 6. For this reason, the cut-off frequency is several tens [KHz], which acts only in a frequency band higher than the cut-off frequency (f mtr ) of the above formulas (3) and (4). Must not.
本発明は上述のような課題を解決するためになされたもので、操舵入力に対する所望のモータ電流の応答特性を損なうことなく、異音や振動を抑制し、モータ電流制御機能の故障を検出するために必要なモータ電流追従性を備える電動パワーステアリング装置を得ることを目的とする。
The present invention has been made to solve the above-described problems, and suppresses abnormal noise and vibration without impairing response characteristics of a desired motor current with respect to a steering input, and detects a failure in a motor current control function. An object of the present invention is to obtain an electric power steering device having a motor current follow-up property necessary for this purpose.
本発明に係る電動式パワーステアリング制御装置は、ステアリング系の操舵トルクを検出する操舵トルクセンサと、ステアリング系に操舵補助力を作用させるモータと、操舵トルクセンサで検出された操舵トルクに基づいてモータの目標電流を設定する目標電流設定手段と、モータに流れるモータ電流を検出するモータ電流検出手段と、目標電流とモータ電流との偏差を演算する偏差演算手段と、偏差に基づいてモータの駆動を制御するモータ電流制御手段とを備えた電動式パワーステアリングにおいて、目標電流設定手段と偏差演算手段との間に、目標電流に対するモータ電流の低周波成分の応答性を調整する周波数特性調整手段をさらに備えるものである。
An electric power steering control device according to the present invention includes a steering torque sensor that detects steering torque of a steering system, a motor that applies a steering assist force to the steering system, and a motor based on the steering torque detected by the steering torque sensor. Target current setting means for setting the target current, motor current detection means for detecting the motor current flowing in the motor, deviation calculation means for calculating the deviation between the target current and the motor current, and driving the motor based on the deviation. In the electric power steering equipped with the motor current control means for controlling, a frequency characteristic adjusting means for adjusting the responsiveness of the low frequency component of the motor current to the target current is further provided between the target current setting means and the deviation calculating means. It is to be prepared.
本発明によれば、目標電流に対するモータ電流の低周波成分の応答性を調整することのできる周波数特性調整手段を備えることにより、操舵入力に対する所望のモータ電流の応答特性を損なうことなく、異音や振動を抑制し、モータ電流制御機能の故障を検出するために必要なモータ電流追従性を備える電動パワーステアリング装置を得ることができる。
According to the present invention, by providing the frequency characteristic adjusting means capable of adjusting the responsiveness of the low frequency component of the motor current to the target current, the abnormal noise can be obtained without impairing the desired motor current response characteristic to the steering input. In addition, an electric power steering device having a motor current follow-up property required to suppress motor vibration and detect a failure in the motor current control function can be obtained.
以下、本発明の電動式パワーステアリング装置の好適な実施の形態につき図面を用いて説明する。
Hereinafter, preferred embodiments of the electric power steering apparatus of the present invention will be described with reference to the drawings.
実施の形態1.
図1は、本発明の実施の形態1に係る電動式パワーステアリング装置の構成図である。従来図である図6と比較すると、本実施の形態1における図1は、目標電流設定手段4の後段に周波数特性調整手段9をさらに備えている点が異なっている。なお、本実施の形態1における周波数特性調整手段9は、位相遅れフィルタとする。Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an electric power steering apparatus according toEmbodiment 1 of the present invention. Compared with FIG. 6, which is a conventional diagram, FIG. 1 according to the first embodiment is different in that frequency characteristic adjusting means 9 is further provided after target current setting means 4. The frequency characteristic adjusting means 9 in the first embodiment is a phase lag filter.
図1は、本発明の実施の形態1に係る電動式パワーステアリング装置の構成図である。従来図である図6と比較すると、本実施の形態1における図1は、目標電流設定手段4の後段に周波数特性調整手段9をさらに備えている点が異なっている。なお、本実施の形態1における周波数特性調整手段9は、位相遅れフィルタとする。
FIG. 1 is a configuration diagram of an electric power steering apparatus according to
この周波数特性調整手段9は、目標電流設定手段4で設定された目標電流10の周波数特性を調整する。周波数特性調整手段9の機能の詳細については、後述する。
The frequency characteristic adjusting unit 9 adjusts the frequency characteristic of the target current 10 set by the target current setting unit 4. Details of the function of the frequency characteristic adjusting means 9 will be described later.
また、図1におけるモータ電流制御手段6では、周波数特性調整後の目標電流12に対するモータ電流11の周波数応答特性が、下式(5)の伝達関数で表される1次遅れとなるように設定されている。
Further, in the motor current control means 6 in FIG. 1, the frequency response characteristic of the motor current 11 with respect to the target current 12 after the frequency characteristic adjustment is set so as to be a first order lag represented by the transfer function of the following equation (5) Has been.
また、故障検出手段8は、周波数特性調整後の目標電流12とモータ電流11との差分の絶対値が、所定のしきい値(Ierr)よりも大きい状態が、所定時間(Terr)以上継続した場合に、故障検出を行う。これにより、モータ線のショートやモータ駆動回路の故障などを検出し、故障確定時には操舵アシストを停止する。ここで、所定のしきい値(Ierr)および所定時間(Terr)は、ともに故障発生時の車両挙動が適切に行われる観点から決定される。
Further, the failure detection means 8 has continued for a predetermined time (Terr) or more in which the absolute value of the difference between the target current 12 after the frequency characteristic adjustment and the motor current 11 is larger than a predetermined threshold (Ierr). In this case, failure detection is performed. Thereby, a short circuit of the motor line, a failure of the motor drive circuit, and the like are detected, and the steering assist is stopped when the failure is confirmed. Here, both the predetermined threshold value (Ierr) and the predetermined time period (Terr) are determined from the viewpoint of appropriately performing the vehicle behavior at the time of occurrence of the failure.
次に、故障検出手段8の誤検出の可能性について考える。周波数特性調整後の目標電流12に対するモータ電流11の追従性は、上式(5)によって表される。ここで、この追従性が低い場合(すなわち、式(5)におけるカットオフ周波数fmtrが小さい場合)には、両者の偏差が収束するのに時間を要する。従って、従来技術で説明したように、故障検出手段8は、収束に時間がかかっているだけの状態を、故障として誤検出する可能性がある。
Next, the possibility of erroneous detection by the failure detection means 8 will be considered. The followability of the motor current 11 with respect to the target current 12 after the frequency characteristic adjustment is expressed by the above equation (5). Here, when the followability is low (that is, when the cutoff frequency f mtr in Equation (5) is small), it takes time for the deviation between the two to converge. Therefore, as described in the prior art, the failure detection unit 8 may erroneously detect a state that only takes time to converge as a failure.
図2は、本発明の実施の形態1に係る電動パワーステアリング装置の電流応答波形である。より具体的には、この図7では、周波数特性調整後の目標電流12がステップ変化した場合のモータ電流11の応答が、応答波形17、18として示されている。ここで、応答波形17は、カットオフ周波数fmtrの値を600Hzにした場合であり、応答波形18は、カットオフ周波数fmtrの値を150Hzにした場合である。
FIG. 2 is a current response waveform of the electric power steering apparatus according to Embodiment 1 of the present invention. More specifically, in FIG. 7, the response of the motor current 11 when the target current 12 after the frequency characteristic adjustment changes stepwise is shown as response waveforms 17 and 18. Here, the response waveform 17 is a case where the value of the cutoff frequency f mtr is 600 Hz, and the response waveform 18 is a case where the value of the cutoff frequency f mtr is 150 Hz.
図2において、2つの異なるカットオフ周波数での応答を比較すると、次のことがわかる。まず、カットオフ周波数fmtr=150Hzに設定した場合には、モータ電流11が周波数特性調整後の目標電流12に収束するまでに時間がかかっていることがわかる。このため、周波数特性調整後の目標電流12とモータ電流11との偏差20は、図2の下段に示すとおり、故障検出機能のしきい値(Ierr1)を超える状態が長くなる。この結果、しきい値(Ierr1)を超える状態が所定時間(Terr1)以上継続した場合には、故障検出手段8は、故障として誤検出してしまう。
In FIG. 2, comparing the responses at two different cutoff frequencies reveals the following. First, when the cut-off frequency f mtr is set to 150 Hz, it can be seen that it takes time for the motor current 11 to converge to the target current 12 after the frequency characteristic adjustment. For this reason, the deviation 20 between the target current 12 and the motor current 11 after the frequency characteristic adjustment is longer than the threshold (Ierr1) of the failure detection function as shown in the lower part of FIG. As a result, when the state exceeding the threshold value (Ierr1) continues for a predetermined time (Terr1) or longer, the failure detection means 8 erroneously detects as a failure.
これに対して、カットオフ周波数fmtr=600Hzに設定した場合には、モータ電流11が周波数特性調整後の目標電流12に速やかに収束していることがわかる。このため、周波数特性調整後の目標電流12とモータ電流11との偏差19は、図2の下段に示すとおり、故障検出機能のしきい値(Ierr1)を超える状態が短い。この結果、しきい値(Ierr1)を超える状態が所定時間(Terr1)以上継続することはなく、故障検出手段8は、誤検出する可能性がなくなる。
On the other hand, when the cutoff frequency f mtr is set to 600 Hz, it can be seen that the motor current 11 quickly converges to the target current 12 after the frequency characteristic adjustment. For this reason, the deviation 19 between the target current 12 and the motor current 11 after the frequency characteristic adjustment has a short state exceeding the threshold value (Ierr1) of the failure detection function as shown in the lower part of FIG. As a result, the state exceeding the threshold value (Ierr1) does not continue for a predetermined time (Terr1) or more, and the failure detection means 8 has no possibility of erroneous detection.
そこで、誤検出をなくすために、モータ電流制御手段6には、上式(5)におけるカットオフ周波数として、次式(6)の値を設定する。
Therefore, in order to eliminate erroneous detection, the value of the following equation (6) is set in the motor current control means 6 as the cutoff frequency in the above equation (5).
続いて、周波数特性調整手段9の設定方法について説明する。目標電流10に対するモータ電流11の周波数特性は、目標電流10に含まれる操舵入力の周波数帯域よりも高い周波数成分を除去するためには、下式(7)(8)となっていることが望ましい。
Subsequently, a setting method of the frequency characteristic adjusting means 9 will be described. The frequency characteristics of the motor current 11 with respect to the target current 10 are preferably expressed by the following equations (7) and (8) in order to remove frequency components higher than the frequency band of the steering input included in the target current 10. .
ここで、周波数特性調整手段9の伝達関数をGcmp(s)とすると、目標電流10からモータ電流11までの伝達関数は、上式(5)を用いて、下式(9)のようになる。
Here, if the transfer function of the frequency characteristic adjusting means 9 is G cmp (s), the transfer function from the target current 10 to the motor current 11 can be expressed by the following equation (9) using the above equation (5). Become.
図3は、本発明の実施の形態1に係る電動パワーステアリング装置の伝達関数の相関を示す構成図である。図3に示すように、上式(7)と(9)を一致させるためには、下式(10)、(11)の関係を満たす必要がある。
FIG. 3 is a configuration diagram showing the correlation of the transfer function of the electric power steering apparatus according to Embodiment 1 of the present invention. As shown in FIG. 3, in order to make the above equations (7) and (9) coincide with each other, it is necessary to satisfy the relationships of the following equations (10) and (11).
よって、周波数特性調整手段9(Gcmp(s))は、下式(12)のような係数の位相遅れフィルタとすればよい。このような設定により、周波数特性調整手段9は、モータ電流の低周波成分の応答性を調整することが可能となる。
Therefore, the frequency characteristic adjusting means 9 (G cmp (s)) may be a phase delay filter having a coefficient as shown in the following equation (12). With this setting, the frequency characteristic adjusting unit 9 can adjust the response of the low frequency component of the motor current.
図4は、本発明の実施の形態1に係る電動パワーステアリング装置の種々の伝達関数のボード線図である。より具体的には、fT=150[Hz]とした場合の、3つの伝達関数Gmtr(s)、GT(s)、Gcmp(s)のゲインおよび位相の周波数特性を示している。3つの伝達関数Gmtr(s)、GT(s)、Gcmp(s)を、それぞれ式(5)、(7)、(12)のように設定することにより、以下に示す所望の特性1、2を得ることができる。
FIG. 4 is a Bode diagram of various transfer functions of the electric power steering apparatus according to Embodiment 1 of the present invention. More specifically, the frequency characteristics of the gain and phase of the three transfer functions G mtr (s), G T (s), and G cmp (s) when f T = 150 [Hz] are shown. . By setting the three transfer functions G mtr (s), G T (s), and G cmp (s) as shown in equations (5), (7), and (12), respectively, desired characteristics shown below are obtained. 1 and 2 can be obtained.
所望の特性1:目標電流10からモータ電流11までの周波数特性は、上式(7)である。このことから、目標電流10に含まれる運転者の操舵操作の周波数よりも高い周波数帯域の信号成分を除去することができ、良好な操舵フィーリングが得られる。
Desired characteristic 1: The frequency characteristic from the target current 10 to the motor current 11 is expressed by the above equation (7). Thus, a signal component in a frequency band higher than the frequency of the driver's steering operation included in the target current 10 can be removed, and a good steering feeling can be obtained.
所望の特性2:周波数特性調整後の目標電流12からモータ電流11までの周波数特性は、上式(5)、(6)である。従って、十分な電流追従性能を持っていることから、故障検出手段8による故障の誤検出のおそれがなくなる。さらに、実際に故障が発生した場合には、素早く故障を検出して操舵アシストを停止することができる。
Desired characteristic 2: The frequency characteristics from the target current 12 to the motor current 11 after adjusting the frequency characteristics are expressed by the above equations (5) and (6). Accordingly, since the current follow-up performance is sufficient, there is no possibility of erroneous detection of a failure by the failure detection means 8. Furthermore, when a failure actually occurs, it is possible to quickly detect the failure and stop the steering assist.
上述したように、本実施の形態1において、モータ電流制御手段6は、振動や異音の抑制や故障検出手段8による故障検出を考慮し、周波数特性調整後の目標電流に対してモータ電流が十分に速く追従するように特性が設定されている。
As described above, in the first embodiment, the motor current control means 6 considers the suppression of vibration and abnormal noise and the failure detection by the failure detection means 8, and the motor current is compared with the target current after the frequency characteristic adjustment. The characteristic is set so that it follows sufficiently quickly.
また、操舵フィーリングに対する要求を満たすため、目標電流設定手段4の後段に周波数特性調整手段9が設けられている。周波数特性調整手段9の特性は、前もって決定されているモータ電流制御手段6の特性を考慮しながら、目標電流10に含まれる運転者の操舵操作の周波数よりも高い周波数帯域の信号成分が除去されるように、目標電流10に対するモータ電流11の応答特性を最適化するように設定される。
Further, in order to satisfy the request for the steering feeling, the frequency characteristic adjusting means 9 is provided at the subsequent stage of the target current setting means 4. The characteristic of the frequency characteristic adjusting means 9 is such that signal components in a frequency band higher than the frequency of the steering operation of the driver included in the target current 10 are removed while taking into consideration the characteristics of the motor current control means 6 determined in advance. Thus, the response characteristic of the motor current 11 with respect to the target current 10 is set to be optimized.
また、故障検出手段8は、周波数特性調整後の目標電流12とモータ電流11とを比較し故障を検出する。上述したように、周波数特性調整後の目標電流12に対してモータ電流11が十分に速く追従するようにモータ電流制御手段6の特性が設定されている。このため、故障発生時に素早く故障を検出し操舵アシストを停止し、適切な運転状態を確保することが可能となる。
Further, the failure detection means 8 compares the target current 12 after the frequency characteristic adjustment and the motor current 11 to detect a failure. As described above, the characteristics of the motor current control means 6 are set so that the motor current 11 follows the target current 12 after adjusting the frequency characteristics sufficiently quickly. For this reason, when a failure occurs, it is possible to quickly detect the failure, stop the steering assist, and ensure an appropriate driving state.
以上のように、実施の形態1によれば、周波数特性調整手段を備えることにより、操舵入力に対する所望のモータ電流の応答特性を損なうことなく、異音や振動を抑制し、モータ電流制御機能の故障を検出するために必要なモータ電流追従性を備える電動パワーステアリング装置を得ることができる。
As described above, according to the first embodiment, by providing the frequency characteristic adjusting means, the noise and vibration are suppressed without impairing the response characteristic of the desired motor current with respect to the steering input, and the motor current control function is improved. It is possible to obtain an electric power steering device having a motor current followability necessary for detecting a failure.
なお、上述の説明においては、式(12)として規定される伝達関数に含まれている周波数fTおよびfmtrをあらかじめ固定値として設定しておく場合について説明した。しかしながら、本発明は、これに限定されるものではない。周波数特性調整手段9は、車速検出手段9で検出された車速に応じて、上式(12)の特性を規定する周波数を変更することも可能である。これにより、車速に応じた適切な応答特性を得ることができる。
In the above description, the case where the frequencies f T and f mtr included in the transfer function defined as Expression (12) are set as fixed values in advance has been described. However, the present invention is not limited to this. The frequency characteristic adjusting means 9 can also change the frequency defining the characteristic of the above equation (12) according to the vehicle speed detected by the vehicle speed detecting means 9. Thereby, an appropriate response characteristic according to the vehicle speed can be obtained.
実施の形態2.
図5は、本発明の実施の形態2に係る電動式パワーステアリング装置の構成図である。この図5の構成は、先の実施の形態1における図1の構成と比較すると、周波数特性調整有無切替えスイッチ27を新たに設けた点が異なっている。Embodiment 2. FIG.
FIG. 5 is a configuration diagram of an electric power steering apparatus according toEmbodiment 2 of the present invention. The configuration of FIG. 5 is different from the configuration of FIG. 1 in the first embodiment in that a frequency characteristic adjustment presence / absence changeover switch 27 is newly provided.
図5は、本発明の実施の形態2に係る電動式パワーステアリング装置の構成図である。この図5の構成は、先の実施の形態1における図1の構成と比較すると、周波数特性調整有無切替えスイッチ27を新たに設けた点が異なっている。
FIG. 5 is a configuration diagram of an electric power steering apparatus according to
通常、高速走行時は、エンジンやタイヤから発生する騒音や振動が大きい。このため、多少のハンドル振動や異音は問題とならない。むしろ、急なハンドル操作時や微小操舵時の応答性が要求される。そこで、先の実施の形態1で説明した周波数特性調整手段9の機能を、車速に応じて入/切の切り替えを行うことが考えられる。
Normally, noise and vibration generated from the engine and tires are high when driving at high speeds. For this reason, some handle vibrations and abnormal noises do not matter. Rather, responsiveness at the time of sudden steering operation or fine steering is required. Therefore, it is conceivable to switch on / off the function of the frequency characteristic adjusting means 9 described in the first embodiment according to the vehicle speed.
高速走行時は、周波数特性調整手段9の機能をバイパスさせることにより、モータ電流11の追従性能を高くし、ハンドル操作に対する応答性を向上させる。一方、通常走行時は、先の実施の形態1で説明したように、周波数特性調整手段9の機能を活かすことにより、良好な操舵フィーリングと十分な電流追従性能の両立を実現させる。
When driving at high speed, the function of the frequency characteristic adjusting means 9 is bypassed to improve the follow-up performance of the motor current 11 and improve the response to the steering wheel operation. On the other hand, during normal traveling, as described in the first embodiment, by utilizing the function of the frequency characteristic adjusting means 9, both good steering feeling and sufficient current following performance can be realized.
このように、車速に応じて周波数特性調整手段9の機能を入/切するために、周波数特性調整有無切替えスイッチ26は、以下の動作を行う。
車速<Vth(Km/h)のときは、スイッチをa側に切り替える(すなわち、周波数特性調整手段9の機能が活かされる状態とする)
車速≧Vth[Km/h]のときは、スイッチをb側に切り替える(すなわち、周波数特性調整手段9の機能をバイパスさせる) Thus, in order to turn on / off the function of the frequency characteristic adjusting means 9 according to the vehicle speed, the frequency characteristic adjustment presence / absence changeover switch 26 performs the following operation.
When the vehicle speed <Vth (Km / h), the switch is switched to the a side (that is, the function of the frequency characteristic adjusting means 9 is utilized)
When vehicle speed ≧ Vth [Km / h], the switch is switched to the b side (that is, the function of the frequency characteristic adjusting means 9 is bypassed).
車速<Vth(Km/h)のときは、スイッチをa側に切り替える(すなわち、周波数特性調整手段9の機能が活かされる状態とする)
車速≧Vth[Km/h]のときは、スイッチをb側に切り替える(すなわち、周波数特性調整手段9の機能をバイパスさせる) Thus, in order to turn on / off the function of the frequency characteristic adjusting means 9 according to the vehicle speed, the frequency characteristic adjustment presence / absence changeover switch 26 performs the following operation.
When the vehicle speed <Vth (Km / h), the switch is switched to the a side (that is, the function of the frequency characteristic adjusting means 9 is utilized)
When vehicle speed ≧ Vth [Km / h], the switch is switched to the b side (that is, the function of the frequency characteristic adjusting means 9 is bypassed).
上述した切り替え判断に用いられる車速のしきい値(Vth)には、ヒステリシスを持たせてもよい。また、説明を簡略化するために、図5の構成においては、周波数特性調整有無切替えスイッチ26を独立した機能として示している。しかしながら、周波数特性調整有無切替えスイッチ26による切り替え機能を、周波数特性調整手段9に持たせることも可能である。
The vehicle speed threshold (Vth) used for the switching determination described above may have hysteresis. In order to simplify the description, the frequency characteristic adjustment presence / absence changeover switch 26 is shown as an independent function in the configuration of FIG. However, the frequency characteristic adjustment means 9 can also have a switching function by the frequency characteristic adjustment presence / absence changeover switch 26.
以上のように、実施の形態2によれば、周波数特性調整手段の機能の有無を、車速に応じて切り替えることにより、車速に応じた最適な操舵フィーリングを実現できる。
As described above, according to the second embodiment, the optimal steering feeling corresponding to the vehicle speed can be realized by switching the function of the frequency characteristic adjusting means according to the vehicle speed.
Claims (5)
- ステアリング系の操舵トルクを検出する操舵トルクセンサと、
前記ステアリング系に操舵補助力を作用させるモータと、
前記操舵トルクセンサで検出された操舵トルクに基づいて前記モータの目標電流を設定する目標電流設定手段と、
前記モータに流れるモータ電流を検出するモータ電流検出手段と、
前記目標電流と前記モータ電流との偏差を演算する偏差演算手段と、
前記偏差に基づいて前記モータの駆動を制御するモータ電流制御手段と
を備えた電動式パワーステアリングにおいて、
前記目標電流設定手段と前記偏差演算手段との間に、前記目標電流に対する前記モータ電流の低周波成分の応答性を調整する周波数特性調整手段をさらに備える電動式パワーステアリング制御装置。 A steering torque sensor for detecting a steering torque of the steering system;
A motor for applying a steering assist force to the steering system;
Target current setting means for setting a target current of the motor based on the steering torque detected by the steering torque sensor;
Motor current detecting means for detecting a motor current flowing through the motor;
Deviation calculating means for calculating a deviation between the target current and the motor current;
In an electric power steering comprising: motor current control means for controlling the driving of the motor based on the deviation;
An electric power steering control device further comprising frequency characteristic adjusting means for adjusting a response of a low frequency component of the motor current to the target current between the target current setting means and the deviation calculating means. - 請求項1に記載の電動式パワーステアリング制御装置において、
前記周波数特性調整手段は、車速に応じて特性が変更される電動式パワーステアリング制御装置。 In the electric power steering control device according to claim 1,
The frequency characteristic adjusting means is an electric power steering control device whose characteristic is changed according to a vehicle speed. - 請求項1または2に記載の電動式パワーステアリング制御装置において、
前記周波数特性調整手段にて調整された後の目標電流と、前記モータ電流検出手段で検出されたモータ電流とに基づいて故障を検出する故障検出手段をさらに備える電動式パワーステアリング制御装置。 In the electric power steering control device according to claim 1 or 2,
An electric power steering control device further comprising failure detection means for detecting a failure based on a target current adjusted by the frequency characteristic adjustment means and a motor current detected by the motor current detection means. - 請求項3に記載の電動式パワーステアリング制御装置において、
前記故障検出手段は、前記周波数特性調整手段にて調整された後の目標電流と、前記モータ電流検出手段で検出された前記モータ電流との偏差の絶対値を求め、前記偏差の絶対値が所定値以上の状態が所定時間以上継続した場合に故障と判定する電動式パワーステアリング制御装置。 In the electric power steering control device according to claim 3,
The failure detecting means obtains an absolute value of deviation between the target current adjusted by the frequency characteristic adjusting means and the motor current detected by the motor current detecting means, and the absolute value of the deviation is predetermined. An electric power steering control device that determines that a failure occurs when a state equal to or greater than a value continues for a predetermined time or more. - 請求項1ないし4のいずれか1項に記載の電動式パワーステアリング制御装置において、
前記周波数特性調整手段は、位相遅れフィルタである電動式パワーステアリング制御装置。 In the electric power steering control device according to any one of claims 1 to 4,
The electric power steering control device, wherein the frequency characteristic adjusting means is a phase delay filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/057250 WO2009128126A1 (en) | 2008-04-14 | 2008-04-14 | Electric power-steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/057250 WO2009128126A1 (en) | 2008-04-14 | 2008-04-14 | Electric power-steering device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009128126A1 true WO2009128126A1 (en) | 2009-10-22 |
Family
ID=41198837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/057250 WO2009128126A1 (en) | 2008-04-14 | 2008-04-14 | Electric power-steering device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009128126A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287471A (en) * | 1990-04-04 | 1991-12-18 | Honda Motor Co Ltd | Power steering control device |
JPH07309250A (en) * | 1994-05-11 | 1995-11-28 | Trw Inc | Method and device for control of electric assist steering system using adaptable torque filter |
JPH07329799A (en) * | 1994-06-06 | 1995-12-19 | Honda Motor Co Ltd | Electric power steering |
JPH08207802A (en) * | 1994-11-04 | 1996-08-13 | Trw Inc | Method and apparatus for control of electrically assisted motor |
JPH11321691A (en) * | 1998-03-20 | 1999-11-24 | Trw Inc | Electric assist steering system having improved motor current controller provided with gain scheduler |
JP2002234454A (en) * | 2001-02-06 | 2002-08-20 | Toyoda Mach Works Ltd | Electric power steering device |
JP2004351983A (en) * | 2003-05-27 | 2004-12-16 | Koyo Seiko Co Ltd | Electric power steering device and motor control method |
JP2005247201A (en) * | 2004-03-05 | 2005-09-15 | Koyo Seiko Co Ltd | Electric power steering device |
JP2006268884A (en) * | 2006-06-26 | 2006-10-05 | Jtekt Corp | Actuator controller |
-
2008
- 2008-04-14 WO PCT/JP2008/057250 patent/WO2009128126A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287471A (en) * | 1990-04-04 | 1991-12-18 | Honda Motor Co Ltd | Power steering control device |
JPH07309250A (en) * | 1994-05-11 | 1995-11-28 | Trw Inc | Method and device for control of electric assist steering system using adaptable torque filter |
JPH07329799A (en) * | 1994-06-06 | 1995-12-19 | Honda Motor Co Ltd | Electric power steering |
JPH08207802A (en) * | 1994-11-04 | 1996-08-13 | Trw Inc | Method and apparatus for control of electrically assisted motor |
JPH11321691A (en) * | 1998-03-20 | 1999-11-24 | Trw Inc | Electric assist steering system having improved motor current controller provided with gain scheduler |
JP2002234454A (en) * | 2001-02-06 | 2002-08-20 | Toyoda Mach Works Ltd | Electric power steering device |
JP2004351983A (en) * | 2003-05-27 | 2004-12-16 | Koyo Seiko Co Ltd | Electric power steering device and motor control method |
JP2005247201A (en) * | 2004-03-05 | 2005-09-15 | Koyo Seiko Co Ltd | Electric power steering device |
JP2006268884A (en) * | 2006-06-26 | 2006-10-05 | Jtekt Corp | Actuator controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109204446B (en) | Apparatus and method for compensating torque of electric power steering system | |
US10974759B2 (en) | Electric power steering apparatus | |
EP2990302B1 (en) | Electric power steering device | |
US7828112B2 (en) | Electric power steering device | |
US10099721B2 (en) | Electric power steering apparatus | |
US9764758B2 (en) | Apparatus and method for controlling electric power steering system | |
JP5943018B2 (en) | Steering control device | |
US9701338B2 (en) | Electric power steering apparatus | |
US7128185B2 (en) | Motor-driven power steering control apparatus | |
US7406373B2 (en) | Electric power steering system | |
US20090294208A1 (en) | Electric power steering apparatus | |
EP3132996B1 (en) | Electric power steering device | |
WO2017061344A1 (en) | Electric vehicle control device, electric vehicle control system, and electric vehicle control method | |
JP2001030937A (en) | Electric power steering device | |
JP2007084006A (en) | Electric power steering device | |
JP4517734B2 (en) | Electric power steering device | |
JP4356456B2 (en) | Control device for electric power steering device | |
CN111661145A (en) | Vehicle control system | |
JP4458926B2 (en) | Electric power steering apparatus and control method thereof | |
WO2009128126A1 (en) | Electric power-steering device | |
JP4923521B2 (en) | Control device for electric power steering device | |
US20220266700A1 (en) | Damping control device and damping control method | |
JP5122258B2 (en) | Electric power steering control device | |
JP2006142960A (en) | Control device of electric power steering device | |
JP5181540B2 (en) | Electric power steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08740338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08740338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |