WO2009127791A1 - Dispositif mecanique - Google Patents

Dispositif mecanique Download PDF

Info

Publication number
WO2009127791A1
WO2009127791A1 PCT/FR2008/000546 FR2008000546W WO2009127791A1 WO 2009127791 A1 WO2009127791 A1 WO 2009127791A1 FR 2008000546 W FR2008000546 W FR 2008000546W WO 2009127791 A1 WO2009127791 A1 WO 2009127791A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical device
cor2
cor1
arb2
arb1
Prior art date
Application number
PCT/FR2008/000546
Other languages
English (en)
Inventor
Olivier Joseph
Sébastien JOSEPH
Original Assignee
Olivier Joseph
Joseph Sebastien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olivier Joseph, Joseph Sebastien filed Critical Olivier Joseph
Priority to PCT/FR2008/000546 priority Critical patent/WO2009127791A1/fr
Publication of WO2009127791A1 publication Critical patent/WO2009127791A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point

Definitions

  • the invention relates to the field of motors and pumps. These devices consist of casings in which various parts move.
  • the known devices are complex because they involve many heterogeneous parts. They are heavy, bulky, not very versatile. Their maintenance is arduous because of the difficulty of their disassembly and their rapid wear caused by significant mechanical forces.
  • so-called spherical motors and pumps can house a rotating rotor in a housing constituting a stator under the effect of electromagnetic forces.
  • This rotor is complex, fragile and expensive.
  • the invention proposes a mechanical device consisting of a spherical casing, and two pistons whose shafts pass through the wall of this casing. According to a first major characteristic, the axes of these trees intersect.
  • the axes of these trees intersect at the center of this housing.
  • Such a device is simple and compact. Its maintenance is greatly facilitated. The developed power is increased.
  • these pistons are movable in rotation.
  • one of these pistons is angularly movable in a vertical plane containing its axis, and this piston passes through a window formed in the wall of the housing.
  • This window can be closed by a spherical cap cooperating with the piston.
  • these pistons having a body located in the extension of their shaft, these bodies are in the form of a spherical quarter, delimited by an outer surface, an inner edge and two connecting surfaces.
  • one of the bodies is provided on its edge with a cylinder adapted to fit into a cylindrical groove of the same diameter arranged on the edge of the other body.
  • one of these bodies is mounted rigidly on its shaft and the other in a flexible manner via a joint such as a cardan.
  • the bodies are separated by an intermediate piece or scallop in simultaneous contact with each body.
  • this scallop is a disc-shaped piece of diameter equal to the internal diameter of the housing.
  • this scallop comprises on each face a cylindrical groove, and the bodies being provided on at least a portion of their ridge of cylinders, these cylinders are able to fit into the cylindrical grooves of the scallop . .
  • the casing having two pairs of chambers distributed on either side of the scallop, and the casing having at least two pairs of openings, these openings open on the chambers to allow the passage of fluids, each chamber performing a complete cycle of opening admission and closing discharge during a rotation of one turn of each of the shafts.
  • these bodies are mounted rigidly on the shafts
  • the scallop described in each cycle a double movement a double oscillation movement with respect to one of its diameters and rotation about an axis perpendicular to a plane containing its largest section.
  • the scallop has coplanar cylindrical grooves, and a cavity at the intersection of the grooves. This cavity is flared and able to receive a ball.
  • Figure 1 is a vertical sectional view of a device according to a first embodiment. This mode is said to two rooms.
  • Figures 2 to 5 illustrate the operation of these two chambers during a complete cycle.
  • Figure 6 is a vertical sectional view of a device according to a second embodiment. This mode is said to four rooms.
  • Figure 7 shows a piston perpendicular to its cylinder.
  • Figure 8 shows a piston perpendicular to its axis.
  • Figure 9 shows a piston in the plane of its cylinder and its axis.
  • Figure 10 shows a scallop in section.
  • Figure 11 shows a front scallop
  • Figure 1 is a vertical sectional view of an MEC device according to a first embodiment. This mode is said to two rooms.
  • the mechanical device MEC consists of a spherical casing CAR whose wall PAR is seen in section. It comprises a first piston PIS1 whose first shaft ARB1 horizontally crosses said wall PAR. It also comprises a second piston PIS2 whose second ARB2 shaft traverses obliquely said wall PAR.
  • the first and second axes AXA1, AXA2 of said trees ARB1, ARB2 intersect at the center CEN of said CAR case.
  • Said first and second pistons PIS1, PIS2 are rotatable about their axis AXA1, AXA2 and fixed in translation.
  • Said first piston PIS1 has a horizontal shaft ARB 1, fixed in the vertical sectional plane of Figure 1.
  • Said second piston PIS2 has an oblique ARB2 shaft, movable in the vertical sectional plane of Figure 1. It can move angularly in a vertical plane passing through the axis AXA2 of its tree. This displacement is performed in a window FEN formed in the wall PAR of said CAR case. This angle can be given by an eccentric EXC, or by any type of adjustment device of the shaft.
  • Said second piston PIS2 cooperates with a spherical cap CAL which it passes through.
  • Said spherical cap CAL and said CAR housing constitute two spherical overlapping surfaces, and realize a ball-type seal.
  • Said first and second pistons PIS1.PIS2 respectively have a first and a second body COR1, COR2 located in the extension of their trees ARB1. ARB2.
  • the said bodies COR1, COR2 are in the form of a portion of a sphere, called a spherical quarter. Spherical external surfaces SES1, SES2 of said bodies cooperate with the spherical inner wall PAR of said CAR case. Said bodies COR1, COR2 are also delimited by two connecting surfaces SUR 11-SUR12, SUR21-SUR22 joining on an inner edge ARE1, ARE2.
  • said first body COR1 is provided on its edge ARE1 with a cylinder CYL1 coaxial with said edge ARE1.
  • Said cylinder CYL1 is able to fit into a cylindrical groove GOC2, coaxial with the edge ARE2 of said second body COR2.
  • Said first body COR1 is mounted rigidly on its shaft ARB1, and said second body COR2 is movably mounted on its shaft ARB2 via a hinge, for example a cardan CDN.
  • the first body COR1 is a quarter corner sphere in the center ANC1.
  • the second body COR2 is an angular sphere quarter in the center ANC2.
  • the volume of the two chambers CH1, CH2 delimited by the connection surfaces SUR11-SUR12, SUR21-SUR22 of said bodies COR1, COR2 and by the inner wall of said CAR case are angular sphere neighborhoods at the center ACH 1, ACH2 between 0 ° and 360 - (ANC1 + ANC2) 0 .
  • Said axes AXA1, AXA2 of said shafts ARB1, ARB2 of said bodies COR1, COR2 have an angle ANA.
  • Said angle ANA is between 0 and 90 °. Two practical limits need to be added at this ANA angle. The first one depends on the amplitude of the movements allowed by the geometry of the window FEN. The second depends on the angle at the center ACH 1, maximum ACH2 opening of one of the chambers CH1, CH2 corresponding to the abutment of the body COR1.COR2.
  • the two chambers CHA1, CHA2 have an identical and constant volume.
  • connection surfaces SUR 11-SUR12, SUR21-SUR22 can come into contact two by two over their entire surface.
  • the connection surfaces SUR11, SUR 12 of the first body are concave
  • the connection surfaces SUR21, SUR22 of the second body COR2 are convex.
  • the radii of curvature of said concave and convex surfaces are identical.
  • Figures 2 to 5 show the two-chamber MEC device CHA 1, CHA 2 in operation during a complete cycle. They present diagrams in section. These cuts are made in a plane around an axis AXA1 to accompany the movement of the rooms. Although not very detailed, the structure of the openings of the rooms is in adequacy with this phenomenon.
  • the casing CAR has a pair of openings 0UV1, OUV2, which open on said chambers CHA1, CHA2 to allow the passage of fluids.
  • each chamber CHA1, CHA2 performs a complete cycle of opening admission, and closing discharge.
  • the shafts are interconnected by the connection between the first cylinder CYL1 and the second cylindrical groove GOC2. They run at the same speed.
  • Figure 2 shows the first chamber CH 1 dose and the second chamber CH2 open. There is no movement of fluids because their flows are in inversion.
  • FIG. 3 shows the first chamber CH 1 in the intermediate position and in increasing opening, and in the course of admission of fluid through the first opening OUV1.
  • the second chamber CH2 is in the intermediate position and in increasing closure, and in the course of refoulement. fluid through the second opening OUV2.
  • Figure 4 shows the first chamber CH 1 open and the second chamber CH 2 dose. There is no movement of fluids because their flows are in inversion.
  • FIG. 5 shows the first chamber CH 1 in the intermediate position and in increasing closure, and during the delivery of liquid through the first opening OUV1.
  • the second chamber is in an intermediate position and in increasing opening, and during fluid admission through the second opening OUV2.
  • the cycles of said chambers CH 1, CH 2 are offset by half a cycle, which is related to the arrangement of the parts.
  • Figure 6 is a vertical sectional view of an MEC device according to a second embodiment. This mode is said to four rooms.
  • the said bodies COR1, COR2 are separated by an intermediate piece or scallop GOD in simultaneous contact with each of the said bodies COR1, COR2.
  • said body COR1, COR2 have different shapes in Figure 6 because they are perpendicular to each other.
  • Said godilla GOD is a piece of discoidal shape of internal diameter equal to the internal diameter of the CAR housing. It is supported by its bearing surface on the internal wall PAR of the CAR housing that separates into two compartments COM1, COM2. This bearing surface is in the form of a spherical torus.
  • the CAR case comprises 2 pairs of CH1-CH2, CH3-CH4 chambers distributed on either side of the GOD scallop in said compartments COM1.COM2.
  • the first body COR1 has a structure almost identical to that of the first embodiment. It is represented perpendicularly to its cylinder CYL1 in FIG. 7. It is represented perpendicular to its axis AX1 in FIG. 8. It is finally represented in a plane containing its cylinder CYL1 and its axis AX1 in FIG. 9.
  • the second body COR2 has a structure similar or identical to that of the first body. In particular its ARE2 edge and CYL2 cylinder not shown correspond to their counterparts of said first body COR1.
  • FIGS. 10 and 11 Said scotch GOD is shown in FIGS. 10 and 11 according to two perpendicular views.
  • Figure 11 is a front view
  • Figure 10 is a sectional view.
  • said grooves CYL1, CYL2 are able to cooperate with the cylinder CYL1, CYL2 facing each of which is provided with each body COR1, COR2 facing at least a portion of its edge ARE1, ARE2.
  • the two pistons PIS1, PIS2 are angularly mounted at an angle ANG in the housing CAR corresponding to the angle ANG formed by said cylindrical grooves RAI1.RAI2 projected on a plane parallel to the plane containing the largest section of said scallop GOD.
  • the cycles of the two pairs of chambers CHA1-CHA2, CHA3-CHA4 are thus shifted by a cycle fraction equal to the quotient of the value of said angle ANG by 360 °.
  • Said CAR case has two pairs of openings OUV1-OUV2, OUV3-
  • OUV4 which open on said chambers CHA1-CHA2, CHA3-CHA4 to allow the passage of fluids.
  • Each chamber CHA1-CHA2, CHA3-CHA4 performs a complete cycle of admission opening and discharge closure during a rotation of one turn of each of the trees ARB1, ARB2.
  • Said scotch GOD described during each rotation of a turn of the shafts ARB1, ARB2 a double oscillation movement with respect to one of its diameters and rotation about an axis perpendicular to a plane containing its largest section.
  • the oscillation movement is linked to the angle ANA existing between the axes AXA1, AXA2 of the shafts ARB1, ARB2 of said two pistons PIS1, PIS2.
  • the rotational movement is linked to the driving of the scissors GOD in rotation by said pistons PIS1, PIS2.
  • said cylinders CYL1, CYL2 are removable and consist of several segments.
  • said cylindrical grooves CYL1, CYL2 can be coplanar. Therefore a central cavity is present in the center of the GOD scooter which is also in the center of the CAR case. This cavity can be flared so as to receive a sealing ball.
  • This ball is then in the CEN center of the CAR carter permanently.
  • This ball makes it possible to ensure the tightness in the center of the scoop GOD which presents an orifice. It solidifies all the internal parts of the housing. It is advisable to provide a GOD scoop and PIS1.PIS2 pistons that can be dismantled in order to ensure assembly around the ball.
  • said removable CAR case may for example be arranged in two parts which are screwed to one another by means of screws arranged on a ring.
  • said cylinders CYL1, CYL2 have a discontinuity on either side of the axis AXA1, AXA2 of said pistons PIS1, PIS2, to allow their respective mounting.
  • the first two chambers CHA 1, CHA 2 evolve similarly to that of the first embodiment.
  • the sum of their respective volumes is equal to a half volume of CAR casing minus the volume of a piston PIS1 and a half volume of scotch GOD.
  • the movement of the rotating scull in the casing does not affect the volume variation of the chambers.
  • the last two chambers CHA3, CHA4 operate in a similar manner to said first two chambers CHA1, CHA2, with a cycle offset linked to the angle ANG formed by said cylindrical grooves RAH, RAI2 between them.
  • the internal parts of the CAR casing namely the two bodies COR1, COR2 and the scotch GOD may comprise cylindrical or conical portions in substitution for their spherical parts in contact with the inside of the wall PAR of said CAR case.
  • the seal between said internal parts and said CAR casing is formed on at least one of the edges of said cylindrical or conical parts in contact with the housing wall.
  • the MEC device presented through these embodiments is capable of many industrial applications: it can constitute a pump. This case corresponds to the operation of the chambers described above.
  • the MEC device can integrate multiple materials: it can consist at least partly of metal, or of organic material, or ceramic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

La présente invention concerne un dispositif mécanique MEC constitué d'un carter CAR de forme sphérique, et de deux pistons PIS1, PIS2 dont les arbres ARB1, ARB2 traversent la paroi PAR de ce carter CAR. De plus, les axes AXA1, AXA2 de ces arbres ARB1, ARB2 se croisent. En outre, les axes AXA1, AXA2 de ces arbres ARB1, ARB2 se croisent au centre CEN de ce carter CAR.

Description

Dispositif mécanique.
L'invention concerne le domaine des moteurs et pompes. Ces dispositifs sont constitués de carters dans lesquels se meuvent des pièces diverses. Les dispositifs connus sont complexes car ils mettent en jeu de nombreuses pièces hétérogènes. Ils sont lourds, encombrants, peu polyvalents. Leur maintenance est ardue du fait de la difficulté de leur démontage et de leur usure rapide occasionnée par des efforts mécaniques importants.
Plus précisément, les moteurs et pompes dits sphériques peuvent héberger un rotor en rotation dans un carter constituant un stator sous l'effet de forces électromagnétiques. Ce rotor est à la fois complexe, fragile et onéreux.
De plus, ces défauts inhibent leur puissance.
Pour pallier ces inconvénients, l'invention propose un dispositif mécanique constitué d'un carter de forme sphérique, et de deux pistons dont les arbres traversent la paroi de ce carter. Selon une première caractéristique majeure, les axes de ces arbres se croisent.
Selon une seconde caractéristique majeure, les axes de ces arbres se croisent au centre de ce carter.
Un tel dispositif est simple et compact. Sa maintenance en est grandement facilitée. La puissance développée est accrue.
Selon une autre caractéristique de l'invention, ces pistons sont mobiles en rotation.
Selon une autre caractéristique de l'invention, l'un de ces pistons est mobile angulairement dans un plan vertical contenant son axe, et ce piston traverse une fenêtre ménagée dans la paroi du carter. Cette fenêtre peut être obturée par une calotte sphérique coopérant avec le piston.
Selon une autre caractéristique de l'invention, ces pistons présentant un corps situé dans le prolongement de leur arbre, ces corps se présentent sous la forme d'un quartier sphérique, délimité par une surface externe, une arête interne et deux surfaces de raccordement.
Selon une autre caractéristique de l'invention correspondant à un premier mode de réalisation dit à deux chambres, les corps des pistons sont directement en contact
Selon une autre caractéristique de l'invention l'un des corps est muni sur son arête d'un cylindre apte à s'emboîter dans une gorge cylindrique de même diamètre agencé sur l'arête de l'autre corps. Selon une autre caractéristique de l'invention, l'un de ces corps est monté de façon rigide sur son arbre et l'autre de façon souple par l'intermédiaire d'une articulation telle un cardan.
Selon une autre caractéristique de l'invention, les volumes délimités par les surfaces de raccordement des corps et la paroi interne du carter constituant deux chambres, et le carter présentant au moins une paire d'ouvertures, ces ouvertures débouchent sur les chambres afin d'autoriser le passage de fluides, chaque chambre effectuant un cycle complet d'ouverture admission, et de fermeture refoulement lors d'une rotation d'un tour de chacun des arbres. Selon une autre caractéristique de l'invention correspondant à un mode de réalisation dit à deux chambres, les corps sont séparés par une pièce intermédiaire ou godille en contact simultané avec chaque corps. De plus, cette godille est une pièce de forme discoïdale de diamètre égal au diamètre interne du carter.
Selon une autre caractéristique de l'invention, cette godille comporte sur chaque face une rainure cylindrique, et les corps étant munis sur au moins une partie de leur arête de cylindres, ces cylindres sont aptes à s'emboîter dans les rainures cylindriques de la godille. .
Selon une autre caractéristique de l'invention, le carter comportant deux paires de chambres réparties de part et d'autre de la godille, et le carter présentant au moins deux paires d'ouvertures, ces ouvertures débouchent sur les chambres afin d'autoriser le passage de fluides, chaque chambre effectuant un cycle complet d'ouverture admission et de fermeture refoulement lors d'une rotation d'un tour de chacun des arbres.
Selon une autre caractéristique de l'invention, ces corps sont montés de façon rigide sur les arbres
Selon une autre caractéristique de l'invention, la godille décrit lors de chaque cycle un double mouvement un double mouvement d'oscillation par rapport à l'un de ses diamètres et de rotation autour d'un axe perpendiculaire à un plan contenant sa plus grande section. Selon une autre caractéristique de l'invention, la godille présente des rainures cylindriques coplanaires, et une cavité à l'intersection des rainures. Cette cavité est évasée et apte à recevoir une bille.
Les caractéristiques de l'invention mentionnées ci-dessus de façon non limitative apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation. Cette description est faite en relation avec les dessins joints, parmi lesquels : La figure 1 est une vue en coupe verticale d'un dispositif conforme à un premier mode de réalisation. Ce mode est dit à deux chambres.
Les figures 2 à 5 illustrent le fonctionnement de ces deux chambres lors d'un cycle complet. La figure 6 est une vue en coupe verticale d'un dispositif conforme à un second mode de réalisation. Ce mode est dit à quatre chambres.
La figure 7 représente un piston perpendiculairement â son cylindre.
La figure 8 représente un piston perpendiculairement à son axe.
La figure 9 représente un piston dans le plan de son cylindre et de son axe. La figure 10 représente une godille en coupe.
La figure 11 représente une godille de face.
La figure 1 est une vue en coupe verticale d'un dispositif MEC conforme à un premier mode de réalisation. Ce mode est dit à deux chambres.
Le dispositif mécanique MEC est constitué d'un carter CAR de forme sphérique dont la paroi PAR est vue en coupe. Il comporte un premier piston PIS1 dont le premier arbre ARB1 traverse horizontalement ladite paroi PAR. Il comporte également un second piston PIS2 dont le second arbre ARB2 traverse obliquement ladite paroi PAR.
Les premier et second axes AXA1, AXA2 desdits arbres ARB1, ARB2 se croisent au centre CEN dudit carter CAR.
Lesdits premier et second pistons PIS1 , PIS2 sont mobiles en rotation autour de leur axe AXA1, AXA2 et fixes en translation.
Ledit premier piston PIS1 présente un arbre ARB 1 horizontal, fixe dans le plan vertical de coupe de la figure 1. Ledit second piston PIS2 présente un arbre ARB2 oblique, mobile dans le plan vertical de coupe de la figure 1. Il peut se déplacer angulairement dans un plan vertical passant par l'axe AXA2 de son arbre. Ce déplacement est effectué dans une fenêtre FEN ménagée dans la paroi PAR dudit carter CAR. Cet angle peut être donné par un excentrique EXC, ou par tout type de dispositif de réglage de l'arbre. Ledit second piston PIS2 coopère avec une calotte sphérique CAL qu'il traverse. Ladite calotte sphérique CAL et ledit carter CAR constituent deux surfaces sphériques à recouvrement, et réalisent une étanchéité de type rotule.
Lesdits premier et second pistons PIS1.PIS2 présentent respectivement un premier et un second corps COR1, COR2 situés dans le prolongement de leurs arbres ARB1. ARB2.
Lesdits corps COR1, COR2 sont en forme de portion de sphère, dite quartier sphérique. Les surfaces externes sphériques SES1, SES2 desdits corps coopèrent avec la paroi PAR interne sphérique dudit carter CAR. Lesdits corps COR1, COR2 sont également délimités par deux surfaces de raccordement SUR 11-SUR12, SUR21-SUR22 se rejoignant sur une arête interne ARE1, AREΞ2.
Dans ce premier mode de réalisation, les corps COR1.COR2 desdits pistons PIS1 , PIS2 sont directement en contact.
De ce fait, ledit premier corps COR1 est muni sur son arête ARE1 d'un cylindre CYL1, coaxial à ladite arête ARE1. Ledit cylindre CYL1 est apte à s'emboîter dans une gorge cylindrique GOC2, coaxiale à l'arête ARE2 dudit second corps COR2. Ledit premier corps COR1 est monté de façon rigide sur son arbre ARB1 , et ledit second corps COR2 est monté de façon mobile sur son arbre ARB2 par l'intermédiaire d'une articulation, par exemple un cardan CDN.
Le premier corps COR1 est un quartier de sphère d'angle au centre ANC1. Le second corps COR2 est un quartier de sphère d'angle au centre ANC2. Le volume des deux chambres CH1,CH2 délimitées par les surfaces de raccordement SUR11-SUR12, SUR21-SUR22 desdits corps COR1, COR2 et par la paroi interne dudit carter CAR sont des quartiers de sphère d'angle au centre ACH 1, ACH2 compris entre 0° et 360 - (ANC1+ANC2)0.
Lesdits axes AXA1, AXA2 desdits arbres ARB1, ARB2 desdits corps COR1, COR2 présentent un angle ANA. Ledit angle ANA est compris entre 0 et 90°. Il convient d'ajouter deux limites pratiques à cet angle ANA. La première dépend de l'amplitude des mouvements autorisés par la géométrie de la fenêtre FEN. La seconde dépend de l'angle au centre ACH 1, ACH2 maximal d'ouverture d'une des chambres CH1, CH2 correspondant à la mise en butée des corps COR1.COR2. Lorsque les axes AXA1 , AXA2 desdits corps COR1 , COR2 sont alignés, les deux chambres CHA 1, CHA2 ont un volume identique et constant.
Lesdites surfaces de raccordement SUR 11-SUR12, SUR21-SUR22 peuvent entrer en contact deux à deux sur toute leur surface. Dans le cas présent, les surfaces de raccordement SUR11, SUR 12 du premier corps sont concaves, les surfaces de raccordement SUR21, SUR22 du second corps COR2 sont convexes. Les rayons de courbure desdites surfaces concaves et convexes sont identiques.
Les figures 2 à 5 présentent le dispositif MEC à deux chambres CHA 1, CHA2 en fonctionnement au cours d'un cycle complet. Elles présentent des schémas en coupe. Ces coupes sont faites dans un plan tournant autour d'un axe AXA1 afin d'accompagner le mouvement des chambres. Bien que peu détaillée, la structure des ouvertures des chambres est en adéquation avec ce phénomène. Le carter CAR présente une paire d'ouvertures 0UV1, OUV2, qui débouchent sur lesdites chambres CHA1, CHA2 afin d'autoriser le passage de fluides.
Lors d'une rotation d'un tour de chacun des arbres ARB1, ARB2, chaque chambre CHA 1, CHA2 effectue un cycle complet d'ouverture admission, et de fermeture refoulement. Les arbres sont liés entre eux par la liaison entre le premier cylindre CYL1 et la seconde gorge cylindrique GOC2. Ils tournent donc à la même vitesse. Lesdits arbres ARB1, ARB2 n'étant pas coaxiaux, te cardan CDN agencé sur le deuxième piston PIS2 accompagne le mouvement et prévient les ruptures mécaniques.
La figure 2 présente la première chambre CH 1 dose et la deuxième chambre CH2 ouverte. Il n'y a pas de mouvement de fluides car leurs flux sont en inversion.
La figure 3 présente ta première chambre CH 1 en position intermédiaire et en ouverture croissante, et en cours d'admission de fluide au travers de la première ouverture OUVl La deuxième chambre CH2 est en position intermédiaire et en fermeture croissante, et en cours de refoulement de fluide au travers de la seconde ouverture OUV2.
La figure 4 présente la première chambre CH 1 ouverte et la deuxième chambre CH2 dose. H n'y a pas de mouvement de fluides car leurs flux sont en inversion.
La figure 5 présente la première chambre CH 1 en position intermédiaire et en fermeture croissante, et en cours de refoulement de liquide au travers de la première ouverture OUV1. La deuxième chambre est en position intermédiaire et en ouverture croissante, et en cours d'admission de fluide au travers de la seconde ouverture OUV2.
Il convient de signaler à nouveau que ces figures 2 à 5 ne correspondent pas à un même plan de coupe, mais que ce dernier est choisi afin d'assurer la clarté maximale des schémas. Oe ce fait, les ouvertures peuvent être décalées par rapport au plan de coupe tout en communiquant avec la chambre voisine.
Les cycles desdites chambres CH 1, CH2 sont décalés d'un demi cycle, ce qui est lié à la disposition des pièces.
La figure 6 est une vue en coupe verticale d'un dispositif MEC conforme à un second mode de réalisation. Ce mode est dit à quatre chambres. Lesdits corps COR1, COR2 sont séparés par une pièce intermédiaire ou godille GOD en contact simultané avec chacun desdits corps COR1, COR2. Lesdits corps COR1, COR2 présentent des formes différentes sur la figure 6 car ils sont perpendiculaires l'un à l'autre.
Ladite godille GOD est une pièce de forme discoîdale de diamètre interne égal au diamètre interne du carter CAR . Elle prend appui par sa surface d'appui sur la paroi PAR interne du carter CAR qu'elle sépare ainsi en deux compartiments COM1, COM2. Cette surface d'appui est en forme de tore sphérique.
Le carter CAR comporte 2 paires de chambres CH1-CH2, CH3-CH4 réparties de part et d'autre de la godille GOD dans lesdits compartiments COM1.COM2. Le premier corps COR1 présente une structure quasi identique à celle du premier mode de réalisation. Il est représenté perpendiculairement à son cylindre CYL1 sur la figure 7. Il est représenté perpendiculairement à son axe AXE1 sur la figure 8. Il est enfin représenté dans un plan contenant son cylindre CYL1 et son axe AXE1 sur la figure 9. Le deuxième corps COR2 présente une structure analogue voire identique à celle du premier corps. En particulier son arête ARE2 et son cylindre CYL2 non représentés correspondent à leurs homologues dudit premier corps COR1.
Lesdits corps COR1, COR2 sont montés rigides sur lesdits arbres ARB1, ARB2. Par conséquent, le deuxième corps COR2 est analogue voire identique au premier et correspond également aux figures 7 à 9.
Ladite godille GOD est représentée sur les figures 10 et 11 selon deux vues perpendiculaires. La figure 11 est une vue de face, la figure 10 une vue de coupe.
Ladite godille présente sur chacune de ses faces une rainure cylindrique RAH, RAI2. Lesdites rainures cylindriques CYL1 , CYL2 sont parallèles au plan contenant
Ia plus grande section de ladite godille GOD. De plus, elles sont sécantes à un axe perpendiculaire à ladite section en son centre.
Du fait de cette disposition, lesdites rainures CYL1, CYL2 sont aptes à coopérer avec le cylindre CYL1, CYL2 en vis à vis dont est muni chaque corps COR1 , COR2 en regard sur au moins une partie de son arête ARE1 , ARE2.
Les deux pistons PIS1, PIS2 sont montés angulairement d'un angle ANG dans le carter CAR correspondant à l'angle ANG que forme lesdites rainures cylindriques RAI1.RAI2 projetées sur un plan parallèle au plan contenant la plus grande section de ladite godille GOD. Les cycles des deux paires de chambres CHA1-CHA2, CHA3-CHA4 sont décalés de ce fait d'une fraction de cycle égale au quotient de la valeur dudit angle ANG par 360°. Pour des raisons d'équilibrage des chambres, il est judicieux de prévoir un angle ANG de 90°.
Ledit carter CAR présente deux paires d'ouvertures OUV1-OUV2, OUV3-
OUV4, qui débouchent sur lesdites chambres CHA1-CHA2, CHA3-CHA4 afin d' autoriser le passage de fluides. Chaque chambre CHA1-CHA2, CHA3-CHA4 effectue un cycle complet d'ouverture admission et de fermeture refoulement lors d'une rotation d'un tour de chacun des arbres ARB1, ARB2.
Ladite godille GOD décrit lors de chaque rotation d'un tour des arbres ARB1, ARB2 un double mouvement d'oscillation par rapport à l'un de ses diamètres et de rotation autour d'un axe perpendiculaire à un plan contenant sa plus grande section. Le mouvement d'oscillation est lié à l'angle ANA existant entre les axes AXA1, AXA2 des arbres ARB1, ARB2 desdits deux pistons PIS1, PIS2. Le mouvement de rotation est lié à l'entraînement de la godille GOD en rotation par lesdits pistons PIS1, PIS2. Afin de faciliter le montage, lesdits cylindres CYL1, CYL2 sont amovibles et constitués de plusieurs segments.
Pour des raisons de géométrie et d'efficacité, lesdites rainures cylindriques CYL1 , CYL2 peuvent être coplanaires. De ce fait une cavité centrale est présente au centre de la godille GOD qui se trouve également au centre du carter CAR. Cette cavité peut être évasée de façon à pouvoir recevoir une bille d'obturation.
Le centre de cette bille se trouve alors au centre CEN du carter CAR en permanence. Cette bille permet d'assurer l'étanchéité au centre de la godille GOD qui présente un orifice. Elle solidifie l'ensemble des pièces internes au carter. U convient de prévoir une godille GOD et des pistons PIS1.PIS2 démontables de façon à assurer le montage autour de la bille.
Pour les mêmes raisons, il convient de prévoir ledit carter CAR démontable. Il peut par exemple être agencé en deux parties venant se visser l'une sur l'autre à l'aide de vis disposées sur une couronne.
Dans ce cas, lesdits cylindres CYL1, CYL2 présentent une discontinuité de part et d'autre de l'axe AXA1 , AXA2 desdits pistons PIS1 , PIS2, afin d'autoriser leur montage respectif.
Lors d'un cycle de fonctionnement, les deux premières chambres CHA 1, CHA2 évoluent de façon analogue à celui du premier mode de réalisation. La somme de leurs volumes respectifs est égale à un demi volume de carter CAR diminué du volume d'un piston PIS1 et d'un demi volume de godille GOD. Le mouvement de la godille en rotation dans le carter n'intervient pas sur la variation de volume des chambres. Le mouvement de la godille en oscillation, dont l'amplitude est directement lié à l'angle ANM que forme les deux pistons PIS1, PIS2, intervient sur le rapport entre le volume maximal et le volume minimal desdites chambres.
Lors d'un cycle de fonctionnement, les deux dernières chambres CHA3, CHA4 fonctionnent de façon analogue auxdites deux premières chambres CHA1 , CHA2, moyennant un décalage de cycle lié à l'angle ANG que forment lesdites rainures cylindriques RAH, RAI2 entre elles.
Le rapport entre le volume maximal et le volume minimal desdites chambres constituant le taux de compression, ledit taux de compression augmente avec l'angle que forme les arbres desdits pistons PIS1 , PIS2. Les pièces internes au carter CAR, à savoir les deux corps COR1, COR2 et la godille GOD peuvent comporter des parties cylindriques ou coniques en substitution de leurs parties sphériques en contact avec l'intérieur de la paroi PAR dudit carter CAR. Dans ce cas, l'étanchéité entre lesdites pièces internes et ledit carter CAR est réalisée sur l'une au moins des arêtes desdites parties cylindriques ou coniques en contact avec la paroi du carter.
Le dispositif MEC présenté au travers de ces modes de réalisation est susceptible de nombreuses applications industrielles : il peut constituer une pompe. Ce cas correspond au fonctionnement des chambres décrit précédemment.
Le dispositif MEC peut intégrer de multiples matériaux: il peut être constitué au moins en partie de métal, ou de matériau organique, ou de matériau céramique.
Rien ne s'oppose à la présence de plusieurs ouvertures OUV1-OUV2, OUV3-OUV4 communiquant avec une chambre CHA1-CHA2, CHA3-CHA4.
Il convient de préciser que le dispositif précédemment décrit peut recevoir tout élément non décrit et s'inscrivant dans le cadre de l'invention.

Claims

Revendications
1) Dispositif mécanique MEC constitué d'un carter CAR de forme sphérique, et de deux pistons PIS1, PIS2 dont les arbres ARB1, ARB2 traversent la paroi dudit carter CAR, caractérisé en ce que les axes AXA1, AXA2 desdits arbres ARB1, ARB2 se croisent.
2) Dispositif mécanique MEC selon la revendication 1, caractérisé en ce que les axes AXA1, AXA2 desdits arbres ARB1, ARB2 se croisent au centre CEN dudit carter CAR.
3) Dispositif mécanique MEC selon l'une des revendications 1 ou 2, caractérisé en ce que lesdits pistons PIS1, PIS2 sont mobiles en rotation autour de leur axe AXA1, AXA2.
4) Dispositif mécanique MEC selon Tune des revendications précédentes, caractérisé en ce que l'un desdits pistons PIS1, PIS2 étant mobile angulairement dans un plan vertical contenant son axe AXA1, AXA2, ledit piston PIS1, PIS2 traverse une fenêtre FEN ménagée dans la paroi PAR dudit carter CAR, ladite fenêtre pouvant être obturée par une calotte sphérique CAL coopérant avec ledit piston PIS1, PIS2.
5) Dispositif mécanique MEC selon l'une quelconque des revendications précédentes, caractérisé en ce que que lesdits pistons PIS1, PIS2 présentant un corps COR1, COR2 situé dans le prolongement de leur arbre ARB1 , ARB2, lesdits corps COR1, COR2 se présentent sous la forme d'un quartier sphérique, délimité par une surface externe sphérique SES1 , SES2 apte à coopérer avec la paroi PAR interne sphérique dudit carter CAR, une arête interne ARE1, ARE2, et deux surfaces de raccordement SUR11-SUR12, SUR21-SUR22.
6) Dispositif mécanique MEC selon la revendication 5, caractérisé en ce que lesdits corps COR1 ,COR2 desdits pistons PIS1 , PIS2 sont directement en contact.
7) Dispositif mécanique MEC selon la revendication 6, caractérisé en ce que l'un des corps COR1, COR2 est muni sur son arête ARE1, ARE2 d'un cylindre CYL1,
CYL2 apte à s'emboîter dans une gorge cylindrique GOC1, GOC2 de même diamètre agencée sur l'arête ARE2, ARE1 de l'autre corps COR1, COR2. 8) Dispositif mécanique MEC selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que l'un desdits corps COR1.COR2 est monté de façon rigide sur son arbre ARB1, ARB2 et l'autre de façon souple par l'intermédiaire d'une articulation telle un cardan CDN.
9) Dispositif mécanique MEC selon l'une quelconque des revendications 6 ou 8, caractérisé en ce que, les volumes délimités par les surfaces de raccordement desdits corps COR1, COR2 et la paroi interne dudit carter CAR constituant deux chambres CH 1, CH2, ledit carter CAR présentant au moins une paire d'ouvertures OUV1, OUV2, lesdites ouvertures débouchent sur lesdites chambres CHA1, CHA2 afin d'autoriser le passage de fluides, chaque chambre CHA1 , CHA2 effectuant un cycle complet d'ouverture admission et de fermeture refoulement lors d'une rotation d'un tour de chacun des arbres ARB1 , ARB2.
10) Dispositif mécanique MEC selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits corps COR1, COR2 sont séparés par une pièce intermédiaire ou godille GOD en contact simultané avec chacun desdits corps COR1, COR2, ladite godille GOD étant une pièce de forme discoïdale de diamètre égal au diamètre interne dudit carter CAR.
11) Dispositif mécanique MEC selon la revendication 10, caractérisé en ce que, ladite godille GOD comportant sur chaque face une rainure cylindrique RAH1 RAI2, et lesdits corps COR1, COR2 étant munis sur au moins une partie de leur arête ARE1, ARE2 d'un cylindre CYL1, CYL2, lesdits cylindres CYL1, CYL2 sont aptes à s'emboîter dans lesdites rainures cylindriques RAH, RAI2 de ladite godille GOD.
12) Dispositif mécanique MEC selon l'une quelconque des revendications 10 et 11, caractérisé en ce que, ledit carter CAR comportant 2 paires de chambres CHA1- CHA2, CHA3-CHA4 réparties de part et d'autre de la godille GOD, ledit carter CAR présentant au moins deux paires d'ouvertures OUV1-OUV2, OUV3-OUV4, lesdites ouvertures débouchent sur lesdites chambres CHA1-CHA2, CHA3-CHA4 afin d' autoriser le passage de fluides, chaque chambre CHA1-CHA2, CHA3-CHA4 effectuant un cycle complet d'ouverture admission et de fermeture refoulement lors d'une rotation d'un tour de chacun des arbres ARB1, ARB2. 13) Dispositif mécanique MEC selon l'une quelconque des revendications 10 à 12, caractérisé en ce que lesdits corps COR1, COR2 sont montés de façon rigide sur lesdits arbres ARB1, ARB2.
14) Dispositif mécanique MEC selon le l'une quelconque des revendications 22 et suivantes, caractérisé en ce que ladite godille GOD décrit lors de chaque rotation desdits arbres ARB1, ARB2 un double mouvement d'oscillation par rapport à l'un de ses diamètres et de rotation autour d'un axe perpendiculaire à un plan contenant sa plus grande section.
15) Dispositif mécanique MEC selon l'une quelconque des revendications 10 à 14, caractérisé en ce que ladite godille GOD présentant des rainures cylindriques RAM, RAI2 coplanaires, et une cavité à l'intersection desdites rainures RAH, RAI2, ladite cavité est évasée et apte à recevoir une bille.
PCT/FR2008/000546 2008-04-17 2008-04-17 Dispositif mecanique WO2009127791A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2008/000546 WO2009127791A1 (fr) 2008-04-17 2008-04-17 Dispositif mecanique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2008/000546 WO2009127791A1 (fr) 2008-04-17 2008-04-17 Dispositif mecanique

Publications (1)

Publication Number Publication Date
WO2009127791A1 true WO2009127791A1 (fr) 2009-10-22

Family

ID=40811304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000546 WO2009127791A1 (fr) 2008-04-17 2008-04-17 Dispositif mecanique

Country Status (1)

Country Link
WO (1) WO2009127791A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989053B2 (en) * 2018-02-27 2021-04-27 FeTu Limited Roticulating thermodynamic apparatus
US11408286B2 (en) 2015-11-25 2022-08-09 FeTu Limited Rotational displacement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2316433A1 (fr) * 1975-07-03 1977-01-28 Bajulaz Roger Machine a piston spherique
DE2619474A1 (de) * 1975-07-15 1977-02-03 Manuel Biedma Vaquero Leistungsgenerator
WO1990014503A1 (fr) * 1989-05-24 1990-11-29 Tselevoi Nauchno-Tekhnichesky Kooperativ 'stimer' Moteur a rotor a vapeur a expansion
US5171142A (en) * 1987-05-25 1992-12-15 Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" Rotary displacement machine with cylindrical pretension on disc-shaped partition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2316433A1 (fr) * 1975-07-03 1977-01-28 Bajulaz Roger Machine a piston spherique
DE2619474A1 (de) * 1975-07-15 1977-02-03 Manuel Biedma Vaquero Leistungsgenerator
US5171142A (en) * 1987-05-25 1992-12-15 Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" Rotary displacement machine with cylindrical pretension on disc-shaped partition
WO1990014503A1 (fr) * 1989-05-24 1990-11-29 Tselevoi Nauchno-Tekhnichesky Kooperativ 'stimer' Moteur a rotor a vapeur a expansion
EP0429650A1 (fr) * 1989-05-24 1991-06-05 Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" Moteur a rotor a vapeur a expansion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408286B2 (en) 2015-11-25 2022-08-09 FeTu Limited Rotational displacement apparatus
US10989053B2 (en) * 2018-02-27 2021-04-27 FeTu Limited Roticulating thermodynamic apparatus
US11085301B2 (en) 2018-02-27 2021-08-10 FeTu Limited Roticulating thermodynamic apparatus

Similar Documents

Publication Publication Date Title
CH514787A (fr) Machine volumétrique, notamment pompe à vide
EP0968381B1 (fr) Mecanisme desmodromique
EP0834016B1 (fr) Dispositif d'entrainement rotatif etanche a excentricite, notamment pour pompe volumetrique
WO2009127791A1 (fr) Dispositif mecanique
FR2544422A1 (fr) Dispositif d'accouplement a petit debattement pour arbres oscillants
FR2906562A1 (fr) Dispositif mecanique
CA2464335A1 (fr) Machine volumetrique rotative
FR2518646A1 (fr) Moteur a combustion a piston rotatif
FR2549221A1 (fr) Compteur a gaz
CH645698A5 (fr) Machine a chambres et pistons oscillants.
EP0882893A2 (fr) Machine a déplacement de fluide du type scroll
EP0127694B1 (fr) Machine à chambres et pistons oscillants
FR2976983A1 (fr) Actionneur a quart tournant a pignon non cylindrique et cremaillere complementaire
EP0075519B1 (fr) Mécanisme d'actionnement à assistance par fluide, notamment pour système de servo-direction de véhicule automobile
EP2272074B1 (fr) Dispositif de coupure électrique avec visibilité augmentée
CA2350151C (fr) Pompe a pistons axiaux du type a axe brise
FR2994209A1 (fr) Dispositif mecanique d'ouvertures d'admission et d'echappement d'un carter spherique
FR3066629A1 (fr) Dispositif mecanique a butees rotatives a amplitude de rotation superieure a un tour
FR2654160A1 (fr) Machine tournante a fluide et a debit variables a engrenages.
CH326295A (fr) Machine volumétrique rotative
FR2660706A1 (fr) Dispositif actionne par un fluide sous pression pour engendrer un mouvement de rotation.
FR3038934A1 (fr) Machine de compression et de detente
FR2521649A1 (fr) Machine pour l'aspiration et le refoulement d'un fluide
WO2023041871A1 (fr) Ensemble d'articulation d'une tête mobile de robot
BE406815A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008787973

Country of ref document: EP

122 Ep: pct application non-entry in european phase

Ref document number: 08787973

Country of ref document: EP

Kind code of ref document: A1