WO2009125632A1 - Portable solid-state radiation detector - Google Patents

Portable solid-state radiation detector Download PDF

Info

Publication number
WO2009125632A1
WO2009125632A1 PCT/JP2009/053875 JP2009053875W WO2009125632A1 WO 2009125632 A1 WO2009125632 A1 WO 2009125632A1 JP 2009053875 W JP2009053875 W JP 2009053875W WO 2009125632 A1 WO2009125632 A1 WO 2009125632A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
scintillator
radiation
sensor panel
photoelectric conversion
Prior art date
Application number
PCT/JP2009/053875
Other languages
French (fr)
Japanese (ja)
Inventor
誠 角
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2009125632A1 publication Critical patent/WO2009125632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/04Holders for X-ray films

Definitions

  • the present invention relates to a portable radiation solid state detector.
  • a radiographic image taken using radiation which is typified by an X-ray image
  • Such medical radiographic images were conventionally taken using a screen film, but in recent years, digitization of radiographic images has been realized.
  • a stimulable phosphor layer forms radiation transmitted through a subject.
  • the photostimulable phosphor sheet After being stored in the photostimulable phosphor sheet, the photostimulable phosphor sheet is scanned with laser light, and thereby the photostimulated light emitted from the photostimulable phosphor sheet is photoelectrically converted to image data.
  • a CR (Computed Radiography) apparatus that obtains the above has been widely used (see, for example, Patent Documents 1 and 2).
  • a cassette in which a recording medium such as a screen film or a photostimulable phosphor sheet is housed is used.
  • the CR cassette used for photographing with the CR apparatus can continue to use existing equipment such as a cassette holder or a bucky table that has been introduced to be compatible with conventional screen / film cassettes.
  • the screen / film cassette is designed and manufactured following the JIS standard size. In other words, the cassette size compatibility is maintained, and the facility is effectively utilized and the image data is digitized.
  • a flat panel detector (hereinafter referred to as “FPD”) is known as a detector that detects irradiated radiation and acquires it as digital image data. (See, for example, Patent Document 3).
  • portable imaging devices in which this FPD is housed in a housing (housing) have come into practical use (see, for example, Patent Documents 4 and 5).
  • a portable radiation solid-state detector can be carried so that it can be taken in a patient's room or the like, and can be photographed. Since it is possible to adjust the angle and angle, it is expected to be widely used.
  • the currently popular CR cassette is sized according to the JIS standard size of the conventional screen / film cassette, and the Bucky table and the like are also made according to the JIS standard size. ing.
  • the portable radiation solid-state detector which is a portable FPD
  • the existing equipment installed in the facility is used. It can be used for photographing, and capital investment when introducing FPD as photographing means can be minimized.
  • the portable radiation solid state detector housed in the conventional housing (housing) described in Patent Document 4 and Patent Document 5 does not conform to the JIS standard size, and uses existing equipment. It is a shape that can not be.
  • the portable radiation solid-state detector when the portable radiation solid-state detector is formed according to the above JIS standard size, it becomes a thin flat plate as a whole, so even if a load is applied, the internal glass substrate, electrical components, etc. are not loaded. Thus, it is necessary to improve the overall strength so that the deformation of the housing can be suppressed.
  • a scintillator that converts incident radiation into light is often formed as a columnar crystal by vapor deposition of a phosphor in which a luminescent center substance is activated in a base material such as CsI.
  • Such scintillators are generally more easily broken by external force than photoelectric conversion means such as photodiodes or glass substrates.
  • Patent Document 6 proposes that a plurality of containers, in which a gas such as air is enclosed, are arranged side by side as a buffer member between the radiation incident surface of the housing of the portable radiation solid-state detector and the photoelectric conversion means.
  • a plurality of containers may scatter incident radiation, and the radiation image is not adversely affected.
  • the portable radiation solid detector is formed according to the JIS standard size as described above, it is practically difficult to have a structure in which a large buffer member is inserted between the radiation incident surface of the housing and the photoelectric conversion means. It is.
  • the present invention has been made to solve the above-described problems, and is a portable FPD that is thin and compatible with a cassette for CR, and is externally used in a normal use state. It is an object of the present invention to provide a portable radiation solid state detector that can prevent the scintillator from being destroyed even if pressure is applied to it, and can prevent the occurrence of glare due to radiation scattering.
  • the present invention provides: A sensor panel comprising a plurality of photoelectric conversion means formed on a substrate, and a scintillator provided opposite to the photoelectric conversion means for converting incident radiation into light; A base provided with a circuit related to the photoelectric conversion means on the surface opposite to the surface facing the sensor panel; In the housing, Further, the portable radiation solid-state detector is characterized in that a buffer member is provided between the sensor panel and the base.
  • the thickness of the housing in the radiation incident direction is, for example, 16 mm or less, so that an existing table such as a bucky table provided for a cassette for CR can be used. Equipment and equipment can be used.
  • the buffer member since the buffer member is provided between the sensor panel and the base, even if pressure is applied from the outside in a normal use state, the buffer member disperses the pressure applied to the scintillator and effectively absorbs it. It is possible to effectively reduce the pressure sensitivity, and it is possible to effectively prevent the scintillator from being destroyed.
  • the buffer member since such an advantageous effect is obtained by providing the buffer member between the sensor panel and the base, it is not necessary to provide the buffer member between the radiation incident surface of the housing and the sensor panel. Therefore, the distance between the scintillator and the subject such as the patient's body placed on the radiation incident surface is not increased, and it is possible to prevent the occurrence of glare due to the radiation being scattered by the subject. Furthermore, since the buffer member is provided downstream of the scintillator and the photoelectric conversion element in the radiation incident direction, even if the radiation is scattered by the buffer member, it only scatters the radiation after passing through the scintillator and the photoelectric conversion element. Therefore, there is no adverse effect on the radiographic image, and image degradation of the detected radiographic image can be avoided.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5.
  • FIG. 6 is a sectional view taken along line BB in FIG. 5.
  • FIG. 18 is an equivalent circuit configuration diagram in which the photoelectric conversion units illustrated in FIG. 17 are two-dimensionally arranged. It is a graph which shows the relationship between the thickness of a buffer member, and the pressure sensitivity in a scintillator layer.
  • FIG. 1 is a perspective view of a portable radiation solid state detector in the present embodiment.
  • the portable radiation solid detector 1 in this embodiment is a cassette-type FPD, and the portable radiation solid detector 1 detects the irradiated radiation and acquires it as digital image data (FIG. 5 and the like).
  • the housing 3 is formed so that the thickness in the radiation incident direction is 16 mm or less so as to meet the JIS standard size in the above-described CR cassette and the conventional screen / film cassette. Yes.
  • FIG. 2 is an exploded perspective view of the housing 3 in the present embodiment.
  • the housing 3 covers the housing main body 31 formed in a hollow rectangular tube shape having openings 311 and 312 at both ends, and the openings 311 and 312 of the housing main body 31.
  • a first lid member 32 and a second lid member 33 are provided.
  • the housing 3 in which the housing main body 31 is formed in a rectangular tube shape as described above will be described.
  • the configuration of the housing 3 is not limited to this, and for example, as shown in FIG.
  • the housing 3 can be formed in a substantially box shape with a front member 3A, a back member 3B, a lid member 3C, etc. arranged on the radiation incident side of the portable radiation solid-state detector.
  • the present invention also applies.
  • the first lid member 32 and the second lid member 33 include lid body portions 321 and 331 and insertion portions 322 and 332, for example, non-conductive. It is made of a non-conductive material such as plastic.
  • the lid main body portions 321 and 331 are formed so that the outer circumference thereof is substantially equal to the outer circumference of each of the openings 311 and 312 of the housing main body portion 31. Moreover, the dimension in the insertion direction with respect to the opening parts 311 and 312 of the cover main-body parts 321 and 331 is 8 mm in this embodiment. In addition, although it does not specifically limit how much the said dimension of the lid
  • the insertion portions 322 and 332 have a frame shape having an opening on the insertion side with respect to the openings 311 and 312, and the outer periphery of the insertion portions 322 and 332 is formed by the openings 311 and 312 of the housing main body 31. It is formed to have a dimension slightly smaller than the dimension of the inner periphery.
  • Buffer members 323 and 333 (see FIG. 5 and the like) that can relieve external force transmitted from the outside to the detector unit 2 are provided inside the insertion portions 322 and 332.
  • the buffer members 323 and 333 are not particularly limited as long as the external force can be reduced.
  • foamed urethane, silicon, or the like can be applied.
  • the buffer member 333 provided in the insertion portion 332 is arranged so that the end of the detector unit 2 is guided to the horizontal position along the inclination of the end of the buffer member 333.
  • the cross-sectional shape is substantially V-shaped.
  • the buffer member 333 is formed of a deformable material such as an elastic body, a viscous body, a viscoelastic body (viscoelastic), the second lid member 33 as shown in FIGS. 4B and 4C. Is pushed into the housing body 31, the shape of the buffer member 333 is deformed in accordance with the shape of the end of the detector unit 2, and the end of the detector unit 2 is held by the buffer member 333.
  • the buffer member 333 also functions as a holding member that holds the detector unit 2 at an appropriate position inside the housing 3.
  • engagement pieces 324 and 334 as engagement means for engaging the housing main body portion 31 and the lid members 32 and 33 are opened portions 311. It extends in the insertion direction with respect to 312. Engagement convex portions 325 and 335 are provided on the outer surfaces of the engagement pieces 324 and 334, respectively.
  • a waterproof ring (not shown) formed of rubber or the like is provided on the outer peripheral surface of the insertion portions 322 and 332.
  • a waterproof ring is provided, the adhesion between the housing main body 31 and the lid members 32 and 33 is increased, and moisture and foreign matter such as dust, patient sweat, and disinfectant enter into the housing 3. Can be prevented.
  • the portable radiation solid detector 1 On one side of the lid main body 321 of the first lid member 32 and perpendicular to the radiation incident surface X of the portable radiation solid detector 1 (see FIG. 1), the portable radiation solid detector 1 and An antenna device 9 for transmitting and receiving information wirelessly with an external device is embedded.
  • the antenna device 9 includes a pair of flat radiation plates 91 and 92 made of metal, and a power feeding unit 93 that connects the pair of radiation plates 91 and 92 and supplies power to the pair of radiation plates 91 and 92.
  • a power feeding unit 93 that connects the pair of radiation plates 91 and 92 and supplies power to the pair of radiation plates 91 and 92.
  • one radiation plate 91 is formed so that the shape in front view is a trapezoid
  • the other radiation plate 92 has a substantially circular shape in front view. It is formed to become.
  • the power feeding unit 93 is connected to the approximate center of the upper bottom portion of one radiation plate 91 and is connected to a part of the other radiation plate 92.
  • a predetermined gap is formed between the pair of radiation plates 91 and 92 by being connected by the power supply unit 93.
  • the type and shape of the antenna device 9 are not limited to those illustrated here.
  • the antenna device 9 is not limited to the case where it is embedded in the lid main body portion 321, and may be attached to the outside or the inside of the lid main body portion 321.
  • the antenna device 9 is provided at a position close to a conductive member made of a conductive material such as metal or carbon, the reception sensitivity and the reception gain are lowered. Therefore, the housing formed of a conductive material such as carbon is used. It is preferable to be provided as far as possible from the main body 31 and various electronic components 22 formed of metal or the like (see FIG. 5 etc.), preferably at least 6 mm or more, more preferably 8 mm or more. .
  • the antenna device 9 is provided in the lid main body portion 321 formed of a non-conductive material, and the dimension of the lid main body portion 321 in the insertion direction with respect to the opening 311 is as follows. 8 mm.
  • the antenna device 9 is disposed at a position 8 mm away from the housing main body 31 formed by including a conductive material such as carbon fiber, which is preferable for maintaining reception sensitivity and reception gain.
  • the rechargeable battery 26 ( A charging terminal 45 that is connected to an external power source or the like when charging (see FIG. 5 etc.) is formed, and a power switch 46 for switching on / off the power source of the portable radiation solid state detector 1 is disposed.
  • the housing main body 31 is formed by winding a carbon fiber on a core material (mold) to obtain a desired thickness (for example, 1 mm to 2 mm), adjusting the shape, and thermosetting the wound carbon fiber. It is formed by pouring the resin, molding it by baking at high temperature and pressure, and then removing the core material.
  • the housing main body 31 When the housing main body 31 is formed by such a method, the dimension of the inner periphery of the housing main body 31 is accurately determined by the dimension of the outer periphery of the core material (mold). 31 can be formed easily. Further, since the housing main body 31 can be formed as a seamless integrated structure, the external force / external pressure can be dispersed when an impact or the like is applied from the outside.
  • the housing body 31 may be formed, for example, by winding a plate-like carbon fiber (not shown) around a core material (mold) and baking it at high temperature and pressure.
  • the housing body 31 is located at a position corresponding to the engagement convex portions 325 and 335 of the engagement pieces 324 and 334 of the lid members 32 and 33 as shown in FIGS. Engagement recesses 315 and 316 that engage with the projections 325 and 335 are formed.
  • the insertion portion 322 of the first lid member 32 is inserted into the opening 311 at one end portion of the housing body 31, and the insertion portion of the second lid member 33 is inserted into the opening portion 312 at the other end portion.
  • both the opening portions 311 and 312 are closed, and the inside is sealed and integrated.
  • the means for joining the housing body 31 and the lid members 32 and 33 is not limited to those exemplified here, and may be joined by, for example, screwing or may be bonded and fixed.
  • the first lid member 32 and the second lid member 33 are fixed to the housing body 31 and cannot be removed after once assembled. By comprising in this way, the airtightness inside the housing 3 can be improved. For this reason, for example, when it is necessary to replace the rechargeable battery 26, the lid members 32 and 33 are destroyed and the portable radiation solid detector 1 is disassembled.
  • the lid members 32 and 33 are relatively inexpensive and have little loss even if they are destroyed.
  • the internal detector unit 2 can be taken out in a reusable manner.
  • FIG. 5 is a plan view of the state in which the detector unit 2 is housed in the housing 3 as viewed from the lower side (the side opposite to the radiation incident side during imaging), and FIG. 6 is a cross-sectional view taken along the line AA in FIG. 7 and 7 are sectional views taken along line BB in FIG.
  • FIG. 5 for convenience of explanation, the internal state of the housing 3 is shown without the bottom surface of the housing body 31.
  • the detector unit 2 includes a sensor panel 21, a circuit board 23 on which various electronic components 22 are mounted, and a circuit related to a photodiode 152 as a photoelectric conversion element to be described later is provided. It is configured with.
  • the circuit board 23 is fixed to a surface of the base 24 made of resin or the like on the side opposite to the surface facing the sensor panel 21.
  • a buffer member 25 is provided between the sensor panel 21 and the base 24.
  • a known material having flexibility such as foamed polypropylene, polyurethane, non-woven fabric, rubber, or elastomer is used.
  • the stress applied to the scintillator layer (light-emitting layer) 211 as the scintillator described later in the sensor panel 21 and the later can be reduced. It is appropriately determined in consideration of the thickness in the incident direction.
  • a thin lead plate is provided between the buffer member 25 and the base 24 so that the electronic components 22 and the like of the circuit board 23 are not irradiated with radiation. (Thickness is, for example, about 0.1 mm). Further, a buffer member may be provided between the circuit board 23, the electronic component 22, the base 24, and the like and the bottom surface of the housing main body 31.
  • the scintillator layer 211 (CsI scintillator), which will be described later, of the detector unit 2 housed in the housing 3 is not affected by an external load (such as a patient's weight). As described later, the load needs to be equal to or lower than the allowable limit stress of the CsI scintillator having columnar crystals.
  • the patient takes various postures on the radiation incident surface X of the housing 3 of the portable radiation solid-state detector 1 at the time of actual patient imaging, and acts on the CsI scintillator (scintillator layer 211).
  • the external load [kg] to be changed changes according to the imaging posture of the patient (for example, 90 kg).
  • the housing main body 31 uses a pitch-based carbon fiber having a tensile elastic modulus of 790 Gpa as the carbon fiber, and the housing
  • the portable radiation solid-state detector 1 having a structure in which the side surface portion 3 has a height of 16 mm and the housing main body 31 has a thickness of 2 mm was used. Further, as the size, a half-cut size (size of 14 inches ⁇ 17 inches) which is most likely to bend was used. Further, the portable radiation solid state detector 1 was placed on a relatively high rigidity such as a Bucky table and measured.
  • the force (stress) acting on the CsI scintillator (scintillator layer 211) is measured using the pressure measuring device 7.
  • the pressure measuring device 7 converts a change in pressure applied from the outside into an electric signal by a pressure-sensitive element and outputs the electric signal, and the electric signal output from the sensor sheet 71 is a sensor.
  • a computer 73 that receives the data via the connector 72. Specifically, the measurement was performed using an I-SCAN system manufactured by Nitta Corporation.
  • FIG. 12 shows the experimental results showing the relationship between the maximum value Pmax of the stress P applied to the CsI scintillator measured when the load [kg / ⁇ 80] due to the weight W is variously changed and each load of the weight W. Show.
  • the case where the buffer member 25 is provided between the sensor panel 21 and the base 24 and the case where the buffer member 25 is not provided are significant in the external load acting on the CsI scintillator (scintillator layer 211). There is a difference. As described above, when the buffer member 25 is provided between the sensor panel 21 and the base 24 as in the present embodiment, an external load acting on the CsI scintillator (scintillator layer 211) can be applied compared to the case where the buffer member is not provided. It becomes possible to reduce.
  • the circuit board 23 on which the electronic component 22 is mounted is divided into four parts, which are arranged near the corners of the sensor panel 21 and the base 24. ing.
  • the electronic component 22 is arranged on the circuit board 23 along the outer periphery of the sensor panel 21.
  • the electronic component 22 is preferably arranged at a position as close to each corner of the sensor panel 21 as possible.
  • the electronic component 22 By arranging the electronic component 22 on the circuit board 23 in this way, when the detector unit 2 is housed in the housing 3, the electronic component 22 is subjected to external forces in the vicinity of the corner portion of the housing 3 and the peripheral portion of the housing main body portion 31. Are arranged along a region that is difficult to deform (high strength). In addition, the number, arrangement
  • the electronic component 22 disposed on the circuit board 23 for example, a CPU (central processing unit) or a ROM (read only memory) that constitutes a control unit 27 (see FIG. 18) that controls each unit.
  • a storage unit (not shown) including a RAM (Random Access Memory), a scanning drive circuit 16 (see FIG. 18), a signal readout circuit 17 (see FIG. 18), and the like.
  • an image storage unit that includes a rewritable read-only memory such as a flash memory or the like and that stores an image signal output from the sensor panel 21 may be provided.
  • the detector unit 2 is provided with a communication unit (not shown) that transmits and receives various signals to and from an external device.
  • the communication unit transfers the image signal output from the sensor panel 21 to the external device via the antenna device 9 described above, and receives the imaging start signal transmitted from the external device via the antenna device 9. It is like that.
  • the portable radiation is disposed at a position near the charging terminal 45 provided in the first lid member 32.
  • a plurality of driving units constituting the solid state detector 1 for example, a scanning driving circuit 16 (see FIG. 18) described later, a signal reading circuit 17 (see FIG. 18), a communication unit, a storage unit, a charge amount detecting unit (not shown), an indicator 47, sensor panel 21 etc.), a rechargeable battery 26 is provided as a power supply unit for supplying power.
  • a rechargeable battery such as a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, or a lead storage battery can be used. Further, a fuel cell or the like may be applied instead of the rechargeable battery 26. Note that the shape, size, number, arrangement, and the like of the rechargeable battery 26 as the power supply unit are not limited to those illustrated in FIG.
  • the rechargeable battery 26 is electrically connected to the above-described charging terminal 45 by being installed at a predetermined position on the base 24.
  • the portable radiation solid state detector 1 is connected to an external power source.
  • a charging device such as a cradle to be connected, the terminal on the charging device side and the charging terminal 45 on the housing 3 side are connected to charge the rechargeable battery 26.
  • a flexible harness 327 made of a flexible material is provided at the end of the circuit board 23 connected to the various electronic components 22 and the rechargeable battery 26.
  • the circuit board 23 and the like are electrically connected to the charging terminal 45, the power switch 46, the indicator 47, and the antenna device 9 provided on the first lid member 32 by the flexible harness 327.
  • a method of connecting the flexible harness 327 to the charging terminal 45 of the first lid member 32 may be a connector or may be soldered.
  • FIG. 13 is a plan view of the sensor panel 21
  • FIG. 14 is a side view of the sensor panel 21 as viewed from the direction of arrow F in FIG. 13, and FIG. It is sectional drawing.
  • the sensor panel 21 includes a first glass substrate 214 having a scintillator layer (light emitting layer) 211 formed on one surface as a scintillator that converts incident radiation into light, and is laminated below the scintillator layer 211.
  • a signal detector 151 (see FIG. 18) that detects the converted light and converts it into an electric signal is configured to include a second glass substrate 213 formed on one surface, and these are laminated. It has a laminated structure.
  • the scintillator layer 211 has, for example, a phosphor as a main component and outputs an electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (light) ranging from ultraviolet light to infrared light centering on visible light, based on incident radiation. It is like that.
  • the phosphor used in the scintillator layer 211 is, for example, a material using CaWO 4 or the like as a base material, or a luminescent center substance in a base material such as CsI: Tl, Cd 2 O 2 S: Tb, or ZnS: Ag.
  • An activated material can be used.
  • a phosphor represented by a general formula of (Gd, M, Eu) 2 O 3 can be used.
  • CsI: Tl and Cd 2 O 2 S: Tb are preferable because of high radiation absorption and light emission efficiency. By using these, high-quality images with low noise can be obtained.
  • the scintillator layer 211 is formed on a support 211b formed of various polymer materials (polymers) such as a cellulose acetate film, a polyester film, and a polyethylene terephthalate film.
  • the phosphor 211a is formed in a layer shape by a growth method, and the layer of the phosphor 211a is composed of columnar crystals of the phosphor 211a.
  • a vapor deposition method, a sputtering method, a chemical vapor deposition (CVD) method or the like is preferably used.
  • the layer of the phosphor 211a can be vapor-phase grown into an independent elongated columnar crystal on the support 211b.
  • the scintillator layer 211 is affixed to the lower side of the first glass substrate 214 (the side opposite to the side on which radiation is incident during imaging), and the upper side of the first glass substrate 214 (the side on which radiation is incident during imaging).
  • a glass protective film 215 is further laminated.
  • a second glass substrate 213 is laminated below the scintillator layer 211 (the side opposite to the side on which radiation is incident during imaging), and a glass protective film is disposed below the second glass substrate 213. 216 is further laminated.
  • Both the first glass substrate 214 and the second glass substrate 213 have a thickness of about 0.6 mm. Note that the thickness of the first glass substrate 214 and the second glass substrate 213 is not limited to 0.6 mm. Further, the first glass substrate 214 and the second glass substrate 213 may have different thicknesses.
  • first glass substrate 214 and the second glass substrate 213 are cut at the end surfaces with a laser so that the end surfaces, that is, the cut surfaces, and the cut surfaces and the upper surfaces of the glass substrates are separated.
  • the ridge line portion and the ridge line portion between the cut surface and the lower surface of the glass substrate are smoothed.
  • an operation (scribing operation) for scratching the surfaces of the first glass substrate 214 and the second glass substrate 213 using a laser is performed.
  • the laser is used in this way, the end face of the glass after cutting (dividing) is smoothed, so that the strength of the glass against a load such as bending can be increased.
  • the glass substrate cracks are caused by the formation of partial burrs and partial convexities that cause stress concentration when the glass substrate is cut.
  • the process of smoothing the end face after cutting it is possible to prevent the occurrence of cracking of the glass substrate even for a considerable external force (stress).
  • a cutting device for cutting the end surfaces of the first glass substrate 214 and the second glass substrate 213 with a laser for example, in a laser oscillation unit, YAG (Yttrium Aluminum Garnet yttrium / aluminum / garnet crystal) is used as a laser optical medium.
  • a YAG laser or the like to be used is preferably used, but the cutting device used for cutting is not limited to this.
  • the electromagnetic wave (light) output from the scintillator layer 211 is converted into electric energy and accumulated on the upper side of the second glass substrate 213 (the side facing the scintillator layer 211 described above), and is based on the accumulated electric energy.
  • a signal detector 151 (see FIG. 18), which is a detector that outputs an image signal, is formed.
  • the signal detection unit 151 is stacked on the lower side of the scintillator layer 211, the second glass substrate 213 disposed on the lower side of the signal detection unit 151, and the scintillator layer 211.
  • the signal detection unit 151 and the scintillator layer 211 are sandwiched between the first glass substrate 214 disposed on the upper side of the first glass substrate 214.
  • the present inventors have found that the cracks in the glass substrate are not the magnitude of the external force acting on the glass substrate, but rather the partial burrs that cause stress concentration when cutting the glass substrate, It has been found that this is due to the formation of convex and concave portions. Therefore, in order to remove the burrs and the convex and concave portions that cause the stress concentration, a process of smoothing the end face after cutting is performed, and thereby the patient acting on the housing 3 having the above-described configuration is processed. It has become possible to prevent the occurrence of cracks and the like of the glass substrates 213 and 214 with respect to loads and deflections caused by weight and the like.
  • a sealing member 217 is provided along the outer peripheral edge of the first glass substrate 214 and the second glass substrate 213, and the first glass substrate 214 and the second glass substrate are provided by the sealing member 217. 213 is bonded and bonded. Thereby, intensity
  • the first glass substrate 214 and the second glass substrate 213 are deaerated by, for example, sucking air from the space between the first glass substrate 214 and the second glass substrate 213. Adhesion and bonding by the sealing member 217 are performed later, thereby preventing moisture contained in the air from affecting the scintillator layer 211 and the like, and extending the life of the scintillator layer 211 and the like. Can be planned.
  • a buffer member 218 for protecting the sensor panel 21 from an external impact or the like is provided in each corner of the sensor panel 21 and in the vicinity of the middle between the corners.
  • FIG. 17 is an equivalent circuit diagram of a photoelectric conversion unit for one pixel constituting the signal detection unit 151.
  • the configuration of the photoelectric conversion unit for one pixel includes a photodiode 152 as a photoelectric conversion element, and a thin film transistor (hereinafter referred to as “TFT”) that extracts electric energy accumulated in the photodiode 152 as an electric signal by switching. 153).
  • the photodiode 152 is an image sensor that generates and accumulates charges.
  • the electrical signal taken out from the photodiode 152 is amplified by an amplifier 154 to a level that can be detected by the signal readout circuit 17.
  • a charge is generated in the photodiode 152, and when a signal reading voltage is applied to the gate G of the TFT 153, the charge is transferred from the photodiode 152 connected to the source S of the TFT 153. It flows to the drain D side of the TFT 153 and is stored in a capacitor 154 a connected in parallel to the amplifier 154.
  • the amplifier 154 outputs an electric signal amplified in proportion to the electric charge accumulated in the capacitor 154a.
  • the photodiode 152 may simply be a photodiode having a regulation capacitance, or may include an additional capacitor in parallel so as to improve the dynamic range of the photodiode 152 and the photoelectric conversion unit.
  • FIG. 18 is an equivalent circuit diagram in which such photoelectric conversion units are two-dimensionally arranged, and between the pixels, the scanning lines Ll and the signal lines Lr are arranged so as to be orthogonal to each other.
  • One end side of the photodiode 152 is connected to the source S of the TFT 153, and the drain D of the TFT 153 is connected to the signal line Lr.
  • the other end side of the photodiode 152 is connected to the other end side of the adjacent photodiode 152 arranged in each row, and is connected to a bias power source 155 through a common bias line Lb.
  • the bias power source 155 is connected to the control unit 27 so that a voltage is applied to the photodiode 152 through the bias line Lb according to an instruction from the control unit 27.
  • the gates G of the TFTs 153 arranged in each row are connected to a common scanning line Ll, and the scanning line Ll is connected to the control unit 27 via the scanning drive circuit 16.
  • the drain D of the TFT 153 arranged in each column is connected to a signal readout circuit 17 connected to a common signal line Lr and controlled by the control unit 27.
  • the signal readout circuit 17 is provided with the amplifier 154 for each signal line Lr described above.
  • a signal reading voltage is applied to the selected scanning line Ll, whereby a voltage is applied to the gate G of each TFT 153 connected to the scanning line Ll, and each photodiode is connected via each TFT 153.
  • the charge generated in the photodiode 152 flows from the signal line 152 to each signal line Lr.
  • each amplifier 154 amplifies the charge for each photodiode 152, and information of the photodiode 152 for one row is extracted. This operation is performed for all the scanning lines Ll by switching the scanning lines Ll, whereby information is extracted from all the photodiodes 152.
  • a sample hold circuit 156 is connected to each amplifier 154.
  • Each sample and hold circuit 156 is connected to an analog multiplexer 157 provided in the signal readout circuit 17, and the signal read out by the signal readout circuit 17 is described above from the analog multiplexer 157 via the A / D converter 158. It is output to the control unit 27.
  • the TFT 153 may be either an inorganic semiconductor type used in a liquid crystal display or the like, or an organic semiconductor type. Further, in the present embodiment, the case where the photodiode 152 as a photoelectric conversion element is used as the imaging element is illustrated, but a solid-state imaging element other than the photodiode may be used as the photoelectric conversion element.
  • a scanning drive circuit 16 that sends a pulse to each photodiode (photoelectric conversion element) 152 to scan and drive each photodiode 152, and the electric power stored in each photoelectric conversion element A signal readout circuit 17 for reading out energy is arranged.
  • the first lid member 32 and the second lid member 33 (see FIG. 2) of the portable radiation solid-state detector 1 are open at one end of the housing body 31.
  • the insertion portion 322 of the first lid member 32 is inserted into 311
  • the insertion portion 332 of the second lid member 33 is inserted into the opening 312 at the other end
  • the engagement recess 315 of the housing body 31 is inserted.
  • Engaging projections 325 and 335 are engaged with 316, respectively.
  • the first lid member 32 and the second lid member 33 are firmly fixed to the housing body 31 so that they cannot be removed from the housing body 31. Therefore, the entire housing 3 including the housing main body 31, the first lid member 32, and the second lid member 33 is integrated.
  • the housing 3 is formed as described above, and the thickness T of the buffer member 25 is set so that the sensor panel 21, the buffer member 25, the base 24, and the like are overlapped as shown in FIG.
  • FIG. 19 shows an experimental result of examining how the pressure sensitivity (unit: [dB]) in the scintillator layer 211 of the sensor panel 21 changes when various pressures are applied and the same pressure is applied.
  • the thickness T of the buffer member 25 is 0 mm.
  • the buffer member 25 is not provided, and the second glass substrate 213 and the base 24 of the sensor panel 21 are connected via the lead thin plate described above. This represents the case of direct fixing.
  • the pressure sensitivity in the scintillator layer 211 decreases as the thickness T increases to 0.5 mm and 1 mm, compared to the case where the thickness T of the buffer member 25 is 0 mm.
  • the pressure sensitivity is about 2 dB when the thickness T is 0.5 mm, and the thickness T is 1 mm.
  • the pressure sensitivity is reduced by about 6 dB.
  • the load reduction effect is greater when the buffer member 25 is disposed at a position closer to the scintillator layer 211.
  • the decrease in pressure sensitivity when the thickness T of the buffer member 25 is increased is not limited to the case where the buffer member 25 is formed of foamed polypropylene, but is the same when formed of a material such as polyurethane, nonwoven fabric, rubber, or elastomer. Met.
  • the buffer member is the inner surface (back plate Y) of the back plate Y of the housing body 31 (the back plate opposite to the radiation incident surface X of the housing body 31 (see FIG. 6)). 19 is provided between the sensor panel 21 and the base 24 as in the present embodiment, as shown in the right side of the graph of FIG. Compared to the case, the significant difference is small.
  • the weight (load) of the patient is applied to the portable radiation solid detector 1
  • pressure is applied to the radiation incident surface X (see FIG. 1) of the housing 3 of the portable radiation solid detector 1 as a whole.
  • the stress is also applied to the scintillator layer 211.
  • the buffer member 25 between the sensor panel 21 and the base 24 as in the present embodiment, the pressure applied to the scintillator layer 211 is dispersed. Since it is absorbed, its pressure sensitivity becomes small.
  • the scintillator layer 211 is formed as a columnar crystal by vapor deposition of a phosphor in which a luminescent center substance is activated in a base material such as CsI, it is difficult to be destroyed by external force.
  • the buffer member 25 is actually formed using foamed polypropylene, nonwoven fabric or the like having a thickness of about 0.5 mm and used in the normal use state of the portable radiation solid detector 1, the columnar shape of the phosphor of the scintillator layer 211 is obtained. The crystals were not damaged.
  • the thickness of the housing 3 in the radiation incident direction is 16 mm or less, and the range of the JIS standard size in the conventional screen / film cassette. Because it is a size that fits inside, even when photographing with the portable radiation solid state detector 1 that is a cassette type FPD, use existing devices and equipment such as a bucky table provided for the cassette for CR. Can do.
  • the buffer member 25 since the buffer member 25 is provided between the sensor panel 21 and the base 24, the buffer member 25 disperses the pressure applied to the scintillator (scintillator layer 211) even if pressure is applied from the outside in a normal use state. In order to absorb effectively, the pressure sensitivity in the scintillator can be effectively reduced, and even when the phosphor of the scintillator is formed of columnar crystals, the columnar crystals are effectively prevented from being damaged or destroyed. It becomes possible.
  • the radiation incident surface X of the housing 3 of the portable radiation solid detector 1 and the sensor are obtained.
  • the distance between the scintillator and the subject such as the patient's body placed on the radiation incident surface X becomes longer.
  • the radiation is scattered by the subject and the glare is generated to cause the image degradation of the detected radiation image.
  • the buffer member 25 of the present invention is provided downstream of the scintillator or photoelectric conversion element in the radiation incident direction. Therefore, even if radiation is scattered by the buffer member 25, the scintillator or photoelectric conversion Since it only scatters the radiation after passing through the element, there is no adverse effect on the radiation image.
  • the scintillator layer 211 that is a scintillator is formed on one surface of the first glass substrate 214 .
  • the method of forming the scintillator is not limited to this, and the present invention is also a scintillator. It is not limited to the formation method.
  • the scintillator is formed in layers by forming phosphor columnar crystals on a support such as a cellulose acetate film, for example, by vapor deposition such as vapor deposition.
  • a support such as a cellulose acetate film
  • vapor deposition such as vapor deposition.
  • a polyethylene terephthalate film (PET) PET
  • PET polyethylene terephthalate film
  • polyester film polyester film
  • a polymethacrylate film a nitrocellulose film having a thickness of about 0.6 mm, similar to the first glass substrate 214 described above
  • It can also be formed by sticking to the surface of a resin film such as a cellulose acetate film, a polypropylene film, or a polyethylene naphthalate film.
  • a scintillator formed in a layered form by forming phosphor columnar crystals on a support is disposed so as to cover the photoelectric conversion element (photodiode 152) formed on the surface of the second glass substrate 213. It is also possible to arrange the scintillator on the photoelectric conversion element so as to cover with a sealing material from above.
  • a heat-sealable resin is used as the sealing material, and the sealing material is fused by a generally used impulse sealer.
  • the heat-fusible resin include, but are not limited to, ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, and polyethylene (PE) film.
  • the medical field it may be used as a radiation individual detector for obtaining radiographic images for diagnosis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided is a portable solid-state radiation detector, i.e. a thin portable FPD compatible with a cassette for CR, wherein a scintillator is not destroyed even if a pressure is applied externally in a normal use and occurrence of glare due to scattering of radiation can be prevented. A portable solid-state radiation detector (1) having a housing (3) which houses a sensor panel (21) equipped with a plurality of photoelectric conversion means (152) formed on a substrate (213) and a scintillator (211) provided on the photoelectric conversion means (152) opposite thereto and converting incident radiation into light, and a base (24) provided with a circuit (23) related to the photoelectric conversion means (152) on the surface opposite to a surface facing the sensor panel (21), is further provided with a cushioning member (25) between the sensor panel (21) and the base (24).

Description

可搬型放射線固体検出器Portable radiation solid state detector
 本発明は、可搬型放射線固体検出器に関する。 The present invention relates to a portable radiation solid state detector.
 従来、病気診断等を目的として、X線画像に代表される、放射線を用いて撮影された放射線画像が広く用いられている。こうした医療用の放射線画像は、従来スクリーンフィルムを用いて撮影されていたが、近年は、放射線画像のデジタル化が実現されており、例えば、被写体を透過した放射線を輝尽性蛍光体層が形成された輝尽性蛍光体シートに蓄積させた後、この輝尽性蛍光体シートをレーザ光で走査し、これにより輝尽性蛍光体シートから発光される輝尽光を光電変換して画像データを得るCR(Computed Radiography)装置が広く普及している(例えば特許文献1、2等参照)。 Conventionally, for the purpose of disease diagnosis and the like, a radiographic image taken using radiation, which is typified by an X-ray image, has been widely used. Such medical radiographic images were conventionally taken using a screen film, but in recent years, digitization of radiographic images has been realized. For example, a stimulable phosphor layer forms radiation transmitted through a subject. After being stored in the photostimulable phosphor sheet, the photostimulable phosphor sheet is scanned with laser light, and thereby the photostimulated light emitted from the photostimulable phosphor sheet is photoelectrically converted to image data. A CR (Computed Radiography) apparatus that obtains the above has been widely used (see, for example, Patent Documents 1 and 2).
 放射線画像撮影では、スクリーンフィルムや輝尽性蛍光体シート等の記録媒体を内部に収納したカセッテ(例えば特許文献1、2等参照)が用いられる。なお、CR装置での撮影に用いられるCR用のカセッテは、従来のスクリーン/フィルム用のカセッテに適合するものとして導入された既存の設備、例えばカセッテホルダーやブッキーテーブルを継続して使用可能となるように、当該スクリーン/フィルム用のカセッテにおけるJIS規格サイズに倣って、設計・製造されている。言い換えると、カセッテのサイズの互換性が維持され、施設の有効活用と画像データのデジタル化が達成されている。 In radiographic imaging, a cassette (see, for example, Patent Documents 1 and 2) in which a recording medium such as a screen film or a photostimulable phosphor sheet is housed is used. The CR cassette used for photographing with the CR apparatus can continue to use existing equipment such as a cassette holder or a bucky table that has been introduced to be compatible with conventional screen / film cassettes. In this way, the screen / film cassette is designed and manufactured following the JIS standard size. In other words, the cassette size compatibility is maintained, and the facility is effectively utilized and the image data is digitized.
 また、最近では、医療用の放射線画像を得る手段として、照射された放射線を検出しデジタル画像データとして取得する検出器としてフラットパネルディテクタ(Flat Panel Detector。以下「FPD」と称する。)が知られている(例えば特許文献3等参照)。 Recently, as a means for obtaining a medical radiation image, a flat panel detector (hereinafter referred to as “FPD”) is known as a detector that detects irradiated radiation and acquires it as digital image data. (See, for example, Patent Document 3).
 さらに、このFPDをハウジング(筐体)に収納した可搬型の撮影装置(可搬型放射線固体検出器)も実用化されるようになってきた(例えば特許文献4、5等参照)。このような可搬型放射線固体検出器は、持ち運びが可能であるために患者の病室等に行って撮影を行うこと等も可能であり、また、撮影部位の位置や角度等に応じて自在に位置や角度を調整することが可能であるため、広く活用されることが期待されている。 Furthermore, portable imaging devices (portable radiation solid detectors) in which this FPD is housed in a housing (housing) have come into practical use (see, for example, Patent Documents 4 and 5). Such a portable radiation solid-state detector can be carried so that it can be taken in a patient's room or the like, and can be photographed. Since it is possible to adjust the angle and angle, it is expected to be widely used.
 ところで、前述したように、現在普及しているCR用のカセッテは従来のスクリーン/フィルム用のカセッテにおけるJIS規格サイズに従ったサイズとなっており、ブッキーテーブル等もJIS規格サイズに合わせて作られている。このため、可搬型のFPDである可搬型放射線固体検出器についても、このJIS規格サイズに従ったカセッテに収納した形で用いることができれば、施設に設置されている既存の設備をFPDを用いた撮影に利用することができ、撮影手段としてFPDを導入する際の設備投資を最小限度に抑えることができる。 By the way, as described above, the currently popular CR cassette is sized according to the JIS standard size of the conventional screen / film cassette, and the Bucky table and the like are also made according to the JIS standard size. ing. For this reason, if the portable radiation solid-state detector, which is a portable FPD, can be used in a cassette housed in this JIS standard size, the existing equipment installed in the facility is used. It can be used for photographing, and capital investment when introducing FPD as photographing means can be minimized.
 しかしながら、特許文献4や特許文献5に記載された従来のハウジング(筐体)に収納された可搬型放射線固体検出器は、上記JIS規格サイズに従ったものではなく、既存の設備を利用することのできない形状のものである。 However, the portable radiation solid state detector housed in the conventional housing (housing) described in Patent Document 4 and Patent Document 5 does not conform to the JIS standard size, and uses existing equipment. It is a shape that can not be.
 一方、可搬型放射線固体検出器を上記JIS規格サイズに従って形成した場合、全体的に薄い平板状のものとなることから、荷重が加わった場合でも、内部のガラス基板や電気部品等に負荷がかからないように、ハウジングの変形を抑制できる全体的な強度向上が必要となる。 On the other hand, when the portable radiation solid-state detector is formed according to the above JIS standard size, it becomes a thin flat plate as a whole, so even if a load is applied, the internal glass substrate, electrical components, etc. are not loaded. Thus, it is necessary to improve the overall strength so that the deformation of the housing can be suppressed.
 特に、可搬型放射線固体検出器に患者の体重(荷重)が加わる場合には、ハウジングの放射線入射面に撓みが生じやすくなる。そして、可搬型放射線固体検出器では、入射した放射線を光に変換するシンチレータを、CsI等の母体材料内に発光中心物質が付活された蛍光体を蒸着により柱状結晶として形成するものが多いが、このようなシンチレータは一般的にフォトダイオード等の光電変換手段やガラス基板等よりも外力により破壊されやすい。 In particular, when a patient's weight (load) is applied to the portable radiation solid-state detector, the radiation incident surface of the housing is likely to be bent. In many portable radiation solid state detectors, a scintillator that converts incident radiation into light is often formed as a columnar crystal by vapor deposition of a phosphor in which a luminescent center substance is activated in a base material such as CsI. Such scintillators are generally more easily broken by external force than photoelectric conversion means such as photodiodes or glass substrates.
 そのため、特許文献6や特許文献7に記載された可搬型放射線固体検出器では、ハウジングの放射線入射面と光電変換手段との間に緩衝部材を設けることが提案されている。
特開2005-121783号公報 特開2005-114944号公報 特開平9-73144号公報 特開2002-311527号公報 米国特許第7,189,972号明細書 特許第3815792号公報 特許第4012182号公報
For this reason, in the portable radiation solid-state detectors described in Patent Document 6 and Patent Document 7, it is proposed to provide a buffer member between the radiation incident surface of the housing and the photoelectric conversion means.
JP 2005-121783 A JP 2005-114944 A JP-A-9-73144 JP 2002-311527 A US Pat. No. 7,189,972 Japanese Patent No. 3815792 Japanese Patent No. 40112182
 しかしながら、特許文献6や特許文献7に記載された手法では、可搬型放射線固体検出器のハウジングの放射線入射面上に載置された患者の身体等の被写体とシンチレータとの距離が遠くなるため、放射線が被写体で散乱されてグレアが発生し、検出される放射線画像の画像劣化が発生する。 However, in the methods described in Patent Document 6 and Patent Document 7, the distance between the scintillator and a subject such as a patient's body placed on the radiation incident surface of the housing of the portable radiation solid detector is increased. Radiation is scattered by the subject, glare occurs, and image degradation of the detected radiation image occurs.
 また、特許文献6では、可搬型放射線固体検出器のハウジングの放射線入射面と光電変換手段との間に、内部に空気等の気体を封入した容器を緩衝部材として複数並べて配置することが提案されているが、複数の容器が入射した放射線を散乱させかねず、放射線画像への悪影響が生じないとは言い切れない。 Further, Patent Document 6 proposes that a plurality of containers, in which a gas such as air is enclosed, are arranged side by side as a buffer member between the radiation incident surface of the housing of the portable radiation solid-state detector and the photoelectric conversion means. However, it cannot be said that a plurality of containers may scatter incident radiation, and the radiation image is not adversely affected.
 さらに、可搬型放射線固体検出器を上記のようにJIS規格サイズに従って形成する場合には、ハウジングの放射線入射面と光電変換手段との間に大きな緩衝部材を挿入する構造とすることは事実上困難である。 Further, when the portable radiation solid detector is formed according to the JIS standard size as described above, it is practically difficult to have a structure in which a large buffer member is inserted between the radiation incident surface of the housing and the photoelectric conversion means. It is.
 そこで、本発明は以上のような課題を解決するためになされたものであり、可搬型のFPDであって、CR用のカセッテとの互換性を有する薄型であるとともに、通常の使用状態で外部から圧力がかかってもシンチレータが破壊されることがなく、かつ、放射線の散乱によるグレアの発生を防止可能な可搬型放射線固体検出器を提供することを目的とするものである。 Accordingly, the present invention has been made to solve the above-described problems, and is a portable FPD that is thin and compatible with a cassette for CR, and is externally used in a normal use state. It is an object of the present invention to provide a portable radiation solid state detector that can prevent the scintillator from being destroyed even if pressure is applied to it, and can prevent the occurrence of glare due to radiation scattering.
 前記目的を達成するために、本発明は、
 基板上に形成された複数の光電変換手段と、前記光電変換手段上に対向して設けられ、入射した放射線を光に変換するシンチレータとを備えるセンサパネルと、
 前記センサパネルに対向する面と反対側の面に前記光電変換手段に関連する回路が設けられた基台と、
をハウジング内に内蔵し、
 さらに、前記センサパネルと前記基台との間に緩衝部材を設けたことを特徴とする可搬型放射線固体検出器である。
In order to achieve the above object, the present invention provides:
A sensor panel comprising a plurality of photoelectric conversion means formed on a substrate, and a scintillator provided opposite to the photoelectric conversion means for converting incident radiation into light;
A base provided with a circuit related to the photoelectric conversion means on the surface opposite to the surface facing the sensor panel;
In the housing,
Further, the portable radiation solid-state detector is characterized in that a buffer member is provided between the sensor panel and the base.
 本発明のような方式の可搬型放射線固体検出器によれば、ハウジングの放射線入射方向の厚さを例えば16mm以下とすることで、CR用のカセッテ用に設けられているブッキーテーブル等、既存の装置、設備を利用することができる。また、センサパネルと基台との間に緩衝部材を設けたため、通常の使用状態で外部から圧力がかかっても、緩衝部材がシンチレータにかかる圧力を分散して効果的に吸収するため、シンチレータにおける圧力感度を有効に減少させることが可能となり、シンチレータが破壊されることを有効に防止することが可能となる。 According to the portable radiation solid-state detector of the system of the present invention, the thickness of the housing in the radiation incident direction is, for example, 16 mm or less, so that an existing table such as a bucky table provided for a cassette for CR can be used. Equipment and equipment can be used. In addition, since the buffer member is provided between the sensor panel and the base, even if pressure is applied from the outside in a normal use state, the buffer member disperses the pressure applied to the scintillator and effectively absorbs it. It is possible to effectively reduce the pressure sensitivity, and it is possible to effectively prevent the scintillator from being destroyed.
 また、緩衝部材をセンサパネルと基台との間に設けることでこのような有利な効果が得られるため、ハウジングの放射線入射面とセンサパネルとの間に緩衝部材を設ける必要がない。そのため、放射線入射面上に載置された患者の身体等の被写体とシンチレータとの距離が遠くならず、放射線が被写体で散乱されることによるグレアの発生を防止することが可能となる。さらに、緩衝部材がシンチレータや光電変換素子の放射線入射方向下流側に設けられるため、仮に緩衝部材により放射線が散乱されたとしても、シンチレータや光電変換素子を透過した後の放射線を散乱するだけであるから、放射線画像への悪影響はまったく生じず、検出される放射線画像の画像劣化を回避することが可能となる。 Also, since such an advantageous effect is obtained by providing the buffer member between the sensor panel and the base, it is not necessary to provide the buffer member between the radiation incident surface of the housing and the sensor panel. Therefore, the distance between the scintillator and the subject such as the patient's body placed on the radiation incident surface is not increased, and it is possible to prevent the occurrence of glare due to the radiation being scattered by the subject. Furthermore, since the buffer member is provided downstream of the scintillator and the photoelectric conversion element in the radiation incident direction, even if the radiation is scattered by the buffer member, it only scatters the radiation after passing through the scintillator and the photoelectric conversion element. Therefore, there is no adverse effect on the radiographic image, and image degradation of the detected radiographic image can be avoided.
本実施形態に係る可搬型放射線固体検出器を示す斜視図である。It is a perspective view which shows the portable radiation solid detector concerning this embodiment. 本実施形態におけるハウジングの分解斜視図である。It is a disassembled perspective view of the housing in this embodiment. ハウジングの変形例の分解斜視図である。It is a disassembled perspective view of the modification of a housing. 断面形状がV字状に形成された第2の蓋部材の緩衝部材を示す図である。It is a figure which shows the buffer member of the 2nd cover member in which cross-sectional shape was formed in V shape. 検出器ユニットが案内されて水平位置に移動した状態を示す図である。It is a figure which shows the state which the detector unit was guided and moved to the horizontal position. 検出器ユニットが緩衝部材により保持された状態を示す図である。It is a figure which shows the state with which the detector unit was hold | maintained by the buffer member. 図1に示す可搬型放射線固体検出器の内部構成を示す概略図である。It is the schematic which shows the internal structure of the portable radiation solid detector shown in FIG. 図5のA-A断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 図5のB-B断面図である。FIG. 6 is a sectional view taken along line BB in FIG. 5. 撮影姿勢ごとにシンチレータにかかる荷重を示すグラフである。It is a graph which shows the load concerning a scintillator for every imaging posture. 可搬型放射線固体検出器に荷重をかけるための装置の例を示す図である。It is a figure which shows the example of the apparatus for applying a load to a portable radiation solid state detector. 圧力測定装置の概略構成を示す図である。It is a figure which shows schematic structure of a pressure measuring device. 圧力測定装置で測定されるシンチレータにおける応力の一例を示すグラフである。It is a graph which shows an example of the stress in the scintillator measured with a pressure measuring device. シンチレータにかかる応力の最大値と各荷重との関係を示すグラフである。It is a graph which shows the relationship between the maximum value of the stress concerning a scintillator, and each load. 本実施形態におけるセンサパネルを示す平面図である。It is a top view which shows the sensor panel in this embodiment. 図13に示すセンサパネルを矢視F方向から見た側面図である。It is the side view which looked at the sensor panel shown in FIG. 13 from arrow F direction. 図13に示すセンサパネルのG-G断面図である。It is GG sectional drawing of the sensor panel shown in FIG. シンチレータ層の構成を示す拡大図である。It is an enlarged view which shows the structure of a scintillator layer. 信号検出部を構成する光電変換部の1画素分の等価回路構成図である。It is an equivalent circuit block diagram for 1 pixel of the photoelectric conversion part which comprises a signal detection part. 図17に示す光電変換部を二次元に配列した等価回路構成図である。FIG. 18 is an equivalent circuit configuration diagram in which the photoelectric conversion units illustrated in FIG. 17 are two-dimensionally arranged. 緩衝部材の厚さとシンチレータ層での圧力感度の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a buffer member, and the pressure sensitivity in a scintillator layer.
 以下、本発明に係る可搬型放射線固体検出器の実施の形態について、図面を参照して説明する。ただし、発明の範囲を図示例に限定するものではない。 Hereinafter, an embodiment of a portable radiation solid state detector according to the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the illustrated examples.
 図1は、本実施形態における可搬型放射線固体検出器の斜視図である。本実施形態における可搬型放射線固体検出器1は、カセッテ型のFPDであり、可搬型放射線固体検出器1は、照射された放射線を検出しデジタル画像データとして取得する検出器ユニット2(図5等参照)と、この検出器ユニット2を内部に収納するハウジング3とを備えている。 FIG. 1 is a perspective view of a portable radiation solid state detector in the present embodiment. The portable radiation solid detector 1 in this embodiment is a cassette-type FPD, and the portable radiation solid detector 1 detects the irradiated radiation and acquires it as digital image data (FIG. 5 and the like). And a housing 3 in which the detector unit 2 is accommodated.
 本実施形態では、ハウジング3は、前述したCR用のカセッテや従来のスクリーン/フィルム用のカセッテにおけるJIS規格サイズにあうように、その放射線入射方向の厚さが16mm以下になるように形成されている。 In this embodiment, the housing 3 is formed so that the thickness in the radiation incident direction is 16 mm or less so as to meet the JIS standard size in the above-described CR cassette and the conventional screen / film cassette. Yes.
 図2は、本実施形態におけるハウジング3の分解斜視図である。図2に示すように、ハウジング3は、両端部に開口部311,312を有する中空の角筒状に形成されたハウジング本体部31と、ハウジング本体部31の各開口部311,312を覆い、閉塞する第1の蓋部材32および第2の蓋部材33とを備えている。 FIG. 2 is an exploded perspective view of the housing 3 in the present embodiment. As shown in FIG. 2, the housing 3 covers the housing main body 31 formed in a hollow rectangular tube shape having openings 311 and 312 at both ends, and the openings 311 and 312 of the housing main body 31. A first lid member 32 and a second lid member 33 are provided.
 なお、本実施形態では、上記のように、ハウジング本体部31が角筒状に形成されたハウジング3の場合について説明するが、ハウジング3の構成はこれに限定されず、例えば図3に示すように、ハウジング3を、可搬型放射線固体検出器の放射線入射側に配置されるフロント部材3Aや、バック部材3B、蓋部材3C等で略箱型に形成することも可能であり、このような場合にも本発明は適用される。 In the present embodiment, the case of the housing 3 in which the housing main body 31 is formed in a rectangular tube shape as described above will be described. However, the configuration of the housing 3 is not limited to this, and for example, as shown in FIG. In addition, the housing 3 can be formed in a substantially box shape with a front member 3A, a back member 3B, a lid member 3C, etc. arranged on the radiation incident side of the portable radiation solid-state detector. The present invention also applies.
 本実施形態では、図2に示すように、第1の蓋部材32および第2の蓋部材33は、蓋本体部321,331と、挿入部322,332とを備えており、例えば非導電性のプラスチック等の非導電性の材料によって形成されている。 In the present embodiment, as shown in FIG. 2, the first lid member 32 and the second lid member 33 include lid body portions 321 and 331 and insertion portions 322 and 332, for example, non-conductive. It is made of a non-conductive material such as plastic.
 蓋本体部321,331は、その外周がハウジング本体部31の各開口部311,312の外周の寸法とほぼ等しい寸法となるように形成されている。また、蓋本体部321,331の、開口部311,312に対する挿入方向における寸法は、本実施形態では8mmとなっている。なお、蓋本体部321,331の上記寸法をどの程度とするかは特に限定されないが、後述するアンテナ装置9が設けられている蓋本体部321については、上記寸法を6mm以上とすることが好ましく、8mm以上であればさらに好ましい。 The lid main body portions 321 and 331 are formed so that the outer circumference thereof is substantially equal to the outer circumference of each of the openings 311 and 312 of the housing main body portion 31. Moreover, the dimension in the insertion direction with respect to the opening parts 311 and 312 of the cover main- body parts 321 and 331 is 8 mm in this embodiment. In addition, although it does not specifically limit how much the said dimension of the lid | cover main- body parts 321 and 331 is made, It is preferable that the said dimension shall be 6 mm or more about the lid | cover main-body part 321 provided with the antenna device 9 mentioned later. 8 mm or more is more preferable.
 また、挿入部322,332は、開口部311,312に対する挿入側に開口部を有する枠状となっており、挿入部322,332の外周は、ハウジング本体部31の各開口部311,312の内周の寸法よりもわずかに小さい寸法となるように形成されている。 The insertion portions 322 and 332 have a frame shape having an opening on the insertion side with respect to the openings 311 and 312, and the outer periphery of the insertion portions 322 and 332 is formed by the openings 311 and 312 of the housing main body 31. It is formed to have a dimension slightly smaller than the dimension of the inner periphery.
 挿入部322,332の内部には、検出器ユニット2に対して外部から伝達される外力を緩和することのできる緩衝部材323,333(図5等参照)が設けられている。緩衝部材323,333は、外力を緩和できるものであれば特に限定はされず、例えば、発泡ウレタン、シリコン等を適用することができる。 Buffer members 323 and 333 (see FIG. 5 and the like) that can relieve external force transmitted from the outside to the detector unit 2 are provided inside the insertion portions 322 and 332. The buffer members 323 and 333 are not particularly limited as long as the external force can be reduced. For example, foamed urethane, silicon, or the like can be applied.
 また、特に、挿入部332に設けられる緩衝部材333は、図4Aに示すように、検出器ユニット2の端部が緩衝部材333の端部の傾斜に沿って水平位置に案内されるように、断面形状がほぼV字状となっている。また、緩衝部材333は、弾性体、粘性体、粘弾性体(viscoelatic等)のような変形可能な材料で形成されていれば、図4B、図4Cに示すように、第2の蓋部材33がハウジング本体部31に押し込まれる際、緩衝部材333の形状が検出器ユニット2の端部の形状に合わせて変形し、検出器ユニット2の端部が緩衝部材333によって保持される。このように、緩衝部材333は、検出器ユニット2をハウジング3の内部の適正位置に保持する保持部材としても機能する。 Further, in particular, as shown in FIG. 4A, the buffer member 333 provided in the insertion portion 332 is arranged so that the end of the detector unit 2 is guided to the horizontal position along the inclination of the end of the buffer member 333. The cross-sectional shape is substantially V-shaped. Further, if the buffer member 333 is formed of a deformable material such as an elastic body, a viscous body, a viscoelastic body (viscoelastic), the second lid member 33 as shown in FIGS. 4B and 4C. Is pushed into the housing body 31, the shape of the buffer member 333 is deformed in accordance with the shape of the end of the detector unit 2, and the end of the detector unit 2 is held by the buffer member 333. Thus, the buffer member 333 also functions as a holding member that holds the detector unit 2 at an appropriate position inside the housing 3.
 図2に示すように、挿入部322,332の各側面からは、ハウジング本体部31と蓋部材32,33とを係合する係合手段としての係合片324,334が、開口部311,312に対する挿入方向に向かって延出されている。係合片324,334の外側面には、それぞれ係合凸部325,335が設けられている。 As shown in FIG. 2, from each side of the insertion portions 322 and 332, engagement pieces 324 and 334 as engagement means for engaging the housing main body portion 31 and the lid members 32 and 33 are opened portions 311. It extends in the insertion direction with respect to 312. Engagement convex portions 325 and 335 are provided on the outer surfaces of the engagement pieces 324 and 334, respectively.
 なお、挿入部322,332の外周面には、ゴム等で形成された図示しない防水用のリングが設けられることが好ましい。防水用のリングを設けた場合には、ハウジング本体部31と各蓋部材32,33との密着性が増し、粉塵、患者の汗、消毒液等の水分や異物がハウジング3の内部に浸入するのを防ぐことができる。 In addition, it is preferable that a waterproof ring (not shown) formed of rubber or the like is provided on the outer peripheral surface of the insertion portions 322 and 332. When a waterproof ring is provided, the adhesion between the housing main body 31 and the lid members 32 and 33 is increased, and moisture and foreign matter such as dust, patient sweat, and disinfectant enter into the housing 3. Can be prevented.
 第1の蓋部材32の蓋本体部321の一側面であって、可搬型放射線固体検出器1の放射線入射面X(図1参照)と直交する面には、可搬型放射線固体検出器1と外部の機器との間で無線により情報の送受信を行うためのアンテナ装置9が埋め込まれている。 On one side of the lid main body 321 of the first lid member 32 and perpendicular to the radiation incident surface X of the portable radiation solid detector 1 (see FIG. 1), the portable radiation solid detector 1 and An antenna device 9 for transmitting and receiving information wirelessly with an external device is embedded.
 アンテナ装置9には、金属からなる平板状の一対の放射板91,92と、一対の放射板91,92を連結し、当該一対の放射板91,92に対して給電する給電部93とが設けられている。本実施形態において、一対の放射板91,92のうち、一方の放射板91は、正面視形状が台形となるように形成されており、他方の放射板92は、正面視形状がほぼ円形となるように形成されている。そして、給電部93は、一方の放射板91の上底部の略中央に接続されるとともに、他方の放射板92の一部と接続されている。給電部93によって連結されることで、一対の放射板91,92の間には、所定の間隙が形成されている。 The antenna device 9 includes a pair of flat radiation plates 91 and 92 made of metal, and a power feeding unit 93 that connects the pair of radiation plates 91 and 92 and supplies power to the pair of radiation plates 91 and 92. Is provided. In the present embodiment, of the pair of radiation plates 91 and 92, one radiation plate 91 is formed so that the shape in front view is a trapezoid, and the other radiation plate 92 has a substantially circular shape in front view. It is formed to become. The power feeding unit 93 is connected to the approximate center of the upper bottom portion of one radiation plate 91 and is connected to a part of the other radiation plate 92. A predetermined gap is formed between the pair of radiation plates 91 and 92 by being connected by the power supply unit 93.
 なお、アンテナ装置9の種類・形状は、ここに例示したものに限定されない。また、アンテナ装置9は蓋本体部321に埋め込まれている場合に限定されず、蓋本体部321の外側や内側に貼付されていてもよい。ただし、アンテナ装置9は、金属やカーボン等の導電性材料からなる導電性部材に近接した位置に設けると受信感度、受信利得が低下することから、カーボン等の導電性材料で形成されているハウジング本体部31や金属等で形成されている各種電子部品22(図5等参照)からできるだけ離れた位置に設けることが好ましく、少なくとも6mm以上離れていることが好ましく、8mm以上離れていればさらに好ましい。 Note that the type and shape of the antenna device 9 are not limited to those illustrated here. The antenna device 9 is not limited to the case where it is embedded in the lid main body portion 321, and may be attached to the outside or the inside of the lid main body portion 321. However, since the antenna device 9 is provided at a position close to a conductive member made of a conductive material such as metal or carbon, the reception sensitivity and the reception gain are lowered. Therefore, the housing formed of a conductive material such as carbon is used. It is preferable to be provided as far as possible from the main body 31 and various electronic components 22 formed of metal or the like (see FIG. 5 etc.), preferably at least 6 mm or more, more preferably 8 mm or more. .
 この点、本実施形態では、前述のように、アンテナ装置9は非導電性の材料で形成された蓋本体部321に設けられており、蓋本体部321の開口部311に対する挿入方向における寸法は、8mmとなっている。このため、アンテナ装置9は、カーボン繊維等の導電性材料を含んで形成されているハウジング本体部31から8mm離れた位置に配置されることなり、受信感度、受信利得を維持する上で好ましい。 In this respect, in this embodiment, as described above, the antenna device 9 is provided in the lid main body portion 321 formed of a non-conductive material, and the dimension of the lid main body portion 321 in the insertion direction with respect to the opening 311 is as follows. 8 mm. For this reason, the antenna device 9 is disposed at a position 8 mm away from the housing main body 31 formed by including a conductive material such as carbon fiber, which is preferable for maintaining reception sensitivity and reception gain.
 また、蓋本体部321の一面であって、アンテナ装置9が形成されている面と同一面上には、図1および図2に示すように、ハウジング3の内部に設けられた充電池26(図5等参照)を充電する際に外部の電源等と接続される充電用端子45が形成されており、また、可搬型放射線固体検出器1の電源のON/OFFを切り替える電源スイッチ46が配置されている。さらに、アンテナ装置9が形成されている面と放射線入射面Xとによって形成される角部には、例えばLED等で構成され充電池26の充電状況や各種の操作状況等を表示するインジケータ47が設けられている。 Further, on one surface of the lid main body 321 and the same surface on which the antenna device 9 is formed, as shown in FIGS. 1 and 2, the rechargeable battery 26 ( A charging terminal 45 that is connected to an external power source or the like when charging (see FIG. 5 etc.) is formed, and a power switch 46 for switching on / off the power source of the portable radiation solid state detector 1 is disposed. Has been. Furthermore, an indicator 47 formed of, for example, an LED or the like, which displays the charging status of the rechargeable battery 26 and various operating statuses, is formed at the corner formed by the surface on which the antenna device 9 is formed and the radiation incident surface X. Is provided.
 なお、本実施形態では、アンテナ装置9や充電用端子45等が全て第1の蓋部材32に設けられている場合が例示されているが、これらの全部または一部が第2の蓋部材33等に設けられる構成としてもよい。また、アンテナ装置9や充電用端子45等のインターフェース用部品は、ここに例示したものに限定されず、他の部品が含まれていてもよいし、これらのうちの一部を備えない構成としてもよい。 In the present embodiment, the case where the antenna device 9 and the charging terminal 45 are all provided in the first lid member 32 is illustrated, but all or part of them is the second lid member 33. It is good also as a structure provided in etc. Further, the interface parts such as the antenna device 9 and the charging terminal 45 are not limited to those exemplified here, and other parts may be included, or a part of them may not be provided. Also good.
 ハウジング本体部31は、例えば、心材(型)の上にカーボン繊維を巻回して所望の厚み(例えば、1mm~2mm)とした上で形状を整え、巻回したカーボン繊維の上に熱硬化性樹脂を流した上で、高温高圧で焼き固めることにより成型し、その後心材を抜き取ることによって形成する。 For example, the housing main body 31 is formed by winding a carbon fiber on a core material (mold) to obtain a desired thickness (for example, 1 mm to 2 mm), adjusting the shape, and thermosetting the wound carbon fiber. It is formed by pouring the resin, molding it by baking at high temperature and pressure, and then removing the core material.
 このような手法によってハウジング本体部31を形成した場合には、ハウジング本体部31の内周の寸法が心材(型)の外周の寸法により正確に決定されるため、寸法にばらつきのないハウジング本体部31を簡易に形成することができる。また、ハウジング本体部31を継ぎ目のない一体的な構造として形成することができるため、外から衝撃等が加わった場合に、その外力・外圧を分散させることができる。なお、ハウジング本体部31を、例えば、図示しない板状カーボン繊維を心材(型)の周りに巻回し、高温高圧で焼き固めて形成してもよい。 When the housing main body 31 is formed by such a method, the dimension of the inner periphery of the housing main body 31 is accurately determined by the dimension of the outer periphery of the core material (mold). 31 can be formed easily. Further, since the housing main body 31 can be formed as a seamless integrated structure, the external force / external pressure can be dispersed when an impact or the like is applied from the outside. The housing body 31 may be formed, for example, by winding a plate-like carbon fiber (not shown) around a core material (mold) and baking it at high temperature and pressure.
 ハウジング本体部31の内側であって、各蓋部材32,33の係合片324,334の係合凸部325,335に対応する位置には、図2および図5に示すように、係合凸部325,335に係合する係合凹部315,316が形成されている。 As shown in FIG. 2 and FIG. 5, the housing body 31 is located at a position corresponding to the engagement convex portions 325 and 335 of the engagement pieces 324 and 334 of the lid members 32 and 33 as shown in FIGS. Engagement recesses 315 and 316 that engage with the projections 325 and 335 are formed.
 ハウジング3は、ハウジング本体部31の一方側端部の開口部311に第1の蓋部材32の挿入部322を挿入し、他方側端部の開口部312に第2の蓋部材33の挿入部332を挿入して、係合凹部315,316にそれぞれ係合凸部325,335を係合させることにより、両開口部311,312が閉塞され、内部が密閉されて、一体となるようになっている。なお、ハウジング本体部31と各蓋部材32,33とを接合する手段は、ここに例示したものに限定されず、例えばねじ止めすることにより接合してもよいし、接着固定してもよい。 In the housing 3, the insertion portion 322 of the first lid member 32 is inserted into the opening 311 at one end portion of the housing body 31, and the insertion portion of the second lid member 33 is inserted into the opening portion 312 at the other end portion. By inserting 332 and engaging the engaging convex portions 325 and 335 with the engaging concave portions 315 and 316, respectively, both the opening portions 311 and 312 are closed, and the inside is sealed and integrated. ing. The means for joining the housing body 31 and the lid members 32 and 33 is not limited to those exemplified here, and may be joined by, for example, screwing or may be bonded and fixed.
 なお、本実施形態においては、一旦組み立てを行った後は、第1の蓋部材32および第2の蓋部材33はハウジング本体部31に固着され、取り外すことができない構成となっている。このように構成することにより、ハウジング3内部の密閉性を高めることができる。このため、例えば充電池26の交換が必要になった際等には、蓋部材32,33を破壊して可搬型放射線固体検出器1を分解することとなるが、樹脂等で形成されている蓋部材32,33は比較的安価なものであり、破壊しても損失が少ない一方、内部の検出器ユニット2については再利用可能に取り出すことができる。 In the present embodiment, the first lid member 32 and the second lid member 33 are fixed to the housing body 31 and cannot be removed after once assembled. By comprising in this way, the airtightness inside the housing 3 can be improved. For this reason, for example, when it is necessary to replace the rechargeable battery 26, the lid members 32 and 33 are destroyed and the portable radiation solid detector 1 is disassembled. The lid members 32 and 33 are relatively inexpensive and have little loss even if they are destroyed. On the other hand, the internal detector unit 2 can be taken out in a reusable manner.
 図5は、検出器ユニット2がハウジング3に収納された状態を下側(撮影時の放射線入射側とは反対側)から見た平面図であり、図6は、図5におけるA-A断面図、図7は、図5におけるB-B断面図である。なお、図5では、説明の便宜上ハウジング本体部31の底面がない状態でハウジング3の内部の状態を示している。 5 is a plan view of the state in which the detector unit 2 is housed in the housing 3 as viewed from the lower side (the side opposite to the radiation incident side during imaging), and FIG. 6 is a cross-sectional view taken along the line AA in FIG. 7 and 7 are sectional views taken along line BB in FIG. In FIG. 5, for convenience of explanation, the internal state of the housing 3 is shown without the bottom surface of the housing body 31.
 図5から図7に示すように、検出器ユニット2は、センサパネル21、各種の電子部品22が実装され後述する光電変換素子としてのフォトダイオード152に関連する回路が設けられた回路基板23等を備えて構成されている。本実施形態では、回路基板23は、樹脂等で形成された基台24の、センサパネル21に対向する面と反対側の面に固定されている。 As shown in FIGS. 5 to 7, the detector unit 2 includes a sensor panel 21, a circuit board 23 on which various electronic components 22 are mounted, and a circuit related to a photodiode 152 as a photoelectric conversion element to be described later is provided. It is configured with. In the present embodiment, the circuit board 23 is fixed to a surface of the base 24 made of resin or the like on the side opposite to the surface facing the sensor panel 21.
 また、センサパネル21と基台24との間には、緩衝部材25が設けられている。緩衝部材25は、発泡ポリプロピレンやポリウレタン、不織布、ゴム、エラストマ等の可撓性を有する公知の材料が用いられる。また、緩衝部材25の厚さは、後述するように厚くするほどセンサパネル21やその中の後述するシンチレータとしてシンチレータ層(発光層)211にかかる応力を低減することができるが、ハウジング3の放射線入射方向の厚さ等を考慮して適宜決定される。 Further, a buffer member 25 is provided between the sensor panel 21 and the base 24. For the buffer member 25, a known material having flexibility such as foamed polypropylene, polyurethane, non-woven fabric, rubber, or elastomer is used. Further, as the thickness of the buffer member 25 increases as described later, the stress applied to the scintillator layer (light-emitting layer) 211 as the scintillator described later in the sensor panel 21 and the later can be reduced. It is appropriately determined in consideration of the thickness in the incident direction.
 さらに、本実施形態では、図6や図7では図示を省略するが、回路基板23の電子部品22等に放射線が照射されないように、緩衝部材25と基台24との間に、鉛の薄板(厚さは例えば0.1mm程度)が介在するように設けられている。また、回路基板23や電子部品22、基台24等とハウジング本体部31の底面との間に緩衝部材を設けてもよい。 Furthermore, in this embodiment, although not shown in FIGS. 6 and 7, a thin lead plate is provided between the buffer member 25 and the base 24 so that the electronic components 22 and the like of the circuit board 23 are not irradiated with radiation. (Thickness is, for example, about 0.1 mm). Further, a buffer member may be provided between the circuit board 23, the electronic component 22, the base 24, and the like and the bottom surface of the housing main body 31.
 ここで、ハウジング3内部に収納された検出器ユニット2の後述するシンチレータ層211(CsIシンチレータ)に、外部からの荷重(患者の体重等)の影響が及ばないようにするため、当該外部からの荷重を、後述するように柱状結晶を有するCsIシンチレータの許容限界応力以下にする必要がある。 Here, the scintillator layer 211 (CsI scintillator), which will be described later, of the detector unit 2 housed in the housing 3 is not affected by an external load (such as a patient's weight). As described later, the load needs to be equal to or lower than the allowable limit stress of the CsI scintillator having columnar crystals.
 患者(被写体)は、実際の患者撮影時においては、可搬型放射線固体検出器1のハウジング3の放射線入射面X上で種々の姿勢をとるが、その際、CsIシンチレータ(シンチレータ層211)に作用する外部荷重[kg]は、図8に示すように、患者(例えば90kg)の撮影姿勢に応じて変化する。 The patient (subject) takes various postures on the radiation incident surface X of the housing 3 of the portable radiation solid-state detector 1 at the time of actual patient imaging, and acts on the CsI scintillator (scintillator layer 211). As shown in FIG. 8, the external load [kg] to be changed changes according to the imaging posture of the patient (for example, 90 kg).
 なお、このCsIシンチレータに作用する外部荷重の測定および下記の実験において、可搬型放射線固体検出器1として、ハウジング本体部31は、カーボン繊維として引張弾性率790Gpaのピッチ系カーボン繊維を使用し、ハウジング3の側面部分の高さが16mm、ハウジング本体部31の板厚が2mmの構造である可搬型放射線固体検出器1を用いた。また、そのサイズとしては、最も撓みを生じやすい半切サイズ(14インチ×17インチのサイズ)のものを用いた。さらに、可搬型放射線固体検出器1をブッキーテーブル等の比較的剛性が高いものの上に載置して測定した。 In the measurement of the external load acting on the CsI scintillator and the following experiment, as the portable radiation solid detector 1, the housing main body 31 uses a pitch-based carbon fiber having a tensile elastic modulus of 790 Gpa as the carbon fiber, and the housing The portable radiation solid-state detector 1 having a structure in which the side surface portion 3 has a height of 16 mm and the housing main body 31 has a thickness of 2 mm was used. Further, as the size, a half-cut size (size of 14 inches × 17 inches) which is most likely to bend was used. Further, the portable radiation solid state detector 1 was placed on a relatively high rigidity such as a Bucky table and measured.
 また、実際の患者撮影時に想定される可搬型放射線固体検出器1の柱状結晶を有するCsIシンチレータに作用する外部荷重について行った実験についてデータを示しつつ説明する。この実験においても、ハウジング本体部31の構成やサイズ等の条件は上記と同様である。また、可搬型放射線固体検出器1に対する荷重は、図9に示す装置により、ブッキーテーブル等に載置された可搬型放射線固体検出器1の放射線入射面Xの中央部分を押圧する例えば直径80mmの円柱体Mの上部に乗せる重りWの質量を種々変え、放射線入力面Xにかかる荷重を変化させることによって変化させた。 Further, an experiment conducted on an external load acting on a CsI scintillator having a columnar crystal of the portable radiation solid detector 1 assumed at the time of actual patient imaging will be described with showing data. Also in this experiment, the conditions such as the configuration and size of the housing main body 31 are the same as described above. Moreover, the load with respect to the portable radiation solid detector 1 presses the center part of the radiation incident surface X of the portable radiation solid detector 1 mounted in the Bucky table etc. with the apparatus shown in FIG. 9, for example of diameter 80mm. The mass of the weight W placed on the upper part of the cylindrical body M was changed variously, and the load applied to the radiation input surface X was changed.
 また、CsIシンチレータ(シンチレータ層211)に作用する力(応力)は圧力測定装置7を用いて測定される。圧力測定装置7は、例えば、図10に示すように、外部から加わる圧力の変化を感圧素子にて電気信号に変換し出力するセンサシート71と、センサシート71から出力された電気信号をセンサコネクタ72を介して受信するコンピュータ73とを備えるものであり、具体的には、ニッタ株式会社製 I-SCANシステムを用いて測定を行った。 Further, the force (stress) acting on the CsI scintillator (scintillator layer 211) is measured using the pressure measuring device 7. For example, as shown in FIG. 10, the pressure measuring device 7 converts a change in pressure applied from the outside into an electric signal by a pressure-sensitive element and outputs the electric signal, and the electric signal output from the sensor sheet 71 is a sensor. And a computer 73 that receives the data via the connector 72. Specifically, the measurement was performed using an I-SCAN system manufactured by Nitta Corporation.
 本実験において圧力測定装置7で測定されるCsIシンチレータにおける応力P[kg/cm]は、例えば図11に示すように、CsIシンチレータの各部分でそれぞれ異なる値となる。そのため、重りWによる荷重[kg/φ80]を種々変化させた場合に測定されるCsIシンチレータにかかる応力Pのうち最大値Pmaxと、重りWの各荷重との関係を示す実験結果を図12に示す。 In this experiment, the stress P [kg / cm 2 ] in the CsI scintillator measured by the pressure measuring device 7 has different values in each part of the CsI scintillator, for example, as shown in FIG. Therefore, FIG. 12 shows the experimental results showing the relationship between the maximum value Pmax of the stress P applied to the CsI scintillator measured when the load [kg / φ80] due to the weight W is variously changed and each load of the weight W. Show.
 なお、図12では、上記のようにセンサパネル21と基台24との間に発泡ポリプロピレン製の緩衝部材25(厚さ1mm)を設けた本実施形態の可搬型放射線固体検出器1における実験結果(図12中のA)と、対照実験として行った緩衝部材を設けない可搬型放射線固体検出器における実験結果(図12中のB)とが記載されている。 In FIG. 12, the experimental results in the portable radiation solid detector 1 of the present embodiment in which the foamed polypropylene buffer member 25 (thickness 1 mm) is provided between the sensor panel 21 and the base 24 as described above. (A in FIG. 12) and the experimental results (B in FIG. 12) in a portable radiation solid detector not provided with a buffer member, which were performed as a control experiment, are described.
 図12に示すように、センサパネル21と基台24との間に緩衝部材25を設けた場合と緩衝部材25を設けない場合とでは、CsIシンチレータ(シンチレータ層211)に作用する外部荷重に有意差が生じる。このように、本実施形態のようにセンサパネル21と基台24との間に緩衝部材25を設けると、緩衝部材を設けない場合に比べてCsIシンチレータ(シンチレータ層211)に作用する外部荷重を低減することが可能となる。 As shown in FIG. 12, the case where the buffer member 25 is provided between the sensor panel 21 and the base 24 and the case where the buffer member 25 is not provided are significant in the external load acting on the CsI scintillator (scintillator layer 211). There is a difference. As described above, when the buffer member 25 is provided between the sensor panel 21 and the base 24 as in the present embodiment, an external load acting on the CsI scintillator (scintillator layer 211) can be applied compared to the case where the buffer member is not provided. It becomes possible to reduce.
 一方、図5に示すように、本実施形態では、電子部品22を搭載する回路基板23が4つに分割されており、それぞれセンサパネル21や基台24の各角部近傍に寄せて配置されている。また、電子部品22は、回路基板23上にセンサパネル21の外周に沿って配置されている。電子部品22は、できるだけセンサパネル21の各角部に近い位置に配置されることが好ましい。 On the other hand, as shown in FIG. 5, in this embodiment, the circuit board 23 on which the electronic component 22 is mounted is divided into four parts, which are arranged near the corners of the sensor panel 21 and the base 24. ing. The electronic component 22 is arranged on the circuit board 23 along the outer periphery of the sensor panel 21. The electronic component 22 is preferably arranged at a position as close to each corner of the sensor panel 21 as possible.
 電子部品22を回路基板23上にこのように配置することによって、検出器ユニット2をハウジング3に収納した際に電子部品22がハウジング3の角部近傍およびハウジング本体部31の周縁部の、外力に対して変形し難い(高強度の)領域に沿って配置される。なお、回路基板23や電子部品22の数、配置等はここに例示したものに限定されない。 By arranging the electronic component 22 on the circuit board 23 in this way, when the detector unit 2 is housed in the housing 3, the electronic component 22 is subjected to external forces in the vicinity of the corner portion of the housing 3 and the peripheral portion of the housing main body portion 31. Are arranged along a region that is difficult to deform (high strength). In addition, the number, arrangement | positioning, etc. of the circuit board 23 and the electronic component 22 are not limited to what was illustrated here.
 本実施形態において、回路基板23上に配置される電子部品22としては、例えば各部の制御を行う制御部27(図18参照)を構成するCPU(central processing unit)や、ROM(read only memory)、RAM(Random Access Memory)等からなる記憶部(以上図示省略)、走査駆動回路16(図18参照)、信号読出し回路17(図18参照)等がある。なお、ROM、RAMとは別に、フラッシュメモリなどの書き換え可能な読出し専用メモリ等からなりセンサパネル21から出力された画像信号を記憶する画像記憶部を備えていてもよい。 In the present embodiment, as the electronic component 22 disposed on the circuit board 23, for example, a CPU (central processing unit) or a ROM (read only memory) that constitutes a control unit 27 (see FIG. 18) that controls each unit. , A storage unit (not shown) including a RAM (Random Access Memory), a scanning drive circuit 16 (see FIG. 18), a signal readout circuit 17 (see FIG. 18), and the like. In addition to the ROM and RAM, an image storage unit that includes a rewritable read-only memory such as a flash memory or the like and that stores an image signal output from the sensor panel 21 may be provided.
 また、検出器ユニット2には、外部装置との間で各種信号の送受信を行う図示しない通信部が設けられている。通信部は、例えば、センサパネル21から出力された画像信号を前述のアンテナ装置9を介して外部装置に転送したり、外部装置から送信される撮影開始信号等をアンテナ装置9を介して受信するようになっている。 The detector unit 2 is provided with a communication unit (not shown) that transmits and receives various signals to and from an external device. For example, the communication unit transfers the image signal output from the sensor panel 21 to the external device via the antenna device 9 described above, and receives the imaging start signal transmitted from the external device via the antenna device 9. It is like that.
 また、基台24上であって、検出器ユニット2をハウジング3の内部に収納した際に第1の蓋部材32に設けられている充電用端子45の近傍となる位置には、可搬型放射線固体検出器1を構成する複数の駆動部(例えば、後述する走査駆動回路16(図18参照)、信号読出し回路17(図18参照)、通信部、記憶部、図示しない充電量検出部、インジケータ47、センサパネル21等)に電力を供給する電力供給部として充電池26が設けられている。 In addition, on the base 24, when the detector unit 2 is housed in the housing 3, the portable radiation is disposed at a position near the charging terminal 45 provided in the first lid member 32. A plurality of driving units constituting the solid state detector 1 (for example, a scanning driving circuit 16 (see FIG. 18) described later, a signal reading circuit 17 (see FIG. 18), a communication unit, a storage unit, a charge amount detecting unit (not shown), an indicator 47, sensor panel 21 etc.), a rechargeable battery 26 is provided as a power supply unit for supplying power.
 充電池26としては、例えばニッカド電池、ニッケル水素電池、リチウムイオン電池、小型シール鉛電池、鉛蓄電池等の充電自在な電池を適用することができる。また、充電池26に代えて、燃料電池等を適用してもよい。なお、電力供給部としての充電池26の形状、大きさ、個数、配置等は、図5等に例示したものに限定されない。 As the rechargeable battery 26, for example, a rechargeable battery such as a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, or a lead storage battery can be used. Further, a fuel cell or the like may be applied instead of the rechargeable battery 26. Note that the shape, size, number, arrangement, and the like of the rechargeable battery 26 as the power supply unit are not limited to those illustrated in FIG.
 充電池26は、基台24上の所定の位置に設置することにより前述の充電用端子45と電気的に接続されるようになっており、例えば、可搬型放射線固体検出器1を外部電源と接続されるクレードル等の図示しない充電用装置に装着することによって充電用装置側の端子とハウジング3側の充電用端子45とが接続されて充電池26の充電が行われるようになっている。 The rechargeable battery 26 is electrically connected to the above-described charging terminal 45 by being installed at a predetermined position on the base 24. For example, the portable radiation solid state detector 1 is connected to an external power source. By attaching to a charging device (not shown) such as a cradle to be connected, the terminal on the charging device side and the charging terminal 45 on the housing 3 side are connected to charge the rechargeable battery 26.
 各種電子部品22、充電池26と接続されている回路基板23の端部には、柔軟性のある材料で構成されたフレキシブルハーネス327が設けられている。回路基板23等は、このフレキシブルハーネス327によって、第1の蓋部材32に設けられている充電用端子45、電源スイッチ46、インジケータ47、およびアンテナ装置9と電気的に接続されている。なお、フレキシブルハーネス327を第1の蓋部材32の充電用端子45等と接続する手法は、コネクタによってもよいし、半田付けによってもよい。 A flexible harness 327 made of a flexible material is provided at the end of the circuit board 23 connected to the various electronic components 22 and the rechargeable battery 26. The circuit board 23 and the like are electrically connected to the charging terminal 45, the power switch 46, the indicator 47, and the antenna device 9 provided on the first lid member 32 by the flexible harness 327. Note that a method of connecting the flexible harness 327 to the charging terminal 45 of the first lid member 32 may be a connector or may be soldered.
 図13は、センサパネル21の平面図であり、図14は、センサパネル21を図13における矢視F方向から見た側面図であり、図15は、センサパネル21の図13におけるG-G断面図である。 13 is a plan view of the sensor panel 21, FIG. 14 is a side view of the sensor panel 21 as viewed from the direction of arrow F in FIG. 13, and FIG. It is sectional drawing.
 センサパネル21は、入射した放射線を光に変換するシンチレータとしてシンチレータ層(発光層)211が一方の面に形成された第1のガラス基板214、シンチレータ層211の下側に積層されシンチレータ層211により変換された光を検出して電気信号に変換する信号検出部151(図18参照)が一方の面に形成された第2のガラス基板213等を備えて構成されており、これらが積層された積層構造となっている。 The sensor panel 21 includes a first glass substrate 214 having a scintillator layer (light emitting layer) 211 formed on one surface as a scintillator that converts incident radiation into light, and is laminated below the scintillator layer 211. A signal detector 151 (see FIG. 18) that detects the converted light and converts it into an electric signal is configured to include a second glass substrate 213 formed on one surface, and these are laminated. It has a laminated structure.
 シンチレータ層211は、例えば、蛍光体を主たる成分とし、入射した放射線に基づいて、波長が300nmから800nmの電磁波、すなわち、可視光線を中心に紫外光から赤外光にわたる電磁波(光)を出力するようになっている。 The scintillator layer 211 has, for example, a phosphor as a main component and outputs an electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (light) ranging from ultraviolet light to infrared light centering on visible light, based on incident radiation. It is like that.
 このシンチレータ層211で用いられる蛍光体は、例えば、CaWO等を母体材料とするものや、CsI:TlやCdS:Tb、ZnS:Ag等の母体材料内に発光中心物質が付活されたものを用いることができる。また、希土類元素をMとしたとき、(Gd,M,Eu)の一般式で示される蛍光体を用いることができる。特に、放射線吸収および発光効率が高いことよりCsI:TlやCdS:Tbが好ましく、これらを用いることで、ノイズの低い高画質の画像を得ることができる。 The phosphor used in the scintillator layer 211 is, for example, a material using CaWO 4 or the like as a base material, or a luminescent center substance in a base material such as CsI: Tl, Cd 2 O 2 S: Tb, or ZnS: Ag. An activated material can be used. Further, when the rare earth element is M, a phosphor represented by a general formula of (Gd, M, Eu) 2 O 3 can be used. In particular, CsI: Tl and Cd 2 O 2 S: Tb are preferable because of high radiation absorption and light emission efficiency. By using these, high-quality images with low noise can be obtained.
 シンチレータ層211は、図16の拡大図に示すように、例えば、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム等の各種高分子材料(ポリマー)により形成された支持体211bの上に、例えば気相成長法により蛍光体211aを層状に形成したものであり、蛍光体211aの層は、蛍光体211aの柱状結晶からなっている。気相成長法としては、蒸着法、スパッタ法、化学蒸着(CVD:chemical vapor deposition)法等が好ましく用いられる。いずれの手法においても、蛍光体211aの層を支持体211b上に独立した細長い柱状結晶に気相成長させることができる。 As shown in the enlarged view of FIG. 16, the scintillator layer 211 is formed on a support 211b formed of various polymer materials (polymers) such as a cellulose acetate film, a polyester film, and a polyethylene terephthalate film. The phosphor 211a is formed in a layer shape by a growth method, and the layer of the phosphor 211a is composed of columnar crystals of the phosphor 211a. As the vapor phase growth method, a vapor deposition method, a sputtering method, a chemical vapor deposition (CVD) method or the like is preferably used. In any method, the layer of the phosphor 211a can be vapor-phase grown into an independent elongated columnar crystal on the support 211b.
 シンチレータ層211は、第1のガラス基板214の下側(撮影時に放射線が入射する側と反対側)に貼付されており、第1のガラス基板214の上側(撮影時に放射線が入射する側)にはガラス保護フィルム215がさらに積層されている。また、シンチレータ層211の下側(撮影時に放射線が入射する側とは反対側)には、第2のガラス基板213が積層されており、第2のガラス基板213の下側にはガラス保護フィルム216がさらに積層されている。 The scintillator layer 211 is affixed to the lower side of the first glass substrate 214 (the side opposite to the side on which radiation is incident during imaging), and the upper side of the first glass substrate 214 (the side on which radiation is incident during imaging). A glass protective film 215 is further laminated. A second glass substrate 213 is laminated below the scintillator layer 211 (the side opposite to the side on which radiation is incident during imaging), and a glass protective film is disposed below the second glass substrate 213. 216 is further laminated.
 第1のガラス基板214および第2のガラス基板213は、ともに厚みが0.6mm程度のものが用いられている。なお、第1のガラス基板214および第2のガラス基板213の厚みは0.6mmに限定されない。また、第1のガラス基板214と第2のガラス基板213とで厚みが異なるようにしてもよい。 Both the first glass substrate 214 and the second glass substrate 213 have a thickness of about 0.6 mm. Note that the thickness of the first glass substrate 214 and the second glass substrate 213 is not limited to 0.6 mm. Further, the first glass substrate 214 and the second glass substrate 213 may have different thicknesses.
 また、第1のガラス基板214および第2のガラス基板213(図14等参照)は、レーザにより端面を切断することにより、端面、すなわち、切断面と、この切断面とガラス基板の上面との稜線部分、および切断面とガラス基板の下面との稜線部分を平滑化する平滑化処理を施されている。 In addition, the first glass substrate 214 and the second glass substrate 213 (see FIG. 14 and the like) are cut at the end surfaces with a laser so that the end surfaces, that is, the cut surfaces, and the cut surfaces and the upper surfaces of the glass substrates are separated. The ridge line portion and the ridge line portion between the cut surface and the lower surface of the glass substrate are smoothed.
 ここで、レーザで第1のガラス基板214および第2のガラス基板213の端面を切断することによる平滑化処理について説明する。 Here, the smoothing process by cutting the end surfaces of the first glass substrate 214 and the second glass substrate 213 with a laser will be described.
 ガラスを切断する場合、まずガラス表面に硬く鋭いもので筋(傷)をつけてガラスの厚さ方向に垂直クラックを形成し(スクライブ作業)、このクラックを伸ばすように応力をかけて割る(分断作業)という二つの作業工程を経るのが一般である。そして、従来は、ガラス表面に傷を付ける作業(スクライブ作業)を超硬合金、電着ダイヤモンド、焼結ダイヤモンド等を用いて行っていた。しかし、ガラス表面に超硬合金やダイヤモンド等で傷を付けた場合には、切断(分断)されたガラスの端面に微細な凹凸ができ、曲げ等の負荷をガラスにかけた場合に、この凹凸部分に応力が集中するため、割れやすいという問題があった。 When cutting glass, first, streaks (scratches) are formed on the glass surface to form vertical cracks in the thickness direction of the glass (scribing work), and stress is applied to break up the cracks. It is common to go through two work processes called (work). Conventionally, the work of scuffing the glass surface (scribing work) has been performed using cemented carbide, electrodeposited diamond, sintered diamond, or the like. However, when the glass surface is scratched with cemented carbide or diamond, fine irregularities are formed on the cut (divided) glass end face, and this irregularity part is applied when a load such as bending is applied to the glass. Since stress concentrates on the surface, there is a problem that it is easy to break.
 この点、本実施形態では、レーザを用いて第1のガラス基板214および第2のガラス基板213の表面に傷を付ける作業(スクライブ作業)を行う。このようにレーザを用いた場合には、切断(分断)後のガラスの端面が平滑化されるので、曲げ等の負荷に対するガラスの強度を高めることができる。 In this respect, in this embodiment, an operation (scribing operation) for scratching the surfaces of the first glass substrate 214 and the second glass substrate 213 using a laser is performed. When the laser is used in this way, the end face of the glass after cutting (dividing) is smoothed, so that the strength of the glass against a load such as bending can be increased.
 ガラス基板の割れは、外力の大きさというよりは、むしろ、ガラス基板断裁時に応力集中の元となる部分的なバリや、部分的な凸凹部が形成されることに起因しているため、このように断裁後の端面を平滑化する処理をすることにより、かなりの外力(応力)に対してもガラス基板の割れ等の発生を防止することができる。 Rather than the magnitude of the external force, the glass substrate cracks are caused by the formation of partial burrs and partial convexities that cause stress concentration when the glass substrate is cut. Thus, by performing the process of smoothing the end face after cutting, it is possible to prevent the occurrence of cracking of the glass substrate even for a considerable external force (stress).
 なお、レーザにより第1のガラス基板214および第2のガラス基板213の端面を切断する切断装置としては、例えばレーザ発振部において、YAG(Yttrium Aluminum Garnet イットリウム・アルミニウム・ガーネット結晶)をレーザ光学媒体として用いるYAGレーザ等が好適に用いられるが、切断に用いられる切断装置はこれに限定されない。 As a cutting device for cutting the end surfaces of the first glass substrate 214 and the second glass substrate 213 with a laser, for example, in a laser oscillation unit, YAG (Yttrium Aluminum Garnet yttrium / aluminum / garnet crystal) is used as a laser optical medium. A YAG laser or the like to be used is preferably used, but the cutting device used for cutting is not limited to this.
 第2のガラス基板213の上側(前述したシンチレータ層211に対向する側)には、シンチレータ層211から出力された電磁波(光)を電気エネルギーに変換して蓄積し、蓄積された電気エネルギーに基づく画像信号の出力を行う検出部である信号検出部151(図18参照)が形成されている。 The electromagnetic wave (light) output from the scintillator layer 211 is converted into electric energy and accumulated on the upper side of the second glass substrate 213 (the side facing the scintillator layer 211 described above), and is based on the accumulated electric energy. A signal detector 151 (see FIG. 18), which is a detector that outputs an image signal, is formed.
 このように、本実施形態においては、信号検出部151が、シンチレータ層211の下側に積層されており、信号検出部151の下側に配置された第2のガラス基板213と、シンチレータ層211の上側に配置された第1のガラス基板214との間に、信号検出部151とシンチレータ層211とが対向した状態で挟み込まれる構成となっている。 As described above, in the present embodiment, the signal detection unit 151 is stacked on the lower side of the scintillator layer 211, the second glass substrate 213 disposed on the lower side of the signal detection unit 151, and the scintillator layer 211. The signal detection unit 151 and the scintillator layer 211 are sandwiched between the first glass substrate 214 disposed on the upper side of the first glass substrate 214.
 従来は、ハウジングを通じて内部のガラス基板に作用する応力を抑制しなければ、ガラス基板の割れは防止できないと考えられていたため、前述したように、ハウジングとガラス基板との間にスペースを設け、当該スペースに外力を緩和/減少せしめる緩衝部材を多用していた。このためハウジングが一層大型化するものであった。 Conventionally, it was thought that cracking of the glass substrate could not be prevented unless the stress acting on the internal glass substrate through the housing was suppressed. Therefore, as described above, a space was provided between the housing and the glass substrate. A large number of cushioning members that relieve / reduce the external force were used in the space. For this reason, the housing is further increased in size.
 この点、本発明者等は、ガラス基板の割れは、当該ガラス基板に作用する外力の大きさというよりは、むしろ、ガラス基板断裁時に応力集中の元となる部分的なバリや、部分的な凸凹部が形成されることに起因していることを見出した。そこで、上記の応力集中の元となる前記のバリや、凸凹部を除去すべく、断裁後の端面を平滑化する処理を行い、これにより、前述のような構成のハウジング3に作用する患者の体重等に起因する荷重や撓みに対して、ガラス基板213,214の割れ等の発生を防止することが可能となった。 In this regard, the present inventors have found that the cracks in the glass substrate are not the magnitude of the external force acting on the glass substrate, but rather the partial burrs that cause stress concentration when cutting the glass substrate, It has been found that this is due to the formation of convex and concave portions. Therefore, in order to remove the burrs and the convex and concave portions that cause the stress concentration, a process of smoothing the end face after cutting is performed, and thereby the patient acting on the housing 3 having the above-described configuration is processed. It has become possible to prevent the occurrence of cracks and the like of the glass substrates 213 and 214 with respect to loads and deflections caused by weight and the like.
 また、第1のガラス基板214と第2のガラス基板213との外周縁に沿って封止部材217が設けられており、この封止部材217によって第1のガラス基板214と第2のガラス基板213とが接着され、結合されている。これにより、曲げ等の負荷に対してより強度を高めることができる。 Further, a sealing member 217 is provided along the outer peripheral edge of the first glass substrate 214 and the second glass substrate 213, and the first glass substrate 214 and the second glass substrate are provided by the sealing member 217. 213 is bonded and bonded. Thereby, intensity | strength can be raised more with respect to loads, such as a bending.
 さらに、第1のガラス基板214と第2のガラス基板213とを接着する際は、第1のガラス基板214と第2のガラス基板213との間の空間から空気を吸引する等により脱気した後に封止部材217による接着、結合を行うようになっており、これにより、空気に含まれる湿気がシンチレータ層211等に影響を及ぼすのを防ぐことができ、シンチレータ層211等の長寿命化を図ることができる。 Further, when the first glass substrate 214 and the second glass substrate 213 are bonded together, the first glass substrate 214 and the second glass substrate 213 are deaerated by, for example, sucking air from the space between the first glass substrate 214 and the second glass substrate 213. Adhesion and bonding by the sealing member 217 are performed later, thereby preventing moisture contained in the air from affecting the scintillator layer 211 and the like, and extending the life of the scintillator layer 211 and the like. Can be planned.
 また、センサパネル21の各角部および角部同士の中間近傍にはセンサパネル21を外部からの衝撃等から保護するための緩衝部材218が設けられている。 Further, a buffer member 218 for protecting the sensor panel 21 from an external impact or the like is provided in each corner of the sensor panel 21 and in the vicinity of the middle between the corners.
 ここで、センサパネル21の回路構成について説明する。図17は、信号検出部151を構成する1画素分の光電変換部の等価回路図である。 Here, the circuit configuration of the sensor panel 21 will be described. FIG. 17 is an equivalent circuit diagram of a photoelectric conversion unit for one pixel constituting the signal detection unit 151.
 図17に示すように、1画素分の光電変換部の構成は、光電変換素子としてのフォトダイオード152と、フォトダイオード152で蓄積された電気エネルギーをスイッチングにより電気信号として取り出す薄膜トランジスタ(以下「TFT」と称する。)153とから構成されている。フォトダイオード152は、電荷を生成し蓄積する撮像素子である。フォトダイオード152から取り出された電気信号は、増幅器154により信号読出し回路17が検出可能なレベルにまで電気信号を増幅するようになっている。 As shown in FIG. 17, the configuration of the photoelectric conversion unit for one pixel includes a photodiode 152 as a photoelectric conversion element, and a thin film transistor (hereinafter referred to as “TFT”) that extracts electric energy accumulated in the photodiode 152 as an electric signal by switching. 153). The photodiode 152 is an image sensor that generates and accumulates charges. The electrical signal taken out from the photodiode 152 is amplified by an amplifier 154 to a level that can be detected by the signal readout circuit 17.
 具体的には、光の照射を受けるとフォトダイオード152で電荷が発生し、TFT153のゲートGに信号読出し用の電圧が印加されると、TFT153のソースSに接続されたフォトダイオード152から電荷がTFT153のドレインD側に流れ、増幅器154に並列に接続されたコンデンサ154aに蓄積される。そして、増幅器154から、コンデンサ154aに蓄積された電荷に比例して増幅された電気信号が出力されるようになっている。 Specifically, when light is irradiated, a charge is generated in the photodiode 152, and when a signal reading voltage is applied to the gate G of the TFT 153, the charge is transferred from the photodiode 152 connected to the source S of the TFT 153. It flows to the drain D side of the TFT 153 and is stored in a capacitor 154 a connected in parallel to the amplifier 154. The amplifier 154 outputs an electric signal amplified in proportion to the electric charge accumulated in the capacitor 154a.
 また、増幅器154から増幅された電気信号が出力されて電気信号が取り出されると、増幅器154やコンデンサ154aに並列に接続されたスイッチ154bがオンされてコンデンサ154aに蓄積された電荷が放出されて、増幅器154がリセットされるようになっている。なお、フォトダイオード152は、単に規制キャパシタンスを有した光ダイオードでもよいし、フォトダイオード152と光電変換部のダイナミックレンジを改良するように追加コンデンサを並列に含んでいるものでもよい。 When the amplified electrical signal is output from the amplifier 154 and the electrical signal is extracted, the switch 154b connected in parallel to the amplifier 154 and the capacitor 154a is turned on, and the charge accumulated in the capacitor 154a is released. The amplifier 154 is reset. The photodiode 152 may simply be a photodiode having a regulation capacitance, or may include an additional capacitor in parallel so as to improve the dynamic range of the photodiode 152 and the photoelectric conversion unit.
 図18は、このような光電変換部を二次元に配列した等価回路図であり、画素間には、走査線Llと信号線Lrが直交するように配設されている。TFT153のソースSには前述のフォトダイオード152の一端側が接続されており、TFT153のドレインDは信号線Lrに接続されている。一方、フォトダイオード152の他端側は、各行に配された隣接するフォトダイオード152の他端側と接続されて共通のバイアス線Lbを通じてバイアス電源155に接続されている。 FIG. 18 is an equivalent circuit diagram in which such photoelectric conversion units are two-dimensionally arranged, and between the pixels, the scanning lines Ll and the signal lines Lr are arranged so as to be orthogonal to each other. One end side of the photodiode 152 is connected to the source S of the TFT 153, and the drain D of the TFT 153 is connected to the signal line Lr. On the other hand, the other end side of the photodiode 152 is connected to the other end side of the adjacent photodiode 152 arranged in each row, and is connected to a bias power source 155 through a common bias line Lb.
 このバイアス電源155は制御部27に接続され、制御部27からの指示によりバイアス線Lbを通じてフォトダイオード152に電圧がかかるようになっている。また各行に配されたTFT153のゲートGは、共通の走査線Llに接続されており、走査線Llは走査駆動回路16を介して制御部27に接続されている。同様に、各列に配されたTFT153のドレインDは、共通の信号線Lrに接続されて制御部27に制御される信号読出し回路17に接続されている。 The bias power source 155 is connected to the control unit 27 so that a voltage is applied to the photodiode 152 through the bias line Lb according to an instruction from the control unit 27. The gates G of the TFTs 153 arranged in each row are connected to a common scanning line Ll, and the scanning line Ll is connected to the control unit 27 via the scanning drive circuit 16. Similarly, the drain D of the TFT 153 arranged in each column is connected to a signal readout circuit 17 connected to a common signal line Lr and controlled by the control unit 27.
 信号読出し回路17には、前述した信号線Lrごとの増幅器154が設けられている。信号読出し時には、選択された走査線Llに信号読出し用の電圧が印加され、それによりその走査線Llに接続されている各TFT153のゲートGに電圧が印加され、各TFT153を介して各フォトダイオード152から各信号線Lrにそのフォトダイオード152で発生した電荷が流れる。そして、各増幅器154でフォトダイオード152ごとに電荷が増幅され、1行分のフォトダイオード152の情報が取り出される。そして、この操作を走査線Llをそれぞれ切り替えてすべての走査線Llについて行うことで、全フォトダイオード152から情報を取り出すようになっている。 The signal readout circuit 17 is provided with the amplifier 154 for each signal line Lr described above. At the time of signal reading, a signal reading voltage is applied to the selected scanning line Ll, whereby a voltage is applied to the gate G of each TFT 153 connected to the scanning line Ll, and each photodiode is connected via each TFT 153. The charge generated in the photodiode 152 flows from the signal line 152 to each signal line Lr. Then, each amplifier 154 amplifies the charge for each photodiode 152, and information of the photodiode 152 for one row is extracted. This operation is performed for all the scanning lines Ll by switching the scanning lines Ll, whereby information is extracted from all the photodiodes 152.
 各増幅器154にはそれぞれサンプルホールド回路156が接続されている。各サンプルホールド回路156は信号読出し回路17に設けられたアナログマルチプレクサ157に接続されており、信号読出し回路17により読み出された信号は、アナログマルチプレクサ157からA/D変換器158を介して前述した制御部27に出力されるようになっている。 A sample hold circuit 156 is connected to each amplifier 154. Each sample and hold circuit 156 is connected to an analog multiplexer 157 provided in the signal readout circuit 17, and the signal read out by the signal readout circuit 17 is described above from the analog multiplexer 157 via the A / D converter 158. It is output to the control unit 27.
 なお、TFT153は、液晶ディスプレイ等に使用されている無機半導体系のもの、有機半導体を用いたもののいずれであってもよい。また、本実施形態では、撮像素子として光電変換素子としてのフォトダイオード152を用いた場合を例示したが、光電変換素子はフォトダイオード以外の固体撮像素子を用いてもよい。 Note that the TFT 153 may be either an inorganic semiconductor type used in a liquid crystal display or the like, or an organic semiconductor type. Further, in the present embodiment, the case where the photodiode 152 as a photoelectric conversion element is used as the imaging element is illustrated, but a solid-state imaging element other than the photodiode may be used as the photoelectric conversion element.
 この信号検出部151の側部には、各フォトダイオード(光電変換素子)152にパルスを送って当該各フォトダイオード152を走査・駆動させる走査駆動回路16と、各光電変換素子に蓄積された電気エネルギーを読み出す信号読出し回路17とが配されている。 On the side of the signal detector 151, a scanning drive circuit 16 that sends a pulse to each photodiode (photoelectric conversion element) 152 to scan and drive each photodiode 152, and the electric power stored in each photoelectric conversion element A signal readout circuit 17 for reading out energy is arranged.
 次に、本実施形態における可搬型放射線固体検出器1の作用について説明する。 Next, the operation of the portable radiation solid detector 1 in this embodiment will be described.
 前述したように、本実施形態では、可搬型放射線固体検出器1の第1の蓋部材32および第2の蓋部材33(図2参照)は、ハウジング本体部31の一方側端部の開口部311に第1の蓋部材32の挿入部322が挿入され、他方側端部の開口部312に第2の蓋部材33の挿入部332が挿入されて、ハウジング本体部31の係合凹部315,316にそれぞれ係合凸部325,335が係合される。 As described above, in the present embodiment, the first lid member 32 and the second lid member 33 (see FIG. 2) of the portable radiation solid-state detector 1 are open at one end of the housing body 31. The insertion portion 322 of the first lid member 32 is inserted into 311, the insertion portion 332 of the second lid member 33 is inserted into the opening 312 at the other end, and the engagement recess 315 of the housing body 31 is inserted. Engaging projections 325 and 335 are engaged with 316, respectively.
 そして、その後、第1の蓋部材32および第2の蓋部材33をハウジング本体部31から取り外すことができないほど強固にハウジング本体部31に固着する。そのため、ハウジング本体部31や第1の蓋部材32、第2の蓋部材33を含むハウジング3全体が一体化される。 After that, the first lid member 32 and the second lid member 33 are firmly fixed to the housing body 31 so that they cannot be removed from the housing body 31. Therefore, the entire housing 3 including the housing main body 31, the first lid member 32, and the second lid member 33 is integrated.
 ハウジング3を上記のように形成し、また、その内部においてセンサパネル21と緩衝部材25と基台24等を図6等に示したように重ね合わせた状態として、緩衝部材25の厚さTを種々変化させて、同一の圧力をかけた場合のセンサパネル21のシンチレータ層211における圧力感度(単位は[dB])がどのように変化するかを調べた実験結果を図19に示す。 The housing 3 is formed as described above, and the thickness T of the buffer member 25 is set so that the sensor panel 21, the buffer member 25, the base 24, and the like are overlapped as shown in FIG. FIG. 19 shows an experimental result of examining how the pressure sensitivity (unit: [dB]) in the scintillator layer 211 of the sensor panel 21 changes when various pressures are applied and the same pressure is applied.
 なお、緩衝部材25として発泡ポリプロピレンを用いる場合について実験を行った。また、図19で、緩衝部材25の厚さTが0mmとは、緩衝部材25を設けずに、前述した鉛の薄板を介してセンサパネル21の第2のガラス基板213と基台24とを直接固定した場合を表す。 In addition, it experimented about the case where a foamed polypropylene is used as the buffer member 25. FIG. In FIG. 19, the thickness T of the buffer member 25 is 0 mm. The buffer member 25 is not provided, and the second glass substrate 213 and the base 24 of the sensor panel 21 are connected via the lead thin plate described above. This represents the case of direct fixing.
 図19に示すように、緩衝部材25の厚さTが0mmの場合に比べて、厚さTが0.5mm、1mmと厚くなるに従ってシンチレータ層211における圧力感度は小さくなることがわかる。具体的には、この実験によれば、緩衝部材25の厚さTが0mmの場合に比べて、厚さTが0.5mmの場合には圧力感度が約2dB、厚さTが1mmの場合には圧力感度が約6dB小さくなる。言い換えると、緩衝部材25をシンチレータ層211に近い位置に配置した方が、荷重低減効果が大きいことを示している。 As shown in FIG. 19, it can be seen that the pressure sensitivity in the scintillator layer 211 decreases as the thickness T increases to 0.5 mm and 1 mm, compared to the case where the thickness T of the buffer member 25 is 0 mm. Specifically, according to this experiment, when the thickness T of the buffer member 25 is 0 mm, the pressure sensitivity is about 2 dB when the thickness T is 0.5 mm, and the thickness T is 1 mm. The pressure sensitivity is reduced by about 6 dB. In other words, it is shown that the load reduction effect is greater when the buffer member 25 is disposed at a position closer to the scintillator layer 211.
 この緩衝部材25の厚さTを厚くした場合の圧力感度の低下は、緩衝部材25を発泡ポリプロピレンで形成した場合に限らず、ポリウレタンや不織布、ゴム、エラストマ等の材料で形成する場合にも同様であった。一方、図示を省略するが、緩衝部材をハウジング本体部31のバック板Y(ハウジング本体部31の放射線入射面X(図6参照)と反対側の裏側の板)の内面側(バック板Yと基台24の間)に設けた場合、図19のグラフ右側に示すように、緩衝部材の効果は、本実施形態のように緩衝部材25をセンサパネル21と基台24との間に設けた場合に比べ、有意差が小さい。 The decrease in pressure sensitivity when the thickness T of the buffer member 25 is increased is not limited to the case where the buffer member 25 is formed of foamed polypropylene, but is the same when formed of a material such as polyurethane, nonwoven fabric, rubber, or elastomer. Met. On the other hand, although illustration is omitted, the buffer member is the inner surface (back plate Y) of the back plate Y of the housing body 31 (the back plate opposite to the radiation incident surface X of the housing body 31 (see FIG. 6)). 19 is provided between the sensor panel 21 and the base 24 as in the present embodiment, as shown in the right side of the graph of FIG. Compared to the case, the significant difference is small.
 そして、可搬型放射線固体検出器1に患者の体重(荷重)が加わる場合のように、可搬型放射線固体検出器1のハウジング3の放射線入射面X(図1参照)に全体的に圧力が加わった場合、シンチレータ層211にもその応力がかかるが、本実施形態のようにセンサパネル21と基台24との間に緩衝部材25を設けたことにより、シンチレータ層211にかかる圧力が分散されて吸収されるため、その圧力感度が小さくなる。 Then, as in the case where the weight (load) of the patient is applied to the portable radiation solid detector 1, pressure is applied to the radiation incident surface X (see FIG. 1) of the housing 3 of the portable radiation solid detector 1 as a whole. In this case, the stress is also applied to the scintillator layer 211. However, by providing the buffer member 25 between the sensor panel 21 and the base 24 as in the present embodiment, the pressure applied to the scintillator layer 211 is dispersed. Since it is absorbed, its pressure sensitivity becomes small.
 そのため、シンチレータ層211がCsI等の母体材料内に発光中心物質が付活された蛍光体を蒸着により柱状結晶として形成されている場合でも、外力により破壊され難くなる。実際に約0.5mmの厚さの発泡ポリプロピレンや不織布等を用いて緩衝部材25を形成し、可搬型放射線固体検出器1の通常の使用状況で使用したところ、シンチレータ層211の蛍光体の柱状結晶が損傷されることはなかった。 Therefore, even when the scintillator layer 211 is formed as a columnar crystal by vapor deposition of a phosphor in which a luminescent center substance is activated in a base material such as CsI, it is difficult to be destroyed by external force. When the buffer member 25 is actually formed using foamed polypropylene, nonwoven fabric or the like having a thickness of about 0.5 mm and used in the normal use state of the portable radiation solid detector 1, the columnar shape of the phosphor of the scintillator layer 211 is obtained. The crystals were not damaged.
 以上のように、本実施形態に係る可搬型放射線固体検出器1によれば、ハウジング3の放射線入射方向の厚さが16mm以下であり、従来のスクリーン/フィルム用のカセッテにおけるJIS規格サイズの範囲内に収まる寸法であるため、カセッテ型のFPDである可搬型放射線固体検出器1による撮影を行う場合でもCR用のカセッテ用に設けられているブッキーテーブル等、既存の装置、設備を利用することができる。 As described above, according to the portable radiation solid-state detector 1 according to the present embodiment, the thickness of the housing 3 in the radiation incident direction is 16 mm or less, and the range of the JIS standard size in the conventional screen / film cassette. Because it is a size that fits inside, even when photographing with the portable radiation solid state detector 1 that is a cassette type FPD, use existing devices and equipment such as a bucky table provided for the cassette for CR. Can do.
 また、センサパネル21と基台24との間に緩衝部材25を設けたため、通常の使用状態で外部から圧力がかかっても、緩衝部材25がシンチレータ(シンチレータ層211)にかかる圧力を分散して効果的に吸収するために、シンチレータにおける圧力感度を有効に減少させることが可能となり、シンチレータの蛍光体が柱状結晶で形成される場合にも柱状結晶が損傷、破壊されることを有効に防止することが可能となる。 In addition, since the buffer member 25 is provided between the sensor panel 21 and the base 24, the buffer member 25 disperses the pressure applied to the scintillator (scintillator layer 211) even if pressure is applied from the outside in a normal use state. In order to absorb effectively, the pressure sensitivity in the scintillator can be effectively reduced, and even when the phosphor of the scintillator is formed of columnar crystals, the columnar crystals are effectively prevented from being damaged or destroyed. It becomes possible.
 さらに、緩衝部材25をセンサパネル21と基台24との間に設けることで、上記のような有利な効果が得られるため、可搬型放射線固体検出器1のハウジング3の放射線入射面Xとセンサパネル21との間に緩衝部材を設ける必要がない。そのため、例えばハウジング3の放射線入射面Xとセンサパネル21との間に緩衝部材を設けた場合には放射線入射面X上に載置された患者の身体等の被写体とシンチレータとの距離が遠くなり、放射線が被写体で散乱されてグレアが発生して検出される放射線画像の画像劣化が発生するが、そのようなグレアの発生を防止することが可能となる。 Furthermore, since the above advantageous effect is obtained by providing the buffer member 25 between the sensor panel 21 and the base 24, the radiation incident surface X of the housing 3 of the portable radiation solid detector 1 and the sensor are obtained. There is no need to provide a buffer member between the panel 21. Therefore, for example, when a buffer member is provided between the radiation incident surface X of the housing 3 and the sensor panel 21, the distance between the scintillator and the subject such as the patient's body placed on the radiation incident surface X becomes longer. The radiation is scattered by the subject and the glare is generated to cause the image degradation of the detected radiation image. However, it is possible to prevent the occurrence of such a glare.
 また、ハウジング3の放射線入射面Xとセンサパネル21との間に緩衝部材を設けた場合には、緩衝部材により入射した放射線が散乱させる可能性が残るが、本発明によれば、そのような緩衝部材を設ける必要がなく、また、本発明の緩衝部材25はシンチレータや光電変換素子の放射線入射方向下流側に設けられるため、仮に緩衝部材25により放射線が散乱されたとしても、シンチレータや光電変換素子を透過した後の放射線を散乱するだけであるから、放射線画像への悪影響はまったく生じない。 Further, in the case where a buffer member is provided between the radiation incident surface X of the housing 3 and the sensor panel 21, there is a possibility that the radiation incident by the buffer member will be scattered. There is no need to provide a buffer member, and the buffer member 25 of the present invention is provided downstream of the scintillator or photoelectric conversion element in the radiation incident direction. Therefore, even if radiation is scattered by the buffer member 25, the scintillator or photoelectric conversion Since it only scatters the radiation after passing through the element, there is no adverse effect on the radiation image.
 なお、上記の実施形態では、シンチレータであるシンチレータ層211を第1のガラス基板214の一方の面上に形成する場合について説明したが、シンチレータの形成手法はこれに限定されず、本発明もシンチレータの形成手法に限定されない。 In the above embodiment, the case where the scintillator layer 211 that is a scintillator is formed on one surface of the first glass substrate 214 has been described. However, the method of forming the scintillator is not limited to this, and the present invention is also a scintillator. It is not limited to the formation method.
 例えば、上記の実施形態と同様に、シンチレータを、例えばセルロースアセテートフィルム等の支持体の上に例えば蒸着法等の気相成長法により蛍光体の柱状結晶を形成することで層状に形成し、それをガラス基板の面に貼付する代わりに、例えば、上記の第1のガラス基板214と同様に厚みが0.6mm程度の、ポリエチレンテレフタレートフィルム(PET)やポリエステルフィルム、ポリメタクリレートフィルム、ニトロセルロースフィルム、セルロースアセテートフィルム、ポリプロピレンフィルム、ポリエチレンナフタレートフィルム等の樹脂フィルムの面に貼付して形成することも可能である。 For example, as in the above-described embodiment, the scintillator is formed in layers by forming phosphor columnar crystals on a support such as a cellulose acetate film, for example, by vapor deposition such as vapor deposition. For example, a polyethylene terephthalate film (PET), a polyester film, a polymethacrylate film, a nitrocellulose film having a thickness of about 0.6 mm, similar to the first glass substrate 214 described above, It can also be formed by sticking to the surface of a resin film such as a cellulose acetate film, a polypropylene film, or a polyethylene naphthalate film.
 また、同様に、支持体上に蛍光体の柱状結晶を形成して層状に形成したシンチレータを第2のガラス基板213の面上に形成された光電変換素子(フォトダイオード152)を被覆する配置し、それらの上方から封止材で覆うようにして光電変換素子の上にシンチレータを配置するように構成することも可能である。 Similarly, a scintillator formed in a layered form by forming phosphor columnar crystals on a support is disposed so as to cover the photoelectric conversion element (photodiode 152) formed on the surface of the second glass substrate 213. It is also possible to arrange the scintillator on the photoelectric conversion element so as to cover with a sealing material from above.
 この場合、封止材としては例えば熱融着性の樹脂が用いられて、一般に使用されるインパルスシーラーで融着される。熱融着性の樹脂としては、例えば、エチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等が挙げられるが、これらには限定されない。 In this case, for example, a heat-sealable resin is used as the sealing material, and the sealing material is fused by a generally used impulse sealer. Examples of the heat-fusible resin include, but are not limited to, ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, and polyethylene (PE) film.
 なお、本発明が上記の実施形態やその変形例に限らず適宜変更可能であるのは勿論である。 Of course, the present invention is not limited to the above-described embodiment and its modifications, but can be modified as appropriate.
 医療の分野において、診断用の放射線画像を得るための放射線個体検出器に利用可能性がある。 In the medical field, it may be used as a radiation individual detector for obtaining radiographic images for diagnosis.
符号の説明Explanation of symbols
1  可搬型放射線固体検出器
3  ハウジング
21  センサパネル
23  回路基板(回路)
24  基台
25  緩衝部材
152  フォトダイオード(光電変換素子)
211  シンチレータ層(シンチレータ)
211a 蛍光体
213  第2のガラス基板(基板)
214  第1のガラス基板(別体の基板)
DESCRIPTION OF SYMBOLS 1 Portable radiation solid state detector 3 Housing 21 Sensor panel 23 Circuit board (circuit)
24 Base 25 Buffer member 152 Photodiode (photoelectric conversion element)
211 Scintillator layer (scintillator)
211a Phosphor 213 Second glass substrate (substrate)
214 First glass substrate (separate substrate)

Claims (5)

  1.  基板上に形成された複数の光電変換手段と、前記光電変換手段上に対向して設けられ、入射した放射線を光に変換するシンチレータとを備えるセンサパネルと、
     前記センサパネルに対向する面と反対側の面に前記光電変換手段に関連する回路が設けられた基台と、
    をハウジング内に内蔵し、
     さらに、前記センサパネルと前記基台との間に緩衝部材を設けたことを特徴とする可搬型放射線固体検出器。
    A sensor panel comprising a plurality of photoelectric conversion means formed on a substrate, and a scintillator provided opposite to the photoelectric conversion means for converting incident radiation into light;
    A base provided with a circuit related to the photoelectric conversion means on the surface opposite to the surface facing the sensor panel;
    In the housing,
    The portable radiation solid-state detector further comprises a buffer member provided between the sensor panel and the base.
  2.  前記ハウジングは、その放射線入射方向の厚さが16mm以下であることを特徴とする請求項1に記載の可搬型放射線固体検出器。 The portable radiation solid state detector according to claim 1, wherein the housing has a thickness in a radiation incident direction of 16 mm or less.
  3.  前記シンチレータは、蒸着による蛍光体の柱状結晶からなることを特徴とする請求項1または請求項2に記載の可搬型放射線固体検出器。 The portable radiation solid state detector according to claim 1 or 2, wherein the scintillator is made of a columnar crystal of a phosphor by vapor deposition.
  4.  前記シンチレータは、前記基板とは別体の基板の一方側の面に蒸着形成されており、
     前記基板と前記別体の基板は、前記複数の光電変換手段が設けられた前記基板の面と、前記シンチレータが蒸着形成された前記別体の基板の面とが対向するように一体化されていることを特徴とする請求項1から請求項3のいずれか一項に記載の可搬型放射線固体検出器。
    The scintillator is formed by vapor deposition on one surface of a substrate separate from the substrate,
    The substrate and the separate substrate are integrated so that the surface of the substrate on which the plurality of photoelectric conversion means are provided and the surface of the separate substrate on which the scintillator is deposited are opposed to each other. The portable radiation solid-state detector according to any one of claims 1 to 3, wherein the portable radiation solid-state detector is provided.
  5.  前記基板とは別体の基板は、ガラス基板であることを特徴とする請求項4に記載の可搬型放射線固体検出器。 5. The portable radiation solid state detector according to claim 4, wherein the substrate separate from the substrate is a glass substrate.
PCT/JP2009/053875 2008-04-10 2009-03-02 Portable solid-state radiation detector WO2009125632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-102047 2008-04-10
JP2008102047A JP2011128172A (en) 2008-04-10 2008-04-10 Portable solid-state radiation detector

Publications (1)

Publication Number Publication Date
WO2009125632A1 true WO2009125632A1 (en) 2009-10-15

Family

ID=41161767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053875 WO2009125632A1 (en) 2008-04-10 2009-03-02 Portable solid-state radiation detector

Country Status (2)

Country Link
JP (1) JP2011128172A (en)
WO (1) WO2009125632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148960A1 (en) * 2010-05-25 2011-12-01 富士フイルム株式会社 Radiological imaging device and method for assembling same
WO2011148943A1 (en) * 2010-05-25 2011-12-01 富士フイルム株式会社 Radiological imaging device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008685A1 (en) * 2011-07-12 2013-01-17 富士フイルム株式会社 Radiation output device, radiography system, and radiography method
JP6554767B2 (en) * 2013-08-22 2019-08-07 コニカミノルタ株式会社 Radiation imaging equipment
KR20160022549A (en) * 2014-08-20 2016-03-02 삼성전자주식회사 X-ray detecting apparatus
JP7314119B2 (en) 2018-03-19 2023-07-25 富士フイルム株式会社 Radiation detector, radiographic imaging device, and method for manufacturing radiation detector
WO2019181640A1 (en) * 2018-03-19 2019-09-26 富士フイルム株式会社 Radiation detector, radiographic photography device, and production method for radiation detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014170A (en) * 2000-06-27 2002-01-18 Canon Inc Input device for x-ray image
JP2005114944A (en) * 2003-10-07 2005-04-28 Konica Minolta Medical & Graphic Inc Cassette
JP2006113053A (en) * 2004-10-04 2006-04-27 General Electric Co <Ge> X-ray detector provided with shock absorbing cover
JP3815766B2 (en) * 1998-01-28 2006-08-30 キヤノン株式会社 Two-dimensional imaging device
JP4012182B2 (en) * 2004-08-19 2007-11-21 キヤノン株式会社 Cassette type X-ray imaging device
JP2007300996A (en) * 2006-05-09 2007-11-22 Konica Minolta Medical & Graphic Inc X-ray radiographic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815766B2 (en) * 1998-01-28 2006-08-30 キヤノン株式会社 Two-dimensional imaging device
JP2002014170A (en) * 2000-06-27 2002-01-18 Canon Inc Input device for x-ray image
JP2005114944A (en) * 2003-10-07 2005-04-28 Konica Minolta Medical & Graphic Inc Cassette
JP4012182B2 (en) * 2004-08-19 2007-11-21 キヤノン株式会社 Cassette type X-ray imaging device
JP2006113053A (en) * 2004-10-04 2006-04-27 General Electric Co <Ge> X-ray detector provided with shock absorbing cover
JP2007300996A (en) * 2006-05-09 2007-11-22 Konica Minolta Medical & Graphic Inc X-ray radiographic apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"JIS Handbook Radiant Rays (Radio Activities)", 12 April 1985, JAPANESE STANDARDS ASSOCIATION, pages: 675 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148960A1 (en) * 2010-05-25 2011-12-01 富士フイルム株式会社 Radiological imaging device and method for assembling same
WO2011148943A1 (en) * 2010-05-25 2011-12-01 富士フイルム株式会社 Radiological imaging device
JP2011247686A (en) * 2010-05-25 2011-12-08 Fujifilm Corp Imaging apparatus for radiation image
CN102918418A (en) * 2010-05-25 2013-02-06 富士胶片株式会社 Radiological imaging device

Also Published As

Publication number Publication date
JP2011128172A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5556855B2 (en) Portable medical flat panel detector
JP5771972B2 (en) Cassette-type radiation image solid-state detector
WO2009125632A1 (en) Portable solid-state radiation detector
JP5168351B2 (en) Cassette type radiation image detector
JP2009103609A (en) Cassette type radiological image solid-state detector
US9465116B2 (en) Radiographic image detection device
JP2009257914A (en) Cassette type radiograph detector
WO2011136195A1 (en) Radiation imaging device, radiation imaging system, and method for affixing radiation conversion panel in radiation imaging device
JP2009104043A (en) Cassette type radiation image solid-state detector
EP3502749B1 (en) Radiation detection device
JP2009101053A (en) Cassette type radiation image solid detector
JP2009104042A (en) Reinforcing frame and cassette type radiation image solid-state detector
JP5104765B2 (en) Portable radiographic imaging device
US20140091209A1 (en) Radiation detecting apparatus and radiation detecting system
JP2011141154A (en) Radiation image detection device
JP2009237074A (en) Cassette type radiographic image detector
JP2011099794A (en) Radiation image detector
JP5445651B2 (en) Portable radiographic imaging device
JP2009156936A (en) Cassette type radiographic imaging device
JP2009136439A (en) Cassette radiation image solid detector
US11747490B2 (en) Radiation detector and radiographic imaging apparatus
US10973476B2 (en) Radiation detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09729548

Country of ref document: EP

Kind code of ref document: A1