WO2009125520A1 - Bonding device, method for recognizing position of bonding object used in bonding device, and recording medium on which program for recognizing position of bonding object is recorded - Google Patents

Bonding device, method for recognizing position of bonding object used in bonding device, and recording medium on which program for recognizing position of bonding object is recorded Download PDF

Info

Publication number
WO2009125520A1
WO2009125520A1 PCT/JP2008/072542 JP2008072542W WO2009125520A1 WO 2009125520 A1 WO2009125520 A1 WO 2009125520A1 JP 2008072542 W JP2008072542 W JP 2008072542W WO 2009125520 A1 WO2009125520 A1 WO 2009125520A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
target
bonding target
camera
reference image
Prior art date
Application number
PCT/JP2008/072542
Other languages
French (fr)
Japanese (ja)
Inventor
常晴 荒井
高浩 茂木
哲也 小原
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Publication of WO2009125520A1 publication Critical patent/WO2009125520A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/85122Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors by detecting inherent features of, or outside, the semiconductor or solid-state body
    • H01L2224/85129Shape or position of the other item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/86Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using tape automated bonding [TAB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Definitions

  • the present invention relates to a structure of a bonding apparatus, a position recognition method for a bonding target used in the bonding apparatus, and a recording medium on which a position recognition program for a bonding target is recorded.
  • a die bonder that joins a semiconductor chip onto a lead frame, a substrate, or the like is used.
  • the die bonder it is necessary to transport the lead frame along the transport rail and position the lead frame at the semiconductor chip mounting position. Therefore, for example, there is a structure in which a positioning hole is provided in the lead frame, and a positioning pin is fitted into the hole to align the position of the lead frame.
  • the positioning by such a mechanical method has a problem that the positioning pin is worn and accurate position adjustment cannot be performed.
  • Patent Document 1 light is incident on a positioning hole of a lead frame, an image of the hole is processed by an image processing device, and a positional deviation between the center position of the hole and the optical axis of the image processing device is detected.
  • a method of shifting the mounting position of the semiconductor chip by the amount of positional deviation has been proposed.
  • a method of correcting a position error of a mounting point that occurs by image recognition is widely used.
  • the lead frame or both the lead frame and the semiconductor chip are imaged with a camera, and the position of the lead frame and the semiconductor chip is detected based on the obtained image data. The position of the hour is corrected.
  • the lead frame may need to be heated, and there is a die bonder in which a heater is built in a bonding stage that holds the lead frame.
  • heat due to heating is also transmitted to the periphery of the base that supports the camera that acquires the image, and the optical axis of the optical system may shift due to thermal deformation.
  • the deviation of the optical axis of the optical system adversely affects the positional accuracy of the imaged data, resulting in an error in the positional correction accuracy.
  • a semiconductor chip is thermocompression bonded at a high temperature by heating the lead frame, a detection error due to thermal displacement occurs during position detection by image recognition, and there is a problem that position correction accuracy during mounting cannot be ensured. It was.
  • Patent Document 2 discloses a recognition mark provided on the calibration stage and a calibration jig. After aligning the center position of the provided annular mark, a method is proposed in which a calibration jig is transferred onto the calibration stage and the error due to thermal displacement is corrected from the amount of deviation of the center position of each mark. Yes.
  • a semiconductor device is often manufactured by joining a semiconductor chip having a gold plating on the back surface thereof to a copper lead frame only by thermocompression bonding. Since this manufacturing method does not use an adhesive for bonding semiconductor chips, the step of applying an adhesive becomes unnecessary, and the number of steps can be reduced and a semiconductor device can be manufactured at a low cost. It is necessary to increase the heating temperature.
  • the heating temperature of the lead frame is increased, the air around the lead frame is heated, and a hot flame is generated between the lead frame and the camera.
  • a positive flame occurs, the light is refracted due to fluctuations in the air temperature, and fluctuations occur in the position of the image acquired by the camera.
  • the image position fluctuates due to the hot flame, the position of the image to be acquired is moved at each moment of acquiring the image, so that there is a problem that an accurate position cannot be detected.
  • the detection position error due to the heat flame is caused by fluctuations in the air temperature between the lead frame and the camera. 2 cannot be solved.
  • a method may be used in which compressed air is flowed between the lead frame and the camera to suppress the generation of the hot flame.
  • the heating temperature of the lead frame increases, the compressed air cannot suppress the hot flame.
  • the surface of the lead frame is oxidized by the compressed air.
  • bonding is performed in an inert gas atmosphere to prevent oxidation of the surface of the lead frame. Cannot be a big problem.
  • An object of the present invention is to effectively reduce position detection errors due to heating and improve bonding position accuracy in a bonding apparatus that heats a bonding target.
  • the bonding apparatus of the present invention holds a bonding target on the surface and heats the bonding target, and includes a bonding stage having a bonding target alignment mark on the surface holding the bonding target, and a bonding stage surface alignment mark; A camera that captures an image of a bonding target held on the surface of the bonding stage within the same field of view; and a control unit that processes an image captured by the camera and recognizes the position of the bonding target.
  • Reference image capturing means for capturing a reference image including a mark and a bonding target disposed at the reference position by the camera, and detection for capturing a detection image including the alignment mark and the bonding target disposed at the bonding position by the camera Image capturing means and reference
  • An apparent position acquisition means for comparing an image and a detection image and acquiring an apparent position of the bonding target by a positional deviation between the position on the reference image of the bonding target and the position on the detection image; and the reference image and the detection image
  • the position correction amount acquisition means for acquiring the position correction amount by the positional deviation between the position on the reference image of the alignment mark and the position on the detection image, and the appearance of the bonding target acquired by the apparent position acquisition means
  • Bonding target position recognition means for recognizing the position of the bonding target by correcting the position by the position correction amount acquired by the position correction means.
  • the bonding apparatus includes a die bonding apparatus, a tape bonding apparatus, and a wire bonding apparatus.
  • the reference image imaging means and the detection image imaging means are: It is also preferable to take a reference image and a detection image while the bonding target held on the surface of the bonding stage is heated by the bonding stage, and the bonding target is a lead frame or a substrate having a punched portion.
  • the alignment mark is also preferably provided at a position that falls within the punched portion when the lead frame or the substrate is disposed at the bonding position.
  • the bonding target position recognition method of the present invention includes a bonding stage that holds a bonding target on the surface, heats the bonding target, and has a bonding target alignment mark on the surface that holds the bonding target, and a position on the bonding stage surface.
  • a method for recognizing a position of a bonding object used in a bonding apparatus comprising an alignment mark and a camera for imaging a bonding object held on the surface of a bonding stage within the same field of view.
  • the reference image capturing step and the detection image capturing step capture the reference image and the detection image, respectively, while the bonding target held on the surface of the bonding stage is heated by the bonding stage. This is also suitable.
  • the recording medium on which the bonding target position recognition program of the present invention is recorded is a bonding stage that holds the bonding target on the surface and heats the bonding target, and includes a bonding target alignment mark on the surface holding the bonding target;
  • a camera that images the bonding mark on the bonding stage surface and the bonding target held on the bonding stage surface within the same field of view, and a control unit that is a computer that processes the image captured by the camera and recognizes the position of the bonding target
  • the present invention produces an effect that in a bonding apparatus for heating a bonding target, position detection error due to heating can be effectively reduced and bonding position accuracy can be improved.
  • the die bonding apparatus 10 of the present embodiment includes a transport device 21 that guides a lead frame 31 in the X direction and transports the lead frame 31 in the X direction, and a wind clamper that does not show the surface of the transported lead frame 31.
  • the bonding stage 22 for heating and holding the lead frame 31 by the heater 24 provided therein, and the bonding stage 22 is provided adjacent to the bonding stage 22.
  • the X-axis motor 18 and the Y-axis motor 19 allow the lead frame 31 to be An XY table 11 that freely moves in the X direction that is the conveyance direction and a Y direction that is a direction perpendicular thereto, a bonding head 12 that freely moves in the XY direction by the XY table 11, and a collet 13 that is a bonding tool are at the tip.
  • a jig holder 27 that holds the wafer 28 is provided on the opposite side of the bonding stage 22 from the bonding head 12.
  • the vertical direction perpendicular to the surface of the lead frame 31 is the Z direction.
  • the collet 13 attached to the tip of the bonding arm 15 has a rectangular parallelepiped shape or a truncated cone shape, and adsorbs the semiconductor chip 35 to the surface on the bonding stage 22 side and bonds the semiconductor chip 35 to the island 32 provided on the lead frame 31.
  • the surface is provided with an adsorption hole for adsorbing the semiconductor chip 35.
  • the collet 13 is moved toward and away from the lead frame 31 by the Z-axis motor 20 and the bonding arm 15.
  • the collet central axis 14 is disposed in the Z direction, where the collet surface is perpendicular to the surface of the lead frame 31 or the surface of the bonding stage 22.
  • the camera 16 includes an optical system constituted by a lens and the like and an imaging surface such as a CCD that converts an image formed by the optical system into an electric signal.
  • An optical axis 17 that is a central axis of the optical system is an optical surface of the imaging surface. A line passing through the center and passing through the center position of the acquired image.
  • the optical axis 17 of the camera 16 is arranged so as to be perpendicular to the surface of the bonding stage 22 and the lead frame 31 to be imaged.
  • the collet central axis 14 and the optical axis 17 of the camera 16 are both arranged perpendicular to the surfaces of the bonding stage 22 and the lead frame 31, the collet central axis 14 and the optical axis 17 of the camera 16 are substantially omitted. It is parallel.
  • the optical axis 17 of the camera 16 is arranged away from the collet center axis 14 by the X direction offset amount Xw and the Y direction offset amount Yw. Since the collet 13 is attached to the bonding head 12 via the bonding arm 15 and the camera 16 is fixed to the bonding head 12, the collet center axis 14 and the optical axis 17 of the camera 16 always have an X-direction offset amount Xw. , And move at the same time in the XY direction by an offset amount W including the Y direction offset amount Yw.
  • a cover 25 that covers the transport device 21 is attached to the surface of the transport device 21 on the Z direction side.
  • an inert gas is sent between the cover 25 and the lead frame 31 from both ends of the cover 25, and the surface of the lead frame 31 is maintained in an inert gas atmosphere.
  • An active gas supply device is connected.
  • the transfer device 21 of the die bonding apparatus 10, the X-axis motor 18 that drives the XY table 11, the Y-axis motor 19, the Z-axis motor 20 that drives the bonding arm 15, the camera 16, and the heater 24 of the bonding stage 22. Is connected to the control unit 50 and is driven by a command from the control unit 50.
  • the control unit 50 includes a CPU 51 that performs signal processing and computation, a memory 58 that stores control data, a camera 16, an X-axis motor 18, a Y-axis motor 19, a Z-axis motor 20, a transport device 21, A camera interface 52, an X-axis motor interface 53, a Y-axis motor interface 54, a Z-axis motor interface 55, and a transfer device that convert a command from the CPU 51 into a control signal and output it to each control target of the heater 24 of the bonding stage 22.
  • An interface 56 and a heater interface 57 are included.
  • the interfaces 52 to 57, the memory 58, and the CPU 51 are connected by a data bus 59 so that signals can be exchanged between them.
  • the control unit 50 constitutes one computer.
  • a lead frame 31 is formed by punching a part of a thin copper plate and connecting wires from electrodes of the semiconductor chip 35 joined to the island 32 to which the semiconductor chip 35 shown in FIG. 1 is joined. Leads 33 that are electrically connected to the chip 35 are formed.
  • the hatched portion shows the punched portion 34. Since the punching part 34 is provided so as to penetrate the lead frame 31, the bonding stage 22 holding the surface of the lead frame 31 in a clamped manner can be seen from the punching part 34. As shown in FIG. 2, a hole 23 serving as an alignment mark is provided on the surface of the bonding stage 22.
  • the hole 23 is within the range of the punched portion 34, that is, within the hatched range shown in FIG. In the position.
  • the alignment mark is not limited to the hole 23, and may be formed by a method such as hole grind.
  • step S ⁇ b> 101 of FIG. 3 the CPU 51 of the control unit 50 outputs a command to heat the bonding stage 22.
  • the heater interface 57 outputs a control signal for turning on the heater 24, and the heater is turned on by this control signal to heat the bonding stage 22.
  • the operator moves the camera 16 so that the optical axis 17 of the camera 16 comes to the reference position of the bonding stage 22 as shown in step S102 of FIG.
  • step S103 of FIG. 3 the transport device 21 is started and the transport of the lead frame 31 is started.
  • step S104 of FIG. 3 the conveyance of the lead frame 31 is continued until the center position of the island 32 of the lead frame 31 comes to the center position of the visual field 41 of the camera 16 shown in FIG.
  • step S ⁇ b> 105 of FIG. 3 the operator stops the transport device 21 when the center position of the island 32 comes to the center position of the field of view 41 of the camera 16.
  • the reference position is a position that serves as a reference for the bonding stage 22 of the lead frame 31 during bonding. When bonding, the bonding is sequentially performed while the lead frame 31 is transported so that the center position of the island 32 of the lead frame 31 becomes the reference position.
  • the operation of aligning the position of the lead frame 31 with the reference position has been described as being performed manually by the operator.
  • the bonding stage 22 is heated by the command of the control unit 50 and the light of the camera 16 is detected.
  • the shaft 17 is aligned with the reference position, the lead frame 31 is conveyed, the position of the lead frame 31 is detected from the image of the lead frame 31 imaged by the camera, and the conveyance device 21 is stopped when the position of the lead frame 31 reaches the reference position. By doing so, the lead frame 31 may be adjusted to the reference position.
  • the field of view 41 of the camera 16 has an island 32, a punched portion 34 of the lead frame 31, and a surface of the bonding stage 22 viewed from the punched portion 34.
  • a hole 23 and a lead 33 which are provided alignment marks are captured.
  • the center of the cross cursor 44 formed by the center lines 42 and 43 provided at the centers of the visual field 41 in the X and Y directions coincides with the center position of the island 32.
  • the island 32 is in a center mark 45 of a square frame provided at the center of the field of view 41.
  • the bonding stage 22 is held at a predetermined temperature by the heater 24.
  • step S106 of FIG. 3 when the lead frame 31 is placed at the reference position, the CPU 51 of the control unit 50 outputs a command for acquiring a reference image.
  • the control unit 50 acquires an image including the hole 23 and the island 32 shown in FIG. 4 in the visual field 41 from the camera 16 via the camera interface 52 and registers the acquired image in the memory 58 as a reference image.
  • the CPU 51 of the control unit 50 processes the acquired image by, for example, binarization processing, acquires the coordinates of the position of the hole 23 and the center position of the island 32, and stores them in the memory 58. In this state, the first island 32 of the lead frame 31 is aligned with the reference position and also aligned with the bonding position.
  • the CPU 51 of the control unit 50 outputs a command for bonding the semiconductor chip 35 to the first island 32, as shown in step S107 of FIG.
  • the CPU 51 of the control unit 50 first moves the collet 13 onto the jig holder 27 to suck and pick up the semiconductor chips 35 from the wafer 28. Then, the CPU 51 of the control unit 50 outputs a command for aligning the collet center axis 14 with the bonding position.
  • the control signal of the XY table 11 is output from the X-axis motor interface 53 and the Y-axis motor interface 54, and the XY table 11 is moved by this control signal so that the collet center shaft 14 is at the bonding position.
  • the CPU 51 of the control unit 50 When the collet central shaft 14 comes to the bonding position, the CPU 51 of the control unit 50 outputs a command to lower the collet. In response to this command, a control signal for the Z-axis motor 20 is output from the Z-axis motor interface 55, the Z-axis motor 20 is driven by this control signal, the bonding arm 15 is lowered, and the collet 13 is heated. Descent toward the island 32. When the semiconductor chip 35 is pressure-bonded to the island 32, the control unit 50 stops the vacuum suction of the collet 13 and outputs a command to raise the collet 13. The collet 13 is raised by this command, and the bonding of the semiconductor chip 35 to the first island 32 is completed.
  • the CPU 51 of the control unit 50 outputs a command for sending the lead frame 31 in the X direction by 1 pitch + Px of the island 32 shown in FIG. 5.
  • a control signal for the transport device 21 is output from the transport device interface 56, and the transport device 21 moves the lead frame 31 in the + X direction by the pitch Px in accordance with this control signal.
  • the control unit 50 detects the transport amount of the lead frame 31 with a position sensor (not shown), and detects whether the lead frame 31 is transported by one pitch Px as shown in step S109 of FIG.
  • the CPU 51 of the control unit 50 instructs to stop the conveyance of the lead frame 31 as shown in step S110 of FIG. Is output.
  • a control signal is output from the transport device interface 56, and the transport device 21 is stopped by this control signal.
  • step S111 in FIG. 3 the CPU 51 of the control unit 50 outputs a command to move the optical axis 17 of the camera 16 to the reference position.
  • a control signal is output from the X-axis motor interface 53 and the Y-axis motor interface 54 to the X-axis and Y-axis motors 18 and 19 so that the optical axis 17 of the camera 16 comes to the reference position by this control signal.
  • the XY table 11 is driven.
  • the field of view 41 of the camera 16 has a hole 23 of the bonding stage 22 that can be seen through the island 32 to be bonded and the punched portion 34 of the lead frame 31. And the lead 33 is captured.
  • the lead frame 31 is moved by one pitch Px by the transport device 21. Therefore, if there is no transport error by the transport device 21 or an error of the pitch Px of the lead frame 31, the lead frame 31 is The center of the cross cursor 44 in the field of view 41 of the camera 16 and the center of the island 32 should be in the same position as the reference position.
  • the center position of the island 32 is actually shifted from the center position of the cross cursor 44 in the field of view 41 of the camera 16 due to a transport error, a pitch error of the lead frame 31, and the like.
  • the reference position of the island 32 and the lead 33 is indicated by a one-dot chain line, and the island 32 and the lead 33 of the lead frame 31 actually arranged at the bonding position are indicated by a solid line.
  • the image captured by the field of view 41 of the camera 16 includes fluctuations due to the heat generated by the heating of the bonding stage 22, so that the image changes with each moment.
  • the center line 43 in the Y direction of the cross cursor 44 at the center and the visual field 41 and the center line 36 in the Y direction of the island 32 are shifted by ⁇ X in the X direction.
  • the center line 42 in the direction and the center line 37 in the X direction of the island 32 are shifted by ⁇ Y in the Y direction.
  • the position of the hole 23 of the bonding stage 22 in the visual field 41 is the same position as the position of the hole 23 in the reference position.
  • the CPU 51 of the control unit 50 acquires the instantaneous image shown in FIG. 6 as a detected image and stores it in the memory 58.
  • the CPU 51 of the control unit 50 acquires the coordinates of the center position of the island 32 from the detected image by processing the acquired detected image by, for example, binarization processing.
  • the CPU 51 of the control unit 50 calculates the deviation amounts ⁇ X and ⁇ Y between the center coordinates of the island 32 of the reference image stored in the memory 58 and the center position of the island 32 of the detected image.
  • the coordinates obtained by adding the shift amounts ⁇ X and ⁇ Y to the coordinates of the island 32 in the reference image are acquired as the apparent center position of the island 32.
  • the CPU 51 of the control unit 50 outputs a command for acquiring a position correction amount for correcting a shift in the detection position due to the heat generated by heating the bonding stage 22.
  • the CPU 51 of the control unit 50 reads out the coordinates of the position of the hole 23 in the reference image and the coordinates of the position of the hole 23 in the detection image from the memory 58 and compares them, and acquires the difference as a position correction amount. 58.
  • the position of the hole 23 is the same as the position of the reference image. Therefore, the detection position is not shifted by the hot flame, and the position correction amount is zero.
  • the CPU 51 of the control unit 50 recognizes the position of the island 32 by adding a position correction amount to the coordinates of the center position of the apparent island 32.
  • the center position of the island 32 is a position obtained by adding the shift amounts ⁇ X and ⁇ Y to the coordinate position in the reference image.
  • the coordinates of the center position of the island 32 of the detected image are shifted in the X and Y directions by the amounts ⁇ X 2 and ⁇ Y 2 from the coordinates of the center position of the island 32 of the reference image at a certain imaging moment.
  • the position of the hole 23 may be shifted by the shift amounts ⁇ Xm and ⁇ Ym in the plus X and Y directions.
  • the apparent position of the island 32 is a position obtained by adding the shift amounts ⁇ X 2 and ⁇ Y 2 in the X and Y directions to the center coordinates of the island 32 of the reference image, but this apparent position is The position includes the position error due to the hot flame.
  • the position correction amount for correcting the position error of the island 32 due to the hot flame is ⁇ Xm and ⁇ Ym which are the same as the displacement amounts of the hole 23 in the plus X direction and the Y direction, so the CPU 51 of the control unit 50 determines the island 32 of the reference image.
  • a coordinate position obtained by adding the displacement amounts ⁇ X 2 and ⁇ Y 2 in the X and Y directions to the center position coordinates and subtracting the displacement amounts ⁇ Xm and ⁇ Ym in the X and Y directions is recognized as the center coordinate position of the island 32. That is, since the entire detected image is shifted from the position of the reference image by the amounts of deviation ⁇ Xm and ⁇ Ym due to fluctuations in the flame, the position error caused by the flame is corrected by subtracting the deviation. Can be canceled.
  • the coordinates of the center position of the island 32 of the detected image are shifted from the coordinates of the center position of the island 32 of the reference image in the X and Y directions ⁇ X 3 and ⁇ Y.
  • the position of the hole 23 is shifted by the respective shift amounts ⁇ Xm and ⁇ Ym in the minus X and Y directions.
  • the apparent position of the island 32 is a position obtained by adding the deviation amounts ⁇ X 3 and ⁇ Y 3 in the X and Y directions to the center coordinates of the island 32 of the reference image, and a position for correcting the position error due to the hot flame.
  • the CPU 51 of the control unit 50 sets the positional deviation amounts ⁇ X 3 in the X and Y directions to the center position coordinates of the island 32 of the reference image. , ⁇ Y 3, and the coordinate position obtained by adding the positional deviation amounts ⁇ Xm, ⁇ Ym in the X and Y directions is recognized as the central coordinate position of the island 32. As a result, the position error caused by the fluctuation of the hot flame can be canceled.
  • the CPU 51 of the control unit 50 causes the collet 13 to pick up the semiconductor chip 35 from the wafer 28 of the jig holder 27, and then recognizes the coordinate position of the collet central axis 14 in step S115 of FIG.
  • a command to move to the coordinate position of the center of the island 32 is output.
  • the X-axis motor interface 53 and the Y-axis motor interface 54 output control signals to the X-axis motor 18 and the Y-axis motor 19, and the X-axis and Y-axis motors 18 and 19 are driven by this signal, and the XY table.
  • the bonding head 12 is moved so that the collet center axis 14 comes to the recognized coordinate position of the island 32 center.
  • the CPU 51 of the control unit 50 outputs a command to lower the collet 13 and bond the semiconductor chip 35 to the island 32.
  • the Z-axis motor interface 55 outputs a control signal to the Z-axis motor 20, and the Z-axis motor 20 is driven by this control signal to lower the collet 13 toward the island 32.
  • the control unit 50 stops the vacuum suction of the collet 13 and outputs a command to raise the collet 13. By this command, the collet 13 is raised, and the bonding of the semiconductor chip 35 to the island 32 arranged at the bonding position is completed.
  • step S ⁇ b> 118 of FIG. 3 the CPU 51 of the control unit 50 determines whether or not the semiconductor chips 35 are bonded to all the islands 32, and the semiconductor chips 35 are not bonded to all the islands 32. In this case, the process returns to step S108, and after the lead frame 31 is conveyed again by one pitch Px, detection image acquisition, position correction amount acquisition, island position recognition are performed, and the coordinate position of the recognized island 32 is obtained. Bonding is performed with the collet center axis 14 aligned. When bonding to all the islands 32 is completed, it is assumed that bonding of the semiconductor chip 35 to the lead frame 31 has been completed, and the bonding operation is stopped as shown in step S119 of FIG.
  • the apparent center position of the island 32 is corrected by the positional deviation amounts ⁇ Xm and Ym in the X and Y directions of the holes 23 which are alignment marks provided on the bonding stage 22. Therefore, it is possible to effectively reduce the position detection error due to the heat generated by heating and improve the bonding position accuracy. Further, in the present embodiment, since it is not necessary to flow compressed air for preventing the generation of heat, it is possible to perform bonding in a state where an inert gas is filled between the lead frame 31 and the cover 25. There is an effect that the oxidation of the lead frame can be prevented.
  • the camera 16 is attached to the bonding head 12 and moved in the XY direction integrally with the bonding head 12.
  • the camera unit 63 to which the camera 16 is attached is used. It is installed separately from the bonding head 12, and the operation of picking up the semiconductor chip 35 from the wafer 28 by moving the collet 13 by the bonding head 12 and the movement of the camera 16 to the reference position are performed in parallel. It is intended to shorten.
  • the same parts as those described with reference to FIGS. 1 to 8 are denoted by the same reference numerals, and description thereof is omitted.
  • the die bonding apparatus 10 of the present embodiment includes a transport device 21 that guides the lead frame 31 in the X direction and transports the lead frame 31 in the X direction, and a wind clamper that does not show the surface of the transported lead frame 31.
  • the bonding stage 22 that heats the lead frame 31 by the heater 24 provided inside the heater and the heater 24 provided therein, and the first slide surface 61 and the second slide surface that are provided adjacent to the bonding stage 22 and have two levels.
  • the bonding head 12 includes an X-axis motor 18 and a Y-axis motor 19 and is configured to freely move on the first slide surface 61 in the XY directions.
  • a slide arm 15 a that is slid in the Z direction by a Z-axis motor 20 is attached to the tip of the bonding head 12.
  • the slide arm 15a has a shape extending stepwise from the center of the bonding head 12 toward the camera unit 63 toward the camera unit 63.
  • the slide arm 15a is configured to have a space above the collet 13 attached to the tip thereof. Yes.
  • the collet 13 is attached to the tip of the slide arm 15 a so that the collet central axis 14 is perpendicular to the surfaces of the bonding stage 22 and the lead frame 31.
  • the collet 13 has a thin tip so that it can accommodate a small semiconductor chip 35, and a suction hole for sucking the semiconductor chip 35 is provided at the tip.
  • the camera unit 63 includes a camera Y-axis motor 64 for driving in the Y-axis direction, and is configured to be freely movable in the Y direction on the second slide surface 62.
  • An arm 65 protruding toward the bonding head 12 is provided at the tip of the camera unit 63, and a camera 16 is provided at the tip of the arm 65.
  • the camera 16 moves as the camera unit 63 moves.
  • the optical axis 17 that is the central axis of the optical system of the camera 16 is a line that passes through the center of the imaging surface and that passes through the center position of the acquired image, and is perpendicular to the surface of the bonding stage 22 and the lead frame 31 to be imaged. It is arranged to be.
  • the camera 16 since the camera 16 is mounted at a position protruding from the camera unit 63 toward the bonding head 12, the camera 16 enters a space above the collet 13 and the optical axis 17 at the center of the collet 13 and the optical axis 17 at the center of the camera 16. Can be coaxial.
  • the camera Y-axis motor 64 and the heater 24 of the bonding stage 22 are connected to the control unit 50 and are configured to be driven by commands from the control unit 50.
  • the control unit 50 includes a CPU 51 that performs signal processing and computation, a memory 58 that stores control data, a camera 16, an X-axis motor 18, a Y-axis motor 19, a Z-axis motor 20, and a camera Y-axis.
  • a Z-axis motor interface 55, a camera Y-axis motor interface 66, a transfer device interface 56, and a heater interface 57 are included.
  • the interfaces 52 to 57, 66, the memory 58, and the CPU 51 are connected by a data bus 59 so that signals can be exchanged between them.
  • the control unit 50 constitutes one computer.
  • a hole 23 serving as an alignment mark is provided on the surface of the bonding stage 22.
  • the hole 23 is within the range of the punched portion 34, that is, within the hatched range shown in FIG. In the position.
  • the position of the optical axis 17 of the camera 16 is adjusted to the reference position and the lead frame 31 is adjusted to the reference position. Is obtained in the field of view 41 and registered in the memory 58. Then, the CPU 51 of the control unit 50 processes the acquired image by binarization processing, for example, acquires the position of the hole 23 and the coordinates of the center position of the island 32, and stores them in the memory 58.
  • the bonding of the semiconductor chip 35 to the first island 32 is performed, and when the bonding is completed, the lead frame 31 is moved in the X direction by 1 pitch + Px of the island 32 shown in FIG. In this state, the next island 32 which is shifted by 1 pitch Px from the island 32 to which the semiconductor chip 35 has been previously bonded has come to the bonding position.
  • the bonding stage 22 is heated to a predetermined temperature by the heater 24. Then, the CPU 51 of the control unit 50 outputs a command for moving the optical axis 17 of the camera 16 to the reference position.
  • a control signal is output from the camera Y-axis motor interface 66 to the camera Y-axis motor 64, and the camera 16 is moved in the Y direction so that the optical axis 17 of the camera 16 comes to the reference position by this control signal.
  • the CPU 51 of the control unit 50 causes the collet 13 to pick up the semiconductor chip 35 from the wafer 28 of the jig holder 27 in parallel with the movement of the camera 16 to the reference position.
  • the CPU 51 of the control unit 50 acquires an image at a certain moment as a detected image, and the reference image island stored in the memory 58, as in the above-described embodiment.
  • the shift amount ⁇ X, ⁇ Y between the center coordinate of 32 and the center position of the island 32 of the detected image is calculated, and the coordinate obtained by adding the shift amount ⁇ X, ⁇ Y to the coordinate of the island 32 of the reference image is the apparent center position of the island 32.
  • the CPU 51 of the control unit 50 compares the coordinates of the position of the hole 23 in the reference image stored in the memory 58 with the coordinates of the position of the hole 23 in the detection image, acquires the difference as a position correction amount, and The apparent center position of 32 is corrected, and the corrected coordinates of the center of the island 32 are recognized as the center coordinate position of the island 32.
  • the CPU 51 of the control unit 50 moves the coordinate position of the collet center axis 14 to the center coordinate position of the island 32 and bonds the semiconductor chip 35 to the island 32. I do.
  • the above-described embodiment has the same effects as the above-described embodiment, and the camera unit 63 to which the camera 16 is attached is installed separately from the bonding head 12 and the collet 13 is moved by the bonding head 12.
  • the operation of picking up the semiconductor chip 35 from the wafer 28 and the movement of the camera 16 to the reference position are performed in parallel, and the bonding time can be shortened.
  • a die bonder is described as a preferred embodiment.
  • the present invention can also be applied to other embodiments that do not depart from the spirit of the present invention, for example, other bonding apparatuses such as a tape bonder and a wire bonder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A die bonding device for heating a lead frame comprises a bonding stage including a hole (23) serving as an alignment mark in the surface for holding the lead frame (31) and a camera for imaging the hole (23) and an island (32) of the lead frame (31) in the same visual field, and a reference image and a detection image each including the hole (23) and the island (32) are acquired at the reference position and bonding position of the lead frame (31). The reference image and the detection image are compared, the apparent position of the island (32) is acquired from the positional displacement between the position in the reference image and the position in the detection image of the island (32), the positional correction amount is acquired from the positional displacement between the position in the reference image and the position in the detection image of the hole (23), and the position of the island (32) is recognized by correcting the apparent position of the island (32) by the positional correction amount acquired by a position correcting means. Thus, the positional detection error caused by heat haze is effectively reduced, thereby improving bonding position accuracy.

Description

ボンディング装置およびボンディング装置に用いられるボンディング対象の位置認識方法ならびにボンディング対象の位置認識プログラムを記録した記録媒体BONDING APPARATUS, BONDING POSITION RECOGNITION METHOD, AND RECORDING MEDIUM CONTAINING BONDING POSITION RECOGNITION PROGRAM
 本発明は、ボンディング装置の構造及びボンディング装置に用いられるボンディング対象の位置認識方法ならびにボンディング対象の位置認識プログラムを記録した記録媒体に関する。 The present invention relates to a structure of a bonding apparatus, a position recognition method for a bonding target used in the bonding apparatus, and a recording medium on which a position recognition program for a bonding target is recorded.
 半導体装置の製造においては、半導体チップをリードフレームや基板などの上に接合するダイボンダが用いられている。ダイボンダではリードフレームを搬送レールに沿って搬送し、リードフレームの位置を半導体チップ搭載位置に位置決めすることが必要である。このため、例えば、リードフレームに位置決め用の孔を設け、その孔に位置決めピンを嵌合させてリードフレームの位置を合わせる構造のものがある。しかし、このような機械的な方法での位置合わせでは位置決めピンが摩耗し、正確な位置調整ができなくなってしまうという問題があった。そこで、特許文献1には、リードフレームの位置決め孔に光を入射させ、その孔の画像を画像処理装置で処理し、孔の中心位置と画像処理装置の光軸との位置ずれを検出して、その位置ずれ量だけ半導体チップの搭載位置をずらす方法が提案されている。 In the manufacture of semiconductor devices, a die bonder that joins a semiconductor chip onto a lead frame, a substrate, or the like is used. In the die bonder, it is necessary to transport the lead frame along the transport rail and position the lead frame at the semiconductor chip mounting position. Therefore, for example, there is a structure in which a positioning hole is provided in the lead frame, and a positioning pin is fitted into the hole to align the position of the lead frame. However, the positioning by such a mechanical method has a problem that the positioning pin is worn and accurate position adjustment cannot be performed. Therefore, in Patent Document 1, light is incident on a positioning hole of a lead frame, an image of the hole is processed by an image processing device, and a positional deviation between the center position of the hole and the optical axis of the image processing device is detected. A method of shifting the mounting position of the semiconductor chip by the amount of positional deviation has been proposed.
 また、半導体チップの小型化、配線パターンの狭ピッチ化にともなって、半導体チップをリードフレームに実装する際の位置精度には高精度が求められるようになり、リードフレームの変形や位置ずれなどによって生ずる実装点の位置誤差を画像認識によって補正する方法が広く用いられている。この方法は半導体チップの実装に先立って、リードフレームまたはリードフレームと半導体チップの双方をカメラで撮像し、得られた画像データに基づいてリードフレームや半導体チップの位置を検出し、この結果により実装時の位置補正を行うものである。 In addition, with the miniaturization of semiconductor chips and the narrowing of wiring patterns, high precision is required for positional accuracy when mounting a semiconductor chip on a lead frame. A method of correcting a position error of a mounting point that occurs by image recognition is widely used. In this method, prior to mounting the semiconductor chip, the lead frame or both the lead frame and the semiconductor chip are imaged with a camera, and the position of the lead frame and the semiconductor chip is detected based on the obtained image data. The position of the hour is corrected.
 しかし、リードフレームに半導体チップをボンディングする際にはリードフレームの加熱が必要な場合があり、リードフレームを保持するボンディングステージ内にヒータが内蔵されるダイボンダがある。このような場合には、画像を取得するカメラを支持する基部周辺にも加熱による熱が伝わり、熱変形で光学系の光軸にずれが生じることがある。光学系の光軸のずれは当然に撮像データの位置精度に悪影響を及ぼし、位置補正の精度に狂いを生じる。このように、リードフレームを加熱して高温で半導体チップを熱圧着する場合には、画像認識による位置検出に際し熱変位による検出誤差を生じ、実装時の位置補正精度が確保されないという問題点があった。 However, when bonding a semiconductor chip to a lead frame, the lead frame may need to be heated, and there is a die bonder in which a heater is built in a bonding stage that holds the lead frame. In such a case, heat due to heating is also transmitted to the periphery of the base that supports the camera that acquires the image, and the optical axis of the optical system may shift due to thermal deformation. Naturally, the deviation of the optical axis of the optical system adversely affects the positional accuracy of the imaged data, resulting in an error in the positional correction accuracy. As described above, when a semiconductor chip is thermocompression bonded at a high temperature by heating the lead frame, a detection error due to thermal displacement occurs during position detection by image recognition, and there is a problem that position correction accuracy during mounting cannot be ensured. It was.
 このような、光学系の熱変位による位置検出誤差を抑制し、位置測定精度を確保するための方法として、特許文献2には、較正ステージの上に設けられた認識マークと、較正治具に設けられた円環状のマークの中心位置を合わせた後、較正ステージの上に較正治具を移載して、各マークの中心位置のずれ量から熱変位による誤差を補正する方法が提案されている。 As a method for suppressing the position detection error due to the thermal displacement of the optical system and ensuring the position measurement accuracy, Patent Document 2 discloses a recognition mark provided on the calibration stage and a calibration jig. After aligning the center position of the provided annular mark, a method is proposed in which a calibration jig is transferred onto the calibration stage and the error due to thermal displacement is corrected from the amount of deviation of the center position of each mark. Yes.
特開平5-90309号公報JP-A-5-90309 特開平11-176883号公報JP-A-11-176883
 ところで、近年、裏面に金メッキを施した半導体チップを銅板のリードフレームに熱圧着のみで接合して半導体装置を製造する場合が多い。この製造方法は、半導体チップの接合に接着剤を用いないので接着剤を塗布する工程が不要になり、工程が少なく安価に半導体装置を製造することができる反面、熱圧着のためにリードフレームの加熱温度を高くすることが必要となる。 By the way, in recent years, a semiconductor device is often manufactured by joining a semiconductor chip having a gold plating on the back surface thereof to a copper lead frame only by thermocompression bonding. Since this manufacturing method does not use an adhesive for bonding semiconductor chips, the step of applying an adhesive becomes unnecessary, and the number of steps can be reduced and a semiconductor device can be manufactured at a low cost. It is necessary to increase the heating temperature.
 ところが、リードフレームの加熱温度を高くすると、リードフレーム周辺の空気が加熱されることによってリードフレームとカメラとの間に陽炎が発生する。陽炎が発生すると、空気温度の揺らぎによって光に屈折が生じ、カメラによって取得する画像の位置に揺らぎが発生する。そして、陽炎により画像位置の揺らぎが生じると、画像を取得する各瞬間によって取得する画像の位置が移動してしまい、正確な位置の検出ができないという問題がある。 However, when the heating temperature of the lead frame is increased, the air around the lead frame is heated, and a hot flame is generated between the lead frame and the camera. When a positive flame occurs, the light is refracted due to fluctuations in the air temperature, and fluctuations occur in the position of the image acquired by the camera. When the image position fluctuates due to the hot flame, the position of the image to be acquired is moved at each moment of acquiring the image, so that there is a problem that an accurate position cannot be detected.
 陽炎による検出位置誤差は、光学系の取り付けられている基部の熱変位により発生する位置誤差と異なり、リードフレームとカメラとの間にある空気温度の揺らぎに起因するものであることから、特許文献2に記載された従来技術では解決することができない。陽炎が発生した場合に、リードフレームとカメラとの間に圧縮空気を流して陽炎の発生を抑える方法を用いる場合もあるが、リードフレームの加熱温度が高くなると圧縮空気では陽炎を抑えきれなくなる上、圧縮空気によってリードフレームの表面の酸化が発生してしまうという問題がある。特に、表面がメッキされていない銅のリードフレームに半導体チップをボンディングする際には、リードフレーム表面の酸化を防止するために不活性ガス雰囲気の中でボンディングが行われるので、圧縮空気を流すことができず、大きな問題になる。 Unlike the position error caused by the thermal displacement of the base where the optical system is attached, the detection position error due to the heat flame is caused by fluctuations in the air temperature between the lead frame and the camera. 2 cannot be solved. When a hot flame occurs, a method may be used in which compressed air is flowed between the lead frame and the camera to suppress the generation of the hot flame. However, if the heating temperature of the lead frame increases, the compressed air cannot suppress the hot flame. There is a problem that the surface of the lead frame is oxidized by the compressed air. In particular, when bonding a semiconductor chip to a copper lead frame whose surface is not plated, bonding is performed in an inert gas atmosphere to prevent oxidation of the surface of the lead frame. Cannot be a big problem.
 本発明は、ボンディング対象を加熱するボンディング装置において、加熱による位置検出誤差を効果的に低減し、ボンディング位置精度を向上させることを目的とする。 An object of the present invention is to effectively reduce position detection errors due to heating and improve bonding position accuracy in a bonding apparatus that heats a bonding target.
 本発明のボンディング装置は、ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、カメラによって撮像した画像を処理してボンディング対象の位置を認識する制御部と、を備え、制御部は、位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像手段と、位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像手段と、基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得手段と、基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得手段と、見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識手段と、を有する。 The bonding apparatus of the present invention holds a bonding target on the surface and heats the bonding target, and includes a bonding stage having a bonding target alignment mark on the surface holding the bonding target, and a bonding stage surface alignment mark; A camera that captures an image of a bonding target held on the surface of the bonding stage within the same field of view; and a control unit that processes an image captured by the camera and recognizes the position of the bonding target. Reference image capturing means for capturing a reference image including a mark and a bonding target disposed at the reference position by the camera, and detection for capturing a detection image including the alignment mark and the bonding target disposed at the bonding position by the camera Image capturing means and reference An apparent position acquisition means for comparing an image and a detection image and acquiring an apparent position of the bonding target by a positional deviation between the position on the reference image of the bonding target and the position on the detection image; and the reference image and the detection image The position correction amount acquisition means for acquiring the position correction amount by the positional deviation between the position on the reference image of the alignment mark and the position on the detection image, and the appearance of the bonding target acquired by the apparent position acquisition means Bonding target position recognition means for recognizing the position of the bonding target by correcting the position by the position correction amount acquired by the position correction means.
 ここで、ボンディング装置とは、ダイボンディング装置、テープボンディング装置、ワイヤボンディング装置を含むものである。 Here, the bonding apparatus includes a die bonding apparatus, a tape bonding apparatus, and a wire bonding apparatus.
 本発明のボンディング装置において、基準画像撮像手段と検出画像撮像手段は、
 ボンディングステージによってボンディングステージ表面に保持されたボンディング対象が加熱されている状態で基準画像と検出画像とをそれぞれ撮像すること、としても好適であるし、ボンディング対象は、打ち抜き部のあるリードフレームまたは基板であって、位置合わせ用マークは、リードフレームまたは基板がボンディング位置に配置された際に打ち抜き部の範囲内に入る位置に設けられていること、としても好適である。
In the bonding apparatus of the present invention, the reference image imaging means and the detection image imaging means are:
It is also preferable to take a reference image and a detection image while the bonding target held on the surface of the bonding stage is heated by the bonding stage, and the bonding target is a lead frame or a substrate having a punched portion. The alignment mark is also preferably provided at a position that falls within the punched portion when the lead frame or the substrate is disposed at the bonding position.
 本発明のボンディング対象の位置認識方法は、ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、を備えるボンディング装置に用いられるボンディング対象の位置認識方法であって、位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像工程と、位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像工程と、基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得工程と、基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得工程と、見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識工程と、を有する。 The bonding target position recognition method of the present invention includes a bonding stage that holds a bonding target on the surface, heats the bonding target, and has a bonding target alignment mark on the surface that holds the bonding target, and a position on the bonding stage surface. A method for recognizing a position of a bonding object used in a bonding apparatus comprising an alignment mark and a camera for imaging a bonding object held on the surface of a bonding stage within the same field of view. A reference image capturing step for capturing a reference image including the bonding object formed by the camera, a detection image capturing step for capturing a detection image including the alignment mark and the bonding target disposed at the bonding position by the camera, and a reference Images and Compare the output image and compare the reference image and the detected image with the apparent position acquisition step of acquiring the apparent position of the bonding object by the positional deviation between the position on the reference image of the bonding target and the position on the detected image And a position correction amount acquisition step for acquiring a position correction amount by a positional deviation between the position on the reference image of the alignment mark and the position on the detection image, and the apparent position of the bonding target acquired by the apparent position acquisition means And a bonding target position recognition step for recognizing the position of the bonding target by correcting the position correction amount acquired by the position correction means.
 本発明のボンディング対象の位置認識方法において、基準画像撮像工程と検出画像撮像工程は、ボンディングステージによってボンディングステージ表面に保持されたボンディング対象が加熱されている状態で基準画像と検出画像とをそれぞれ撮像すること、としても好適である。 In the bonding target position recognition method of the present invention, the reference image capturing step and the detection image capturing step capture the reference image and the detection image, respectively, while the bonding target held on the surface of the bonding stage is heated by the bonding stage. This is also suitable.
 本発明のボンディング対象の位置認識プログラムを記録した記録媒体は、ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、カメラによって撮像した画像を処理してボンディング対象の位置を認識するコンピュータである制御部と、を備えるボンディング装置のコンピュータである制御部に実行させるボンディング対象の位置認識プログラムを記録した記録媒体であって、位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像ステップと、位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像ステップと、基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得ステップと、基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得ステップと、見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識ステップと、を有する。 The recording medium on which the bonding target position recognition program of the present invention is recorded is a bonding stage that holds the bonding target on the surface and heats the bonding target, and includes a bonding target alignment mark on the surface holding the bonding target; A camera that images the bonding mark on the bonding stage surface and the bonding target held on the bonding stage surface within the same field of view, and a control unit that is a computer that processes the image captured by the camera and recognizes the position of the bonding target A recording medium on which a position recognition program for a bonding target to be executed by a control unit that is a computer of a bonding apparatus is recorded, and a reference image including a positioning mark and a bonding target arranged at a reference position Therefore, the reference image imaging step for imaging, the detection image imaging step for imaging the detection image including the alignment mark and the bonding object arranged at the bonding position by the camera, the reference image and the detection image are compared, and the bonding object An apparent position acquisition step for acquiring an apparent position of the bonding target by a positional deviation between the position on the reference image and the position on the detection image, and the reference image and the detection image are compared, and the reference image of the alignment mark A position correction amount acquisition step for acquiring a position correction amount based on a positional deviation between the upper position and the position on the detected image, and a position correction for acquiring the apparent position of the bonding target acquired by the apparent position acquisition means by the position correction means. A bonding target position recognition step for recognizing the position of the bonding target by correcting the amount It has a.
 本発明は、ボンディング対象を加熱するボンディング装置において、加熱による位置検出誤差を効果的に低減し、ボンディング位置精度を向上させることができるという効果を奏する。 The present invention produces an effect that in a bonding apparatus for heating a bonding target, position detection error due to heating can be effectively reduced and bonding position accuracy can be improved.
本発明の実施形態におけるダイボンディング装置の構成を示す斜視図である。It is a perspective view which shows the structure of the die bonding apparatus in embodiment of this invention. 本発明の実施形態におけるダイボンディング装置でリードフレームが基準位置に配置された状態を示す平面図である。It is a top view which shows the state by which the lead frame was arrange | positioned in the reference position with the die bonding apparatus in embodiment of this invention. 本発明の実施形態におけるダイボンディング装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the die bonding apparatus in embodiment of this invention. 本発明の実施形態におけるダイボンディング装置で基準位置におけるカメラの視野を示す説明図である。It is explanatory drawing which shows the visual field of the camera in a reference position with the die-bonding apparatus in embodiment of this invention. 本発明の実施形態におけるダイボンディング装置でリードフレームがボンディング位置に配置された状態を示す平面図である。It is a top view which shows the state by which the lead frame was arrange | positioned in the bonding position with the die bonding apparatus in embodiment of this invention. 本発明の実施形態におけるダイボンディング装置で、陽炎の影響がない場合のボンディング位置におけるカメラの視野を示す説明図である。It is explanatory drawing which shows the visual field of the camera in the bonding position in the die-bonding apparatus in embodiment of this invention when there is no influence of a heat flame. 本発明の実施形態におけるダイボンディング装置で、陽炎の影響がある場合のボンディング位置におけるカメラの視野を示す説明図である。It is explanatory drawing which shows the visual field of the camera in the bonding position in the die-bonding apparatus in embodiment of this invention when there exists an influence of a heat flame. 本発明の実施形態におけるダイボンディング装置で、陽炎の影響がある場合のボンディング位置におけるカメラの視野を示す説明図である。It is explanatory drawing which shows the visual field of the camera in the bonding position in the die-bonding apparatus in embodiment of this invention when there exists an influence of a heat flame. 本発明の他の実施形態におけるダイボンディング装置の構成を示す斜視図である。It is a perspective view which shows the structure of the die bonding apparatus in other embodiment of this invention.
符号の説明Explanation of symbols
 10 ダイボンディング装置、11 XYテーブル、12 ボンディングヘッド、13 コレット、14 コレット中心軸、15 ボンディングアーム、15a スライドアーム、16 カメラ、17 光軸、18 X軸モータ、19 Y軸モータ、20 Z軸モータ、21 搬送装置、22 ボンディングステージ、23 孔(位置合わせ用マーク)、24 ヒータ、25 カバー、27 ジグホルダ、28 ウェハ、31 リードフレーム、32 アイランド、33 リード、34 打ち抜き部、35 半導体チップ、36,37,42,43 中心線、41 視野、44 クロスカーソル、45 センターマーク、50 制御部、52 カメラインターフェース、53 X軸モータインターフェース、54 Y軸モータインターフェース、55 Z軸モータインターフェース、56 搬送装置インターフェース、57 ヒータインターフェース、58 メモリ、59 データバス、Px ピッチ、ΔX,ΔX2,ΔX3,ΔXm,ΔY,ΔY2,ΔY3,ΔYm ズレ量、60 ベース、61 第1スライド面、62 第2スライド面、63 カメラユニット、64 カメラ用Y軸モータ、65 アーム、66 カメラ用Y軸モータインターフェース。 DESCRIPTION OF SYMBOLS 10 Die bonding apparatus, 11 XY table, 12 Bonding head, 13 Collet, 14 Collet center axis, 15 Bonding arm, 15a Slide arm, 16 Camera, 17 Optical axis, 18 X axis motor, 19 Y axis motor, 20 Z axis motor , 21 Transport device, 22 Bonding stage, 23 Hole (alignment mark), 24 Heater, 25 Cover, 27 Jig holder, 28 Wafer, 31 Lead frame, 32 Island, 33 Lead, 34 Punched part, 35 Semiconductor chip, 36, 37, 42, 43 Center line, 41 Field of view, 44 Cross cursor, 45 Center mark, 50 Control unit, 52 Camera interface, 53 X axis motor interface, 54 Y axis motor interface, 55 Z axis motor interface, 56 Feeder interface, 57 Heater interface, 58 Memory, 59 Data bus, Px pitch, ΔX, ΔX 2 , ΔX 3 , ΔXm, ΔY, ΔY 2 , ΔY 3 , ΔYm Deviation amount, 60 base, 61 First slide surface, 62 Second slide surface, 63 camera unit, 64 camera Y-axis motor, 65 arm, 66 camera Y-axis motor interface.
 以下、本発明を実施するための好適な実施形態について説明する。図1に示すように、本実施形態のダイボンディング装置10は、リードフレーム31をX方向にガイドするとともにX方向に搬送する搬送装置21と、搬送されたリードフレーム31の表面を図示しないウィンドクランパーで押さえつけて保持するとともに内部に設けられたヒータ24によってリードフレーム31を加熱するボンディングステージ22と、ボンディングステージ22に隣接して設けられ、X軸モータ18とY軸モータ19とによってリードフレーム31の搬送方向であるX方向とその直角方向であるY方向とに自在に移動するXYテーブル11と、XYテーブル11によってXY方向に自在に移動するボンディングヘッド12と、ボンディングツールであるコレット13が先端に取り付けられたボンディングアーム15と、ボンディングヘッド12に取り付けられ、ボンディングアーム15をZ軸方向に上下動させるZ軸モータ20と、ボンディングヘッド12に取り付けられたカメラ16と、を備えている。また、ボンディングステージ22のボンディングヘッド12と反対側には、ウェハ28を保持するジグホルダ27が設けられている。図1に示す実施形態では、リードフレーム31の面に垂直な上下方向がZ方向である。 Hereinafter, preferred embodiments for carrying out the present invention will be described. As shown in FIG. 1, the die bonding apparatus 10 of the present embodiment includes a transport device 21 that guides a lead frame 31 in the X direction and transports the lead frame 31 in the X direction, and a wind clamper that does not show the surface of the transported lead frame 31. The bonding stage 22 for heating and holding the lead frame 31 by the heater 24 provided therein, and the bonding stage 22 is provided adjacent to the bonding stage 22. The X-axis motor 18 and the Y-axis motor 19 allow the lead frame 31 to be An XY table 11 that freely moves in the X direction that is the conveyance direction and a Y direction that is a direction perpendicular thereto, a bonding head 12 that freely moves in the XY direction by the XY table 11, and a collet 13 that is a bonding tool are at the tip. The attached bonding arm 15; Attached to down loading head 12, and a Z-axis motor 20 for vertically moving the bonding arm 15 in the Z-axis direction, a camera 16 attached to the bonding head 12. A jig holder 27 that holds the wafer 28 is provided on the opposite side of the bonding stage 22 from the bonding head 12. In the embodiment shown in FIG. 1, the vertical direction perpendicular to the surface of the lead frame 31 is the Z direction.
 ボンディングアーム15の先端に取り付けられたコレット13は直方体形状または円錐台形状で、ボンディングステージ22側の表面に半導体チップ35を吸着するとともに半導体チップ35をリードフレーム31に設けられたアイランド32にボンディングするもので、表面には半導体チップ35を吸着する吸着孔があけられている。コレット13は、Z軸モータ20とボンディングアーム15によってリードフレーム31に対して接離方向に動作する。コレット中心軸14は、コレットの表面がリードフレーム31表面またはボンディングステージ22表面に対して垂直方向であるZ方向に配置されている。 The collet 13 attached to the tip of the bonding arm 15 has a rectangular parallelepiped shape or a truncated cone shape, and adsorbs the semiconductor chip 35 to the surface on the bonding stage 22 side and bonds the semiconductor chip 35 to the island 32 provided on the lead frame 31. The surface is provided with an adsorption hole for adsorbing the semiconductor chip 35. The collet 13 is moved toward and away from the lead frame 31 by the Z-axis motor 20 and the bonding arm 15. The collet central axis 14 is disposed in the Z direction, where the collet surface is perpendicular to the surface of the lead frame 31 or the surface of the bonding stage 22.
 カメラ16はレンズなどによって構成される光学系と光学系によって結像した画像を電気信号に変換するCCD等の撮像面とを含んでおり、光学系の中心軸である光軸17は撮像面の中心を通る線で、取得画像の中心位置を通る線である。カメラ16の光軸17は撮像するボンディングステージ22とリードフレーム31の表面に対して垂直になるように配置されている。 The camera 16 includes an optical system constituted by a lens and the like and an imaging surface such as a CCD that converts an image formed by the optical system into an electric signal. An optical axis 17 that is a central axis of the optical system is an optical surface of the imaging surface. A line passing through the center and passing through the center position of the acquired image. The optical axis 17 of the camera 16 is arranged so as to be perpendicular to the surface of the bonding stage 22 and the lead frame 31 to be imaged.
 コレット中心軸14とカメラ16の光軸17とはいずれもボンディングステージ22とリードフレーム31の表面に垂直となるように配置されているので、コレット中心軸14とカメラ16の光軸17とは略平行となっている。そして、カメラ16の光軸17は、コレット中心軸14からX方向オフセット量Xw、Y方向オフセット量Ywだけ離れて配置されている。コレット13はボンディングアーム15を介してボンディングヘッド12に取り付けられており、カメラ16はボンディングヘッド12に固定されているので、コレット中心軸14とカメラ16の光軸17とは常にX方向オフセット量Xw、Y方向オフセット量Ywを含むオフセット量Wだけ離れてXY方向に同時に移動する。 Since the collet central axis 14 and the optical axis 17 of the camera 16 are both arranged perpendicular to the surfaces of the bonding stage 22 and the lead frame 31, the collet central axis 14 and the optical axis 17 of the camera 16 are substantially omitted. It is parallel. The optical axis 17 of the camera 16 is arranged away from the collet center axis 14 by the X direction offset amount Xw and the Y direction offset amount Yw. Since the collet 13 is attached to the bonding head 12 via the bonding arm 15 and the camera 16 is fixed to the bonding head 12, the collet center axis 14 and the optical axis 17 of the camera 16 always have an X-direction offset amount Xw. , And move at the same time in the XY direction by an offset amount W including the Y direction offset amount Yw.
 搬送装置21のZ方向側の面には、搬送装置21を覆うカバー25が取り付けられている。本実施形態のダイボンディング装置10には、カバー25両端面側からカバー25とリードフレーム31との間に不活性ガスを送り込み、リードフレーム31の表面を不活性ガス雰囲気に保持する、図示しない不活性ガス供給装置が接続されている。 A cover 25 that covers the transport device 21 is attached to the surface of the transport device 21 on the Z direction side. In the die bonding apparatus 10 of the present embodiment, an inert gas is sent between the cover 25 and the lead frame 31 from both ends of the cover 25, and the surface of the lead frame 31 is maintained in an inert gas atmosphere. An active gas supply device is connected.
 ダイボンディング装置10の搬送装置21と、XYテーブル11を駆動するX軸モータ18と、Y軸モータ19と、ボンディングアーム15を駆動するZ軸モータ20と、カメラ16と、ボンディングステージ22のヒータ24とは制御部50に接続され、制御部50の指令によって駆動されるように構成されている。制御部50は、信号の処理及び演算などを行うCPU51と、制御用のデータが格納されるメモリ58と、カメラ16、X軸モータ18、Y軸モータ19、Z軸モータ20、搬送装置21、ボンディングステージ22のヒータ24の各制御対象に対してCPU51からの指令を制御信号に変換して出力するカメラインターフェース52、X軸モータインターフェース53、Y軸モータインターフェース54、Z軸モータインターフェース55、搬送装置インターフェース56、ヒータインターフェース57とを含んでいる。各インターフェース52~57とメモリ58とCPU51とはデータバス59によって接続され、相互に信号の授受が行えるように構成されている。制御部50は一つのコンピュータを構成している。 The transfer device 21 of the die bonding apparatus 10, the X-axis motor 18 that drives the XY table 11, the Y-axis motor 19, the Z-axis motor 20 that drives the bonding arm 15, the camera 16, and the heater 24 of the bonding stage 22. Is connected to the control unit 50 and is driven by a command from the control unit 50. The control unit 50 includes a CPU 51 that performs signal processing and computation, a memory 58 that stores control data, a camera 16, an X-axis motor 18, a Y-axis motor 19, a Z-axis motor 20, a transport device 21, A camera interface 52, an X-axis motor interface 53, a Y-axis motor interface 54, a Z-axis motor interface 55, and a transfer device that convert a command from the CPU 51 into a control signal and output it to each control target of the heater 24 of the bonding stage 22. An interface 56 and a heater interface 57 are included. The interfaces 52 to 57, the memory 58, and the CPU 51 are connected by a data bus 59 so that signals can be exchanged between them. The control unit 50 constitutes one computer.
 図2に示すように、リードフレーム31は銅の薄板の一部を打ち抜いて図1に示す半導体チップ35が接合されるアイランド32と接合された半導体チップ35の電極からのワイヤが接続され、半導体チップ35と電気的に接続されるリード33とが形成されている。図2において、ハッチングされた部分は打ち抜き部34を示している。打ち抜き部34は、リードフレーム31を貫通するように設けられているので、打ち抜き部34からはリードフレーム31の表面をクランプ保持しているボンディングステージ22が見通せる。図2に示すように、ボンディングステージ22の表面には、位置合わせ用マークである孔23が設けられている。孔23は、リードフレーム31のアイランド32が半導体チップ35のボンディング位置に配置された際に、抜き打ち部34の範囲内、すなわち、図2に示すハッチングされた範囲内であり、できるだけアイランド32に近い位置に設けられている。なお、位置合わせ用マークとしては孔23に限らず、穴グリ等の方法で形成されていてもよい。 As shown in FIG. 2, a lead frame 31 is formed by punching a part of a thin copper plate and connecting wires from electrodes of the semiconductor chip 35 joined to the island 32 to which the semiconductor chip 35 shown in FIG. 1 is joined. Leads 33 that are electrically connected to the chip 35 are formed. In FIG. 2, the hatched portion shows the punched portion 34. Since the punching part 34 is provided so as to penetrate the lead frame 31, the bonding stage 22 holding the surface of the lead frame 31 in a clamped manner can be seen from the punching part 34. As shown in FIG. 2, a hole 23 serving as an alignment mark is provided on the surface of the bonding stage 22. When the island 32 of the lead frame 31 is arranged at the bonding position of the semiconductor chip 35, the hole 23 is within the range of the punched portion 34, that is, within the hatched range shown in FIG. In the position. The alignment mark is not limited to the hole 23, and may be formed by a method such as hole grind.
 以上のように構成されたダイボンディング装置10の動作について図3から図8を参照しながら説明する。図3のステップS101に示すように、制御部50のCPU51は、ボンディングステージ22を加熱する指令を出力する。この指令によってヒータインターフェース57はヒータ24をオンとする制御信号を出力し、この制御信号によってヒータがオンとなりボンディングステージ22が加熱される。ボンディングステージ22の温度が所定の温度まで加熱されると、作業者は、図3のステップS102に示すように、ボンディングステージ22の基準位置にカメラ16の光軸17が来るようにカメラ16を移動させたのち、図3のステップS103に示すように搬送装置21を始動させ、リードフレーム31の搬送を開始する。そして、図3のステップS104に示すように、図2に示すカメラ16の視野41の中心位置にリードフレーム31のアイランド32の中心位置が来るまでリードフレーム31の搬送を続ける。そして、図3のステップS105に示すように、作業者は、アイランド32の中心位置がカメラ16の視野41の中心位置に来たら搬送装置21を停止させる。基準位置はボンディングの際のリードフレーム31のボンディングステージ22に対する基準となる位置である。そして、ボンディングの際には、リードフレーム31のアイランド32の中心位置が基準位置となるようにリードフレーム31を搬送しながら順次ボンディングを行っていく。また、本実施形態では、リードフレーム31の位置を基準位置に合わせる作業は作業者のマニュアル作業によって行うこととして説明したが、制御部50の指令によって、ボンディングステージ22を加熱し、カメラ16の光軸17を基準位置に合わせ、リードフレーム31を搬送し、カメラによって撮像したリードフレーム31の画像によってリードフレーム31の位置を検出し、リードフレーム31の位置が基準位置となったら搬送装置21を停止させることによってリードフレーム31を基準位置に合わせるようにしてもよい。 The operation of the die bonding apparatus 10 configured as described above will be described with reference to FIGS. As shown in step S <b> 101 of FIG. 3, the CPU 51 of the control unit 50 outputs a command to heat the bonding stage 22. In response to this command, the heater interface 57 outputs a control signal for turning on the heater 24, and the heater is turned on by this control signal to heat the bonding stage 22. When the temperature of the bonding stage 22 is heated to a predetermined temperature, the operator moves the camera 16 so that the optical axis 17 of the camera 16 comes to the reference position of the bonding stage 22 as shown in step S102 of FIG. After that, as shown in step S103 of FIG. 3, the transport device 21 is started and the transport of the lead frame 31 is started. Then, as shown in step S104 of FIG. 3, the conveyance of the lead frame 31 is continued until the center position of the island 32 of the lead frame 31 comes to the center position of the visual field 41 of the camera 16 shown in FIG. Then, as shown in step S <b> 105 of FIG. 3, the operator stops the transport device 21 when the center position of the island 32 comes to the center position of the field of view 41 of the camera 16. The reference position is a position that serves as a reference for the bonding stage 22 of the lead frame 31 during bonding. When bonding, the bonding is sequentially performed while the lead frame 31 is transported so that the center position of the island 32 of the lead frame 31 becomes the reference position. In the present embodiment, the operation of aligning the position of the lead frame 31 with the reference position has been described as being performed manually by the operator. However, the bonding stage 22 is heated by the command of the control unit 50 and the light of the camera 16 is detected. The shaft 17 is aligned with the reference position, the lead frame 31 is conveyed, the position of the lead frame 31 is detected from the image of the lead frame 31 imaged by the camera, and the conveyance device 21 is stopped when the position of the lead frame 31 reaches the reference position. By doing so, the lead frame 31 may be adjusted to the reference position.
 図4に示すように、リードフレーム31が基準位置に配置されると、カメラ16の視野41にはアイランド32とリードフレーム31の打ち抜き部34と、打ち抜き部34から見通したボンディングステージ22の表面に設けられた位置合わせ用マークである孔23と、リード33とが捉えられている。そして視野41のXおよびY方向の各中心に設けられた中心線42,43によって構成されるクロスカーソル44の中心はアイランド32の中心位置に一致している。また、アイランド32は視野41の中心に設けられた四角い枠のセンターマーク45の中に入っている。また、ボンディングステージ22はヒータ24によって所定の温度に保持されている。 As shown in FIG. 4, when the lead frame 31 is placed at the reference position, the field of view 41 of the camera 16 has an island 32, a punched portion 34 of the lead frame 31, and a surface of the bonding stage 22 viewed from the punched portion 34. A hole 23 and a lead 33 which are provided alignment marks are captured. The center of the cross cursor 44 formed by the center lines 42 and 43 provided at the centers of the visual field 41 in the X and Y directions coincides with the center position of the island 32. The island 32 is in a center mark 45 of a square frame provided at the center of the field of view 41. The bonding stage 22 is held at a predetermined temperature by the heater 24.
 図3のステップS106に示すように、リードフレーム31が基準位置に配置されると、制御部50のCPU51は、基準画像を取得する指令を出力する。この指令によって制御部50はカメラインターフェース52を介してカメラ16から図4に示した孔23とアイランド32とを視野41に含む画像を取得し、取得した画像を基準画像としてメモリ58に登録する。また、制御部50のCPU51は取得した画像を例えば二値化処理などによって処理し、孔23の位置とアイランド32の中心位置の座標を取得し、メモリ58に格納する。この状態において、リードフレーム31の最初のアイランド32は基準位置に位置合わせされると共にボンディング位置にも位置合わせされることとなる。 As shown in step S106 of FIG. 3, when the lead frame 31 is placed at the reference position, the CPU 51 of the control unit 50 outputs a command for acquiring a reference image. By this command, the control unit 50 acquires an image including the hole 23 and the island 32 shown in FIG. 4 in the visual field 41 from the camera 16 via the camera interface 52 and registers the acquired image in the memory 58 as a reference image. Further, the CPU 51 of the control unit 50 processes the acquired image by, for example, binarization processing, acquires the coordinates of the position of the hole 23 and the center position of the island 32, and stores them in the memory 58. In this state, the first island 32 of the lead frame 31 is aligned with the reference position and also aligned with the bonding position.
 図3のステップS107に示すように、制御部50のCPU51は最初のアイランド32に半導体チップ35をボンディングする指令を出力する。ボンディングに際しては、制御部50のCPU51はまず、コレット13をジグホルダ27の上に移動させ、ウェハ28から半導体チップ35を吸着してピックアップさせる。そして、制御部50のCPU51は、コレット中心軸14をボンディング位置に合わせる指令を出力する。この指令によって、X軸モータインターフェース53、Y軸モータインターフェース54からXYテーブル11の制御信号が出力され、この制御信号によって、コレット中心軸14がボンディング位置に来るようにXYテーブル11を移動する。そして、コレット中心軸14がボンディング位置に来たら、制御部50のCPU51はコレットを下降させる指令を出力する。この指令によってZ軸モータインターフェース55からZ軸モータ20の制御信号が出力され、この制御信号によってZ軸モータ20が駆動され、ボンディングアーム15が下降し、コレット13が加熱されているリードフレーム31のアイランド32に向かって降下する。半導体チップ35がアイランド32に圧着されたら制御部50はコレット13の真空吸引を停止し、コレット13を上昇させる指令を出力する。この指令によってコレット13は上昇し、最初のアイランド32への半導体チップ35のボンディングが終了する。 3, the CPU 51 of the control unit 50 outputs a command for bonding the semiconductor chip 35 to the first island 32, as shown in step S107 of FIG. In bonding, the CPU 51 of the control unit 50 first moves the collet 13 onto the jig holder 27 to suck and pick up the semiconductor chips 35 from the wafer 28. Then, the CPU 51 of the control unit 50 outputs a command for aligning the collet center axis 14 with the bonding position. By this command, the control signal of the XY table 11 is output from the X-axis motor interface 53 and the Y-axis motor interface 54, and the XY table 11 is moved by this control signal so that the collet center shaft 14 is at the bonding position. When the collet central shaft 14 comes to the bonding position, the CPU 51 of the control unit 50 outputs a command to lower the collet. In response to this command, a control signal for the Z-axis motor 20 is output from the Z-axis motor interface 55, the Z-axis motor 20 is driven by this control signal, the bonding arm 15 is lowered, and the collet 13 is heated. Descent toward the island 32. When the semiconductor chip 35 is pressure-bonded to the island 32, the control unit 50 stops the vacuum suction of the collet 13 and outputs a command to raise the collet 13. The collet 13 is raised by this command, and the bonding of the semiconductor chip 35 to the first island 32 is completed.
 図3のステップS108に示すように、制御部50のCPU51は、リードフレーム31を図5に示すアイランド32の1ピッチ+Px分だけX方向に送る指令を出力する。この指令によって、搬送装置インターフェース56から搬送装置21の制御信号が出力され、この制御信号によって搬送装置21はリードフレーム31を+X方向にピッチPxだけ移動させる。制御部50は図示しない位置センサによってリードフレーム31の搬送量を検出し、図3のステップS109に示すように、1ピッチPxだけリードフレーム31が搬送されたかどうかを検出する。そして、位置センサからリードフレーム31が1ピッチPxだけ搬送されたとの信号が入力されると、制御部50のCPU51は、図3のステップS110に示すように、リードフレーム31の搬送を停止する指令を出力する。この指令によって、搬送装置インターフェース56から制御信号が出力され、この制御信号によって搬送装置21が停止する。 3, the CPU 51 of the control unit 50 outputs a command for sending the lead frame 31 in the X direction by 1 pitch + Px of the island 32 shown in FIG. 5. In response to this command, a control signal for the transport device 21 is output from the transport device interface 56, and the transport device 21 moves the lead frame 31 in the + X direction by the pitch Px in accordance with this control signal. The control unit 50 detects the transport amount of the lead frame 31 with a position sensor (not shown), and detects whether the lead frame 31 is transported by one pitch Px as shown in step S109 of FIG. When a signal indicating that the lead frame 31 has been conveyed by one pitch Px is input from the position sensor, the CPU 51 of the control unit 50 instructs to stop the conveyance of the lead frame 31 as shown in step S110 of FIG. Is output. In response to this command, a control signal is output from the transport device interface 56, and the transport device 21 is stopped by this control signal.
 図5に示すように、搬送装置21がリードフレーム31の搬送を停止した状態では、先に半導体チップ35がボンディングされたアイランド32から1ピッチPxずれた次のアイランド32がボンディング位置に来ている。また、ボンディングステージ22はヒータ24によって所定の温度に加熱された状態となっている。図3のステップS111に示すように、制御部50のCPU51はカメラ16の光軸17を基準位置に移動させる指令を出力する。この指令によって、X軸モータインターフェース53とY軸モータインターフェース54とからX軸、Y軸モータ18,19に制御信号が出力され、この制御信号によってカメラ16の光軸17が基準位置に来るようにXYテーブル11が駆動される。 As shown in FIG. 5, in a state where the transport device 21 stops transporting the lead frame 31, the next island 32 shifted by 1 pitch Px from the island 32 to which the semiconductor chip 35 was previously bonded has come to the bonding position. . The bonding stage 22 is heated to a predetermined temperature by the heater 24. As shown in step S111 in FIG. 3, the CPU 51 of the control unit 50 outputs a command to move the optical axis 17 of the camera 16 to the reference position. In response to this command, a control signal is output from the X-axis motor interface 53 and the Y-axis motor interface 54 to the X-axis and Y- axis motors 18 and 19 so that the optical axis 17 of the camera 16 comes to the reference position by this control signal. The XY table 11 is driven.
 カメラ16の光軸17が基準位置に来ると、図6に示すように、カメラ16の視野41には、ボンディングしようとするアイランド32とリードフレーム31の打ち抜き部34を通して見通せるボンディングステージ22の孔23と、リード33とが捉えられている。リードフレーム31は基準位置に位置合わせされた後、搬送装置21によって1ピッチPxだけ移動しているので、搬送装置21による搬送誤差やリードフレーム31のピッチPxの誤差が無ければ、リードフレーム31は基準位置と全く同一の位置に配置され、カメラ16の視野41のクロスカーソル44の中心とアイランド32の中心とは一致した状態となるはずである。しかし、実際には搬送誤差やリードフレーム31のピッチ誤差などによって、アイランド32の中心位置はカメラ16の視野41のクロスカーソル44の中心位置とずれた位置となっている。図6においては、アイランド32、リード33の基準位置を一点鎖線によって示し、実際にボンディング位置に配置されているリードフレーム31のアイランド32、リード33を実線によって示している。 When the optical axis 17 of the camera 16 comes to the reference position, as shown in FIG. 6, the field of view 41 of the camera 16 has a hole 23 of the bonding stage 22 that can be seen through the island 32 to be bonded and the punched portion 34 of the lead frame 31. And the lead 33 is captured. After the lead frame 31 is aligned with the reference position, the lead frame 31 is moved by one pitch Px by the transport device 21. Therefore, if there is no transport error by the transport device 21 or an error of the pitch Px of the lead frame 31, the lead frame 31 is The center of the cross cursor 44 in the field of view 41 of the camera 16 and the center of the island 32 should be in the same position as the reference position. However, the center position of the island 32 is actually shifted from the center position of the cross cursor 44 in the field of view 41 of the camera 16 due to a transport error, a pitch error of the lead frame 31, and the like. In FIG. 6, the reference position of the island 32 and the lead 33 is indicated by a one-dot chain line, and the island 32 and the lead 33 of the lead frame 31 actually arranged at the bonding position are indicated by a solid line.
 ボンディングステージ22の加熱によって発生する陽炎のため、カメラ16の視野41の捉える画像は揺らぎを含んでいるので各瞬間によって画像は変化している。図6に示す瞬間においては、中心と視野41のクロスカーソル44のY方向の中心線43とアイランド32のY方向の中心線36とはX方向にΔXだけずれ、視野41のクロスカーソル44のX方向の中心線42とアイランド32のX方向の中心線37とはY方向にΔYだけずれている。一方、視野41におけるボンディングステージ22の孔23の位置は、基準位置における孔23の位置と同一位置となっている。 The image captured by the field of view 41 of the camera 16 includes fluctuations due to the heat generated by the heating of the bonding stage 22, so that the image changes with each moment. At the instant shown in FIG. 6, the center line 43 in the Y direction of the cross cursor 44 at the center and the visual field 41 and the center line 36 in the Y direction of the island 32 are shifted by ΔX in the X direction. The center line 42 in the direction and the center line 37 in the X direction of the island 32 are shifted by ΔY in the Y direction. On the other hand, the position of the hole 23 of the bonding stage 22 in the visual field 41 is the same position as the position of the hole 23 in the reference position.
 図3のステップS112に示すように、制御部50のCPU51は、図6に示した瞬間の画像を検出画像として取得し、メモリ58に格納する。制御部50のCPU51は、取得した検出画像を例えば二値化処理などによって処理することによって検出画像からアイランド32の中心位置の座標を取得する。そして図3のステップS113に示すように、制御部50のCPU51は、メモリ58に格納した基準画像のアイランド32の中心座標と検出画像のアイランド32の中心位置とのズレ量ΔX,ΔYを計算し、基準画像のアイランド32の座標にズレ量ΔX,ΔYを加えた座標をアイランド32の見かけ上の中心位置として取得する。 3, the CPU 51 of the control unit 50 acquires the instantaneous image shown in FIG. 6 as a detected image and stores it in the memory 58. The CPU 51 of the control unit 50 acquires the coordinates of the center position of the island 32 from the detected image by processing the acquired detected image by, for example, binarization processing. 3, the CPU 51 of the control unit 50 calculates the deviation amounts ΔX and ΔY between the center coordinates of the island 32 of the reference image stored in the memory 58 and the center position of the island 32 of the detected image. The coordinates obtained by adding the shift amounts ΔX and ΔY to the coordinates of the island 32 in the reference image are acquired as the apparent center position of the island 32.
 図3のステップS114に示すように、制御部50のCPU51は、ボンディングステージ22の加熱によって発生する陽炎による検出位置のずれを補正するための位置補正量を取得する指令を出力する。この指令によって、制御部50のCPU51は基準画像における孔23の位置の座標と検出画像における孔23の位置の座標とをメモリ58から読み出して比較し、その差を位置補正量として取得し、メモリ58に格納する。図6に示した瞬間では、孔23の位置は基準画像の位置と同一位置となっているので、陽炎による検出位置のずれは発生しておらず、位置補正量はゼロとなる。 3, the CPU 51 of the control unit 50 outputs a command for acquiring a position correction amount for correcting a shift in the detection position due to the heat generated by heating the bonding stage 22. By this command, the CPU 51 of the control unit 50 reads out the coordinates of the position of the hole 23 in the reference image and the coordinates of the position of the hole 23 in the detection image from the memory 58 and compares them, and acquires the difference as a position correction amount. 58. At the moment shown in FIG. 6, the position of the hole 23 is the same as the position of the reference image. Therefore, the detection position is not shifted by the hot flame, and the position correction amount is zero.
 図3のステップS115に示すように、制御部50のCPU51は見かけ上のアイランド32の中心位置の座標に位置補正量を加えてアイランド32の位置を認識する。図6に示した瞬間の場合は、位置補正量はゼロであることから、アイランド32の中心位置は、基準画像における座標位置にズレ量ΔX,ΔYを加えた位置となる。 3, the CPU 51 of the control unit 50 recognizes the position of the island 32 by adding a position correction amount to the coordinates of the center position of the apparent island 32. In the case of the instant shown in FIG. 6, since the position correction amount is zero, the center position of the island 32 is a position obtained by adding the shift amounts ΔX and ΔY to the coordinate position in the reference image.
 一方、図7に示すように、ある撮像の瞬間において、検出画像のアイランド32の中心位置の座標が基準画像のアイランド32の中心位置の座標からX,Y方向にズレ量ΔX2,ΔY2だけすれるとともに、孔23の位置もプラスX方向、Y方向にズレ量ΔXm,ΔYmだけずれている場合がある。この場合には、アイランド32の見かけ上の位置は、基準画像のアイランド32の中心座標にX,Y方向の各ズレ量ΔX2,ΔY2を加えた位置であるが、この見かけ上の位置は陽炎による位置誤差を含む位置となる。そして、陽炎によるアイランド32の位置誤差を補正する位置補正量は孔23の位置のプラスX方向、Y方向各ズレ量と同じΔXm,ΔYmとなるので制御部50のCPU51は基準画像のアイランド32の中心位置座標にX,Y方向の各ズレ量ΔX2,ΔY2を加え、それからX,Y方向の各位置ズレ量ΔXm,ΔYmを引いた座標位置をアイランド32の中心座標位置として認識する。すなわち、陽炎の揺らぎによって、検出画像全体が基準画像の位置からX方向、Y方向それぞれズレ量ΔXm,ΔYmだけずれているので、そのズレ量を引いて補正することによって、陽炎によって発生する位置誤差をキャンセルすることができる。 On the other hand, as shown in FIG. 7, the coordinates of the center position of the island 32 of the detected image are shifted in the X and Y directions by the amounts ΔX 2 and ΔY 2 from the coordinates of the center position of the island 32 of the reference image at a certain imaging moment. At the same time, the position of the hole 23 may be shifted by the shift amounts ΔXm and ΔYm in the plus X and Y directions. In this case, the apparent position of the island 32 is a position obtained by adding the shift amounts ΔX 2 and ΔY 2 in the X and Y directions to the center coordinates of the island 32 of the reference image, but this apparent position is The position includes the position error due to the hot flame. The position correction amount for correcting the position error of the island 32 due to the hot flame is ΔXm and ΔYm which are the same as the displacement amounts of the hole 23 in the plus X direction and the Y direction, so the CPU 51 of the control unit 50 determines the island 32 of the reference image. A coordinate position obtained by adding the displacement amounts ΔX 2 and ΔY 2 in the X and Y directions to the center position coordinates and subtracting the displacement amounts ΔXm and ΔYm in the X and Y directions is recognized as the center coordinate position of the island 32. That is, since the entire detected image is shifted from the position of the reference image by the amounts of deviation ΔXm and ΔYm due to fluctuations in the flame, the position error caused by the flame is corrected by subtracting the deviation. Can be canceled.
 同様に、図8に示すように、ある撮像の瞬間において、検出画像のアイランド32の中心位置の座標が基準画像のアイランド32の中心位置の座標からX,Y方向の各ズレ量ΔX3,ΔY3だけすれるとともに、孔23の位置がマイナスX,Y方向に各ズレ量ΔXm,ΔYmだけずれている場合がある。この場合には、アイランド32の見かけ上の位置は、基準画像のアイランド32の中心座標にX,Y方向の各ズレ量ΔX3,ΔY3を加えた位置となり、陽炎による位置誤差を補正する位置補正量は孔23のマイナスX,Y方向への各位置ズレ量ΔXm,ΔYmとなるので、制御部50のCPU51は基準画像のアイランド32の中心位置座標にX,Y方向の各ズレ量ΔX3,ΔY3を加え、更にX,Y方向の各位置ズレ量ΔXm,ΔYmを加えた座標位置をアイランド32の中心座標位置として認識する。これによって、陽炎の揺らぎによって発生する位置誤差をキャンセルすることができる。 Similarly, as shown in FIG. 8, at the moment of imaging, the coordinates of the center position of the island 32 of the detected image are shifted from the coordinates of the center position of the island 32 of the reference image in the X and Y directions ΔX 3 and ΔY. In some cases, the position of the hole 23 is shifted by the respective shift amounts ΔXm and ΔYm in the minus X and Y directions. In this case, the apparent position of the island 32 is a position obtained by adding the deviation amounts ΔX 3 and ΔY 3 in the X and Y directions to the center coordinates of the island 32 of the reference image, and a position for correcting the position error due to the hot flame. Since the correction amounts are the positional deviation amounts ΔXm and ΔYm in the minus X and Y directions of the hole 23, the CPU 51 of the control unit 50 sets the positional deviation amounts ΔX 3 in the X and Y directions to the center position coordinates of the island 32 of the reference image. , ΔY 3, and the coordinate position obtained by adding the positional deviation amounts ΔXm, ΔYm in the X and Y directions is recognized as the central coordinate position of the island 32. As a result, the position error caused by the fluctuation of the hot flame can be canceled.
 図3のステップS116に示すように、制御部50のCPU51は、コレット13にジグホルダ27のウェハ28から半導体チップ35をピックアップさせた後、コレット中心軸14の座標位置を図3のステップS115で認識したアイランド32中心の座標位置に移動させる指令を出力する。この指令によって、X軸モータインターフェース53、Y軸モータインターフェース54はX軸モータ18,Y軸モータ19に制御信号を出力し、この信号によってX軸、Y軸モータ18,19が駆動され、XYテーブル11はコレット中心軸14が認識したアイランド32中心の座標位置に来るようにボンディングヘッド12が移動される。そして、図3のステップS117に示すように、制御部50のCPU51はコレット13を降下させて半導体チップ35をアイランド32にボンディングする指令を出力する。この指令によって、Z軸モータインターフェース55はZ軸モータ20に制御信号を出力し、Z軸モータ20はこの制御信号によって駆動され、コレット13をアイランド32に向かって降下させる。半導体チップ35がアイランド32に圧着されたら制御部50はコレット13の真空吸引を停止し、コレット13を上昇させる指令を出力する。この指令によってコレット13は上昇し、ボンディング位置に配置されたアイランド32への半導体チップ35のボンディングが終了する。 As shown in step S116 of FIG. 3, the CPU 51 of the control unit 50 causes the collet 13 to pick up the semiconductor chip 35 from the wafer 28 of the jig holder 27, and then recognizes the coordinate position of the collet central axis 14 in step S115 of FIG. A command to move to the coordinate position of the center of the island 32 is output. By this command, the X-axis motor interface 53 and the Y-axis motor interface 54 output control signals to the X-axis motor 18 and the Y-axis motor 19, and the X-axis and Y- axis motors 18 and 19 are driven by this signal, and the XY table. 11, the bonding head 12 is moved so that the collet center axis 14 comes to the recognized coordinate position of the island 32 center. 3, the CPU 51 of the control unit 50 outputs a command to lower the collet 13 and bond the semiconductor chip 35 to the island 32. In response to this command, the Z-axis motor interface 55 outputs a control signal to the Z-axis motor 20, and the Z-axis motor 20 is driven by this control signal to lower the collet 13 toward the island 32. When the semiconductor chip 35 is pressure-bonded to the island 32, the control unit 50 stops the vacuum suction of the collet 13 and outputs a command to raise the collet 13. By this command, the collet 13 is raised, and the bonding of the semiconductor chip 35 to the island 32 arranged at the bonding position is completed.
 図3のステップS118に示すように、制御部50のCPU51は、全てのアイランド32に半導体チップ35がボンディングされたかどうかを判断し、全てのアイランド32の上に半導体チップ35のボンディングがされていない場合には、ステップS108に戻って、再度1ピッチPx分だけリードフレーム31を搬送した後、検出画像の取得、位置補正量の取得、アイランドの位置認識を行い、認識したアイランド32の座標位置にコレット中心軸14を合わせてボンディングを行う。また、全てのアイランド32へのボンディングが終了した場合には、そのリードフレーム31への半導体チップ35のボンディングは終了したものとして、図3のステップS119に示すようにボンディング動作を停止する。 As shown in step S <b> 118 of FIG. 3, the CPU 51 of the control unit 50 determines whether or not the semiconductor chips 35 are bonded to all the islands 32, and the semiconductor chips 35 are not bonded to all the islands 32. In this case, the process returns to step S108, and after the lead frame 31 is conveyed again by one pitch Px, detection image acquisition, position correction amount acquisition, island position recognition are performed, and the coordinate position of the recognized island 32 is obtained. Bonding is performed with the collet center axis 14 aligned. When bonding to all the islands 32 is completed, it is assumed that bonding of the semiconductor chip 35 to the lead frame 31 has been completed, and the bonding operation is stopped as shown in step S119 of FIG.
 以上説明した実施形態では、ボンディングステージ22に設けた位置合わせ用マークである孔23のX,Y方向の各位置ズレ量ΔXm,Ymによってアイランド32の見かけ上の中心位置の補正を行うようにしているので、加熱により発生する陽炎による位置検出誤差を効果的に低減し、ボンディング位置精度を向上させることができるという効果を奏する。また、本実施形態は、陽炎の発生を防止する圧縮空気を流す必要が無く、リードフレーム31とカバー25との間に不活性ガスを充満させた状態のままでボンディングを行うことができるため、リードフレームの酸化を防止することができるという効果を奏する。 In the embodiment described above, the apparent center position of the island 32 is corrected by the positional deviation amounts ΔXm and Ym in the X and Y directions of the holes 23 which are alignment marks provided on the bonding stage 22. Therefore, it is possible to effectively reduce the position detection error due to the heat generated by heating and improve the bonding position accuracy. Further, in the present embodiment, since it is not necessary to flow compressed air for preventing the generation of heat, it is possible to perform bonding in a state where an inert gas is filled between the lead frame 31 and the cover 25. There is an effect that the oxidation of the lead frame can be prevented.
 図9を参照しながら他の実施形態について説明する。先に説明した実施形態では、カメラ16はボンディングヘッド12に取り付けられ、ボンディングヘッド12と一体でXY方向に移動することとして説明したが、本実施形態は、カメラ16の取り付けられたカメラユニット63をボンディングヘッド12と別体として設置し、ボンディングヘッド12でコレット13を移動させてウェハ28から半導体チップ35をピックアップする動作と、カメラ16の基準位置への移動とを平行して行い、ボンディング時間の短縮化を図るものである。図1から8を参照して説明したのと同様の部分には同様の符号を付して説明は省略する。 Other embodiments will be described with reference to FIG. In the above-described embodiment, the camera 16 is attached to the bonding head 12 and moved in the XY direction integrally with the bonding head 12. However, in the present embodiment, the camera unit 63 to which the camera 16 is attached is used. It is installed separately from the bonding head 12, and the operation of picking up the semiconductor chip 35 from the wafer 28 by moving the collet 13 by the bonding head 12 and the movement of the camera 16 to the reference position are performed in parallel. It is intended to shorten. The same parts as those described with reference to FIGS. 1 to 8 are denoted by the same reference numerals, and description thereof is omitted.
 図9に示すように、本実施形態のダイボンディング装置10は、リードフレーム31をX方向にガイドするとともにX方向に搬送する搬送装置21と、搬送されたリードフレーム31の表面を図示しないウィンドクランパーで押さえつけて保持するとともに内部に設けられたヒータ24によってリードフレーム31を加熱するボンディングステージ22と、ボンディングステージ22に隣接して設けられ、2段になった第1スライド面61、第2スライド面62を備えるベース60と、第1スライド面61の上にXY方向にスライド自在に設けられたボンディングヘッド12と、第2スライド面の上にY方向にスライド自在に設けられたカメラユニット63と、を備えている。ボンディングヘッド12はX軸モータ18とY軸モータ19とを備え、第1スライド面61の上をXY方向に自在に移動できるよう構成されている。また、ボンディングヘッド12の先端にはZ軸モータ20によってZ方向にスライド移動するスライドアーム15aが取り付けられている。スライドアーム15aはボンディングヘッド12の中心からカメラユニット63側へ斜め下方向に向かって階段状に延びた形状をしており、その先端に取り付けられたコレット13の上方にスペースができるよう構成されている。コレット13はコレット中心軸14がボンディングステージ22とリードフレーム31の表面に垂直となるようにスライドアーム15aの先端に取り付けられている。コレット13は小さな半導体チップ35に対応することができるように先端が細くなっており、先端には半導体チップ35を吸着するための吸着孔が設けられている。 As shown in FIG. 9, the die bonding apparatus 10 of the present embodiment includes a transport device 21 that guides the lead frame 31 in the X direction and transports the lead frame 31 in the X direction, and a wind clamper that does not show the surface of the transported lead frame 31. The bonding stage 22 that heats the lead frame 31 by the heater 24 provided inside the heater and the heater 24 provided therein, and the first slide surface 61 and the second slide surface that are provided adjacent to the bonding stage 22 and have two levels. A base 60 including 62, a bonding head 12 provided on the first slide surface 61 so as to be slidable in the XY directions, a camera unit 63 provided on the second slide surface so as to be slidable in the Y direction, It has. The bonding head 12 includes an X-axis motor 18 and a Y-axis motor 19 and is configured to freely move on the first slide surface 61 in the XY directions. A slide arm 15 a that is slid in the Z direction by a Z-axis motor 20 is attached to the tip of the bonding head 12. The slide arm 15a has a shape extending stepwise from the center of the bonding head 12 toward the camera unit 63 toward the camera unit 63. The slide arm 15a is configured to have a space above the collet 13 attached to the tip thereof. Yes. The collet 13 is attached to the tip of the slide arm 15 a so that the collet central axis 14 is perpendicular to the surfaces of the bonding stage 22 and the lead frame 31. The collet 13 has a thin tip so that it can accommodate a small semiconductor chip 35, and a suction hole for sucking the semiconductor chip 35 is provided at the tip.
 カメラユニット63はY軸方向駆動用のカメラ用Y軸モータ64を備え、第2スライド面62の上でY方向に自在に移動できるよう構成されている。カメラユニット63の先端にはボンディングヘッド12の方に向かって突出したアーム65が設けられており、アーム65の先端にはカメラ16が設けられている。カメラ16はカメラユニット63の移動と共に移動する。カメラ16の光学系の中心軸である光軸17は撮像面の中心を通る線で、取得画像の中心位置を通る線であり、撮像するボンディングステージ22とリードフレーム31の表面に対して垂直になるように配置されている。また、カメラ16は、カメラユニット63からボンディングヘッド12に向かって突出した位置に取り付けられているので、コレット13の上方のスペースに入り込んでコレット13の中心軸14とカメラ16中心の光軸17とが同軸となることができる。 The camera unit 63 includes a camera Y-axis motor 64 for driving in the Y-axis direction, and is configured to be freely movable in the Y direction on the second slide surface 62. An arm 65 protruding toward the bonding head 12 is provided at the tip of the camera unit 63, and a camera 16 is provided at the tip of the arm 65. The camera 16 moves as the camera unit 63 moves. The optical axis 17 that is the central axis of the optical system of the camera 16 is a line that passes through the center of the imaging surface and that passes through the center position of the acquired image, and is perpendicular to the surface of the bonding stage 22 and the lead frame 31 to be imaged. It is arranged to be. Further, since the camera 16 is mounted at a position protruding from the camera unit 63 toward the bonding head 12, the camera 16 enters a space above the collet 13 and the optical axis 17 at the center of the collet 13 and the optical axis 17 at the center of the camera 16. Can be coaxial.
 ダイボンディング装置10の搬送装置21と、ボンディングヘッド12をXY方向に駆動するX軸モータ18と、Y軸モータ19と、スライドアーム15aをZ方向に駆動するZ軸モータ20と、カメラ16と、カメラ用Y軸モータ64と、ボンディングステージ22のヒータ24とは制御部50に接続され、制御部50の指令によって駆動されるように構成されている。制御部50は、信号の処理及び演算などを行うCPU51と、制御用のデータが格納されるメモリ58と、カメラ16、X軸モータ18、Y軸モータ19、Z軸モータ20、カメラ用Y軸モータ64、搬送装置21、ボンディングステージ22のヒータ24の各制御対象に対して、CPU51からの指令を制御信号に変換して出力するカメラインターフェース52、X軸モータインターフェース53、Y軸モータインターフェース54、Z軸モータインターフェース55、カメラ用Y軸モータインターフェース66、搬送装置インターフェース56、ヒータインターフェース57を含んでいる。各インターフェース52~57,66とメモリ58とCPU51とはデータバス59によって接続され、相互に信号の授受が行えるように構成されている。制御部50は一つのコンピュータを構成している。 A transfer device 21 of the die bonding apparatus 10; an X-axis motor 18 that drives the bonding head 12 in the XY direction; a Y-axis motor 19; a Z-axis motor 20 that drives the slide arm 15a in the Z direction; The camera Y-axis motor 64 and the heater 24 of the bonding stage 22 are connected to the control unit 50 and are configured to be driven by commands from the control unit 50. The control unit 50 includes a CPU 51 that performs signal processing and computation, a memory 58 that stores control data, a camera 16, an X-axis motor 18, a Y-axis motor 19, a Z-axis motor 20, and a camera Y-axis. A camera interface 52, an X-axis motor interface 53, a Y-axis motor interface 54, which converts a command from the CPU 51 into a control signal for each control target of the motor 64, the transport device 21, and the heater 24 of the bonding stage 22, A Z-axis motor interface 55, a camera Y-axis motor interface 66, a transfer device interface 56, and a heater interface 57 are included. The interfaces 52 to 57, 66, the memory 58, and the CPU 51 are connected by a data bus 59 so that signals can be exchanged between them. The control unit 50 constitutes one computer.
 先に説明した実施形態と同様、ボンディングステージ22の表面には、位置合わせ用マークである孔23が設けられている。孔23は、リードフレーム31のアイランド32が半導体チップ35のボンディング位置に配置された際に、抜き打ち部34の範囲内、すなわち、図2に示すハッチングされた範囲内であり、できるだけアイランド32に近い位置に設けられている。 As in the above-described embodiment, a hole 23 serving as an alignment mark is provided on the surface of the bonding stage 22. When the island 32 of the lead frame 31 is arranged at the bonding position of the semiconductor chip 35, the hole 23 is within the range of the punched portion 34, that is, within the hatched range shown in FIG. In the position.
 以上のように構成されたダイボンディング装置10の動作について説明する。先に図3から図8を参照しながら説明した実施形態と同様、カメラ16の光軸17の位置を基準位置に合わせると共にリードフレーム31を基準位置に合わせ、カメラ16によって孔23とアイランド32とを視野41に含む基準画像を取得し、メモリ58に登録する。そして、制御部50のCPU51は取得した画像を例えば二値化処理などによって処理し、孔23の位置とアイランド32の中心位置の座標を取得し、メモリ58に格納する。 The operation of the die bonding apparatus 10 configured as described above will be described. Similar to the embodiment described above with reference to FIGS. 3 to 8, the position of the optical axis 17 of the camera 16 is adjusted to the reference position and the lead frame 31 is adjusted to the reference position. Is obtained in the field of view 41 and registered in the memory 58. Then, the CPU 51 of the control unit 50 processes the acquired image by binarization processing, for example, acquires the position of the hole 23 and the coordinates of the center position of the island 32, and stores them in the memory 58.
 最初のアイランド32への半導体チップ35のボンディングを行い、ボンディングが終了すると、リードフレーム31を図5に示すアイランド32の1ピッチ+Px分だけX方向に移動させる。この状態では、先に半導体チップ35がボンディングされたアイランド32から1ピッチPxずれた次のアイランド32がボンディング位置に来ている。また、ボンディングステージ22はヒータ24によって所定の温度に加熱された状態となっている。そして、制御部50のCPU51はカメラ16の光軸17を基準位置に移動させる指令を出力する。この指令によって、カメラ用Y軸モータインターフェース66からカメラ用Y軸モータ64に制御信号が出力され、この制御信号によってカメラ16の光軸17が基準位置に来るようにカメラ16をY方向に移動する。また、制御部50のCPU51はカメラ16の基準位置への移動と平行してコレット13にジグホルダ27のウェハ28から半導体チップ35をピックアップさせる。 The bonding of the semiconductor chip 35 to the first island 32 is performed, and when the bonding is completed, the lead frame 31 is moved in the X direction by 1 pitch + Px of the island 32 shown in FIG. In this state, the next island 32 which is shifted by 1 pitch Px from the island 32 to which the semiconductor chip 35 has been previously bonded has come to the bonding position. The bonding stage 22 is heated to a predetermined temperature by the heater 24. Then, the CPU 51 of the control unit 50 outputs a command for moving the optical axis 17 of the camera 16 to the reference position. In response to this command, a control signal is output from the camera Y-axis motor interface 66 to the camera Y-axis motor 64, and the camera 16 is moved in the Y direction so that the optical axis 17 of the camera 16 comes to the reference position by this control signal. . Further, the CPU 51 of the control unit 50 causes the collet 13 to pick up the semiconductor chip 35 from the wafer 28 of the jig holder 27 in parallel with the movement of the camera 16 to the reference position.
 カメラ16の光軸17が基準位置に来ると、先に説明した実施形態と同様、制御部50のCPU51は、ある瞬間の画像を検出画像として取得し、メモリ58に格納された基準画像のアイランド32の中心座標と検出画像のアイランド32の中心位置とのズレ量ΔX,ΔYを計算し、基準画像のアイランド32の座標にズレ量ΔX,ΔYを加えた座標をアイランド32の見かけ上の中心位置として取得する。そして、制御部50のCPU51は、メモリ58に格納された基準画像における孔23の位置の座標と検出画像における孔23の位置の座標とを比較し、その差を位置補正量として取得してアイランド32の見かけ上の中心位置を補正し、補正したアイランド32中心の座標をアイランド32の中心座標位置として認識する。 When the optical axis 17 of the camera 16 comes to the reference position, the CPU 51 of the control unit 50 acquires an image at a certain moment as a detected image, and the reference image island stored in the memory 58, as in the above-described embodiment. The shift amount ΔX, ΔY between the center coordinate of 32 and the center position of the island 32 of the detected image is calculated, and the coordinate obtained by adding the shift amount ΔX, ΔY to the coordinate of the island 32 of the reference image is the apparent center position of the island 32. Get as. Then, the CPU 51 of the control unit 50 compares the coordinates of the position of the hole 23 in the reference image stored in the memory 58 with the coordinates of the position of the hole 23 in the detection image, acquires the difference as a position correction amount, and The apparent center position of 32 is corrected, and the corrected coordinates of the center of the island 32 are recognized as the center coordinate position of the island 32.
 コレット13は既に半導体チップ35をピックアップしているので、制御部50のCPU51は、コレット中心軸14の座標位置を認識したアイランド32の中心座標位置に移動させ、アイランド32への半導体チップ35のボンディングを行う。 Since the collet 13 has already picked up the semiconductor chip 35, the CPU 51 of the control unit 50 moves the coordinate position of the collet center axis 14 to the center coordinate position of the island 32 and bonds the semiconductor chip 35 to the island 32. I do.
 以上説明した実施形態は、先に説明した実施形態と同様の効果を奏するほか、カメラ16の取り付けられたカメラユニット63をボンディングヘッド12と別体として設置し、ボンディングヘッド12でコレット13を移動させてウェハ28から半導体チップ35をピックアップする動作と、カメラ16の基準位置への移動とを平行して行い、ボンディング時間の短縮化を図ることが出来るという効果を奏する。 The above-described embodiment has the same effects as the above-described embodiment, and the camera unit 63 to which the camera 16 is attached is installed separately from the bonding head 12 and the collet 13 is moved by the bonding head 12. Thus, the operation of picking up the semiconductor chip 35 from the wafer 28 and the movement of the camera 16 to the reference position are performed in parallel, and the bonding time can be shortened.
 また、本発明は、ダイボンダを好適な実施形態として記述した。しかし、本発明の趣旨から外れない他の実施形態、例えば、テープボンダ、ワイヤボンダ等の他のボンディング装置であっても本発明を適用することができる。 In the present invention, a die bonder is described as a preferred embodiment. However, the present invention can also be applied to other embodiments that do not depart from the spirit of the present invention, for example, other bonding apparatuses such as a tape bonder and a wire bonder.

Claims (7)

  1.  ボンディング装置であって、
     ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、
     ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、
     カメラによって撮像した画像を処理してボンディング対象の位置を認識する制御部と、を含み、
     制御部は、
     位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像手段と、
     位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像手段と、
     基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得手段と、
     基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得手段と、
     見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識手段と、
     を有するボンディング装置。
    A bonding device,
    A bonding stage that holds the bonding target on the surface and heats the bonding target, and includes a bonding target alignment mark on the surface that holds the bonding target;
    A camera for imaging the bonding stage surface alignment mark and the bonding target held on the bonding stage surface within the same field of view;
    A controller that processes an image captured by the camera and recognizes the position of the bonding target,
    The control unit
    A reference image capturing unit that captures a reference image including an alignment mark and a bonding target disposed at the reference position by a camera;
    A detection image capturing means for capturing a detection image including an alignment mark and a bonding target disposed at a bonding position by a camera;
    An apparent position acquisition unit that compares the reference image and the detection image, and acquires an apparent position of the bonding target by a positional deviation between the position on the reference image of the bonding target and the position on the detection image;
    A position correction amount acquisition unit that compares the reference image and the detection image, and acquires a position correction amount by a positional deviation between the position of the alignment mark on the reference image and the position on the detection image;
    A bonding target position recognition means for recognizing the position of the bonding target by correcting the apparent position of the bonding target acquired by the apparent position acquisition means by the position correction amount acquired by the position correction means;
    A bonding apparatus.
  2.  請求の範囲1に記載のボンディング装置であって、
     基準画像撮像手段と検出画像撮像手段は、
     ボンディングステージによってボンディングステージ表面に保持されたボンディング対象が加熱されている状態で基準画像と検出画像とをそれぞれ撮像するボンディング装置。
    A bonding apparatus according to claim 1,
    The reference image capturing unit and the detected image capturing unit are:
    A bonding apparatus that captures a reference image and a detection image in a state where a bonding target held on the surface of the bonding stage is heated by the bonding stage.
  3.  請求の範囲1に記載のボンディング装置であって、
     ボンディング対象は、打ち抜き部のあるリードフレームまたは基板であって、
     位置合わせ用マークは、リードフレームまたは基板がボンディング位置に配置された際に打ち抜き部の範囲内に入る位置に設けられているボンディング装置。
    A bonding apparatus according to claim 1,
    The bonding target is a lead frame or a substrate with a punched portion,
    The alignment mark is a bonding apparatus provided at a position that falls within the range of the punched portion when the lead frame or the substrate is disposed at the bonding position.
  4.  請求の範囲2に記載のボンディング装置であって、
     ボンディング対象は、打ち抜き部のあるリードフレームまたは基板であって、
     位置合わせ用マークは、リードフレームまたは基板がボンディング位置に配置された際に打ち抜き部の範囲内に入る位置に設けられているボンディング装置。
    A bonding apparatus according to claim 2,
    The bonding target is a lead frame or a substrate with a punched portion,
    The alignment mark is a bonding apparatus provided at a position that falls within the range of the punched portion when the lead frame or the substrate is disposed at the bonding position.
  5.  ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、を備えるボンディング装置に用いられるボンディング対象の位置認識方法であって、
     位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像工程と、
     位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像工程と、
     基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得工程と、
     基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得工程と、
     見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識工程と、
     を有するボンディング対象の位置認識方法。
    A bonding stage that holds the bonding target on the surface and heats the bonding target and includes a bonding target alignment mark on the surface that holds the bonding target, and the bonding stage surface alignment mark and the bonding stage surface A method for recognizing a position of a bonding target used in a bonding apparatus including a camera that images a bonding target in the same field of view,
    A reference image imaging step of capturing a reference image including an alignment mark and a bonding object arranged at the reference position by a camera;
    A detection image capturing step of capturing a detection image including an alignment mark and a bonding target disposed at a bonding position by a camera;
    An apparent position acquisition step of comparing the reference image and the detection image, and acquiring an apparent position of the bonding target by a positional deviation between the position on the reference image of the bonding target and the position on the detection image;
    A position correction amount acquisition step of comparing the reference image and the detection image, and acquiring a position correction amount by a positional deviation between the position on the reference image of the alignment mark and the position on the detection image;
    A bonding target position recognition step for recognizing the position of the bonding target by correcting the apparent position of the bonding target acquired by the apparent position acquisition means by the position correction amount acquired by the position correction means;
    A method for recognizing a position of a bonding object having
  6.  請求の範囲5に記載のボンディング対象の位置認識方法であって、
     基準画像撮像工程と検出画像撮像工程は、
     ボンディングステージによってボンディングステージ表面に保持されたボンディング対象が加熱されている状態で基準画像と検出画像とをそれぞれ撮像するボンディング対象の位置認識方法。
    A method for recognizing a position of a bonding object according to claim 5,
    The reference image capturing process and the detection image capturing process are:
    A bonding target position recognition method for capturing a reference image and a detection image in a state where the bonding target held on the surface of the bonding stage is heated by the bonding stage.
  7.  ボンディング対象を表面に保持すると共にボンディング対象を加熱し、ボンディング対象を保持する表面にボンディング対象の位置合わせ用マークを備えるボンディングステージと、ボンディングステージ表面の位置合わせ用マークとボンディングステージ表面に保持されたボンディング対象とを同一視野内で撮像するカメラと、カメラによって撮像した画像を処理してボンディング対象の位置を認識するコンピュータである制御部と、を含むボンディング装置のコンピュータである制御部に実行させるボンディング対象の位置認識プログラムを記録した記録媒体であって、
     位置合わせ用マークと基準位置に配置されたボンディング対象とを含む基準画像をカメラによって撮像する基準画像撮像ステップと、
     位置合わせ用マークとボンディング位置に配置されたボンディング対象とを含む検出画像をカメラによって撮像する検出画像撮像ステップと、
     基準画像と検出画像とを比較し、ボンディング対象の基準画像上の位置と検出画像上の位置との位置ずれによりボンディング対象の見かけ上の位置を取得する見かけ位置取得ステップと、
     基準画像と検出画像とを比較し、位置合わせ用マークの基準画像上の位置と検出画像上の位置との位置ずれにより位置補正量を取得する位置補正量取得ステップと、
     見かけ位置取得手段によって取得したボンディング対象の見かけ上の位置を位置補正手段によって取得した位置補正量だけ補正してボンディング対象の位置を認識するボンディング対象位置認識ステップと、
     を有するボンディング対象の位置認識プログラムを記録した記録媒体。
    A bonding stage that holds the bonding target on the surface and heats the bonding target and includes a bonding target alignment mark on the surface that holds the bonding target, and the bonding stage surface alignment mark and the bonding stage surface Bonding to be executed by a control unit, which is a computer of a bonding apparatus, including a camera that images a bonding target within the same field of view, and a control unit that is a computer that processes an image captured by the camera and recognizes the position of the bonding target. A recording medium on which a target position recognition program is recorded,
    A reference image capturing step of capturing a reference image including an alignment mark and a bonding target disposed at the reference position by a camera;
    A detection image capturing step of capturing a detection image including an alignment mark and a bonding target arranged at a bonding position by a camera;
    An apparent position acquisition step of comparing the reference image and the detection image, and acquiring an apparent position of the bonding target by a positional deviation between the position on the reference image of the bonding target and the position on the detection image;
    A position correction amount acquisition step of comparing the reference image and the detection image, and acquiring a position correction amount by a positional deviation between the position on the reference image of the alignment mark and the position on the detection image;
    A bonding target position recognition step for recognizing the position of the bonding target by correcting the apparent position of the bonding target acquired by the apparent position acquisition means by the position correction amount acquired by the position correction means;
    A recording medium on which a position recognition program to be bonded is recorded.
PCT/JP2008/072542 2008-04-10 2008-12-11 Bonding device, method for recognizing position of bonding object used in bonding device, and recording medium on which program for recognizing position of bonding object is recorded WO2009125520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-102156 2008-04-10
JP2008102156A JP4343989B1 (en) 2008-04-10 2008-04-10 BONDING APPARATUS AND BONDING AREA POSITION RECOGNITION METHOD AND PROGRAM USED FOR BONDING APPARATUS

Publications (1)

Publication Number Publication Date
WO2009125520A1 true WO2009125520A1 (en) 2009-10-15

Family

ID=41161658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072542 WO2009125520A1 (en) 2008-04-10 2008-12-11 Bonding device, method for recognizing position of bonding object used in bonding device, and recording medium on which program for recognizing position of bonding object is recorded

Country Status (2)

Country Link
JP (1) JP4343989B1 (en)
WO (1) WO2009125520A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399206B2 (en) 2009-11-04 2014-01-29 マツダ株式会社 Metal member joining method and metal joined body
KR101986341B1 (en) 2012-03-30 2019-06-07 삼성전자주식회사 bi-directional camera module for flip chip bonder used the same
JP5876000B2 (en) * 2012-06-11 2016-03-02 株式会社新川 Bonding apparatus and bonding method
JP6246674B2 (en) * 2014-07-24 2017-12-13 キヤノンマシナリー株式会社 Position confirmation device and die bonder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102397A (en) * 1999-07-27 2001-04-13 Toray Eng Co Ltd Chip-packaging device and calibration method therefor
JP2003218138A (en) * 2002-01-23 2003-07-31 Toray Eng Co Ltd Hot bonding method, bonding device, and calibration method in hot bonding
JP2007180210A (en) * 2005-12-27 2007-07-12 Toshiba Corp Bonding device, and manufacturing method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102397A (en) * 1999-07-27 2001-04-13 Toray Eng Co Ltd Chip-packaging device and calibration method therefor
JP2003218138A (en) * 2002-01-23 2003-07-31 Toray Eng Co Ltd Hot bonding method, bonding device, and calibration method in hot bonding
JP2007180210A (en) * 2005-12-27 2007-07-12 Toshiba Corp Bonding device, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2009253185A (en) 2009-10-29
JP4343989B1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
TWI442491B (en) Grain bonding machine and semiconductor manufacturing method
JP4840862B2 (en) Chip supply method for mounting apparatus and mounting apparatus therefor
CN109906029B (en) Electronic component mounting device and electronic component mounting method
JP6510837B2 (en) Bonding apparatus and bonding method
JP4482598B2 (en) BONDING DEVICE, BONDING DEVICE CORRECTION AMOUNT CALCULATION METHOD, AND BONDING METHOD
JP4343989B1 (en) BONDING APPARATUS AND BONDING AREA POSITION RECOGNITION METHOD AND PROGRAM USED FOR BONDING APPARATUS
TWI550751B (en) Grain adapter and bonding method
JP6271514B2 (en) Production equipment
JP4831091B2 (en) Die bonding apparatus and die bonding method
KR20190020641A (en) Mounting method, mounting head and mounting apparatus
US20100072262A1 (en) Wire bonding method
JP5690535B2 (en) Die bonder and semiconductor manufacturing method
US10784130B2 (en) Bonding apparatus
CN114074236B (en) Welding device and welding method
CN112218517B (en) Mounting device
JPH09232407A (en) Work conveyance apparatus and semiconductor manufacturing apparatus using the same
KR100312743B1 (en) Semiconductor die bonder position recognizing and testing apparatus and method thereof
JP5362404B2 (en) Manufacturing method of semiconductor integrated circuit device
KR100718973B1 (en) A inspecting apparatus and a inspecting method for a semi-conductor chip bonder
KR101171985B1 (en) Dispenser for PCB having vision system
JP4083533B2 (en) Manufacturing method of semiconductor device
JP4839251B2 (en) Wire bonding method
KR101146319B1 (en) Semiconductor chip supplying Method of bonder
JPH11176883A (en) Device and method for thermocompression bonding of electronic component having bumps
JP5647312B2 (en) Manufacturing method of semiconductor integrated circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08873820

Country of ref document: EP

Kind code of ref document: A1