WO2009124795A1 - Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage - Google Patents

Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage Download PDF

Info

Publication number
WO2009124795A1
WO2009124795A1 PCT/EP2009/051473 EP2009051473W WO2009124795A1 WO 2009124795 A1 WO2009124795 A1 WO 2009124795A1 EP 2009051473 W EP2009051473 W EP 2009051473W WO 2009124795 A1 WO2009124795 A1 WO 2009124795A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
transmission element
hydraulic
brake
Prior art date
Application number
PCT/EP2009/051473
Other languages
English (en)
French (fr)
Inventor
Jochen Mayer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to AT09730889T priority Critical patent/ATE516190T1/de
Priority to EP09730889A priority patent/EP2268517B1/de
Publication of WO2009124795A1 publication Critical patent/WO2009124795A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/143Master cylinder mechanically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4077Systems in which the booster is used as an auxiliary pressure source

Definitions

  • the invention relates to an actuator unit for a master cylinder of a hydraulic vehicle brake system having the features of the preamble of claim 1.
  • the actuator unit serves to transmit the muscle power of an actuator, usually a supplementbremspedal or a handbrake lever on a piston of a master cylinder.
  • the actuating unit occurs, so to speak, in the place of a piston rod which connects the foot brake pedal to the piston of the master cylinder in previously customary vehicle brake systems.
  • the actuator allows a partial or complete decoupling of the predominantly the actuator from the piston of the master cylinder and it allows the coupling of external energy, namely hydraulic pressure, to a hydraulic brake booster or to a power brake.
  • the brake booster is referred to as auxiliary brake, in which a part of an actuating force for actuating the master cylinder by muscle applied by the driver and another part of the actuating force is generated by external energy.
  • Such an actuating unit is known from the patent application DE 10 2004 025 638 A1.
  • the known actuating unit has a first piston, which is mechanically connected via a piston rod with a foot brake pedal.
  • the first piston is slidably received in a cylinder bore of a second piston, against which it is supported by a compression spring.
  • a third piston is received coaxially with the second piston in a common cylinder bore, the two pistons abutting each other when the actuator unit is not actuated.
  • the two pistons are received in the cylinder bore of a master cylinder, the third piston forms a primary piston of the master cylinder, which takes the place of a rod piston of a conventional master cylinder. It is also conceivable, however, to accommodate the two pistons in a cylinder outside the master cylinder and to transmit the force of the third piston mechanically, for example via a push rod on the primary piston of the master cylinder.
  • a service brake is provided as a power brake by hydraulic pressurization of a gap between the second and the third piston of the known actuator unit.
  • the hydraulic pressure comes from a hydraulic pump to which a hydraulic accumulator is preferably connected.
  • the hydraulic pump with the connected hydraulic accumulator form a foreign energy supply device.
  • the hydraulic pressure keeps the second piston of the actuator in its home position, which does not shift during a service brake.
  • the hydraulic pressure displaces the third piston of the actuator, which forms the primary piston of the master cylinder.
  • the displacement of the third piston displaces as usual brake fluid from the master cylinder for actuating the vehicle brake system.
  • the reference value for the amount of brake pressure is a movement of the foot brake pedal or the muscular force with which the foot brake pedal is depressed.
  • the first piston With the footbrake pedal, the first piston is moved against the force of the compression spring via the push rod, with which the first piston is supported on the second piston.
  • the second piston is retained in its basic position by the hydraulic pressure of the external energy supply device.
  • the first piston is displaced when the foot brake pedal is actuated. Since the back pressure is missing, the first piston displaces the second piston via the compression spring, which moves over a sniffer bore. Characterized a volume of brake fluid is enclosed in the cylinder bore of the second piston, so that the first piston can not be moved in the second piston, but the second piston moves with the first piston. The movement is transmitted from the second piston to the third, adjacent to him piston and there is an auxiliary braking by muscle power.
  • the actuating unit according to the invention with the features of claim 1 has a transmission element which is connected to an actuating element of the vehicle brake system.
  • the actuating element is in particular a foot brake pedal or a hand brake lever.
  • the actuating unit according to the invention comprises a pressurizable booster piston, which forms an output element of the actuating unit.
  • the booster piston actuates the master cylinder, it may be a piston of the master cylinder or it is connected via, for example, a piston rod with a piston of the master cylinder. Another possibility is that of connected to the brake cylinder. Another possibility is that the booster piston of the actuator communicates hydraulically with the piston of the master cylinder.
  • the actuating unit according to the invention has a piston-cylinder unit, which forms a hydraulic transformer, with which a force from the transmission element to the booster piston is transferable.
  • the transmission element has a piston and the intensifier piston has a cylinder of the piston-cylinder unit, or conversely, the intensifier piston has a piston and the transmission element has a cylinder of the piston-cylinder unit.
  • the transmission element or the booster piston can be designed as a piston or cylinder, or the transmission element and / or the booster piston can be connected to the piston or the cylinder of the piston-cylinder unit, for example via push rods.
  • the transmission element and the booster piston each have pistons of the piston-cylinder unit of the hydraulic transformer, which are displaceable in a (fixed) cylinder.
  • the booster piston of the actuating unit according to the invention is hydraulically subjected to pressure from a power supply unit for external energy and actuates the master brake cylinder.
  • the piston-cylinder unit which forms the hydraulic transmitter of the actuation unit according to the invention, is open to external power braking so that brake fluid contained in it can escape. Instead of brake fluid may also be included another hydraulic fluid, which will not be mentioned below.
  • the open piston-cylinder unit allows a relative movement of the transmission element relative to the booster piston, the two elements are decoupled from each other.
  • the brake pressure is generated by the hydraulic pressurization of the booster piston.
  • the transmission element or the actuating element which displaces it serve as a setpoint generator for the height of the brake pressure to be set.
  • the transmission element works against a spring element in order to bring about a force on the operating element, so that the inventive actuator has an integrated pedal travel simulator.
  • the piston-cylinder unit forming the hydraulic transmitter is closed, i.
  • the enclosed volume of brake fluid remains constant.
  • the transmission element is thereby connected to the booster piston, both move together and a muscle force exerted on the transmission element is transmitted via the hydraulic Ü- transformer on the booster piston.
  • the booster piston is hydraulically pressurized by the external power supply.
  • the operating force exerted on the piston of the master cylinder is the sum of the force exerted on the transmission element muscle force and the force generated by the pressurization of the booster piston.
  • the muscle force exerted by the driver is reinforced by external hydraulic energy. Relative movement between the transfer member and the enhancer piston is possible by controlled or controlled discharge or supply of liquid in the piston-cylinder unit, which forms the hydraulic transformer.
  • An auxiliary braking in case of failure of the external energy is done by locking the piston-cylinder unit, so that the volume of liquid enclosed in it remains constant.
  • the booster piston moves together with the transmission element, a force exerted on the transmission element muscle power is transmitted to the booster piston, the master cylinder is operated by muscle power.
  • the invention has the advantage that it allows a Fremdkraft- or an auxiliary power brake and that in case of failure of a foreign energy supply muscle power braking is possible.
  • An additional advantage of the invention is that in An auxiliary brake in case of failure of the external power supply no Relativeg between the transmission element and the booster piston takes place, so it is no actuating lost.
  • a pedal travel simulator is integrated or at least easily integrated.
  • the vehicle When using the actuating unit according to the invention in a hybrid vehicle, the vehicle can be partially or completely decelerated with the one or more electric motors, which are operated as generators for this purpose.
  • a desired value for the braking force is determined.
  • the path and the force of the transmission element ie the force exerted by the driver on a foot brake pedal muscle power and the pedal travel are independent of the braking force adjustable with the actuator unit according to the invention.
  • the actuating unit according to the invention allows the usual feeling of the pedal regardless of whether the deceleration of the vehicle takes place completely, partially or not with the vehicle friction brake system via the actuating unit according to the invention.
  • any pedal characteristic ie any dependence of the pedal travel on the pedal force can be adjusted.
  • Another advantage is the possibility of a brake operation without movement of the transmission element, ie without pedal movement.
  • FIGURE shows an axial section of an actuating unit according to the invention with hydraulic circuit.
  • the Drawing is to be understood as a simplified and schematic representation for explanation and understanding of the invention.
  • the actuating unit 1 according to the invention shown in the drawing is provided for actuating a master brake cylinder, not shown, of a hydraulic vehicle brake system, in particular, but not necessarily, for a so-called hybrid vehicle.
  • a hybrid vehicle is a motor vehicle having an internal combustion engine and one or more electric motors for combined driving of the vehicle. In a vehicle deceleration, so braking, energy is recovered by the electric motor or the electric motors is operated as a generator. The deceleration of the hybrid vehicle occurs completely, partially or not with the electric motor (s), and consequently not, partially or completely, with the vehicle friction brake system.
  • the ratio to which the electric motor operated as a generator and the vehicle friction brake system contribute to a deceleration of the vehicle, during a braking (multiple changes).
  • a desired value for the braking force is predetermined by the actuating unit 1 and the operating unit 1 gives the driver the usual pedal feel when braking, even if the vehicle is not or only partially braked with the vehicle friction brake system, but at least partially by generator operation of or the electric motors of the hybrid vehicle is delayed.
  • Actuator 1 has a tubular housing 2, in which a rod-shaped transmission element 3 is displaceably guided.
  • the transmission element 3 protrudes from the housing 2 at one end and is connected in an articulated manner to a foot brake pedal 4, which can be regarded as an operating element of the vehicle brake system.
  • a handbrake lever would be provided instead of the foot brake pedal 4.
  • the actuating unit 1 a force and / or Distance sensor 5, which measures a pedal force and / or a pedal travel of réellebrems- pedals 4.
  • the braking force does not have to be applied completely or not completely by the vehicle friction brake system, but the deceleration can also be effected by generator operation of the electric motor or motors of the vehicle.
  • the transmission element 3 is designed as a piston 6, which is sealed in a cylinder 7 and slidably received.
  • the cylinder 7 is formed as a blind hole in a shaft 8 of a booster piston 9, wherein the shaft 8 in the direction of the effetsele- element 3 protrudes from the booster piston 9 and a smaller diameter than the booster piston 9 identifies.
  • the booster piston 9 is sealed in a larger diameter portion 10 of the tubular housing 2 of the actuator unit 1 is received. Due to the larger diameter of the booster piston 9 relative to its shaft 8, the booster piston 9 has an annular piston surface 11 on the side of the shaft 9, which is hydraulically pressurized.
  • the larger diameter portion 10 of the housing 2 forms a cylinder 12 for the booster piston 9.
  • a push rod 13 from the booster piston 9 From a side facing away from the transmission element 3 is a push rod 13 from the booster piston 9, with a non-illustrated piston of the master cylinder also not shown displaced and in this way the master cylinder and the connected thereto vehicle friction brake system is actuated.
  • the booster piston 9 at the same time forms a (primary) piston of the master cylinder.
  • the housing 2 is an integral part of the main brake cylinder (not shown), not shown.
  • An interior of the piston-cylinder unit 14 communicates through a bore 15 in the cylinder 7 and an annular space 16 surrounding the cylinder 7 in the housing 2 with a connection 32, which is designed as a radial bore in the housing 2.
  • the transmission element 3 has a simulator piston 17, which is designed as an annular piston and the transmission element 3 concentrically surrounds. At one end facing away from the housing 2, the simulator piston 17 integrally merges into the transmission element 3.
  • the simulant piston 17 dips into an annular cross-section cylinder 18, which is an integral part of the housing 2 of the actuator unit 1 and which surrounds the housing 2 concentrically.
  • a return spring 19 is arranged, which acts on the simulator piston 17 and with it the transmission element 3 in a basic position.
  • the cylinder 18 of the simulator piston 17 is surrounded by an annular hydrosphere 20, which concentrically surrounds the cylinder 18 and the housing 2 of the actuating unit 1.
  • the hydraulic accumulator 20 has an annular piston 21, which is acted upon by a helical compression spring as a return spring 22.
  • the hydraulic accumulator 20 communicates with the cylinder 18 of the simulator piston 17.
  • the hydraulic accumulator 20 and the simulator piston 17 with the cylinder 18 form a pedal travel simulator 23 of the actuation unit 1, which will be explained later.
  • the booster piston 9 also has a return spring 24, which is formed as a helical compression spring and housed in the larger diameter portion 10 of the housing 2, which forms the cylinder 12 of the booster piston 9.
  • the return spring 24 acts on the booster piston 9 in its normal position, i. in the direction of the transmission element 3rd
  • a hydraulic pump 25 As external power supply device, a hydraulic pump 25 is provided, which is driven by an electric motor 26. A pressure side of the hydraulic pump 25 is connected via a check valve 27 and an inlet valve 28 to the cylinder 12 of the booster piston 9, so that the axial disk-shaped piston surface 11 of the booster piston 9 is hydraulically pressurized.
  • a hydraulic accumulator 29 is connected to the pressure side of the hydraulic pump 25, and a pressure sensor 30 is connected to the pressure side of the hydraulic pump 25.
  • the inlet valve 28 is a closed in its normally closed position 2/2-way solenoid valve.
  • a pressure sensor 34 To the cylinder 12 of the booster piston 9, a pressure sensor 34 is also connected.
  • a suction side of the hydraulic pump 25 is connected via an outlet valve 31 to the cylinder 12 of the booster piston 9.
  • a check valve 41 and a brake fluid reservoir 33 is provided on the suction side of the hydraulic pump 25, a check valve 41 and a brake fluid reservoir 33 is provided.
  • the outlet valve 31 is a 2/2-way solenoid valve which is open in its currentless basic position.
  • the cylinder 18 of the simulator piston 17 and the hydraulic accumulator 20 enclosing the cylinder 18 communicate by means of a simulator valve 35.
  • the hydraulic accumulator 20 and the cylinder 18 can be connected to the piston-cylinder unit 14, which forms the transformer.
  • the simulator valve 35 is a 2/2-way solenoid valve which is open in its currentless basic position.
  • a check valve 36 prevents a backflow of brake fluid from the piston-cylinder unit 14 to the hydraulic accumulator 20 and the cylinder 18 of the simulator piston 17th
  • a transfer valve 37 By a transfer valve 37, the piston-cylinder unit 14 with the brake fluid reservoir 33 and the suction side of the hydraulic pump 25 is connected.
  • the transfer valve 37 is a closed in its normally closed position 2/2-way solenoid valve.
  • the piston-cylinder unit 14 By connecting to the reservoir 33, the piston-cylinder unit 14 is depressurized, whereby the transmission element 3 is freely displaceable relative to the shaft 8 of the booster piston 9.
  • a pressure reduction valve 38 By a pressure reduction valve 38, the cylinder 18 of the simulator piston 17 and the hydraulic accumulator 20 with the reservoir 33 and the suction side of the hydraulic pump 25 are connected.
  • the pressure reduction valve 38 is open in its currentless home position 2/2-way solenoid valve.
  • the pressure reduction valve 38 and the reservoir 33, a throttle 39 is interposed.
  • the pressure build-up valve 40 By a pressure build-up valve 40, the hydraulic accumulator 20 and the cylinder 18 of the simulator piston 17 with the pressure side of the hydraulic pump 25 and the hydraulic accumulator 29 are connected.
  • the pressure build-up valve 40 is a closed in its normally closed position 2/2-way solenoid valve.
  • valves 28, 31, 35, 37, 38, 40 as an inlet valve 28, exhaust valve 31, simulator valve 35, transformer valve 37, pressure reduction valve 38 and pressure build-up valve 40 is carried out to their linguistic distinction.
  • the function of the actuating unit 1 is as follows: For braking, the foot brake pedal 4 is stepped and thus the transmission element 3 is displaced into the housing 2.
  • the piston-cylinder unit 14, which forms the transformer, is depressurized by opening the transformer valve 37, so that the booster piston 9 is decoupled from the transmission element 3 and the transmission element 3 is displaceable independently of the booster piston 9.
  • a braking force is generated as a function of the signal of the force or displacement sensor 5.
  • a braking torque of one or more electric boost motors of a hybrid vehicle is generated, which are operated as a generator if the motor vehicle equipped with the brake system is a hybrid vehicle.
  • the booster piston 9 is subjected to hydraulic pressure from the hydraulic pump 25 and the hydraulic reservoir 29.
  • the force of the booster piston 9 is transmitted via the push rod 13 to a piston of the main brake cylinder, not shown, of a vehicle friction brake system, which is actuated thereby.
  • the proportion of the braking force applied to the electric motors operated as a generator and to the master cylinder, ie the hydraulic vehicle Friction brake system is generated, can be adjusted according to the requirements.
  • the control or regulation by means of an electronic control unit, not shown.
  • the braking is an external power braking.
  • all or part of the solenoid valves 28, 31, 35, 37, 38, 40 may be proportional valves.
  • a pedal force is generated in that the simulator piston 17 displaces brake fluid from the cylinder 18 into the hydraulic accumulator 20.
  • the simulator piston 17 operates against its return spring 19 and the annular piston 21 of the hydraulic accumulator 20 operates against its return spring 22. Because the simulator piston 17 communicates with the annular piston 21 of the simulatory works 17 via the annular piston 21 and against the return spring 22.
  • a pedal travel simulator 23rd As already said, form the Simulator piston 17 in the cylinder 18 with the return spring 19 and the communicating hydraulic accumulator 20 with the return spring 22 a pedal travel simulator 23rd
  • a hydraulic pressure in the cylinder 18 of the simulator piston 17 and in the hydraulic accumulator 20 can be controlled or regulated.
  • the hydraulic pressure in the cylinder 18 acts on the simulator piston 17 and thus the transmission element 3 and on this the brake pedal 4.
  • By controlling or regulating the hydraulic pressure in the cylinder 18 can be set in principle any desired pedal characteristic, ie a dependence of the pedal force on the pedal travel.
  • the pedal characteristic is in turn independent of the braking force generated as a foreign force.
  • a power brake with the operating unit 1 is possible by controlled by the transfer valve 37 brake fluid from the piston-cylinder unit 14 is controlled or omitted.
  • a refilling of brake fluid can be done with the hydraulic pump 25 and from the hydraulic accumulator 29 through the pressure build-up valve 40 and the simulator valve 35. It is thereby possible to couple muscle power from the transmission element 3 via the piston-cylinder unit 14 to the shaft 8 of the displacement piston 9, so that the actuation force of the master brake cylinder is partially due to pressurization of the booster piston 9 and to another part by muscular force from the transmission element 3 is applied.
  • the pedal characteristic on the brake pedal 4 is controlled or regulated in the manner described.
  • the external energy supply fails during a foreign power or an auxiliary power brake.
  • braking brake fluid has been displaced from the cylinder 18 of the simulator piston 17 in the hydraulic accumulator 20.
  • This brake fluid is under pressure and flows by opening the simulator valve 35 in the direction of the piston-cylinder unit 14.
  • the simulator valve 35 opens in case of failure of the system, because it is open in its normally-off normal position. In the event of failure of the external power supply during braking, pressurized brake fluid is therefore available from the hydraulic accumulator 20 for actuation of the vehicle brake system.
  • the throttle 39 between the reservoir 33 and the pressure reduction valve 38 has the task that the brake fluid from the hydraulic accumulator 20 for the most part to the piston-cylinder unit 14, which forms the transformer flows and not in the reservoir 33rd It is also a brake operation without movement of the transmission element 3, ie without pedal operation possible:
  • the piston-cylinder unit 14 is depressurized by opening the transformer valve 37 and the booster piston 9 after opening the inlet valve 28 and closing the exhaust valve 31 from the hydraulic pump 25th or pressurized from the hydraulic accumulator 29 and operated in this way the master cylinder, not shown.
  • the brake operation without pedal operation allows, for example, a traction or vehicle dynamics control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)

Abstract

Die Erfindung betrifft eine Betätigungseinheit (1) für einen Hauptbremszylinder einer hydraulischen Fahrzeug-Reibungsbremsanlage. Die Erfindung schlägt vor, die Betätigungseinheit (1) mit einem Übertragungselement (3), das mit einem Fußbremspedal (4) gekoppelt ist, und mit einem Verstärkerkolben (9) auszubilden, der durch eine Kolben-Zylinder-Einheit (14) mit dem Übertragungselement (3) verbunden ist, wobei ein Bremsflüssigkeitsvolumen der Kolben-Zylinder-Einheit (14) mit einem Ventil (37) absperrbar ist, so dass eine Bewegung vom Übertragungselement (3) auf den Verstärkerkolben (9) übertragen wird. Eine Fremdkraft- oder Hilfskraftbremsung ist durch hydraulische Beaufschlagung des Verstärkerkolbens (9) möglich. Ein Simulatorkolben (17), der das Übertragungselement (3) als Ringkolben umschließt und einstückig mit dem Übertragungselement (3) ist, kommuniziert mit einem als Ringkammer ausgebildeten, die Betätigungseinheit (1) umschließenden Hydrospeicher (20) und bildet einen Pedalwegsimulator 23.

Description

Betätigungseinheit für einen Hauptbremszylinder einer hydraulischen Fahrzeugbremsanlage
Stand der Technik
Die Erfindung betrifft eine Betätigungseinheit für einen Hauptbremszylinder einer hydraulischen Fahrzeugbremsanlage mit den Merkmalen des Oberbegriffs des Anspruchs 1. Die Betätigungseinheit dient der Übertragung der Muskelkraft von einem Betätigungselement, normalerweise also einem Fußbremspedal oder einem Handbremshebel, auf einen Kolben eines Hauptbremszylinders. Die Betätigungseinheit tritt sozusagen an die Stelle einer Kolbenstange, die bei bislang üblichen Fahrzeugbremsanlagen das Fußbremspedal mit dem Kolben des Hauptbremszylinders verbindet. Allerdings ermöglicht die Betätigungseinrichtung eine teilweise oder vollständige Entkoppelung des Fußbremspedals oder allgemein des Betätigungselements vom Kolben des Hauptbremszylinders und sie ermöglicht die Einkoppelung von Fremdenergie, nämlich hydraulischem Druck, zu einer hydraulischen Bremskraftverstärkung oder zu einer Fremdkraftbremsung. Die Bremskraftverstärkung wird als Hilfskraftbremsung bezeichnet, bei der ein Teil einer Betätigungskraft zur Betätigung des Hauptbremszylinders durch Muskel- kraft vom Fahrzeugführer aufgebracht und ein anderer Teil der Betätigungskraft durch Fremdenergie erzeugt wird.
Eine derartige Betätigungseinheit ist bekannt aus der Patenanmeldung DE 10 2004 025 638 A1. Die bekannte Betätigungseinheit weist einen ersten Kolben auf, der über eine Kolbenstange mechanisch mit einem Fußbremspedal verbunden ist. Der erste Kolben ist verschiebbar in einer Zylinderbohrung eines zweiten Kolbens aufgenommen, gegen den er sich mit einer Druckfeder abstützt. Ein dritter Kolben ist gleichachsig zum zweiten Kolben in einer gemeinsamen Zylinderbohrung aufgenommen, wobei die beiden Kolben aneinander anliegen, wenn die Betätigungseinheit nicht betätigt ist. Die beiden Kolben sind in der Zylinderbohrung eines Hauptbremszylinders aufgenommen, der dritte Kolben bildet einen Primärkolben des Hauptbremszylinders, der an die Stelle eines Stangenkolbens eines herkömmlichen Hauptbremszylinders tritt. Denkbar ist allerdings auch, die beiden Kolben in einem Zylinder außerhalb des Hauptbremszylinders unterzubringen und die Kraft des dritten Kolbens mechanisch beispielsweise über eine Druckstange auf den Primärkolben des Hauptbremszylinders zu übertragen.
Eine Betriebsbremsung erfolgt als Fremdkraftbremsung durch hydraulische Druckbeaufschlagung eines Zwischenraums zwischen dem zweiten und dem dritten Kolben der bekannten Betätigungseinheit. Der hydraulische Druck stammt von einer Hydropumpe, an die vorzugsweise ein Hydrospeicher angeschlossen ist. Die Hydropumpe mit dem angeschlossenen Hydrospeicher bilden eine Fremdenergieversorgungseinrichtung. Der hydraulische Druck hält den zweiten Kolben der Betätigungseinheit in seiner Grundstellung, der sich während einer Betriebsbremsung nicht verschiebt. Der hydraulische Druck verschiebt den drit- ten Kolben der Betätigungseinheit, der den Primärkolben des Hauptbremszylinders bildet. Die Verschiebung des dritten Kolbens verdrängt wie üblich Bremsflüssigkeit aus dem Hauptbremszylinders zur Betätigung der Fahrzeugbremsanlage. Als Sollwert für die Höhe des Bremsdrucks wird eine Bewegung des Fußbrems- pedals oder auch die Muskelkraft, mit der das Fußbremspedal niedergetreten wird, herangezogen. Mit dem Fußbremspedal wird über die Druckstange der erste Kolben gegen die Kraft der Druckfeder verschoben, mit der sich der erste KoI- ben am zweiten Kolben abstützt. Der zweite Kolben wird wie bereits gesagt durch den hydraulischen Druck der Fremdenergieversorgungseinrichtung in seiner Grundstellung rückgehalten. Der zweite Kolben mit der Zylinderbohrung für den ersten Kolben und der erste Kolben, der gegen die Druckfeder verschiebbar ist, bilden einen Pedalwegsimulator, der bei einer Fremdkraftbremsung dem Fahr- zeugführer ein Pedalgefühl vermittelt, das demjenigen Pedalgefühl hydraulischer Fahrzeugbremsanlagen ähnlich ist.
Bei Ausfall der Fremdenergieversorgung wird bei Betätigung des Fußbremspedals der erste Kolben verschoben. Da der Gegendruck fehlt, verschiebt der erste Kolben über die Druckfeder den zweiten Kolben, der eine Schnüffelbohrung über- fährt. Dadurch wird ein Bremsflüssigkeitsvolumen in der Zylinderbohrung des zweiten Kolbens eingeschlossen, so dass sich der erste Kolben nicht mehr im zweiten Kolben verschieben lässt, sondern der zweite Kolben verschiebt sich mit dem ersten Kolben. Die Bewegung wird vom zweiten Kolben auf den dritten, an ihm anliegenden Kolben übertragen und es erfolgt eine Hilfsbremsung durch Muskelkraft.
Offenbarung der Erfindung
Die erfindungsgemäße Betätigungseinheit mit den Merkmalen des Anspruchs 1 weist ein Übertragungselement auf, das mit einem Betätigungselement der Fahrzeugbremsanlage verbunden ist. Das Betätigungselement ist insbesondere ein Fußbremspedal oder ein Handbremshebel. Des weiteren weist die erfindungsgemäße Betätigungseinheit einen druckbeaufschlagbaren Verstärkerkolben auf, der ein Ausgangselement der Betätigungseinheit bildet. Der Verstärkerkolben betätigt den Hauptbremszylinder, er kann ein Kolben des Hauptbremszylinders sein oder er ist über beispielsweise eine Kolbenstange mit einem Kolben des Hauptbremszylinders verbunden. Eine andere Möglichkeit ist, dass der bremszylinders verbunden. Eine andere Möglichkeit ist, dass der Verstärkerkolben der Betätigungseinheit hydraulisch mit dem Kolben des Hauptbremszylinders kommuniziert. Des weiteren weist die erfindungsgemäße Betätigungseinheit eine Kolben-Zylinder-Einheit auf, die einen hydraulischen Übertrager bildet, mit dem eine Kraft vom Übertragungselement auf den Verstärkerkolben übertragbar ist. Es weisen das Übertragungselement einen Kolben und der Verstärkerkolben einen Zylinder der Kolben-Zylinder-Einheit auf, oder umgekehrt weist der Verstärkerkolben einen Kolben und das Übertragungselement einen Zylinder der Kolben-Zylinder-Einheit auf. Es können das Übertragungselement bzw. der Verstär- kerkolben als Kolben bzw. Zylinder ausgebildet oder das Übertragungselement und/oder der Verstärkerkolben beispielsweise über Druckstangen mit dem Kolben bzw. dem Zylinder der Kolben-Zylinder-Einheit verbunden sein. Auch können das Übertragungselement und der Verstärkerkolben jeweils Kolben der Kolben- Zylinder-Einheit des hydraulischen Übertragers aufweisen, die in einem (festste- henden) Zylinder verschiebbar sind.
Zu einer Fremdenergiebremsung wird der Verstärkerkolben der erfindungsgemäßen Betätigungseinheit hydraulisch mit Druck aus einer Fremdenergieversorgungseinrichtung beaufschlagt und betätigt den Hauptbremszylinder. Die Kolben- Zylinder-Einheit, die den hydraulischen Übertrager der erfindungsgemäßen Betä- tigungseinheit bildet, ist zu einer Fremdkraftbremsung offen, so dass in ihr enthaltene Bremsflüssigkeit austreten kann. Anstelle von Bremsflüssigkeit kann auch eine andere Hydraulikflüssigkeit enthalten sein, was nachfolgend nicht mehr erwähnt werden wird. Die offene Kolben-Zylinder-Einheit ermöglicht eine Relativbewegung des Übertragungselement gegenüber dem Verstärkerkolben, die beiden Elemente sind voneinander entkoppelt. Der Bremsdruck wird durch die hydraulische Druckbeaufschlagung des Verstärkerkolbens erzeugt. Das Ü- bertragungselement oder das es verschiebende Betätigungselement, also beispielsweise ein Fußbremspedal, dienen als Sollwertgeber für die einzustellende Höhe des Bremsdrucks. Insbesondere arbeitet das Übertragungselement gegen ein Federelement, um eine Kraft am Bedienelement zu bewirken, so dass die er- findungsgemäße Betätigungseinheit einen integrierten Pedalwegsimulator aufweist.
Zu einer Hilfskraftbremsung wird die Kolben-Zylinder-Einheit, die den hydraulischen Übertrager bildet, geschlossen, d.h. das in ihr eingeschlossene Bremsflüs- sigkeitsvolumen bleibt konstant. Das Übertragungselement ist dadurch mit dem Verstärkerkolben verbunden, beide bewegen sich gemeinsam und eine auf das Übertragungselement ausgeübte Muskelkraft wird über den hydraulischen Ü- bertrager auf den Verstärkerkolben übertragen. Zusätzlich wird der Verstärkerkolben hydraulisch von der Fremdenergieversorgung mit Druck beaufschlagt. Die auf den Kolben des Hauptbremszylinders ausgeübte Betätigungskraft ist die Summe der auf das Übertragungselement ausgeübten Muskelkraft und der durch die Druckbeaufschlagung des Verstärkerkolbens erzeugten Kraft. Die vom Fahrzeugführer ausgeübte Muskelkraft wird durch hydraulische Fremdenergie verstärkt. Eine Relativbewegung zwischen dem Übertragungselement und dem Ver- Stärkerkolben ist durch gesteuertes oder geregeltes Auslassen oder auch Zuführen von Flüssigkeit in die Kolben-Zylinder-Einheit möglich, die den hydraulischen Übertrager bildet. Dadurch kann ein vom Weg des Verstärkerkolbens verschiedener Weg des Übertragungselements und damit ein vom Weg des Verstärkerkolbens verschiedener Betätigungsweg eines Fußbremspedals oder Handbremshebels bewirkt werden.
Eine Hilfsbremsung bei Ausfall der Fremdenergie erfolgt durch Sperren der Kolben-Zylinder-Einheit, so dass das in ihr eingeschlossene Flüssigkeitsvolumen konstant bleibt. Der Verstärkerkolben bewegt sich gemeinsam mit dem Übertragungselement, eine auf das Übertragungselement ausgeübte Muskelkraft wird auf den Verstärkerkolben übertragen, der Hauptbremszylinder wird durch Muskelkraft betätigt.
Die Erfindung hat den Vorteil, dass sie eine Fremdkraft- oder eine Hilfskraftbremsung ermöglicht und dass bei Ausfall einer Fremdenergieversorgung eine Muskelkraftbremsung möglich ist. Ein zusätzlicher Vorteil der Erfindung ist, dass bei einer Hilfsbremsung bei Ausfall der Fremdenergieversorgung kein Relativeg zwischen dem Übertragungselement und dem Verstärkerkolben stattfindet, es geht also Kein Betätigungsweg verloren. Außerdem ist ein Pedalwegsimulator integriert oder jedenfalls ohne weiteres integrierbar.
Bei der Verwendung der erfindungsgemäßen Betätigungseinheit in einem Hybridfahrzeug lässt sich das Fahrzeug teilweise oder vollständig mit dem oder den Elektromotoren bremsen, die dazu als Generatoren betrieben werden. Mit der erfindungsgemäßen Betätigungseinheit wird ein Sollwert für die Bremskraft ermittelt. Der Weg und die Kraft des Übertragungselements, also die vom Fahrzeug- führer auf ein Fußbremspedal ausgeübte Muskelkraft sowie der Pedalweg sind mit der erfindungsgemäßen Betätigungseinheit unabhängig von der Bremskraft einstellbar. Die erfindungsgemäße Betätigungseinheit ermöglicht das gewohnte Pedalgefühl unabhängig davon, ob die Verzögerung des Fahrzeugs vollständig, teilweise oder nicht mit der Fahrzeug-Reibungsbremsanlage über die erfindungs- gemäße Betätigungseinheit erfolgt. Außerdem lässt sich eine beliebige Pedalcharakteristik, also eine beliebige Abhängigkeit des Pedalwegs von der Pedalkraft einstellen. Ein weiterer Vorteils ist die Möglichkeit einer Bremsbetätigung ohne Bewegung des Übertragungselements, also ohne Pedalbewegung.
Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen der im Anspruch 1 angegebenen Erfindung zum Gegenstand. Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung einer Ausführungsform der Erfindung in Verbindung mit den Ansprüchen und der Zeichnung. Die einzelnen Merkmale können je für sich oder zu mehreren in beliebiger Kombination bei Ausführungsformen der Erfindung verwirklicht sein.
Kurze Beschreibung der Zeichnung
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Die einzige Figur zeigt einen Achsschnitt einer erfindungsgemäßen Betätigungseinheit mit hydraulischer Beschaltung. Die Zeichnung ist als vereinfachte und schematisierte Darstellung zur Erläuterung und zum Verständnis der Erfindung zu verstehen.
Ausführungsform der Erfindung
Die in der Zeichnung dargestellte, erfindungsgemäße Betätigungseinheit 1 ist zur Betätigung eines nicht dargestellten Hauptbremszylinders einer hydraulischen Fahrzeugbremsanlage vorgesehen, und zwar insbesondere, allerdings nicht zwingend, für ein sog. Hybridfahrzeug. Ein Hybridfahrzeug ist ein Kraftfahrzeug mit einem Verbrennungsmotor und einem (oder mehreren) Elektromotor(en) zum kombinierten Antrieb des Fahrzeugs. Bei einer Fahrzeugverzögerung, also einer Bremsung, wird Energie rückgewonnen indem der Elektromotor bzw. die Elektromotoren als Generator betrieben wird. Die Verzögerung des Hybridfahrzeugs erfolgt vollständig, teilweise oder nicht mit dem oder den Elektromotor(en) und folglich nicht, teilweise oder vollständig mit der Fahrzeug-Reibungsbremsanlage. Dabei kann sich das Verhältnis, zu dem der als Generator betriebene Elektromo- tor und die Fahrzeug-Reibungsbremsanlage zu einer Verzögerung des Fahrzeugs beitragen, während einer Bremsung (mehrfach ändern). Ein Sollwert für die Bremskraft wird von der Betätigungseinheit 1 vorgegeben und die Betätigungseinheit 1 vermittelt einem Fahrzeugführer das übliche Pedalgefühl beim Bremsen, und zwar auch dann, wenn das Fahrzeug nicht oder nur teilweise mit der Fahrzeug-Reibungsbremsanlage gebremst, sondern zumindest teilweise durch Generatorbetrieb des oder der Elektromotoren des Hybridfahrzeugs verzögert wird.
Betätigungseinheit 1 weist ein rohrförmiges Gehäuse 2 auf, in dem ein stangen- förmiges Übertragungselement 3 verschiebbar geführt ist. Das Übertragungsele- ment 3 steht an einem Ende aus dem Gehäuse 2 vor und ist gelenkig mit einem Fußbremspedal 4 verbunden, das als Bedienelement der Fahrzeugbremsanlage aufgefasst werden kann. Für eine Handbremse wäre ein Handbremshebel anstelle des Fußbremspedals 4 vorgesehen. Als Sollwertgeber für die Bremskraft oder Verzögerung des Fahrzeugs weist die Betätigungseinheit 1 einen Kraft- und/oder Wegsensor 5 auf, der eine Pedalkraft und/oder einen Pedalweg des Fußbrems- pedals 4 misst. Dabei muss wie bereits gesagt die Bremskraft nicht oder nicht vollständig von der Fahrzeug-Reibungsbremsanlage aufgebracht werden, sondern die Verzögerung kann auch durch Generatorbetrieb des oder der Elektro- motoren des Fahrzeugs erfolgen.
An seinem im Gehäuse 2 befindlichen Ende ist das Übertragungselement 3 als Kolben 6 ausgebildet, der in einem Zylinder 7 abgedichtet und verschiebbar aufgenommen ist. Der Zylinder 7 ist als Sackloch in einem Schaft 8 eines Verstärkerkolbens 9 ausgebildet, wobei der Schaft 8 in Richtung des Übertragungsele- ments 3 vom Verstärkerkolben 9 absteht und einen kleineren Durchmesser als der Verstärkerkolben 9 ausweist. Der Verstärkerkolben 9 ist abgedichtet in einem durchmessergrößeren Abschnitt 10 des rohrförmigen Gehäuses 2 der Betätigungseinheit 1 aufgenommen. Aufgrund des größeren Durchmessers des Verstärkerkolbens 9 gegenüber seinem Schaft 8 weist der Verstärkerkolben 9 eine kreisringförmige Kolbenfläche 11 auf der Seite des Schafts 9 auf, die hydraulisch mit Druck beaufschlagbar ist. Der durchmessergrößere Abschnitt 10 des Gehäuses 2 bildet einen Zylinder 12 für den Verstärkerkolben 9. Von einer dem Übertragungselement 3 abgewandten Seite steht eine Druckstange 13 vom Verstärkerkolben 9 ab, mit der ein nicht dargestellter Kolben des ebenfalls nicht darge- stellten Hauptbremszylinders verschiebbar und auf diese Weise der Hauptbremszylinder und die an ihn angeschlossene Fahrzeug-Reibungsbremsanlage betätigbar ist. Es ist vorgesehen, das Gehäuse 2 der Betätigungseinheit 1 mit dem Durchmessergrößeren Abschnitt 10, der den Zylinder 12 für den Verstärkerkolben 9 bildet, an den nicht dargestellten Hauptbremszylinder anzuflanschen. Auch ist es möglich, dass der Verstärkerkolben 9 zugleich einen (Primär-)Kolben des Hauptsbremszylinders bildet. In diesem Fall ist das Gehäuse 2 einstückiger Bestandteil des nicht dargestellten Hauptbremszylinders (nicht dargestellt).
Das als Kolben 6 ausgebildete Ende des Übertragungselements 3, nachfolgend kurz als Kolben 6 des Übertragungselements 3 bezeichnet, und der Zylinder 7 des Schafts 8 des Verstärkerkolbens 9, bilden eine Kolben-Zylinder-Einheit 14, die auch als hydraulischer Übertrager aufgefasst werden kann. Ein Innenraum der Kolben-Zylinder-Einheit 14 kommuniziert durch eine Bohrung 15 im Zylinder 7 und einen den Zylinder 7 im Gehäuse 2 umschließenden Ringraum 16 mit einem Anschluss 32, der als Radialbohrung im Gehäuse 2 ausgeführt ist.
Das Übertragsungselement 3 weist einen Simulatorkolben 17 auf, der als Ringkolben ausgebildet ist und das Übertragungselement 3 konzentrisch umschließt. An einem dem Gehäuse 2 abgewandten Ende geht der Simulatorkolben 17 einstückig in das Übertragungselement 3 über. Der Simulatorkolben 17 taucht in einen im Querschnitt ringförmigen Zylinder 18, der einstückiger Bestandteil des Gehäuses 2 der Betätigungseinheit 1 ist und der das Gehäuse 2 konzentrisch umschließt. Im Zylinder 18 ist eine Rückstellfeder 19 angeordnet, die den Simulatorkolben 17 und mit ihm das Übertragungselement 3 in eine Grundstellung beaufschlagt.
Der Zylinder 18 des Simulatorkolbens 17 ist von einem ringförmigen Hydrospei- eher 20 umschlossen, der den Zylinder 18 und das Gehäuse 2 der Betätigungseinheit 1 konzentrisch umschließt. Der Hydrospeicher 20 weist einen Ringkolben 21 auf, der von einer Schraubendruckfeder als Rückstellfeder 22 beaufschlagt ist. Der Hydrospeicher 20 kommuniziert mit dem Zylinder 18 des Simulatorkolbens 17. Der Hydrospeicher 20 und der Simulatorkolben 17 mit dem Zylinder 18 bilden einen noch zu erläuternden Pedalwegsimulator 23 der Betätigungseinheit 1.
Der Verstärkerkolben 9 weist ebenfalls eine Rückstellfeder 24 auf, die als Schraubendruckfeder ausgebildet und in dem durchmessergrößeren Abschnitt 10 des Gehäuses 2 untergebracht ist, der den Zylinder 12 des Verstärkerkolbens 9 bildet. Die Rückstellfeder 24 beaufschlagt den Verstärkerkolben 9 in seine Grundstellung, d.h. in Richtung des Übertragungselements 3.
Als Fremdenergieversorgungseinrichtung ist eine Hydropumpe 25 vorgesehen, die mit einem Elektromotor 26 antreibbar ist. Eine Druckseite der Hydropumpe 25 ist über ein Rückschlagventil 27 und ein Einlassventil 28 mit dem Zylinder 12 des Verstärkerkolbens 9 verbunden, so dass die achsscheibenförmige Kolbenfläche 11 des Verstärkerkolbens 9 hydraulisch mit Druck beaufschlagbar ist. Zur Zwi- schenspeicherung von Bremsflüssigkeit unter Druck ist ein Hydrospeicher 29 an der Druckseite der Hydropumpe 25 angeschlossen, außerdem ist ein Drucksensor 30 an die Druckseite der Hydropumpe 25 angeschlossen. Das Einlassventil 28 ist ein in seiner stromlosen Grundstellung geschlossenes 2/2-Wege- Magnetventil. An den Zylinder 12 des Verstärkerkolbens 9 ist ebenfalls ein Drucksensor 34 angeschlossen.
Eine Saugseite der Hydropumpe 25 ist über ein Auslassventil 31 mit dem Zylinder 12 des Verstärkerkolbens 9 verbunden. Auf der Saugseite der Hydropumpe 25 ist ein Rückschlagventil 41 und ein Bremsflüssigkeitsvorratsbehälter 33 vorgesehen. Das Auslassventil 31 ist ein in seiner stromlosen Grundstellung offenes 2/2-Wege-Magnetventil.
Wie bereits ausgeführt kommunizieren der Zylinder 18 des Simulatorkolbens 17 und der den Zylinder 18 umschließende Hydrospeicher 20. Durch ein Simulatorventil 35 sind der Hydrospeicher 20 und der Zylinder 18 mit der Kolben-Zylinder- Einheit 14 verbindbar, die den Übertrager bildet. Das Simulatorventil 35 ist ein in seiner stromlosen Grundstellung offenes 2/2-Wege-Magnetventil. Ein Rück- schlagventil 36 verhindert ein Rückströmen von Bremsflüssigkeit von der Kolben- Zylinder-Einheit 14 zum Hydrospeicher 20 und dem Zylinder 18 des Simulatorkolbens 17.
Durch ein Übertragerventil 37 ist die Kolben-Zylinder-Einheit 14 mit dem Bremsflüssigkeitsvorratsbehälter 33 und der Saugseite der Hydropumpe 25 verbindbar. Das Übertragerventil 37 ist ein in seiner stromlosen Grundstellung geschlossenes 2/2-Wege-Magnetventil. Durch Verbinden mit dem Vorratsbehälter 33 wird die Kolben-Zylinder-Einheit 14 drucklos geschaltet, wodurch das Übertragungselement 3 frei gegenüber dem Schaft 8 des Verstärkerkolbens 9 verschiebbar ist. Durch ein Druckabsenkventil 38 sind der Zylinder 18 des Simulatorkolbens 17 und der Hydrospeicher 20 mit dem Vorratsbehälter 33 und der Saugseite der Hydropumpe 25 verbindbar. Das Druckabsenkventil 38 ist ein in seiner stromlosen Grundstellung offenes 2/2-Wege-Magnetventil. Dem Druckabsenkventil 38 und dem Vorratsbehälter 33 ist eine Drossel 39 zwischengeschaltet.
Durch ein Druckaufbauventil 40 sind der Hydrospeicher 20 und der Zylinder 18 des Simulatorkolbens 17 mit der Druckseite der Hydropumpe 25 und dem Hydrospeicher 29 verbindbar. Das Druckaufbauventil 40 ist ein in seiner stromlosen Grundstellung geschlossenes 2/2-Wege-Magnetventil.
Die Bezeichnung der Ventile 28, 31 , 35, 37, 38, 40 als Einlassventil 28, Auslassventil 31 , Simulatorventil 35, Übertragerventil 37, Druckabsenkventil 38 und Druckaufbauventil 40 erfolgt zu deren sprachlicher Unterscheidung.
Die Funktion der Betätigungseinheit 1 ist folgende: Zum Bremsen wird das Fußbremspedal 4 getreten und damit das Übertragungselement 3 in das Gehäuse 2 hineinverschoben. Die Kolben-Zylinder-Einheit 14, die den Übertrager bildet, ist durch Öffnen des Übertragerventils 37 drucklos, so dass der Verstärkerkolben 9 vom Übertragungselement 3 entkoppelt und das Übertragungselement 3 unabhängig vom Verstärkerkolben 9 verschiebbar ist. Eine Bremskraft wird in Abhängigkeit vom Signal des Kraft- oder Wegsensors 5 erzeugt. Es wird ein Bremsmo- ment eines oder mehrerer Elektro-Anthebsmotoren eines Hybridfahrzeugs erzeugt, die als Generator betrieben werden, sofern das mit der Bremsanlage ausgerüstete Kraftfahrzeug ein Hybridfahrzeug ist. Zusätzlich oder satt dessen wird durch Schließen des Auslassventils 31 und öffnen des Einlassventils 28 der Verstärkerkolben 9 hydraulisch mit Druck aus der Hydropumpe 25 und dem Hydro- Speicher 29 beaufschlagt. Die Kraft des Verstärkerkolbens 9 wird über die Druckstange 13 auf einen Kolben des nicht dargestellten Hauptbremszylinders einer Fahrzeug-Reibungsbremsanlage übertragen, der dadurch betätigt wird. Der Anteil der Bremskraft, die mit den als Generator betriebenen Elektromotoren und mit dem Hauptbremszylinder, d.h. mit der hydraulischen Fahrzeug- Reibungsbremsanlage, erzeugt wird, lässt sich den Erfordernissen entsprechend einstellen. Die Steuerung oder Regelung erfolgt mittels eines nicht dargestellten, elektronischen Steuergeräts. Die Bremsung ist eine Fremdkraftbremsung. Zur Verbesserung einer Regelgüte können alle oder ein Teil der Magnetventile 28, 31 , 35, 37, 38, 40 Proportionalventile sein. Eine Pedalkraft wird dadurch erzeugt, dass der Simulatorkolben 17 Bremsflüssigkeit aus dem Zylinder 18 in den Hydro- speicher 20 verdrängt. Der Simulatorkolben 17 arbeitet gegen seine Rückstellfeder 19 und der Ringkolben 21 des Hydrospeichers 20 arbeitet gegen seine Rückstellfeder 22. Weil der Simulatorkolben 17 mit dem Ringkolben 21 kommuniziert arbeitet der Simulatrokolben 17 über den Ringkolben 21 auch gegen dessen Rückstellfeder 22. Wie bereits gesagt, bilden der Simulatorkolben 17 im Zylinder 18 mit der Rückstellfeder 19 und der kommunizierende Hydrospeicher 20 mit der Rückstellfeder 22 einen Pedalwegsimulator 23.
Mit dem Druckaufbauventil 40 und dem Druckabsenkventil 38 lässt sich ein hyd- raulischer Druck im Zylinder 18 des Simulatorkolbens 17 und im Hydrospeicher 20 steuern oder regeln. Der hydraulische Druck im Zylinder 18 beaufschlagt den Simulatorkolben 17 und damit das Übertragungselement 3 und über dieses das Bremspedal 4. Durch Steuern oder Regeln des hydraulischen Drucks im Zylinder 18 lässt sich eine grundsätzlich beliebige Pedalkennlinie einstellen, also eine Abhängigkeit der Pedalkraft vom Pedalweg. Die Pedalkennlinie ist wiederum unabhängig von der Bremskraft, die als Fremdkraft erzeugt wird.
Auch ist eine Hilfskraftbremsung mit der Betätigungseinheit 1 möglich, indem mit dem Übertragerventil 37 Bremsflüssigkeit aus der Kolben-Zylinder-Einheit 14 gesteuert oder geregelt ausgelassen wird. Ein Nachfüllen von Bremsflüssigkeit kann mit der Hydropumpe 25 und aus dem Hydrospeicher 29 durch das Druckaufbauventil 40 und das Simulatorventil 35 erfolgen. Es lässt sich dadurch Muskelkraft vom Übertragungselement 3 über die Kolben-Zylinder-Einheit 14 auf den Schaft 8 des Verdrängerkolbens 9 einkoppeln, so dass die Betätigungskraft des Hauptbremszylinders teilweise durch Druckbeaufschlagung des Verstärkerkol- bens 9 und zu einem anderen Teil durch Muskelkraft vom Übertragungselement 3 aufgebracht wird. Auch hier ist in beschriebener Weise die Pedalkennlinie am Bremspedal 4 Steuer- oder regelbar.
Bei Ausfall oder Störung der Fremdenergieversorgung ist eine Hilfsbremsung ausschließlich per Muskelkraft des Fahrzeugführers ohne weiteres möglich. Es bleiben alle Magnetventile 28, 31 , 35, 37, 38, 40 in ihren dargestellten Grundstellungen und die Fahrzeugbremsanlage wird durch Niedertreten des Fußbremspedals 4 betätigt. Das im Zylinder 7 der Kolben-Zylinder-Einheit 14 eingeschlossene Bremsflüssigkeitsvolumen bleibt wegen des geschlossenen Übertragerventils 37 konstant, so dass die Bewegung des Übertragungselements 3 verlustfrei auf den Verstärkerkolben 9 übertragen wird. Durch das offene Auslassventil 31 ist der Zylinder 12 des Verstärkerkolbens 9 mit dem Vorratsbehälter 33 verbunden, so dass Bremsflüssigkeit aus dem Vorratsbehälter 33 in den Zylinder 12 strömen kann, wenn der Verstärkerkolben 9 verschoben wird. Das Rückschlagventil 36 zwischen dem Simulatorventil 35 und der Kolben-Zylinder-Einheit 14 verhindert, dass Bremsflüssigkeit aus der den Übertrager bildenden Kolben-Zylinder-Einheit 14 austritt.
Im ungünstigsten Fall fällt die Fremdenergieversorgung während einer Fremdkraft- oder einer Hilfskraftbremsung aus. Bei der Bremsung ist Bremsflüssigkeit aus dem Zylinder 18 des Simulatorkolbens 17 in den Hydrospeicher 20 verdrängt worden. Diese Bremsflüssigkeit steht unter Druck und strömt durch Öffnen des Simulatorventils 35 in Richtung der Kolben-Zylinder-Einheit 14. Das Simulatorventil 35 öffnet bei Ausfall des Systems, weil es in seiner stromlosen Grundstellung offen ist. Beim Ausfall der Fremdenergieversorgung während einer Bremsung steht also unter Druck stehende Bremsflüssigkeit aus dem Hydrospeicher 20 zur Betätigung der Fahrzeugbremsanlage zur Verfügung. Die Drossel 39 zwischen dem Vorratsbehälter 33 und dem Druckabsenkventil 38 hat die Aufgabe, dass die Bremsflüssigkeit aus dem Hydrospeicher 20 zum größeren Teil zur Kolben-Zylinder-Einheit 14, die den Übertrager bildet, fließt und nicht in den Vorratsbehälter 33. Es ist auch eine Bremsbetätigung ohne Bewegung des Übertragungselements 3, also ohne Pedalbetätigung möglich: Dazu wird die Kolben-Zylinder-Einheit 14 durch Öffnen des Übertragerventils 37 drucklos geschaltet und der Verstärkerkolben 9 nach Öffnen des Einlassventils 28 und Schließen des Auslassventils 31 von der Hydropumpe 25 bzw. aus dem Hydrospeicher 29 mit Druck beaufschlagt und auf diese Weise der nicht dargestellte Hauptbremszylinder betätigt. Die Bremsbetätigung ohne Pedalbetätigung ermöglicht beispielsweise eine Antriebsschlupf- oder Fahrdynamikregelung.

Claims

Patentansprüche
1. Betätigungseinheit für einen Hauptbremszylinder einer hydraulischen Fahrzeugbremsanlage, mit einem Übertragungselement (3) zur Übertra- gung von Muskelkraft eines Fahrzeugführers auf einen Kolben des
Hauptbremszylinders, das mechanisch mit einem Betätigungselement (4) verbunden ist, und mit einem hydraulisch druckbeaufschlagbaren Verstärkerkolben (9), mit dem der Hauptbremszylinder betätigbar ist, dadurch gekennzeichnet, dass das Übertragungselement (3) und der Ver- Stärkerkolben (9) eine Kolben-Zylinder-Einheit (14) als hydraulischen
Übertrager aufweisen, mit dem eine Kraft vom Übertragungselement (3) auf den Verstärkerkolben (9) übertragbar ist.
2. Betätigungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Kolben-Zylinder-Einheit (14) über ein Ventil (37) an einen Vorratsbehälter (33) angeschlossen ist.
3. Betätigungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass das Übertragungselement (3) einen mechanisch mit ihm verbundenen Simulatorkolben (17) aufweist.
4. Betätigungseinheit nach Anspruch 3, dadurch gekennzeichnet, dass der Simulatorkolben (17) über ein Ventil (38) hydraulisch mit einem Vorratsbehälter (33) kommuniziert.
5. Betätigungseinheit nach Anspruch 3, dadurch gekennzeichnet, dass der Simulatorkolben (17) mit einem Hydrospeicher (20) kommuniziert.
6. Betätigungseinheit nach Anspruch 3, dadurch gekennzeichnet, dass der Simulatorkolben (17) ein Ringkolben ist, der das Übertragungselement (3) umschließt
7. Betätigungseinheit nach Anspruch 5, dadurch gekennzeichnet, dass der Hydrospeicher (20) ringförmig ist und das Übertragungselement (3) umschließt.
8. Betätigungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Kolben-Zylinder-Einheit (14) hydraulisch mit dem Simulatorkolben (17) und/oder dem Hydrospeicher (20) verbindbar ist.
PCT/EP2009/051473 2008-04-08 2009-02-10 Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage WO2009124795A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT09730889T ATE516190T1 (de) 2008-04-08 2009-02-10 Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage
EP09730889A EP2268517B1 (de) 2008-04-08 2009-02-10 Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008001061A DE102008001061A1 (de) 2008-04-08 2008-04-08 Betätigungseinheit für einen Hauptbremszylinder einer hydraulischen Fahrzeugbremsanlage
DE102008001061.8 2008-04-08

Publications (1)

Publication Number Publication Date
WO2009124795A1 true WO2009124795A1 (de) 2009-10-15

Family

ID=40636568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051473 WO2009124795A1 (de) 2008-04-08 2009-02-10 Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage

Country Status (4)

Country Link
EP (1) EP2268517B1 (de)
AT (1) ATE516190T1 (de)
DE (1) DE102008001061A1 (de)
WO (1) WO2009124795A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228457A (zh) * 2019-06-13 2019-09-13 吉林大学 一种新型液压助力制动机构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048286A1 (de) * 2009-10-05 2011-04-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
DE102010042694A1 (de) * 2010-07-27 2012-02-02 Robert Bosch Gmbh Kopplungsvorrichtung zum Verbinden eines Bremseingabeelements mit einem Hauptbremszylinder und Verfahren zum Betreiben einer derartigen Kopplungsvorrichtung
DE102010034696A1 (de) * 2010-08-18 2012-02-23 Volkswagen Ag Fahrzeugbremsanlage mit hydraulischem Pedalsimulator
DE102010045617A1 (de) * 2010-09-17 2012-03-22 Ipgate Ag Betätigungsvorrichtung für eine Kraftfahrzeug-Bremsanlage
DE102010050133A1 (de) * 2010-11-03 2012-05-03 Ipgate Ag Betätigungsvorrichtung für eine Fahrzeug-Bremsanlage
DE102011083237B4 (de) 2010-10-04 2021-12-09 Continental Teves Ag & Co. Ohg Bremsanlage und Verfahren zu deren Betrieb
DE102011083827A1 (de) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Primärkolbenbaugruppe für einen Hauptbremszylinder eines Bremssystems eines Fahrzeugs, Herstellungsverfahren für ein Bremsgerät und Verfahren zum Betreiben eines Bremsgeräts
DE102012002117A1 (de) * 2012-02-06 2013-08-08 Ipgate Ag Bremsvorrichtung für Kraftfahrzeuge
DE102012221146A1 (de) * 2012-11-20 2014-05-22 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
DE102018218145A1 (de) * 2018-10-23 2020-04-23 Continental Teves Ag & Co. Ohg Simulator für hydraulische Bremssysteme, Bremssystem und Betriebsverfahren
DE102019218229A1 (de) * 2019-11-26 2021-05-27 Continental Teves Ag & Co. Ohg Ventilanordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404803A (en) * 1980-04-30 1983-09-20 Itt Industries, Inc. Brake unit with a hydraulic boosting device
EP1078833A2 (de) * 1999-08-25 2001-02-28 Continental Teves & Co. oHG Bremsanlage für Kraftfahrzeuge und Verfahren zum Betreiben einer Bremsanlage
DE10055715A1 (de) * 1999-11-12 2001-05-31 Aisin Seiki Hydraulikdruckbremseinrichtung für Fahrzeuge
WO2001072567A1 (de) * 2000-03-27 2001-10-04 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge
DE10346674A1 (de) * 2003-07-11 2005-01-27 Continental Teves Ag & Co. Ohg Elektrohydraulische Bremskraftanlage für Kraftfahrzeuge
DE102005030223A1 (de) * 2005-06-29 2007-01-04 Lucas Automotive Gmbh Bremskrafterzeuger für eine hydraulische Fahrzeugbremsanlage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025638A1 (de) 2003-11-06 2005-09-08 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404803A (en) * 1980-04-30 1983-09-20 Itt Industries, Inc. Brake unit with a hydraulic boosting device
EP1078833A2 (de) * 1999-08-25 2001-02-28 Continental Teves & Co. oHG Bremsanlage für Kraftfahrzeuge und Verfahren zum Betreiben einer Bremsanlage
DE10055715A1 (de) * 1999-11-12 2001-05-31 Aisin Seiki Hydraulikdruckbremseinrichtung für Fahrzeuge
WO2001072567A1 (de) * 2000-03-27 2001-10-04 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge
DE10346674A1 (de) * 2003-07-11 2005-01-27 Continental Teves Ag & Co. Ohg Elektrohydraulische Bremskraftanlage für Kraftfahrzeuge
DE102005030223A1 (de) * 2005-06-29 2007-01-04 Lucas Automotive Gmbh Bremskrafterzeuger für eine hydraulische Fahrzeugbremsanlage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228457A (zh) * 2019-06-13 2019-09-13 吉林大学 一种新型液压助力制动机构
CN110228457B (zh) * 2019-06-13 2024-01-23 吉林大学 一种新型液压助力制动机构

Also Published As

Publication number Publication date
EP2268517B1 (de) 2011-07-13
ATE516190T1 (de) 2011-07-15
DE102008001061A1 (de) 2009-10-15
EP2268517A1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
EP2268517B1 (de) Betätigungseinheit für einen hauptbremszylinder einer hydraulischen fahrzeugbremsanlage
DE112010000851B4 (de) Hydraulisches Bremssystem mit gesteuerter Verstärkung
DE60011985T2 (de) Fahrzeugbremsanlage mit Flüssigkeitsströmungssteuermittel zwischen Druckerzeuger- und Verstärkerkammern eines Hauptzylinders, einer Druckquelle und einem Speicher
EP1078833B1 (de) Bremsanlage für Kraftfahrzeuge und Verfahren zum Betreiben einer Bremsanlage
DE102005030223A1 (de) Bremskrafterzeuger für eine hydraulische Fahrzeugbremsanlage
WO2016023994A1 (de) Wegsimulator für ein betätigungssystem, insbesondere eine elektrohydraulische brake-by-wire bremsanlage
WO2014154437A1 (de) Bremsgerät für ein bremssystem eines fahrzeugs und bremssystem für ein fahrzeug
WO2006087338A1 (de) Bremsanlage für kraftfahrzeuge
DE102008001013A1 (de) Hydraulische Fahrzeugbremsanlage
EP2516222A1 (de) Hauptbremszylinder für eine hydraulische fahrzeugbremsanlage und verfahren zu ihrem betrieb
DE102006050277A1 (de) Stufenkolben
WO2005087565A1 (de) Bremskrafterzeuger für eine hydraulische fahrzeugbremsanlage und fahrzeugbremsanlage
DE19736646C2 (de) Vollhydraulische Bremskrafterzeuger/Hauptzylinder-Einheit mit verbesserter Bremsdruckrückmeldung
DE112018005741T5 (de) Fahrzeugbremssystem mit einer Bremspedaleinheit
DE10159572B4 (de) Erzeugungsvorrichtung für Bremsflüssigkeitsdruck
EP2814701A1 (de) Bremsgerät für ein fahrzeug und verfahren zum betreiben eines bremsgeräts eines fahrzeugs
DE102017221055A1 (de) Bremssystem für Kraftfahrzeuge mit Fußeinklemmschutz
DE19932670C2 (de) Hauptzylinderanordnung
DE102017207182A1 (de) Hauptbremszylinder und Bremsanlage mit einem solchen Hauptbremszylinder
DE19945953A1 (de) Zylindervorrichtung für ein Bremsflüssigkeits-Druckregelsystem
DE102006006604A1 (de) Bremsanlage für Kraftfahrzeuge
DE10010242B4 (de) Bremsanlage für Kraftfahrzeuge und Verfahren zum Betreiben einer Bremsanlage
EP1526995B1 (de) Hauptbremszylindereinheit für eine elektrohydraulische fahrzeugbremsanlage
DE10308621B4 (de) Hydraulikdruckgenerator für eine Kraftfahrzeugbremse
DE202016102060U1 (de) Anhängersteuerventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009730889

Country of ref document: EP